1
|
Development of a functional antibody by using a green fluorescent protein frame as the template. Appl Environ Microbiol 2014; 80:4126-37. [PMID: 24795367 DOI: 10.1128/aem.00936-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Single-chain variable fragment (scFv) antibodies are widely used as diagnostic and therapeutic agents or biosensors for a majority of human disease. However, the limitations of the present scFv antibody in terms of stability, solubility, and affinity are challenging to produce by traditional antibody screening and expression formats. We describe here a feasible strategy for creating the green fluorescent protein (GFP)-based antibody. Complementarity-determining region 3 (CDR3), which retains the antigen binding activity, was introduced into the structural loops of superfolder GFP, and the result showed that CDR3-inserted GFP displayed almost the same fluorescence intensity as wild-type GFP, and the purified proteins of CDR3 insertion showed the similar binding activity to antigen as the corresponding scFv. Among of all of the CDRs, CDR3s are responsible for antigen recognition, and only the CDR3a insertion is the best format for producing GFP-based antibody binding to specific antigen. The wide versatility of this system was further verified by introducing CDR3 from other scFvs into loop 9 of GFP. We developed a feasible method for rapidly and effectively producing a high-affinity GFP-based antibody by inserting CDR3s into GFP loops. Further, the affinity can be enhanced by specific amino acids scanning and site-directed mutagenesis. Notably, this method had better versatility for creating antibodies to various antigens using GFP as the scaffold, suggesting that a GFP-based antibody with high affinity and specificity may be useful for disease diagnosis and therapy.
Collapse
|
2
|
Vendrell M, Zhai D, Er JC, Chang YT. Combinatorial strategies in fluorescent probe development. Chem Rev 2012; 112:4391-420. [PMID: 22616565 DOI: 10.1021/cr200355j] [Citation(s) in RCA: 476] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marc Vendrell
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, 138667 Singapore.
| | | | | | | |
Collapse
|
3
|
ABE Y. Development of Novel DDS Technologies for Optimized Protein Therapy by Creating Functional Mutant Proteins with Antagonistic Activity. YAKUGAKU ZASSHI 2009; 129:933-9. [DOI: 10.1248/yakushi.129.933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasuhiro ABE
- Laboratory of Pharmaceutical Proteomics, National Institute of Biomedical Innovation
| |
Collapse
|
4
|
Safarnejad MR, Fischer R, Commandeur U. Recombinant-antibody-mediated resistance against Tomato yellow leaf curl virus in Nicotiana benthamiana. Arch Virol 2009; 154:457-67. [PMID: 19234665 DOI: 10.1007/s00705-009-0330-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Accepted: 01/19/2009] [Indexed: 10/21/2022]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a geminivirus species whose members cause severe crop losses in the tropics and subtropics. We report the expression of a single-chain variable fragment (scFv) antibody that protected Nicotiana benthamiana plants from a prevalent Iranian isolate of the virus (TYLCV-Ir). Two recombinant antibodies (scFv-ScRep1 and scFv-ScRep2) interacting with the multifunctional replication initiator protein (Rep) were obtained from phage display libraries and expressed in plants, both as stand-alone proteins and as N-terminal GFP fusions. Initial results indicated that both scFvs and both fusions accumulated to a detectable level in the cytosol and nucleus of plant cells. Transgenic plants challenged with TYLCV-Ir showed that the scFv-ScRep1, but more so the fusion proteins, were able to suppress TYLCV-Ir replication. These results show that expression of a scFv-ScRep1-GFP fusion protein can attenuate viral DNA replication and prevent the development of disease symptoms. The present article describes the first successful application of a recombinant antibody-mediated resistance approach against a plant DNA virus.
