1
|
Dai XX, Wu YK, Pi SB, Hu FJ, Wu YW, Qi H, Jiang ZY, Zhao LW, Fan HY. PABPN1 Couples the Polyadenylation and Translation of Maternal Transcripts to Mouse Oocyte Meiotic Maturation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500048. [PMID: 40265969 DOI: 10.1002/advs.202500048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/09/2025] [Indexed: 04/24/2025]
Abstract
During oocyte meiosis, maternal transcript polyadenylation is crucial for regulating mRNA stability and translation, which are essential for oocyte maturation. Polyadenylate-binding protein nuclear 1 (PABPN1) plays a key role in regulating mRNA splicing and polyadenylation in somatic cells and growing oocytes. However, its potential function in regulating the meiotic maturation of fully grown oocytes remains unknown. This study reports that selective Pabpn1 knockout in growing mouse oocytes using Zp3-Cre do not affect folliculogenesis but prevented germinal vesicle breakdown in fully grown oocytes, impaired CDK1 activation, and resulted in abnormal spindle formation and chromosome misalignment. The results of poly(A)-inclusive full-length RNA isoform sequencing (PAIso-seq) and transcriptome sequencing revealed that PABPN1 coordinates meiotic maturation-coupled polyadenylation and degradation of maternal mRNAs, which are key factors of maturation-promoting factor (MPF) and deadenylation mediators, such as B-cell translocation gene-4 (BTG4), ensuring proper meiotic progression. The results of rescue experiments indicate these functions of PABPN1 are mediated by its key domains, which interact with poly(A) polymerase and recruit target mRNAs. This study highlighted the physiological importance of cytoplasmic PABPN1 in mammalian oocyte maturation by integrating maternal transcript polyadenylation, translation, and degradation.
Collapse
Affiliation(s)
- Xing-Xing Dai
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yu-Ke Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Shuai-Bo Pi
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Feng-Jie Hu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yun-Wen Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Hang Qi
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Zhi-Yan Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Long-Wen Zhao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Center for Biomedical Research, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| |
Collapse
|
2
|
Lee SH, Kwon MS, Lee T, Hohng S, Lee H. Kinesin-like protein KIF18A is required for faithful coordination of chromosome congression with cytokinesis. FEBS J 2025. [PMID: 39954259 DOI: 10.1111/febs.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
The maintenance of genetic integrity in proliferating cells requires the coordinated regulation of DNA replication, chromosome segregation, and cytokinetic abscission. Chromosome-microtubule interactions regulate mitosis, while interactions between the actin cytoskeleton and Myosin IIA dictate cytokinetic abscission. This process, crucial for the equal distribution of the duplicated genome into two daughter cells, occurs perpendicular to the axis of chromosome segregation. However, the mechanism of how microtubule-driven mitosis and actin-associated cytokinesis are precisely coordinated remains poorly understood. This study highlights the role of KIF18A, a kinesin-like protein, in linking kinetochore-microtubule dynamics to cytokinetic axis formation. KIF18A's localization changes through the cell division cycle, from the metaphase plate during chromosome congression to the central spindle in late anaphase, and finally to the spindle midbody in telophase. KIF18A depletion leads to chromosome congression failures and anaphase onset delays. Notably, cells attempting to undergo division in the absence of KIF18A exhibited disruptions in the parallel structure of the central spindle, causing mislocalization of the centralspindlin complex, such as kinesin-like protein KIF23 (also known as MKLP1) and Rac GTPase-activating protein 1 (RACGAP1). These disruptions impair cleavage furrow establishment, causing incomplete cytokinesis and the formation of mononuclear or binucleated cells. Our findings suggest that KIF18A is crucial for coordinating chromosome congression and cytokinesis by regulating the spatial and temporal assembly of the central spindle during late anaphase.
Collapse
Affiliation(s)
- Su Hyun Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Mi-Sun Kwon
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Taerim Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, Seoul National University, Korea
| | - Hyunsook Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| |
Collapse
|
3
|
Gomes AM, Orr B, Novais-Cruz M, De Sousa F, Macário-Monteiro J, Lemos C, Ferrás C, Maiato H. Micronuclei from misaligned chromosomes that satisfy the spindle assembly checkpoint in cancer cells. Curr Biol 2022; 32:4240-4254.e5. [PMID: 36057259 PMCID: PMC9559752 DOI: 10.1016/j.cub.2022.08.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022]
Abstract
Chromosome alignment to the spindle equator is a hallmark of mitosis thought to promote chromosome segregation fidelity in metazoans. Yet chromosome alignment is only indirectly supervised by the spindle assembly checkpoint (SAC) as a byproduct of chromosome bi-orientation, and the consequences of defective chromosome alignment remain unclear. Here, we investigated how human cells respond to chromosome alignment defects of distinct molecular nature by following the fate of live HeLa cells after RNAi-mediated depletion of 125 proteins previously implicated in chromosome alignment. We confirmed chromosome alignment defects upon depletion of 108/125 proteins. Surprisingly, in all confirmed cases, depleted cells frequently entered anaphase after a delay with misaligned chromosomes. Using depletion of prototype proteins resulting in defective chromosome alignment, we show that misaligned chromosomes often satisfy the SAC and directly missegregate without lagging behind in anaphase. In-depth analysis of specific molecular perturbations that prevent proper kinetochore-microtubule attachments revealed that misaligned chromosomes that missegregate frequently result in micronuclei. Higher-resolution live-cell imaging indicated that, contrary to most anaphase lagging chromosomes that correct and reintegrate the main nuclei, misaligned chromosomes are a strong predictor of micronuclei formation in a cancer cell model of chromosomal instability, but not in non-transformed near-diploid cells. We provide evidence supporting that intrinsic differences in kinetochore-microtubule attachment stability on misaligned chromosomes account for this distinct outcome. Thus, misaligned chromosomes that satisfy the SAC may represent a previously overlooked mechanism driving chromosomal/genomic instability during cancer cell division, and we unveil genetic conditions predisposing for these events.
Collapse
Affiliation(s)
- Ana Margarida Gomes
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bernardo Orr
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Marco Novais-Cruz
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Filipe De Sousa
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Joana Macário-Monteiro
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carolina Lemos
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; UnIGENe, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cristina Ferrás
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Group, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
4
|
Cao X, Shami Shah A, Sanford EJ, Smolka MB, Baskin JM. Proximity Labeling Reveals Spatial Regulation of the Anaphase-Promoting Complex/Cyclosome by a Microtubule Adaptor. ACS Chem Biol 2022; 17:2605-2618. [PMID: 35952650 PMCID: PMC9933862 DOI: 10.1021/acschembio.2c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) coordinates advancement through mitosis via temporally controlled polyubiquitination events. Despite the long-appreciated spatial organization of key events in mitosis mediated largely by cytoskeletal networks, the spatial regulation of APC/C, the major mitotic E3 ligase, is poorly understood. We describe a microtubule-resident protein, PLEKHA5, as an interactor of APC/C and spatial regulator of its activity in mitosis. Microtubule-localized proximity biotinylation tools revealed that PLEKHA5 depletion decreased APC/C association with the microtubule cytoskeleton, which prevented efficient loading of APC/C with its coactivator CDC20 and led to reduced APC/C E3 ligase activity. PLEKHA5 knockdown delayed mitotic progression, causing accumulation of APC/C substrates dependent upon the PLEKHA5-APC/C interaction in microtubules. We propose that PLEKHA5 functions as an adaptor of APC/C that promotes its subcellular localization to microtubules and facilitates its activation by CDC20, thus ensuring the timely turnover of key mitotic APC/C substrates and proper progression through mitosis.
Collapse
Affiliation(s)
- Xiaofu Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14850, United States
| | - Adnan Shami Shah
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14850, United States
| | - Ethan J Sanford
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14850, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, United States
| | - Marcus B Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14850, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, United States
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
5
|
Tischer T, Yang J, Barford D. The APC/C targets the Cep152-Cep63 complex at the centrosome to regulate mitotic spindle assembly. J Cell Sci 2022; 135:jcs259273. [PMID: 34878135 PMCID: PMC8917351 DOI: 10.1242/jcs.259273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/25/2021] [Indexed: 11/20/2022] Open
Abstract
The control of protein abundance is a fundamental regulatory mechanism during mitosis. The anaphase-promoting complex/cyclosome (APC/C) is the main protein ubiquitin ligase responsible for the temporal regulation of mitotic progression. It has been proposed that the APC/C might fulfil other functions, including assembly of the mitotic spindle. Here, we show that the APC/C localizes to centrosomes, the organizers of the eukaryotic microtubule cytoskeleton, specifically during mitosis. Recruitment of the APC/C to spindle poles requires the centrosomal protein Cep152, and we identified Cep152 as both an APC/C interaction partner and an APC/C substrate. Previous studies have shown that Cep152 forms a complex with Cep57 and Cep63. The APC/C-mediated ubiquitylation of Cep152 at the centrosome releases Cep57 from this inhibitory complex and enables its interaction with pericentrin, a critical step in promoting microtubule nucleation. Thus, our study extends the function of the APC/C from being a regulator of mitosis to also acting as a positive governor of spindle assembly. The APC/C thereby integrates control of these two important processes in a temporal manner.
