1
|
Xiang X, Shuya P, Jiamin Z, Zihan Z, Xumei Y, Jingjin L. 3-Phosphoinositide-Dependent Kinase 1 as a Therapeutic Target for Treating Diabetes. Curr Diabetes Rev 2025; 21:47-56. [PMID: 38468518 DOI: 10.2174/0115733998278669240226061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
The role of 3-phosphoinositide-dependent kinase 1 (PDK1) has been welldocumented in the development of diabetes. This review offers a thorough examination of its composition and associated routes, specifically focusing on insulin signaling and glucose processing. By examining the precise connection between PDK1 and diabetes, various strategies specifically targeting PDK1 were also investigated. Additionally, recent discoveries from mouse models were compiled where PDK1 was knocked out in certain tissues, which demonstrated encouraging outcomes for focused treatments despite the absence of any currently approved clinical PDK1 activators. Moreover, the dual nature of PDK1 activation was discussed, encompassing both anti-diabetic and pro-oncogenic effects. Hence, the development of a PDK1 modifier is of utmost importance, as it can activate anti-diabetic pathways while inhibiting pro-oncogenic pathways, thus aiding in the treatment of diabetes. In general, PDK1 presents a noteworthy opportunity for future therapeutic strategies in the treatment of diabetes.
Collapse
Affiliation(s)
- Xie Xiang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Childrens' Hospital of Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
| | - Pan Shuya
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejieng, China
| | - Zhang Jiamin
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejieng, China
| | - Zhang Zihan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejieng, China
| | - Yang Xumei
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Childrens' Hospital of Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
| | - Liu Jingjin
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
2
|
Liu C, Chen S, Zhang Y, Zhou X, Wang H, Wang Q, Lan X. Mechanisms of Rho GTPases in regulating tumor proliferation, migration and invasion. Cytokine Growth Factor Rev 2024; 80:168-174. [PMID: 39317522 DOI: 10.1016/j.cytogfr.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
The occurrence of most cancers is due to the clonal proliferation of tumor cells, immune evasion, and the ability to spread to other body parts. Rho GTPases, a family of small GTPases, are key regulators of cytoskeleton reorganization and cell polarity. Additionally, Rho GTPases are key proteins that induce the proliferation and metastasis of tumor cells. This review focuses on the complex regulatory mechanisms of Rho GTPases, exploring their critical role in promoting tumor cell proliferation and dissemination. Regarding tumor cell proliferation, attention is given to the role of Rho GTPases in regulating the cell cycle and mitosis. In terms of tumor cell dissemination, the focus is on the role of Rho GTPases in regulating cell migration and invasion. Overall, this review elucidates the mechanisms of Rho GTPases members in the development of tumor cells, aiming to provide theoretical references for the treatment of mammalian tumor diseases and related applications.
Collapse
Affiliation(s)
- Cheng Liu
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Shutao Chen
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Yu Zhang
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Xinyi Zhou
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Haiwei Wang
- Chongqing Academy Of Animal Sciences, Chongqing 402460, China.
| | - Qigui Wang
- Chongqing Academy Of Animal Sciences, Chongqing 402460, China.
| | - Xi Lan
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Driscoll MK, Welf ES, Weems A, Sapoznik E, Zhou F, Murali VS, García-Arcos JM, Roh-Johnson M, Piel M, Dean KM, Fiolka R, Danuser G. Proteolysis-free amoeboid migration of melanoma cells through crowded environments via bleb-driven worrying. Dev Cell 2024; 59:2414-2428.e8. [PMID: 38870943 PMCID: PMC11421976 DOI: 10.1016/j.devcel.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
In crowded microenvironments, migrating cells must find or make a path. Amoeboid cells are thought to find a path by deforming their bodies to squeeze through tight spaces. Yet, some amoeboid cells seem to maintain a near-spherical morphology as they move. To examine how they do so, we visualized amoeboid human melanoma cells in dense environments and found that they carve tunnels via bleb-driven degradation of extracellular matrix components without the need for proteolytic degradation. Interactions between adhesions and collagen at the cell front induce a signaling cascade that promotes bleb enlargement via branched actin polymerization. Large blebs abrade collagen, creating feedback between extracellular matrix structure, cell morphology, and polarization that enables both path generation and persistent movement.