Collapse
Affiliation(s)
- Mohammad Reza Safarnejad
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | | | | |
Collapse
|
5
|
Investigating the properties of Bacillus thuringiensis Cry proteins with novel loop replacements created using combinatorial molecular biology. Appl Environ Microbiol 2008; 74:3497-511. [PMID: 18408065 DOI: 10.1128/aem.02844-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cry proteins are a large family of crystalline toxins produced by Bacillus thuringiensis. Individually, the family members are highly specific, but collectively, they target a diverse range of insects and nematodes. Domain II of the toxins is important for target specificity, and three loops at its apex have been studied extensively. There is considerable interest in determining whether modifications in this region may lead to toxins with novel specificity or potency. In this work, we studied the effect of loop substitution on toxin stability and specificity. For this purpose, sequences derived from antibody complementarity-determining regions (CDR) were used to replace native domain II apical loops to create "Crybodies." Each apical loop was substituted either individually or in combination with a library of third heavy-chain CDR (CDR-H3) sequences to create seven distinct Crybody types. An analysis of variants from each library indicated that the Cry1Aa framework can tolerate considerable sequence diversity at all loop positions but that some sequence combinations negatively affect structural stability and protease sensitivity. CDR-H3 substitution showed that loop position was an important determinant of insect toxicity: loop 2 was essential for activity, whereas the effects of substitutions at loop 1 and loop 3 were sequence dependent. Unexpectedly, differences in toxicity did not correlate with binding to cadherins--a major class of toxin receptors--since all Crybodies retained binding specificity. Collectively, these results serve to better define the role of the domain II apical loops as determinants of specificity and establish guidelines for their modification.
Collapse
|
6
|
Cotlet M, Goodwin PM, Waldo GS, Werner JH. A comparison of the fluorescence dynamics of single molecules of a green fluorescent protein: one- versus two-photon excitation. Chemphyschem 2007; 7:250-60. [PMID: 16353266 DOI: 10.1002/cphc.200500247] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report on the dynamics of fluorescence from individual molecules of a mutant of the wild-type green fluorescent protein (GFP) from Aequorea victoria, super folder GFP (SFGFP). SFGFP is a novel and robust variant designed for in vivo high-throughput screening of protein expression levels. It shows increased thermal stability and is able to retain its fluorescence when fused to poorly folding proteins. We use a recently developed single-molecule technique which combines fluorescence-fluctuation spectroscopy and time-correlated single photon counting in order to characterize the photophysical properties of SFGFP under one- (OPE) and two- (TPE) photon excitation conditions. We use Rhodamine 110 as a model chromophore to validate the methodology and to explain the single-molecule results of SFGFP. Under OPE, single SFGFP molecules undergo fluorescence flickering on the time scale of micros and tens of micros due to triplet formation and ground-state protonation-deprotonation, respectively, as demonstrated by excitation intensity- and pH-dependent experiments. OPE single-molecule fluorescence lifetimes indicate heterogeneity in the population of SFGFP, indicating the presence of the deprotonated I and B forms of the SFGFP chromophore. TPE of single SFGFP molecules results in the photoconversion of the chromophore. TPE of single SFGFP molecules show fluorescence flickering on the time scale of micros due to triplet formation. A flicker connected with protonation-deprotonation of the SFGFP chromophore is detected only at low pH. Our results show that SFGFP is a promising fusion reporter for intracellular applications using OPE and TPE microscopy.
Collapse
Affiliation(s)
- Mircea Cotlet
- Los Alamos National Laboratory, Material Science and Technology Division, Center for Integrated Nanotechnologies, Mail Stop J586, Los Alamos NM 87545, USA.
| | | | | | | |
Collapse
|
7
|
Shukla GS, Murray CJ, Estabrook M, Shen GP, Schellenberger V, Krag DN. Towards a ligand targeted enzyme prodrug therapy: Single round panning of a β-lactamase scaffold library on human cancer cells. Int J Cancer 2007; 120:2233-42. [PMID: 17285581 DOI: 10.1002/ijc.22138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A novel beta-lactamase scaffold library in which the target-binding moiety is built into the enzyme was generated using phage display technology. The binding element is composed of a fully randomized 8 amino acid loop inserted at position between Y34 and K37 on the outer surface of Enterobacter cloacae P99 cephalosporinase (beta-lactamase, E.C. 3.5.2.6) with all library members retaining catalytic activity. The frequency and diversity of amino acids distributions in peptide inserts from library clones were analyzed. The complexity of the randomized loop appears consistent with standards of other types of phage display library systems. The library was panned against SKBR3 human breast cancer cells in 1 round using rolling circle amplification of phage DNA to recover bound phage. Individual beta-lactamase clones, independent of phage, were rapidly assessed for their binding to SKBR3 cells using a simple high throughput screen based on cell-bound beta-lactamase activity. SKBR3 cell-binding beta-lactamase enzymes were also shown to bind specifically using an immunochemical method. Selected beta-lactamase clones were further studied for their protein expression, enzyme activity and binding to nontumor cell-lines. Overall, the approach outlined here offers the opportunity of rapidly selecting targeted beta-lactamase ligands that may have a potential for their use in enzyme prodrug therapy with cephalosporin-based prodrugs. It is expected that a similar approach will be useful in developing tumor-targeting molecules of several other enzyme candidates of cancer prodrug therapy.