Collapse
Affiliation(s)
- Thomas Tischer
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
6
|
Scheidemann ER, Shajahan-Haq AN. Resistance to CDK4/6 Inhibitors in Estrogen Receptor-Positive Breast Cancer. Int J Mol Sci 2021; 22:12292. [PMID: 34830174 PMCID: PMC8625090 DOI: 10.3390/ijms222212292] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor-positive (ER+) breast cancer is the most common form of breast cancer. Antiestrogens were the first therapy aimed at treating this subtype, but resistance to these warranted the development of a new treatment option. CDK4/6 inhibitors address this problem by halting cell cycle progression in ER+ cells, and have proven to be successful in the clinic. Unfortunately, both intrinsic and acquired resistance to CDK4/6 inhibitors are common. Numerous mechanisms of how resistance occurs have been identified to date, including the activation of prominent growth signaling pathways, the loss of tumor-suppressive genes, and noncanonical cell cycle function. Many of these have been successfully targeted and demonstrate the ability to overcome resistance to CDK4/6 inhibitors in preclinical and clinical trials. Future studies should focus on the development of biomarkers so that patients likely to be resistant to CDK4/6 inhibition can initially be given alternative methods of treatment.
Collapse
Affiliation(s)
| | - Ayesha N. Shajahan-Haq
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA;
| |
Collapse
|
7
|
Motamedi M, Xiao MZX, Iyer A, Gniadecki R. Patterns of Gene Expression in Cutaneous T-Cell Lymphoma: Systematic Review of Transcriptomic Studies in Mycosis Fungoides. Cells 2021; 10:cells10061409. [PMID: 34204115 PMCID: PMC8229125 DOI: 10.3390/cells10061409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
Mycosis fungoides (MF) is the most prevalent type of skin lymphoma. In its early stages, it has a favorable prognosis. However, in its late stages, it is associated with an increased risk of mortality. This systematic review aimed to identify the transcriptomic changes involved in MF pathogenesis and progression. A literature search was conducted using the database PubMed, followed by the extraction of 2245 genes which were further filtered to 150 recurrent genes that appeared in two or more publications. Categorization of these genes identified activated pathways involved in pathways such as cell cycle and proliferation, chromosomal instability, and DNA repair. We identified 15 genes implicated in MF progression, which were involved in cell proliferation, immune checkpoints, resistance to apoptosis, and immune response. In highlighting the discrepancies in the way MF transcriptomic data is obtained, further research can focus on not only unifying their approach but also focus on the 150 pertinent genes identified in this review.
Collapse
Affiliation(s)
- Melika Motamedi
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.M.); (M.Z.X.X.); (A.I.)
| | - Maggie Z. X. Xiao
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.M.); (M.Z.X.X.); (A.I.)
| | - Aishwarya Iyer
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.M.); (M.Z.X.X.); (A.I.)
| | - Robert Gniadecki
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.M.); (M.Z.X.X.); (A.I.)
- 8-112 Clinical Sciences Building, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: ; Tel.: +1-(780)-407-1555
| |
Collapse
|
8
|
Bloomfield M, Chen J, Cimini D. Spindle Architectural Features Must Be Considered Along With Cell Size to Explain the Timing of Mitotic Checkpoint Silencing. Front Physiol 2021; 11:596263. [PMID: 33584330 PMCID: PMC7877541 DOI: 10.3389/fphys.2020.596263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022] Open
Abstract
Mitosis proceeds through a defined series of events that is largely conserved, but the amount of time needed for their completion can vary in different cells and organisms. In many systems, mitotic duration depends on the time required to satisfy and silence the spindle assembly checkpoint (SAC), also known as the mitotic checkpoint. Because SAC silencing involves trafficking SAC molecules among kinetochores, spindle, and cytoplasm, the size and geometry of the spindle relative to cell volume are expected to affect mitotic duration by influencing the timing of SAC silencing. However, the relationship between SAC silencing, cell size, and spindle dimensions is unclear. To investigate this issue, we used four DLD-1 tetraploid (4N) clones characterized by small or large nuclear and cell size. We found that the small 4N clones had longer mitotic durations than the parental DLD-1 cells and that this delay was due to differences in their metaphase duration. Leveraging a previous mathematical model for spatiotemporal regulation of SAC silencing, we show that the difference in metaphase duration, i.e., SAC silencing time, can be explained by the distinct spindle microtubule densities and sizes of the cell, spindle, and spindle poles in the 4N clones. Lastly, we demonstrate that manipulating spindle geometry can alter mitotic and metaphase duration, consistent with a model prediction. Our results suggest that spindle size does not always scale with cell size in mammalian cells and cell size is not sufficient to explain the differences in metaphase duration. Only when a number of spindle architectural features are considered along with cell size can the kinetics of SAC silencing, and hence mitotic duration, in the different clones be explained.
Collapse
Affiliation(s)
- Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Jing Chen
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
9
|
Ong JY, Torres JZ. Phase Separation in Cell Division. Mol Cell 2020; 80:9-20. [PMID: 32860741 DOI: 10.1016/j.molcel.2020.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Cell division requires the assembly and organization of a microtubule spindle for the proper separation of chromosomes in mitosis and meiosis. Phase separation is an emerging paradigm for understanding spatial and temporal regulation of a variety of cellular processes, including cell division. Phase-separated condensates have been recently discovered at many structures during cell division as a possible mechanism for properly localizing, organizing, and activating proteins involved in cell division. Here, we review how these condensates play roles in regulating microtubule density and organization and spindle assembly and function and in activating some of the key players in cell division. We conclude with perspectives on areas of future research for this exciting and rapidly advancing field.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Hayward D, Alfonso-Pérez T, Gruneberg U. Orchestration of the spindle assembly checkpoint by CDK1-cyclin B1. FEBS Lett 2019; 593:2889-2907. [PMID: 31469407 DOI: 10.1002/1873-3468.13591] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
In mitosis, the spindle assembly checkpoint (SAC) monitors the formation of microtubule-kinetochore attachments during capture of chromosomes by the mitotic spindle. Spindle assembly is complete once there are no longer any unattached kinetochores. Here, we will discuss the mechanism and key components of spindle checkpoint signalling. Unattached kinetochores bind the principal spindle checkpoint kinase monopolar spindle 1 (MPS1). MPS1 triggers the recruitment of other spindle checkpoint proteins and the formation of a soluble inhibitor of anaphase, thus preventing exit from mitosis. On microtubule attachment, kinetochores become checkpoint silent due to the actions of PP2A-B56 and PP1. This SAC responsive period has to be coordinated with mitotic spindle formation to ensure timely mitotic exit and accurate chromosome segregation. We focus on the molecular mechanisms by which the SAC permissive state is created, describing a central role for CDK1-cyclin B1 and its counteracting phosphatase PP2A-B55. Furthermore, we discuss how CDK1-cyclin B1, through its interaction with MAD1, acts as an integral component of the SAC, and actively orchestrates checkpoint signalling and thus contributes to the faithful execution of mitosis.
Collapse
Affiliation(s)
- Daniel Hayward
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | |
Collapse
|
11
|
Curtis NL, Bolanos-Garcia VM. The Anaphase Promoting Complex/Cyclosome (APC/C): A Versatile E3 Ubiquitin Ligase. Subcell Biochem 2019; 93:539-623. [PMID: 31939164 DOI: 10.1007/978-3-030-28151-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
In the present chapter we discuss the essential roles of the human E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) in mitosis as well as the emerging evidence of important APC/C roles in cellular processes beyond cell division control such as regulation of genomic integrity and cell differentiation of the nervous system. We consider the potential incipient role of APC/C dysregulation in the pathophysiology of the neurological disorder Alzheimer's disease (AD). We also discuss how certain Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) viruses take control of the host's cell division regulatory system through harnessing APC/C ubiquitin ligase activity and hypothesise the plausible molecular mechanisms underpinning virus manipulation of the APC/C. We also examine how defects in the function of this multisubunit protein assembly drive abnormal cell proliferation and lastly argue the potential of APC/C as a promising therapeutic target for the development of innovative therapies for the treatment of chronic malignancies such as cancer.