Collapse
Affiliation(s)
- Meghan K Driscoll
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erik S Welf
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew Weems
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Etai Sapoznik
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Felix Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vasanth S Murali
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Minna Roh-Johnson
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA
| | - Matthieu Piel
- Institut Curie, UMR144, CNRS, PSL University, Paris, France
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Li X, He X, Lin B, Li L, Deng Q, Wang C, Zhang J, Chen Y, Zhao J, Li X, Li Y, Xi Q, Zhang R. Quercetin Limits Tumor Immune Escape through PDK1/CD47 Axis in Melanoma. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:541-563. [PMID: 38490807 DOI: 10.1142/s0192415x2450023x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Quercetin (3,3[Formula: see text],4[Formula: see text],5,7-pentahydroxyflavone) is a bioactive plant-derived flavonoid, abundant in fruits and vegetables, that can effectively inhibit the growth of many types of tumors without toxicity. Nevertheless, the effect of quercetin on melanoma immunology has yet to be determined. This study aimed to investigate the role and mechanism of the antitumor immunity action of quercetin in melanoma through both in vivo and in vitro methods. Our research revealed that quercetin has the ability to boost antitumor immunity by modulating the tumor immune microenvironment through increasing the percentages of M1 macrophages, CD8[Formula: see text] T lymphocytes, and CD4[Formula: see text] T lymphocytes and promoting the secretion of IL-2 and IFN-[Formula: see text] from CD8[Formula: see text] T cells, consequently suppressing the growth of melanoma. Furthermore, we revealed that quercetin can inhibit cell proliferation and migration of B16 cells in a dose-dependent manner. In addition, down-regulating PDK1 can inhibit the mRNA and protein expression levels of CD47. In the rescue experiment, we overexpressed PDK1 and found that the protein and mRNA expression levels of CD47 increased correspondingly, while the addition of quercetin reversed this effect. Moreover, quercetin could stimulate the proliferation and enhance the function of CD8[Formula: see text] T cells. Therefore, our results identified a novel mechanism through which CD47 is regulated by quercetin to promote phagocytosis, and elucidated the regulation of quercetin on macrophages and CD8[Formula: see text] T cells in the tumor immune microenvironment. The use of quercetin as a therapeutic drug holds potential benefits for immunotherapy, enhancing the efficacy of existing treatments for melanoma.
Collapse
Affiliation(s)
- Xin Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xue He
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Bing Lin
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Li Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Qifeng Deng
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Chengzhi Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin 300203, P. R. China
| | - Jing Zhang
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Ying Chen
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Jingyi Zhao
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xinrui Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Yan Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Qing Xi
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510062, P. R. China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Lei Y, Li X, Zhu L. Matrine regulates miR-495-3p/miR-543/PDK1 axis to repress the progression of acute myeloid leukemia via the Wnt/β-catenin pathway. Chem Biol Drug Des 2024; 103:e14441. [PMID: 38230785 DOI: 10.1111/cbdd.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