Collapse
Affiliation(s)
- Girja S Shukla
- Department of Surgery, Vermont Comprehensive Cancer Center, and University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Huang QL, Chen C, Chen YZ, Gong CG, Wang J, Hua ZC. Fusion protein between protein ZZ and red fluorescent protein DsRed and its application to immunoassays. Biotechnol Appl Biochem 2006; 43:121-7. [PMID: 16218907 DOI: 10.1042/ba20050136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, a red fluorescent protein (DsRed) from the coral Discosoma was fused to the C-terminus of protein ZZ, a synthetic artificial IgG-Fc-fragment-binding protein derived from the B-domain of staphylococcal Protein A. The chimaeric protein, tagged with six histidine residues at the N-terminus, was expressed in Escherichia coli and easily purified by one-step Ni2+-chelating affinity chromatography. Its fluorescence and IgG-binding activities were validated using fluorescence-spectrum analysis, ELISA and dot-blot analysis. Furthermore, in subsequent dot-blotting immunoanalysis of glutathione S-transferase and tumour necrosis factor-alpha, and immunofluorescent microscopy assay of interferon regulatory factor 3, the chimaeric protein enabled effective detection of target molecules. Compared with fluorescence-conjugated antibodies, ZZ-DsRed is less susceptible to photobleaching and easy to produce. In addition, unlike HRP (horseradish peroxidase)-conjugated antibodies, using ZZ-DsRed needs no addition of a chromogenic reagent. Our results indicate that ZZ-DsRed shows a wide and promising application potential in immunological detection as a substitute for fluorescent or HRP-conjugated anti-IgGs.
Collapse
Affiliation(s)
- Qi-Lai Huang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, College of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Prescott M, Battad JM, Wilmann PG, Rossjohn J, Devenish RJ. Recent advances in all-protein chromophore technology. BIOTECHNOLOGY ANNUAL REVIEW 2006; 12:31-66. [PMID: 17045191 DOI: 10.1016/s1387-2656(06)12002-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The green fluorescent protein (GFP) is the foundation of a powerful technology that has revolutionized the way in which the life scientist carries out experiments in the living cell. The technology is continually evolving and improving through the development of existing proteins and discovery of new members of the all-protein chromophore (APC) family. This review gives an overview of the more recent advances in the technology with a particular focus on APCs having optical properties that are significantly red-shifted relative to those variants derived from Aequorea victoria GFP.
Collapse
Affiliation(s)
- Mark Prescott
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | | | |
Collapse
|
10
|
Abstract
Recent advances have been made in the development of systems for the display and expression of recombinant antibodies and affibodies in filamentous phages, Escherichia coli and other prokaryotic cells. Emphasis has been placed on improving phage and phagemid vectors, alternative systems for expression in different cellular compartments (e.g. the outer membrane, periplasm, cytoplasm and extracellular secretion) and novel multimerization systems for generating bivalent or multivalent binding molecules.
Collapse
Affiliation(s)
- Luis Angel Fernández
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
11
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
12
|
Abstract
Rational design, usually guided by computational prediction, and selection from libraries of variants of natural proteins have been used with success in the engineering of novel non-natural receptors. Many of these engineered protein binders will find use in biotechnological, diagnostic and medical applications, sometimes in the place of natural antibodies.