Collapse
Affiliation(s)
- Natalie L Curtis
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK
| | - Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK.
| |
Collapse
|
12
|
Wang S, Chen B, Zhu Z, Zhang L, Zeng J, Xu G, Liu G, Xiong D, Luo Q, Huang Z. CDC20 overexpression leads to poor prognosis in solid tumors: A system review and meta-analysis. Medicine (Baltimore) 2018; 97:e13832. [PMID: 30593179 PMCID: PMC6314760 DOI: 10.1097/md.0000000000013832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND A plenty of previous researches have reported the prognostic value of CDC20 (Cell Division Cycle Protein 20) in solid tumors. Nevertheless, these researches were restricted by the small sample databases and the results were not strongly consistent among them. METHODS We comprehensively searched these relevant studies by PubMed, Web of Science, and EMBASE, in which publications before March 2017 were included. Pooled HR values for OS were cumulatively pooled and quantitatively analyzed in the meta-analysis. RESULTS Hence we composed a meta-analysis based on 8 studies with 1856 patients in order to assess the potential relationship between CDC20 overexpression and OS (overall survival) in human solid tumors. There were a total of 8 studies (n = 1856) assessed in the meta-analysis. What suggested in both univariate and multivariate analysis for survival is that high level of CDC20 expression apparently pointed to poor prognosis. In the univariate analysis, the combined hazard ratio (HR) for OS was 1.75 (95% confidence interval [CI]: 1.07-2.86, P = .03). The pooled HR of multivariate analysis for OS was 2.48 (95% confidence interval [CI]: 2.10-2.94, P < .001). CONCLUSIONS The meta-analysis indicated that high level of CDC20 expression is significantly correlated with decreased survival in most case of human solid tumors. In addition, CDC20 shows promise as a meaningful prognostic biomarker and original therapeutic target, on the basis of its expression level in solid tumors.
Collapse
Affiliation(s)
- Shengjie Wang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital
| | - Borong Chen
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital
| | - Zhipeng Zhu
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital
| | - Liang Zhang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital
| | - Junjie Zeng
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital
| | - Guoxing Xu
- Department of Endoscopy Center, First Affiliated Hospital of Xiamen University, Xiamen, Fujian
| | - Gang Liu
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital
| | - Disheng Xiong
- Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qi Luo
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital
| | - Zhengjie Huang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital
- Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Abstract
The Anaphase Promoting Complex/Cyclosome (APC/C) is a ubiquitin E3 ligase that functions as the gatekeeper to mitotic exit. APC/C activity is controlled by an interplay of multiple pathways during mitosis, including the spindle assembly checkpoint (SAC), that are not yet fully understood. Here, we show that sumoylation of the APC4 subunit of the APC/C peaks during mitosis and is critical for timely APC/C activation and anaphase onset. We have also identified a functionally important SUMO interacting motif in the cullin-homology domain of APC2 located near the APC4 sumoylation sites and APC/C catalytic core. Our findings provide evidence of an important regulatory role for SUMO modification and binding in affecting APC/C activation and mitotic exit.
Collapse
Affiliation(s)
- Christine C Lee
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, United States
| | - Bing Li
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
14
|
Borges DDP, Dos Santos AWA, Paier CRK, Ribeiro HL, Costa MB, Farias IR, de Oliveira RTG, França IGDF, Cavalcante GM, Magalhães SMM, Pinheiro RF. Prognostic importance of Aurora Kinases and mitotic spindle genes transcript levels in Myelodysplastic syndrome. Leuk Res 2017; 64:61-70. [PMID: 29220700 DOI: 10.1016/j.leukres.2017.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Abstract
Myelodysplastic syndrome (MDS) are a heterogeneous group of clonal disease characterized by insufficiency of bone marrow, increase of apoptosis and increased risk of acute leukemia progression. Proteins related to the mitotic spindle (AURKA, AURKB, TPX2), to the mitotic checkpoint (MAD2, CDC20) and the regulation of the cell cycle (p21) are directly related to chromosomal stability and tumor development. This study aimed to evaluate the mRNA expression levels of these genes in 101 MDS patients using a real-time PCR methodology. We identified that CDC20 expression are increased in patients with dysmegakaryopoiesis (p=0.024), thrombocytopenia (p=0.000) and high-risk patients (p=0.014, 0.018) MAD2 expression are decreased in patients with 2 or 3 cytopenias (p=0.000) and neutrophil below 800/mm3. TPX2 is also overexpressed in patients presenting dysmegakaryopoiesis (p=0.009). A decrease in AURKA and AURKB expression were observed in patients with altered karyotype (p=0.000), who presented dysplasia in 3 lineages (p=0.000; 0.017) and hemoglobin inferior to 8g/dL (p=0.024). The expression of AURKA, AURKB and MAD2 (p=0.000; 0.001; 0.025) were decreased in patients with hypoplastic MDS, associated with high frequency of chromosomal alterations and high mortality rate. This study reaffirms the importance of aurora kinases and mitotic spindle genes to the pathogenesis and clinical evolution of MDS.
Collapse
Affiliation(s)
- Daniela de Paula Borges
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Antônio Wesley Araújo Dos Santos
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Howard Lopes Ribeiro
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Marília Braga Costa
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Izabelle Rocha Farias
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Roberta Taiane Germano de Oliveira
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ivo Gabriel da Frota França
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Gabrielle Melo Cavalcante
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Sílvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| |
Collapse
|
15
|
Davey NE, Morgan DO. Building a Regulatory Network with Short Linear Sequence Motifs: Lessons from the Degrons of the Anaphase-Promoting Complex. Mol Cell 2017; 64:12-23. [PMID: 27716480 DOI: 10.1016/j.molcel.2016.09.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The anaphase-promoting complex or cyclosome (APC/C) is a ubiquitin ligase that polyubiquitinates specific substrates at precise times in the cell cycle, thereby triggering the events of late mitosis in a strict order. The robust substrate specificity of the APC/C prevents the potentially deleterious degradation of non-APC/C substrates and also averts the cell-cycle errors and genomic instability that could result from mistimed degradation of APC/C targets. The APC/C recognizes short linear sequence motifs, or degrons, on its substrates. The specific and timely modification and degradation of APC/C substrates is likely to be modulated by variations in degron sequence and context. We discuss the extensive affinity, specificity, and selectivity determinants encoded in APC/C degrons, and we describe some of the extrinsic mechanisms that control APC/C-substrate recognition. As an archetype for protein motif-driven regulation of cell function, the APC/C-substrate interaction provides insights into the general properties of post-translational regulatory systems.
Collapse
Affiliation(s)
- Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| | - David O Morgan
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
16
|
Bub1 positions Mad1 close to KNL1 MELT repeats to promote checkpoint signalling. Nat Commun 2017; 8:15822. [PMID: 28604727 PMCID: PMC5472792 DOI: 10.1038/ncomms15822] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
Proper segregation of chromosomes depends on a functional spindle assembly checkpoint (SAC) and requires kinetochore localization of the Bub1 and Mad1/Mad2 checkpoint proteins. Several aspects of Mad1/Mad2 kinetochore recruitment in human cells are unclear and in particular the underlying direct interactions. Here we show that conserved domain 1 (CD1) in human Bub1 binds directly to Mad1 and a phosphorylation site exists in CD1 that stimulates Mad1 binding and SAC signalling. Importantly, fusion of minimal kinetochore-targeting Bub1 fragments to Mad1 bypasses the need for CD1, revealing that the main function of Bub1 is to position Mad1 close to KNL1 MELT repeats. Furthermore, we identify residues in Mad1 that are critical for Mad1 functionality, but not Bub1 binding, arguing for a direct role of Mad1 in the checkpoint. This work dissects functionally relevant molecular interactions required for spindle assembly checkpoint signalling at kinetochores in human cells. The spindle assembly checkpoint ensures correct chromosome segregation and relies on kinetochore localization of the Bub1 and Mad1/Mad2 checkpoint proteins. Here the authors show that main function of Bub1 is to position Mad1 close to KNL1 MELT repeats in human cells.
Collapse
|
17
|
Lee SJ, Rodriguez-Bravo V, Kim H, Datta S, Foley EA. The PP2A B56 phosphatase promotes the association of Cdc20 with APC/C in mitosis. J Cell Sci 2017; 130:1760-1771. [PMID: 28404789 DOI: 10.1242/jcs.201608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
PP2A comprising B56 regulatory subunit isoforms (PP2AB56) is a serine/threonine phosphatase essential for mitosis. At the kinetochore, PP2AB56 both stabilizes microtubule binding and promotes silencing of the spindle assembly checkpoint (SAC) through its association with the SAC protein BubR1. Cells depleted of the B56 regulatory subunits of PP2A are delayed in activation of Cdc20-containing APC/C (APC/CCdc20), which is an essential step for mitotic exit. It has been hypothesized that this delay arises from increased production of the mitotic checkpoint complex (MCC), an APC/CCdc20 inhibitor formed at unattached kinetochores through SAC signaling. In contrast to this prediction, we show that depletion of B56 subunits does not increase the amount or stability of the MCC. Rather, delays in APC/CCdc20 activation in B56-depleted cells correlate with impaired Cdc20 binding to APC/C. Stimulation of APC/CCdc20 assembly does not require binding between PP2AB56 and BubR1, and thus this contribution of PP2AB56 towards mitotic exit is distinct from its functions at kinetochores. PP2AB56 associates with APC/C constitutively in a BubR1-independent manner. A mitotic phosphorylation site on Cdc20, known to be a substrate of PP2AB56, modulates APC/CCdc20 assembly. These results elucidate the contributions of PP2AB56 towards completion of mitosis.