Acute myeloid leukemia (AML) is a commonly hematological malignancy with feature of rapidly increased immature myeloid cells in bone marrow. The anti-tumor activity of matrine has been reported in various cancers. However, the functional role of matrine in AML progression still needs to be studied. Cell growth, apoptosis and cell cycle arrest in AML cells were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay and flow cytometry, respectively. The levels of adenosine triphosphate (ATP)/adenosine diphosphate (ADP) ratio, lactate production and glucose consumption were detected to evaluate glycolysis. Dual-luciferase reporter assay was conducted to determine the relationships between phosphoinositide-dependent kinase 1 (PDK1) and microRNA-495-3p (miR-495-3p)/microRNA-543 (miR-543) in AML cells. The results showed that matrine inhibited cell proliferation, glycolysis, and accelerated cell apoptosis and cell cycle arrest in AML cells. MiR-495-3p/miR-543 was lowly expressed, and PDK1 was highly expressed in AML. Functionally, both miR-495-3p and miR-543 could reverse the effects of matrine on cell proliferation, glycolysis, apoptosis and cell cycle arrest in AML cells. Mechanistically, miR-495-3p/miR-543 directly targeted PDK1, and the inhibition impacts of miR-495-3p/miR-543 on AML progression could be rescued by PDK1 overexpression. Moreover, matrine also could regulate PDK1 expression to suppress AML progression. Besides, matrine modulated miR-495-3p/miR-543/PDK1 axis to inhibit the Wnt/β-catenin pathway. In summary, matrine hampered the progression of AML through targeting miR-495-3p and miR-543 to attenuate PDK1 expression, thereby repressing the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yanping Lei
- Department of Pharmacy, Weinan Maternal and Child Health Hospital (Weinan People's Hospital), Weinan, China
| | - Xiao Li
- Department of Gynecology, The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Liping Zhu
- Department of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Park J, Zhang H, Kwak HJ, Gadhe CG, Kim Y, Kim H, Noh M, Shin D, Ha SJ, Kwon YG. A novel small molecule, CU05-1189, targeting the pleckstrin homology domain of PDK1 suppresses VEGF-mediated angiogenesis and tumor growth by blocking the Akt signaling pathway. Front Pharmacol 2023; 14:1275749. [PMID: 38035024 PMCID: PMC10687218 DOI: 10.3389/fphar.2023.1275749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Inhibition of angiogenesis is considered a promising therapeutic approach for cancer treatment. Our previous genetic research showed that the use of a cell-penetrating peptide to inhibit the pleckstrin homology (PH) domain of 3-phosphoinositide-dependent kinase 1 (PDK1) was a viable approach to suppress pathological angiogenesis. Herein, we synthesized and characterized a novel small molecule, CU05-1189, based on our prior study and present evidence for the first time that this compound possesses antiangiogenic properties both in vitro and in vivo. The computational analysis showed that CU05-1189 can interact with the PH domain of PDK1, and it significantly inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, invasion, and tube formation in human umbilical vein endothelial cells without apparent toxicity. Western blot analysis revealed that the Akt signaling pathway was specifically inhibited by CU05-1189 upon VEGF stimulation, without affecting other VEGF receptor 2 downstream molecules or cytosolic substrates of PDK1, by preventing translocation of PDK1 to the plasma membrane. We also found that CU05-1189 suppressed VEGF-mediated vascular network formation in a Matrigel plug assay. More importantly, CU05-1189 had a good pharmacokinetic profile with a bioavailability of 68%. These results led to the oral administration of CU05-1189, which resulted in reduced tumor microvessel density and growth in a xenograft mouse model. Taken together, our data suggest that CU05-1189 may have great potential and be a promising lead as a novel antiangiogenic agent for cancer treatment.