Collapse
Affiliation(s)
- Pascale Mathonet
- Laboratoire de Biochimie Physique et des Biopolymères, Institut des Sciences de la Vie, place Louis Pasteur 1, B1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
13
|
Karatan E, Merguerian M, Han Z, Scholle MD, Koide S, Kay BK. Molecular Recognition Properties of FN3 Monobodies that Bind the Src SH3 Domain. ACTA ACUST UNITED AC 2004; 11:835-44. [PMID: 15217616 DOI: 10.1016/j.chembiol.2004.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/26/2004] [Accepted: 04/07/2004] [Indexed: 11/20/2022]
Abstract
We have constructed a phage-displayed library based on the human fibronectin tenth type III domain (FN3) scaffold by randomizing residues in its FG and BC loops. Screening against the SH3 domain of human c-Src yielded six different clones. Five of these contained proline-rich sequences in their FG loop that resembled class I (i.e., +xxPxxP) peptide ligands for the Src SH3 domain. The sixth clone lacked the proline-rich sequence and showed particularly high binding specificity to the Src SH3 domain among various SH3 domains tested. Competitive binding, loop replacement, and NMR perturbation experiments were conducted to analyze the recognition properties of selected binders. The strongest binder was able to pull down full-length c-Src from murine fibroblast cell extracts, further demonstrating the potential of this scaffold for use as an antibody mimetic.
Collapse
Affiliation(s)
- Ece Karatan
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | | | | | | | | | | |
Collapse
|
14
|
Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, Forrer P, Grütter MG, Plückthun A. High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 2004; 22:575-82. [PMID: 15097997 DOI: 10.1038/nbt962] [Citation(s) in RCA: 498] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Accepted: 01/14/2004] [Indexed: 11/09/2022]
Abstract
We report here the evolution of ankyrin repeat (AR) proteins in vitro for specific, high-affinity target binding. Using a consensus design strategy, we generated combinatorial libraries of AR proteins of varying repeat numbers with diversified binding surfaces. Libraries of two and three repeats, flanked by 'capping repeats,' were used in ribosome-display selections against maltose binding protein (MBP) and two eukaryotic kinases. We rapidly enriched target-specific binders with affinities in the low nanomolar range and determined the crystal structure of one of the selected AR proteins in complex with MBP at 2.3 A resolution. The interaction relies on the randomized positions of the designed AR protein and is comparable to natural, heterodimeric protein-protein interactions. Thus, our AR protein libraries are valuable sources for binding molecules and, because of the very favorable biophysical properties of the designed AR proteins, an attractive alternative to antibody libraries.
Collapse
Affiliation(s)
- H Kaspar Binz
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Soares HD, Williams SA, Snyder PJ, Gao F, Stiger T, Rohlff C, Herath A, Sunderland T, Putnam K, White WF. Proteomic Approaches in Drug Discovery and Development. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2004; 61:97-126. [PMID: 15482813 DOI: 10.1016/s0074-7742(04)61005-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Holly D Soares
- Pfizer Global Research and Development, Groton, CT 06340, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Affiliation(s)
- David W Galbraith
- University of Arizona, Department of Plant Sciences, Institute for Biomedical Science and Biotechnology, Tucson, Arizona 85721, USA
| |
Collapse
|
18
|
Affiliation(s)
- György Vereb
- Department of Biophysics and Cell Biology, Cell Biophysics Research Group, Hungarian Academy of Sciences, University of Debrecen, Debrecen H-4012, Hungary
| | | | | |
Collapse
|
19
|
Shibata H, Nakagawa S, Mayumi T, Tsutsumi Y. Development of Novel Drug Delivery System (DDS) Technologies for Proteomic-Based Drug Development. Biol Pharm Bull 2004; 27:1483-8. [PMID: 15467182 DOI: 10.1248/bpb.27.1483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With the success of human genome projects, the focus of life science research has shifted to the functional and structural analyses of proteins, such as disease proteomics. These structural and functional analyses of expressed proteins in the cells and/or tissues are expected to contribute to the identification of therapeutically applicable proteins for various diseases. Thus, pharmaco-proteomic based drug development for protein therapies is most noticed currently. However, there is a clinical difficulty to use almost bioactive proteins, because of their very low stability and pleiotropic actions in vivo. To promote pharmaco-proteomic based drug development for protein therapies to various diseases, we have attempted to establish a system for creating functional mutant proteins (muteins) with desired properties, and to develop a site-specific polymer-conjugation system for further improving the therapeutic potency of proteins. In this review, we are introducing our original protein-drug innovation systems mentioned above.
Collapse
Affiliation(s)
- Hiroko Shibata
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Japan
| | | | | | | |
Collapse
|
20
|
Ryan TA. Fluorescent proteins with ties that bind. Nat Biotechnol 2003; 21:1447-8. [PMID: 14647325 DOI: 10.1038/nbt1203-1447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|