Collapse
Affiliation(s)
- Sun Joo Lee
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Hyunjung Kim
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sutirtha Datta
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily A Foley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
18
|
Shi R, Sun Q, Sun J, Wang X, Xia W, Dong G, Wang A, Jiang F, Xu L. Cell division cycle 20 overexpression predicts poor prognosis for patients with lung adenocarcinoma. Tumour Biol 2017; 39:1010428317692233. [PMID: 28349831 DOI: 10.1177/1010428317692233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The cell division cycle 20, a key component of spindle assembly checkpoint, is an essential activator of the anaphase-promoting complex. Aberrant expression of cell division cycle 20 has been detected in various human cancers. However, its clinical significance has never been deeply investigated in non-small-cell lung cancer. By analyzing The Cancer Genome Atlas database and using some certain online databases, we validated overexpression of cell division cycle 20 in both messenger RNA and protein levels, explored its clinical significance, and evaluated the prognostic role of cell division cycle 20 in non-small-cell lung cancer. Cell division cycle 20 expression was significantly correlated with sex (p = 0.003), histological classification (p < 0.0001), and tumor size (p = 0.0116) in non-small-cell lung cancer patients. In lung adenocarcinoma patients, overexpression of cell division cycle 20 was significantly associated with bigger primary tumor size (p = 0.0023), higher MKI67 level (r = 0.7618, p < 0.0001), higher DNA ploidy level (p < 0.0001), and poor prognosis (hazard ratio = 2.39, confidence interval: 1.87-3.05, p < 0.0001). However, in lung squamous cell carcinoma patients, no significant association of cell division cycle 20 expression was observed with any clinical parameter or prognosis. Overexpression of cell division cycle 20 is associated with poor prognosis in lung adenocarcinoma patients, and its overexpression can also be used to identify high-risk groups. In conclusion, cell division cycle 20 might serve as a potential biomarker for lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Run Shi
- 1 Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,2 Department of Thoracic Surgery, The Affiliated Cancer Hospital, Nanjing Medical University, Nanjing, China.,3 The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Qi Sun
- 4 Department of Cardiothoracic Surgery, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Jing Sun
- 5 The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Xin Wang
- 1 Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,2 Department of Thoracic Surgery, The Affiliated Cancer Hospital, Nanjing Medical University, Nanjing, China.,3 The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Wenjie Xia
- 1 Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,2 Department of Thoracic Surgery, The Affiliated Cancer Hospital, Nanjing Medical University, Nanjing, China.,3 The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Gaochao Dong
- 1 Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Anpeng Wang
- 1 Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,2 Department of Thoracic Surgery, The Affiliated Cancer Hospital, Nanjing Medical University, Nanjing, China.,3 The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- 1 Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,2 Department of Thoracic Surgery, The Affiliated Cancer Hospital, Nanjing Medical University, Nanjing, China
| | - Lin Xu
- 1 Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,2 Department of Thoracic Surgery, The Affiliated Cancer Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Heasley LR, Markus SM, DeLuca JG. "Wait anaphase" signals are not confined to the mitotic spindle. Mol Biol Cell 2017; 28:1186-1194. [PMID: 28298492 PMCID: PMC5415015 DOI: 10.1091/mbc.e17-01-0036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/23/2017] [Accepted: 03/01/2017] [Indexed: 11/18/2022] Open
Abstract
Inhibitory “wait anaphase” signals derived from unbound kinetochores in a mitotic spindle diffuse into the cytoplasm. These diffusible signals can synchronize anaphase onset of neighboring spindles in multinucleate cells. The extent and activity of these signals are subject to diffusion barriers and cytoplasmic dilution. The spindle assembly checkpoint ensures the faithful inheritance of chromosomes by arresting mitotic progression in the presence of kinetochores that are not attached to spindle microtubules. This is achieved through inhibition of the anaphase-promoting complex/cyclosome by a kinetochore-derived “wait anaphase” signal known as the mitotic checkpoint complex. It remains unclear whether the localization and activity of these inhibitory complexes are restricted to the mitotic spindle compartment or are diffusible throughout the cytoplasm. Here we report that “wait anaphase” signals are indeed able to diffuse outside the confines of the mitotic spindle compartment. Using a cell fusion approach to generate multinucleate cells, we investigate the effects of checkpoint signals derived from one spindle compartment on a neighboring spindle compartment. We find that spindle compartments in close proximity wait for one another to align all chromosomes before entering anaphase synchronously. Synchrony is disrupted in cells with increased interspindle distances and cellular constrictions between spindle compartments. In addition, when mitotic cells are fused with interphase cells, “wait anaphase” signals are diluted, resulting in premature mitotic exit. Overall our studies reveal that anaphase inhibitors are diffusible and active outside the confines of the mitotic spindle from which they are derived.
Collapse
Affiliation(s)
- Lydia R Heasley
- Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Steven M Markus
- Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jennifer G DeLuca
- Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
20
|
Chen J, Liu J. Erroneous Silencing of the Mitotic Checkpoint by Aberrant Spindle Pole-Kinetochore Coordination. Biophys J 2016; 109:2418-35. [PMID: 26636952 DOI: 10.1016/j.bpj.2015.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/02/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
To segregate chromosomes during cell division, microtubules that form the bipolar spindle attach to and pull on paired chromosome kinetochores. The spindle assembly checkpoint (SAC) is activated at unattached and misattached kinetochores to prevent further mitotic progression. The SAC is silenced after all the kinetochores establish proper and stable attachment to the spindle. Robust timing of SAC silencing after the last kinetochore-spindle attachment herein dictates the fidelity of chromosome segregation. Chromosome missegregation is rare in typical somatic cell mitosis, but frequent in cancer cell mitosis and in meiosis I of mammalian oocytes. In the latter cases, SAC is normally activated in response to disruptions of kinetochore-spindle attachments, suggesting that frequent chromosome missegregation ensues from faulty SAC silencing. In-depth understanding of how SAC silencing malfunctions in these cases is yet missing, but is believed to hold promise for treatment of cancer and prevention of human miscarriage and birth defects. We previously established a spatiotemporal model that, to the best of our knowledge, explained the robustness of SAC silencing in normal mitosis for the first time. In this article, we take advantage of the whole-cell perspective of the spatiotemporal model to identify possible causes of chromosome missegregation out of the distinct features of spindle assembly exhibited by cancer cells and mammalian oocytes. The model results explain why multipolar spindle could inhibit SAC silencing and spindle pole clustering could promote it-albeit accompanied by more kinetochore attachment errors. The model also eliminates geometric factors as the cause for nonrobust SAC silencing in oocyte meiosis, and instead, suggests atypical kinetochore-spindle attachment in meiosis as a potential culprit. Overall, the model shows that abnormal spindle-pole formation and its aberrant coordination with atypical kinetochore-spindle attachments could compromise the robustness of SAC silencing. Our model highlights systems-level coupling between kinetochore-spindle attachment and spindle-pole formation in SAC silencing.
Collapse
Affiliation(s)
- Jing Chen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jian Liu
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
21
|
Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA, Weisswange I, Mansfeld J, Buchholz F, Hyman AA, Mann M. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 2015; 163:712-23. [PMID: 26496610 DOI: 10.1016/j.cell.2015.09.053] [Citation(s) in RCA: 959] [Impact Index Per Article: 95.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/06/2015] [Accepted: 09/17/2015] [Indexed: 02/06/2023]
Abstract
The organization of a cell emerges from the interactions in protein networks. The interactome is critically dependent on the strengths of interactions and the cellular abundances of the connected proteins, both of which span orders of magnitude. However, these aspects have not yet been analyzed globally. Here, we have generated a library of HeLa cell lines expressing 1,125 GFP-tagged proteins under near-endogenous control, which we used as input for a next-generation interaction survey. Using quantitative proteomics, we detect specific interactions, estimate interaction stoichiometries, and measure cellular abundances of interacting proteins. These three quantitative dimensions reveal that the protein network is dominated by weak, substoichiometric interactions that play a pivotal role in defining network topology. The minority of stable complexes can be identified by their unique stoichiometry signature. This study provides a rich interaction dataset connecting thousands of proteins and introduces a framework for quantitative network analysis.