Collapse
Affiliation(s)
- Jeongeun Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Haiying Zhang
- Department of Bio Research, Curacle Co., Ltd., Seoul, Republic of Korea
| | - Hyun Jung Kwak
- Department of Strategic Planning, Curacle Co., Ltd., Seoul, Republic of Korea
| | | | - Yeomyeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyejeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Minyoung Noh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Kurter H, Basbinar Y, Ellidokuz H, Calibasi-Kocal G. The Role of Cyanidin-3- O-glucoside in Modulating Oxaliplatin Resistance by Reversing Mesenchymal Phenotype in Colorectal Cancer. Nutrients 2023; 15:4705. [PMID: 38004099 PMCID: PMC10674439 DOI: 10.3390/nu15224705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) plays an important role in the biological and biochemical processes of cells, and it is a critical process in the malignant transformation, and mobility of cancer. Additionally, EMT is one of the main mechanisms contributing to chemoresistance. Resistance to oxaliplatin (OXA) poses a momentous challenge in the chemotherapy of advanced colorectal cancer (CRC) patients, highlighting the need to reverse drug resistance and improve patient survival. In this study, we explored the response of cyanidin-3-O-glucoside (C3G), the most abundant anthocyanin in plants, on the mechanisms of drug resistance in cancer, with the purpose of overcoming acquired OXA resistance in CRC cell lines. METHODS We generated an acquired OXA-resistant cell line, named HCT-116-ROx, by gradually exposing parental HCT-116 cells to increasing concentrations of OXA. To characterize the resistance, we performed cytotoxicity assays and shape factor analyses. The apoptotic rate of both resistant and parental cells was determined using Hoechst 33342/Propidium Iodide (PI) fluorescence staining. Migration capacity was evaluated using a wound-healing assay. The mesenchymal phenotype was assessed through qRT-PCR and immunofluorescence staining, employing E-cadherin, N-cadherin, and Vimentin markers. RESULTS Resistance characterization announced decreased OXA sensitivity in resistant cells compared to parental cells. Moreover, the resistant cells exhibited a spindle cell morphology, indicative of the mesenchymal phenotype. Combined treatment of C3G and OXA resulted in an augmented apoptotic rate in the resistant cells. The migration capacity of resistant cells was higher than parental cells, while treatment with C3G decreased the migration rate of HCT-116-ROx cells. Analysis of EMT markers showed that HCT-116-ROx cells exhibited loss of the epithelial phenotype (E-cadherin) and gain of the mesenchymal phenotype (N-cadherin and Vimentin) compared to HCT-116 cells. However, treatment of resistant cells with C3G reversed the mesenchymal phenotype. CONCLUSION The morphological observations of cells acquiring oxaliplatin resistance indicated the loss of the epithelial phenotype and the acquisition of the mesenchymal phenotype. These findings suggest that EMT may contribute to acquired OXA resistance in CRC. Furthermore, C3G decreased the mobility of resistant cells, and reversed the EMT process, indicating its potential to overcome acquired OXA resistance.
Collapse
Affiliation(s)
- Hasan Kurter
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University, Izmir 35330, Turkey;
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir 35330, Turkey;
| | - Hulya Ellidokuz
- Department of Preventive Oncology, Institute of Oncology, Dokuz Eylul University, Izmir 35330, Turkey;
| | - Gizem Calibasi-Kocal
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir 35330, Turkey;
| |
Collapse
|
8
|
Zheng N, Wei J, Wu D, Xu Y, Guo J. Master kinase PDK1 in tumorigenesis. Biochim Biophys Acta Rev Cancer 2023; 1878:188971. [PMID: 37640147 DOI: 10.1016/j.bbcan.2023.188971] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
3-phosphoinositide-dependent protein kinase 1 (PDK1) is considered as master kinase regulating AGC kinase family members such as AKT, SGK, PLK, S6K and RSK. Although autophosphorylation regulates PDK1 activity, accumulating evidence suggests that PDK1 is manipulated by many other mechanisms, including S6K-mediated phosphorylation, and the E3 ligase SPOP-mediated ubiquitination and degradation. Dysregulation of these upstream regulators or downstream signals involves in cancer development, as PDK1 regulating cell growth, metastasis, invasion, apoptosis and survival time. Meanwhile, overexpression of PDK1 is also exposed in a plethora of cancers, whereas inhibition of PDK1 reduces cell size and inhibits tumor growth and progression. More importantly, PDK1 also modulates the tumor microenvironments and markedly influences tumor immunotherapies. In summary, we comprehensively summarize the downstream signals, upstream regulators, mouse models, inhibitors, tumor microenvironment and clinical treatments for PDK1, and highlight PDK1 as a potential cancer therapeutic target.