Collapse
Affiliation(s)
- Marco Y Hein
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nina C Hubner
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jürgen Cox
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | - Yusuke Toyoda
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Igor A Gak
- Cell Cycle, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | - Ina Weisswange
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Eupheria Biotech GmbH, 01307 Dresden, Germany
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Matthias Mann
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
22
|
Lin Z, Tan C, Qiu Q, Kong S, Yang H, Zhao F, Liu Z, Li J, Kong Q, Gao B, Barrett T, Yang GY, Zhang J, Fang D. Ubiquitin-specific protease 22 is a deubiquitinase of CCNB1. Cell Discov 2015; 1. [PMID: 27030811 PMCID: PMC4809424 DOI: 10.1038/celldisc.2015.28] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The elevated level of CCNB1 indicates more aggressive cancer and poor prognosis. However, the factors that cause CCNB1 upregulation remain enigmatic. Herein, we identify USP22 as a CCNB1 interactor and discover that both USP22 and CCNB1 are dramatically elevated with a strong positive correlation in colon cancer tissues. USP22 stabilizes CCNB1 by antagonizing proteasome-mediated degradation in a cell cycle-specific manner. Phosphorylation of USP22 by CDK1 enhances its activity in deubiquitinating CCNB1. The ubiquitin ligase anaphase-promoting complex (APC/C) targets USP22 for degradation by using the substrate adapter CDC20 during cell exit from M phase, presumably allowing CCNB1 degradation. Finally, we discover that USP22 knockdown leads to slower cell growth and reduced tumor size. Our study demonstrates that USP22 is a CCNB1 deubiquitinase, suggesting that targeting USP22 might be an effective approach to treat cancers with elevated CCNB1 expression.
Collapse
Affiliation(s)
- Zhenghong Lin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Can Tan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Quan Qiu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sinyi Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Heeyoung Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Fang Zhao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhaojian Liu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jinping Li
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qingfei Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Terry Barrett
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jianing Zhang
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| |
Collapse
|
23
|
Lee SB, Kim JJ, Nam HJ, Gao B, Yin P, Qin B, Yi SY, Ham H, Evans D, Kim SH, Zhang J, Deng M, Liu T, Zhang H, Billadeau DD, Wang L, Giaime E, Shen J, Pang YP, Jen J, van Deursen JM, Lou Z. Parkin Regulates Mitosis and Genomic Stability through Cdc20/Cdh1. Mol Cell 2015; 60:21-34. [PMID: 26387737 PMCID: PMC4592523 DOI: 10.1016/j.molcel.2015.08.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/04/2015] [Accepted: 08/12/2015] [Indexed: 01/04/2023]
Abstract
Mutations in the E3 ubiquitin ligase Parkin have been linked to familial Parkinson's disease. Parkin has also been implicated in mitosis through mechanisms that are unclear. Here we show that Parkin interacts with anaphase promoting complex/cyclosome (APC/C) coactivators Cdc20 and Cdh1 to mediate the degradation of several key mitotic regulators independent of APC/C. We demonstrate that ordered progression through mitosis is orchestrated by two distinct E3 ligases through the shared use of Cdc20 and Cdh1. Furthermore, Parkin is phosphorylated and activated by polo-like kinase 1 (Plk1) during mitosis. Parkin deficiency results in overexpression of its substrates, mitotic defects, genomic instability, and tumorigenesis. These results suggest that the Parkin-Cdc20/Cdh1 complex is an important regulator of mitosis.
Collapse
Affiliation(s)
- Seung Baek Lee
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Jung Jin Kim
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Hyun-Ja Nam
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Bowen Gao
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Ping Yin
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Bo Qin
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Sang-Yeop Yi
- Department of Pathology, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 404 834, Republic of Korea
| | - Hyoungjun Ham
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Debra Evans
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sun-Hyun Kim
- Department of Family Medicine, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 404 834, Republic of Korea
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Min Deng
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Tongzheng Liu
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Haoxing Zhang
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel D. Billadeau
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Oncology Research and Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Emilie Giaime
- Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital, Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Jie Shen
- Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital, Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuan-Ping Pang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jin Jen
- Division of Pulmonary and Critical Care Medicine, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA, Mayo Clinic, Rochester, MN 55905, USA
| | - Jan M. van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenkun Lou
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
24
|
Singh DK, Spillane C, Siddiqi I. PATRONUS1 is expressed in meiotic prophase I to regulate centromeric cohesion in Arabidopsis and shows synthetic lethality with OSD1. BMC PLANT BIOLOGY 2015; 15:201. [PMID: 26272661 PMCID: PMC4536785 DOI: 10.1186/s12870-015-0558-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/18/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Retention of sister centromere cohesion during meiosis I and its dissolution at meiosis II is necessary for balanced chromosome segregation and reduction of chromosome number. PATRONUS1 (PANS1) has recently been proposed to regulate centromere cohesion in Arabidopsis after meiosis I, during interkinesis. pans1 mutants lose centromere cohesion prematurely during interkinesis and segregate randomly at meiosis II. PANS1 protein interacts with components of the Anaphase Promoting Complex/Cyclosome (APC/C). RESULTS We show here that PANS1 protein is found mainly in prophase I of meiosis, with its level declining late in prophase I during diplotene. PANS1 also shows expression in dividing tissues. We demonstrate that, in addition to the previously reported premature loss of centromere cohesion during interkinesis, pans1 mutants show partially penetrant defects in centromere cohesion during meiosis I. We also determine that pans1 shows synthetic lethality at the level of the sporophyte, with Omission of Second Division 1 (osd1), which encodes a known inhibitor of the APC/C that is required for cell cycle progression during mitosis, as well as meiosis I and II. CONCLUSIONS Our results show that PANS1 is expressed mainly in meiosis I where it has an important function and together with previous studies indicate that PANS1 and OSD1 are part of a network linking centromere cohesion and cell cycle progression through control of APC/C activity.
Collapse
Affiliation(s)
- Dipesh Kumar Singh
- Centre for Cellular and Molecular Biology (CSIR), Uppal Road, Hyderabad, 500007, India.
| | - Charles Spillane
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Botany and Plant Sciences, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland.
| | - Imran Siddiqi
- Centre for Cellular and Molecular Biology (CSIR), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
25
|
Sivakumar S, Gorbsky GJ. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol 2015; 16:82-94. [PMID: 25604195 DOI: 10.1038/nrm3934] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The appropriate timing of events that lead to chromosome segregation during mitosis and cytokinesis is essential to prevent aneuploidy, and defects in these processes can contribute to tumorigenesis. Key mitotic regulators are controlled through ubiquitylation and proteasome-mediated degradation. The APC/C (anaphase-promoting complex; also known as the cyclosome) is an E3 ubiquitin ligase that has a crucial function in the regulation of the mitotic cell cycle, particularly at the onset of anaphase and during mitotic exit. Co-activator proteins, inhibitor proteins, protein kinases and phosphatases interact with the APC/C to temporally and spatially control its activity and thus ensure accurate timing of mitotic events.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma 73104, USA
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
26
|
The internal Cdc20 binding site in BubR1 facilitates both spindle assembly checkpoint signalling and silencing. Nat Commun 2014; 5:5563. [DOI: 10.1038/ncomms6563] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/13/2014] [Indexed: 11/09/2022] Open
|
27
|
Chen J, Liu J. Spatial-temporal model for silencing of the mitotic spindle assembly checkpoint. Nat Commun 2014; 5:4795. [PMID: 25216458 PMCID: PMC4163959 DOI: 10.1038/ncomms5795] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/24/2014] [Indexed: 01/07/2023] Open
Abstract
The spindle assembly checkpoint arrests mitotic progression until each kinetochore secures a stable attachment to the spindle. Despite fluctuating noise, this checkpoint remains robust and remarkably sensitive to even a single unattached kinetochore among many attached kinetochores; moreover, the checkpoint is silenced only after the final kinetochore-spindle attachment. Experimental observations have shown that checkpoint components stream from attached kinetochores along microtubules toward spindle poles. Here, we incorporate this streaming behavior into a theoretical model that accounts for the robustness of checkpoint silencing. Poleward streams are integrated at spindle poles, but are diverted by any unattached kinetochore; consequently, accumulation of checkpoint components at spindle poles increases markedly only when every kinetochore is properly attached. This step-change robustly triggers checkpoint silencing after, and only after, the final kinetochore-spindle attachment. Our model offers a conceptual framework that highlights the role of spatiotemporal regulation in mitotic spindle checkpoint signaling and fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Jing Chen
- National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Room 3306, Bethesda, Maryland 20892, USA
| | - Jian Liu
- National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Room 3306, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
The zinc-binding region (ZBR) fragment of Emi2 can inhibit APC/C by targeting its association with the coactivator Cdc20 and UBE2C-mediated ubiquitylation. FEBS Open Bio 2014; 4:689-703. [PMID: 25161877 PMCID: PMC4141206 DOI: 10.1016/j.fob.2014.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/16/2014] [Accepted: 06/30/2014] [Indexed: 01/21/2023] Open
Abstract
Overexpression of the ZBR fragment of Emi2, but not of Emi1, induces abnormal cell division. The Emi2 ZBR fragment impairs the association of the coactivator Cdc20 with APC/C. The Emi2 ZBR fragment inhibits ubiquitylation by the cullin-RING of APC/C and E2C. The Emi2 ZBR-specific residues for APC/C inhibitory activity have been identified.
Anaphase-promoting complex or cyclosome (APC/C) is a multisubunit ubiquitin ligase E3 that targets cell-cycle regulators. Cdc20 is required for full activation of APC/C in M phase, and mediates substrate recognition. In vertebrates, Emi2/Erp1/FBXO43 inhibits APC/C-Cdc20, and functions as a cytostatic factor that causes long-term M phase arrest of mature oocytes. In this study, we found that a fragment corresponding to the zinc-binding region (ZBR) domain of Emi2 inhibits cell-cycle progression, and impairs the association of Cdc20 with the APC/C core complex in HEK293T cells. Furthermore, we revealed that the ZBR fragment of Emi2 inhibits in vitro ubiquitin chain elongation catalyzed by the APC/C cullin-RING ligase module, the ANAPC2–ANAPC11 subcomplex, in combination with the ubiquitin chain-initiating E2, E2C/UBE2C/UbcH10. Structural analyses revealed that the Emi2 ZBR domain uses different faces for the two mechanisms. Thus, the double-faced ZBR domain of Emi2 antagonizes the APC/C function by inhibiting both the binding with the coactivator Cdc20 and ubiquitylation mediated by the cullin-RING ligase module and E2C. In addition, the tail region between the ZBR domain and the C-terminal RL residues [the post-ZBR (PZ) region] interacts with the cullin subunit, ANAPC2. In the case of the ZBR fragment of the somatic paralogue of Emi2, Emi1/FBXO5, these inhibitory activities against cell division and ubiquitylation were not observed. Finally, we identified two sets of key residues in the Emi2 ZBR domain that selectively exert each of the dual Emi2-specific modes of APC/C inhibition, by their mutation in the Emi2 ZBR domain and their transplantation into the Emi1 ZBR domain.
Collapse
|
29
|
Sivakumar S, Daum JR, Tipton AR, Rankin S, Gorbsky GJ. The spindle and kinetochore-associated (Ska) complex enhances binding of the anaphase-promoting complex/cyclosome (APC/C) to chromosomes and promotes mitotic exit. Mol Biol Cell 2014; 25:594-605. [PMID: 24403607 PMCID: PMC3937086 DOI: 10.1091/mbc.e13-07-0421] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The spindle and kinetochore-associated (Ska) protein complex is a heterotrimeric complex required for timely anaphase onset. The major phenotypes seen after small interfering RNA-mediated depletion of Ska are transient alignment defects followed by metaphase arrest that ultimately results in cohesion fatigue. We find that cells depleted of Ska3 arrest at metaphase with only partial degradation of cyclin B1 and securin. In cells arrested with microtubule drugs, Ska3-depleted cells exhibit slower mitotic exit when the spindle checkpoint is silenced by inhibition of the checkpoint kinase, Mps1, or when cells are forced to exit mitosis downstream of checkpoint silencing by inactivation of Cdk1. These results suggest that in addition to a role in fostering kinetochore-microtubule attachment and chromosome alignment, the Ska complex has functions in promoting anaphase onset. We find that both Ska3 and microtubules promote chromosome association of the anaphase-promoting complex/cyclosome (APC/C). Chromosome-bound APC/C shows significantly stronger ubiquitylation activity than cytoplasmic APC/C. Forced localization of Ska complex to kinetochores, independent of microtubules, results in enhanced accumulation of APC/C on chromosomes and accelerated cyclin B1 degradation during induced mitotic exit. We propose that a Ska-microtubule-kinetochore association promotes APC/C localization to chromosomes, thereby enhancing anaphase onset and mitotic exit.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | | | | | | | | |
Collapse
|
30
|
Abstract
To replicate their genomes in cells and generate new progeny, viruses typically require factors provided by the cells that they have infected. Subversion of the cellular machinery that controls replication of the infected host cell is a common activity of many viruses. Viruses employ different strategies to deregulate cell cycle checkpoint controls and modulate cell proliferation pathways. A number of DNA and RNA viruses encode proteins that target critical cell cycle regulators to achieve cellular conditions that are beneficial for viral replication. Many DNA viruses induce quiescent cells to enter the cell cycle; this is thought to increase pools of deoxynucleotides and thus, facilitate viral replication. In contrast, some viruses can arrest cells in a particular phase of the cell cycle that is favorable for replication of the specific virus. Cell cycle arrest may inhibit early cell death of infected cells, allow the cells to evade immune defenses, or help promote virus assembly. Although beneficial for the viral life cycle, virus-mediated alterations in normal cell cycle control mechanisms could have detrimental effects on cellular physiology and may ultimately contribute to pathologies associated with the viral infection, including cell transformation and cancer progression and maintenance. In this chapter, we summarize various strategies employed by DNA and RNA viruses to modulate the replication cycle of the virus-infected cell. When known, we describe how these virus-associated effects influence replication of the virus and contribute to diseases associated with infection by that specific virus.
Collapse
Affiliation(s)
- Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania USA
| | - Mariana C. Gadaleta
- Dept of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, USA
| |
Collapse
|
31
|
Mo M, Shahar S, Fleming SB, Mercer AA. How viruses affect the cell cycle through manipulation of the APC/C. Trends Microbiol 2012; 20:440-8. [PMID: 22727131 DOI: 10.1016/j.tim.2012.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/21/2012] [Accepted: 05/28/2012] [Indexed: 02/06/2023]
Abstract
Viruses frequently exploit host cell cycle machineries for their own benefit, often by targeting 'master switches' of cell cycle regulation. By doing so, they achieve maximum effect from minimal input. One such master switch is the anaphase promoting complex or cyclosome (APC/C), a multicomponent ubiquitin ligase and a dominant regulator of the cell cycle. A growing number of viruses have been shown to target the APC/C. Although differing strategies are employed, viral manipulation of the APC/C seems to serve a common purpose, namely, to create an environment supportive of viral replication. Here, the molecular mechanisms employed by these viruses are summarized and discussed.
Collapse
Affiliation(s)
- Min Mo
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | | | | | | |
Collapse
|
32
|
Fcp1-dependent dephosphorylation is required for M-phase-promoting factor inactivation at mitosis exit. Nat Commun 2012; 3:894. [PMID: 22692537 PMCID: PMC3621406 DOI: 10.1038/ncomms1886] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/04/2012] [Indexed: 01/28/2023] Open
Abstract
Correct execution of mitosis in eukaryotes relies on timely activation and inactivation of cyclin B-dependent kinase 1 (cdk1), the M-phase-promoting factor (MPF). Once activated, MPF is sustained until mitotic spindle assembly by phosphorylation-dependent feedback loops that prevent inhibitory phosphorylation of cdk1 and ubiquitin-dependent degradation of cyclin B. Whether subsequent MPF inactivation and anaphase onset require a specific phosphatase(s) to reverse these feedback loops is not known. Here we show through biochemical and genetic evidence that timely MPF inactivation requires activity of the essential RNA polymerase II-carboxy-terminal domain phosphatase Fcp1, in a transcription-independent manner. We identify Cdc20, a coactivator of the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) required for cyclin degradation and anaphase onset, USP44, a deubiquitinating peptidase that opposes APC/C action, and Wee1, a cdk1 inhibitory kinase, as relevant Fcp1 targets. We propose that Fcp1 has a crucial role in the liaison between dephosphorylation and ubiquitination that drives mitosis exit. Cyclin B-dependent kinase 1, the M-phase-promoting factor, is precisely activated and inactivated to control mitosis. In this study, Fcp1—the RNA polymerase II-carboxy-terminal domain phosphatase—is identified as a phosphatase required to inactivate the M-phase-promoting factor and promote mitosis exit.
Collapse
|
33
|
Abstract
'…in Italy, for thirty years under the Borgias, they had warfare, terror, murder and bloodshed, but they produced Michelangelo, Leonardo da Vinci and the Renaissance. In Switzerland, they had brotherly love, they had five hundred years of democracy and peace-and what did that produce? The cuckoo clock'. Orson Welles as Harry Lime: The Third Man. Orson Welles might have been a little unfair on the Swiss, after all cuckoo clocks were developed in the Schwartzwald, but, more importantly, Swiss democracy gives remarkably stable government with considerable decision-making at the local level. The alternative is the battling city-states of Renaissance Italy: culturally rich but chaotic at a higher level of organization. As our understanding of the cell cycle improves, it appears that the cell is organized more along the lines of Switzerland than Renaissance Italy, and one major challenge is to determine how local decisions are made and coordinated to produce the robust cell cycle mechanisms that we observe in the cell as a whole.
Collapse
Affiliation(s)
- Jonathon Pines
- Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Iain Hagan
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
34
|
Kim S, Yu H. Mutual regulation between the spindle checkpoint and APC/C. Semin Cell Dev Biol 2011; 22:551-8. [PMID: 21439394 PMCID: PMC3225258 DOI: 10.1016/j.semcdb.2011.03.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/16/2011] [Indexed: 11/21/2022]
Abstract
Accurate chromosome segregation during mitosis is critical for maintaining genomic stability. The spindle checkpoint is a cellular surveillance system that ensures the fidelity of chromosome segregation. In response to sister chromatids not properly captured by spindle microtubules, the spindle checkpoint interferes with the functions of Cdc20, the mitotic activator of the anaphase-promoting complex or cyclosome (APC/C), thereby blocking APC/C-mediated degradation of securin and cyclin B to delay anaphase onset. This review summarizes the recent progress on the mechanisms by which checkpoint proteins inhibit APC/C, the conformational and enzymatic activation of checkpoint proteins, and the emerging roles of APC/C-dependent ubiquitination in checkpoint inactivation.
Collapse
Affiliation(s)
- Soonjoung Kim
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390
| |
Collapse
|
35
|
|
36
|
Jeong K, Jeong JY, Lee HO, Choi E, Lee H. Inhibition of Plk1 induces mitotic infidelity and embryonic growth defects in developing zebrafish embryos. Dev Biol 2010; 345:34-48. [PMID: 20553902 DOI: 10.1016/j.ydbio.2010.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/29/2010] [Accepted: 06/01/2010] [Indexed: 01/29/2023]
Abstract
Polo-like kinase 1 (Plk1) is central to cell division. Here, we report that Plk1 is critical for mitosis in the embryonic development of zebrafish. Using a combination of several cell biology tools, including single-cell live imaging applied to whole embryos, we show that Plk1 is essential for progression into mitosis during embryonic development. Plk1 morphant cells displayed mitotic infidelity, such as abnormal centrosomes, irregular spindle assembly, hypercondensed chromosomes, and a failure of chromosome arm separation. Consequently, depletion of Plk1 resulted in mitotic arrest and finally death by 6days post-fertilization. In comparison, Plk2 or Plk3 morphant embryos did not display any significant abnormalities. Treatment of embryos with the Plk1 inhibitor, BI 2536, caused a block in mitosis, which was more severe when used to treat plk1 morphants. Finally, using an assay to rescue the Plk1 morphant phenotype, we found that the kinase domain and PBD domains are both necessary for Plk1 function in zebrafish development. Our studies demonstrate that Plk1 is required for embryonic proliferation because its activity is crucial for mitotic integrity. Furthermore, our study suggests that zebrafish will be an efficient and economical in vivo system for the validation of anti-mitotic drugs.
Collapse
Affiliation(s)
- Kilhun Jeong
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, College of Natural Sciences, Seoul National University, 599, Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
37
|
Nayak T, Edgerton-Morgan H, Horio T, Xiong Y, De Souza CP, Osmani SA, Oakley BR. Gamma-tubulin regulates the anaphase-promoting complex/cyclosome during interphase. ACTA ACUST UNITED AC 2010; 190:317-30. [PMID: 20679430 PMCID: PMC2922653 DOI: 10.1083/jcb.201002105] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Activation of the APC/C requires microtubule-nucleating independent aspects of γ-tubulin function. A cold-sensitive γ-tubulin allele of Aspergillus nidulans, mipAD159, causes defects in mitotic and cell cycle regulation at restrictive temperatures that are apparently independent of microtubule nucleation defects. Time-lapse microscopy of fluorescently tagged mitotic regulatory proteins reveals that cyclin B, cyclin-dependent kinase 1, and the Ancdc14 phosphatase fail to accumulate in a subset of nuclei at restrictive temperatures. These nuclei are permanently removed from the cell cycle, whereas other nuclei, in the same multinucleate cell, cycle normally, accumulating and degrading these proteins. After each mitosis, additional daughter nuclei fail to accumulate these proteins, resulting in an increase in noncycling nuclei over time and consequent inhibition of growth. Extensive analyses reveal that these noncycling nuclei result from a nuclear autonomous, microtubule-independent failure of inactivation of the anaphase-promoting complex/cyclosome. Thus, γ-tubulin functions to regulate this key mitotic and cell cycle regulatory complex.
Collapse
Affiliation(s)
- Tania Nayak
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Vanoosthuyse V, Meadows JC, van der Sar SJA, Millar JBA, Hardwick KG. Bub3p facilitates spindle checkpoint silencing in fission yeast. Mol Biol Cell 2010; 20:5096-105. [PMID: 19846658 DOI: 10.1091/mbc.e09-09-0762] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although critical for spindle checkpoint signaling, the role kinetochores play in anaphase promoting complex (APC) inhibition remains unclear. Here we show that spindle checkpoint proteins are severely depleted from unattached kinetochores in fission yeast cells lacking Bub3p. Surprisingly, a robust mitotic arrest is maintained in the majority of bub3 Delta cells, yet they die, suggesting that Bub3p is essential for successful checkpoint recovery. During recovery, two defects are observed: (1) cells mis-segregate chromosomes and (2) anaphase onset is significantly delayed. We show that Bub3p is required to activate the APC upon inhibition of Aurora kinase activity in checkpoint-arrested cells, suggesting that Bub3p is required for efficient checkpoint silencing downstream of Aurora kinase. Together, these results suggest that spindle checkpoint signals can be amplified in the nucleoplasm, yet kinetochore localization of spindle checkpoint components is required for proper recovery from a spindle checkpoint-dependent arrest.
Collapse
Affiliation(s)
- Vincent Vanoosthuyse
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EH9 3JR, United Kingdom.
| | | | | | | | | |
Collapse
|
39
|
Getting down to the phosphorylated ‘nuts and bolts’ of spindle checkpoint signalling. Trends Biochem Sci 2010; 35:18-27. [DOI: 10.1016/j.tibs.2009.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 12/26/2022]
|
40
|
Chen TC, Lee SA, Chan CH, Juang YL, Hong YR, Huang YH, Lai JM, Kao CY, Huang CYF. Cliques in mitotic spindle network bring kinetochore-associated complexes to form dependence pathway. Proteomics 2009; 9:4048-62. [DOI: 10.1002/pmic.200900231] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
41
|
Ciliberto A, Shah JV. A quantitative systems view of the spindle assembly checkpoint. EMBO J 2009; 28:2162-73. [PMID: 19629044 PMCID: PMC2722251 DOI: 10.1038/emboj.2009.186] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 06/16/2009] [Indexed: 12/04/2022] Open
Abstract
The idle assembly checkpoint acts to delay chromosome segregation until all duplicated sister chromatids are captured by the mitotic spindle. This pathway ensures that each daughter cell receives a complete copy of the genome. The high fidelity and robustness of this process have made it a subject of intense study in both the experimental and computational realms. A significant number of checkpoint proteins have been identified but how they orchestrate the communication between local spindle attachment and global cytoplasmic signalling to delay segregation is not yet understood. Here, we propose a systems view of the spindle assembly checkpoint to focus attention on the key regulators of the dynamics of this pathway. These regulators in turn have been the subject of detailed cellular measurements and computational modelling to connect molecular function to the dynamics of spindle assembly checkpoint signalling. A review of these efforts reveals the insights provided by such approaches and underscores the need for further interdisciplinary studies to reveal in full the quantitative underpinnings of this cellular control pathway.
Collapse
Affiliation(s)
| | - Jagesh V Shah
- Department of Systems Biology, Harvard Medical School and Renal Division, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
42
|
Wickliffe K, Williamson A, Jin L, Rape M. The multiple layers of ubiquitin-dependent cell cycle control. Chem Rev 2009; 109:1537-48. [PMID: 19146381 PMCID: PMC3206288 DOI: 10.1021/cr800414e] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Katherine Wickliffe
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720, USA
| | - Adam Williamson
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720, USA
| | - Lingyan Jin
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720, USA
| | - Michael Rape
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720, USA
| |
Collapse
|
43
|
Maciejewska Z, Polanski Z, Kisiel K, Kubiak JZ, Ciemerych MA. Spindle assembly checkpoint-related failure perturbs early embryonic divisions and reduces reproductive performance of LT/Sv mice. Reproduction 2009; 137:931-42. [PMID: 19279200 DOI: 10.1530/rep-09-0011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The phenotype of the LT/Sv strain of mice is manifested by abnormalities in oocyte meiotic cell-cycle, spontaneous parthenogenetic activation, teratomas formation, and frequent occurrence of embryonic triploidy. These abnormalities lead to the low rate of reproductive success. Recently, metaphase I arrest of LT/Sv oocytes has been attributed to the inability to timely inactivate the spindle assembly checkpoint (SAC). As differences in meiotic and mitotic SAC functioning were described, it remains obscure whether this abnormality is limited to the meiosis or also impinges on the mitotic divisions of LT/Sv embryos. Here, we show that a failure to inactivate SAC affects mitoses during preimplantation development of LT/Sv embryos. This is manifested by the prolonged localization of MAD2L1 on kinetochores of mitotic chromosomes and abnormally lengthened early embryonic M-phases. Moreover, LT/Sv embryos exhibit elevated frequency of abnormal chromosome separation during the first mitotic division. These abnormalities participate in severe impairment of preimplantation development and significantly decrease the reproductive success of this strain of mice. Thus, the common meiosis and mitosis SAC-related failure participates in a complex LT/Sv phenotype.
Collapse
Affiliation(s)
- Zuzanna Maciejewska
- Department of Embryology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
44
|
Abstract
The two co-activators of the anaphase-promoting complex/cyclosome (APC/C), Cdc20 and Cdh1, facilitate ubiquitination by the core complex, but their role in conferring substrate specificity has been contentious. A new report reveals that Cdc20-bound APC/C initiates the timely proteolysis of many Cdh1 substrates with the exception of the Aurora kinases. Failure to degrade Aurora kinases results in abnormal anaphase microtubule organisation and premature cytokinesis.
Collapse
Affiliation(s)
- Fanni Gergely
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Department of Oncology, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK.
| |
Collapse
|
45
|
Ibrahim B, Schmitt E, Dittrich P, Diekmann S. In silico study of kinetochore control, amplification, and inhibition effects in MCC assembly. Biosystems 2009; 95:35-50. [DOI: 10.1016/j.biosystems.2008.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 06/16/2008] [Accepted: 06/24/2008] [Indexed: 02/07/2023]
|
46
|
Kulukian A, Han JS, Cleveland DW. Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev Cell 2009; 16:105-17. [PMID: 19154722 PMCID: PMC2655205 DOI: 10.1016/j.devcel.2008.11.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 09/10/2008] [Accepted: 11/10/2008] [Indexed: 11/16/2022]
Abstract
Premature anaphase onset is prevented by the mitotic checkpoint through production of a "wait anaphase" inhibitor(s) that blocks recognition of cyclin B and securin by Cdc20-activated APC/C, an E3 ubiquitin ligase that targets them for destruction. Using physiologically relevant levels of Mad2, Bub3, BubR1, and Cdc20, we demonstrate that unattached kinetochores on purified chromosomes catalytically generate a diffusible Cdc20 inhibitor or inhibit Cdc20 already bound to APC/C. Furthermore, the chromosome-produced inhibitor requires both recruitment of Mad2 by Mad1 that is stably bound at unattached kinetochores and dimerization-competent Mad2. We show that purified chromosomes promote BubR1 binding to APC/C-Cdc20 by acting directly on Mad2, but not BubR1. Our results support a model in which immobilized Mad1/Mad2 at kinetochores provides a template for initial assembly of Mad2 bound to Cdc20 that is then converted to a final mitotic checkpoint inhibitor with Cdc20 bound to BubR1.
Collapse
Affiliation(s)
- Anita Kulukian
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Biology, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Joo Seok Han
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
47
|
Erhardt S, Mellone BG, Betts CM, Zhang W, Karpen GH, Straight AF. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J Cell Biol 2008; 183:805-18. [PMID: 19047461 PMCID: PMC2592830 DOI: 10.1083/jcb.200806038] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 10/30/2008] [Indexed: 11/22/2022] Open
Abstract
Centromeres are the structural and functional foundation for kinetochore formation, spindle attachment, and chromosome segregation. In this study, we isolated factors required for centromere propagation using genome-wide RNA interference screening for defects in centromere protein A (CENP-A; centromere identifier [CID]) localization in Drosophila melanogaster. We identified the proteins CAL1 and CENP-C as essential factors for CID assembly at the centromere. CID, CAL1, and CENP-C coimmunoprecipitate and are mutually dependent for centromere localization and function. We also identified the mitotic cyclin A (CYCA) and the anaphase-promoting complex (APC) inhibitor RCA1/Emi1 as regulators of centromere propagation. We show that CYCA is centromere localized and that CYCA and RCA1/Emi1 couple centromere assembly to the cell cycle through regulation of the fizzy-related/CDH1 subunit of the APC. Our findings identify essential components of the epigenetic machinery that ensures proper specification and propagation of the centromere and suggest a mechanism for coordinating centromere inheritance with cell division.
Collapse
Affiliation(s)
- Sylvia Erhardt
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
48
|
Nilsson J, Yekezare M, Minshull J, Pines J. The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nat Cell Biol 2008; 10:1411-20. [PMID: 18997788 PMCID: PMC2635557 DOI: 10.1038/ncb1799] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 10/17/2008] [Indexed: 01/28/2023]
Abstract
The spindle assembly checkpoint (SAC) is required to block sister chromatid separation until all chromosomes are properly attached to the mitotic apparatus. The SAC prevents cells from entering anaphase by inhibiting the ubiquitylation of cyclin B1 and securin by the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase. The target of the SAC is the essential APC/C activator Cdc20. It is unclear how the SAC inactivates Cdc20 but most current models suggest that Cdc20 forms a stable complex with the Mad2 checkpoint protein. Here we show that most Cdc20 is not in a complex with Mad2; instead Mad2 is required for Cdc20 to form a complex with another checkpoint protein, BubR1. We further show that during the SAC, the APC/C ubiquitylates Cdc20 to target it for degradation. Thus, ubiquitylation of human Cdc20 is not required to release it from the checkpoint complex, but to degrade it to maintain mitotic arrest.
Collapse
Affiliation(s)
- Jakob Nilsson
- Wellcome/CR UK Gurdon Institute, and Department of Zoology, Tennis Court Road, Cambridge CB2 1QN, UK,
| | - Mona Yekezare
- Wellcome/CR UK Gurdon Institute, and Department of Zoology, Tennis Court Road, Cambridge CB2 1QN, UK,
| | | | - Jonathon Pines
- Wellcome/CR UK Gurdon Institute, and Department of Zoology, Tennis Court Road, Cambridge CB2 1QN, UK,
| |
Collapse
|
49
|
van Leuken R, Clijsters L, Wolthuis R. To cell cycle, swing the APC/C. Biochim Biophys Acta Rev Cancer 2008; 1786:49-59. [DOI: 10.1016/j.bbcan.2008.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/05/2008] [Accepted: 05/13/2008] [Indexed: 11/30/2022]
|
50
|
Brito DA, Yang Z, Rieder CL. Microtubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied. J Cell Biol 2008; 182:623-9. [PMID: 18710927 PMCID: PMC2518701 DOI: 10.1083/jcb.200805072] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/23/2008] [Indexed: 12/31/2022] Open
Abstract
When the spindle assembly checkpoint (SAC) cannot be satisfied, cells exit mitosis via mitotic slippage. In microtubule (MT) poisons, slippage requires cyclin B proteolysis, and it appears to be accelerated in drug concentrations that allow some MT assembly. To determine if MTs accelerate slippage, we followed mitosis in human RPE-1 cells exposed to various spindle poisons. At 37 degrees C, the duration of mitosis in nocodazole, colcemid, or vinblastine concentrations that inhibit MT assembly varied from 20 to 30 h, revealing that different MT poisons differentially depress the cyclin B destruction rate during slippage. The duration of mitosis in Eg5 inhibitors, which induce monopolar spindles without disrupting MT dynamics, was the same as in cells lacking MTs. Thus, in the presence of numerous unattached kinetochores, MTs do not accelerate slippage. Finally, compared with cells lacking MTs, exit from mitosis is accelerated over a range of spindle poison concentrations that allow MT assembly because the SAC becomes satisfied on abnormal spindles and not because slippage is accelerated.
Collapse
Affiliation(s)
- Daniela A Brito
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12222, USA
| | | | | |
Collapse
|