Collapse
Affiliation(s)
- Nana Zheng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Jiaqi Wei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China.
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China.
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
9
|
Jalilzadeh N, Barzgar Barough N, Karami M, Baghbanzadeh A, Velaei K. Studying luminal A and B subtypes of breast cancer under paracrine secretion of fibro-blasts. BIOIMPACTS : BI 2023; 14:27591. [PMID: 38938757 PMCID: PMC11199934 DOI: 10.34172/bi.2023.27591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 06/29/2024]
Abstract
Introduction Understanding the key role of the tumor microenvironment in specifying molecular markers of breast cancer subtypes is of a high importance in diagnosis and treatment. Therefore, the possibility of interconversion of luminal states and their specific markers alteration under the control of tumor microenvironment (TME), particularly cancer-associated fibroblasts (CAFs) deserves to be further investigated. Methods To activate normal human fibroblasts, liquid overlay technique or nemosis was used and α-SMA protein expression, CAFs marker, in fibroblastic spheroids was measured by blotting. The luminal A, MCF-7, and luminal B, MDA-MB 361, cell lines were treated with normal and spheroidal/activated fibroblast conditioned medium for 48 hours. The morphological changes of both luminal A and B cells were evaluated by invert light microscopy and analyzed through the shape factor formula. Moreover, chemo-sensitivity, proliferation, and changes in ER-related and proliferative genes expression levels were assessed respectively via MTT assay, Ki67 expression Immunofluorescence assay, real time PCR and Annexin V-FITC techniques. Results Activated (spheroidal) fibroblasts, expressed αSMA marker two folds more than monolayer cultured fibroblasts. Our study indicated a significant increase in IC50 of both luminal A and B cell lines after being treated with conditioned medium particularly in treated group with spheroidal conditioned medium. Studying Morphological changes using shape factor formula demonstrated more aggressiveness with gaining mesenchymal features in both luminal A and B subtypes by increasing exposure time. Changes in the expression of Ki67 were observed following treatment with fibroblastic and spheroidal paracrine secretome. Driven Data from Ki67 assay supports the luminal A and B interconversion by elevated Ki67 expression in luminal A and lowered Ki67 expression in luminal B. Gene expression analysis revealed that anti-apoptotic Bcl2 gene expression in both luminal types treated with condition medium has been increased though there has seen no interchange in expression of ER-related and proliferative genes between luminal A (MCF7) and luminal B (MDA-MB361) subtypes, the results of Annexin V-FITC flow cytometry test indicated a decrease in the population of both early and late apoptotic cells in groups treated with both fibroblastic and spheroidal condition medium compared to of control group. Conclusion Under the paracrine influence of fibroblast cells, both luminal A (MCF7) and luminal B (MDA-MB) subtypes of breast cancer gained invasive, anti-apoptotic, and chemoresistance features which are mostly increased by activated(spheroidal) fibroblasts conditioned medium mimicking CAFs. There was no strong proof for interconversion of luminal A and luminal B which share more similarities among breast cancer molecular subtypes.
Collapse
Affiliation(s)
- Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Neda Barzgar Barough
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Karami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
D'Rozario J, Knoblich K, Lütge M, Shibayama CP, Cheng HW, Alexandre YO, Roberts D, Campos J, Dutton EE, Suliman M, Denton AE, Turley SJ, Boyd RL, Mueller SN, Ludewig B, Heng TSP, Fletcher AL. Fibroblastic reticular cells provide a supportive niche for lymph node-resident macrophages. Eur J Immunol 2023; 53:e2250355. [PMID: 36991561 PMCID: PMC10947543 DOI: 10.1002/eji.202250355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
The lymph node (LN) is home to resident macrophage populations that are essential for immune function and homeostasis, but key factors controlling this niche are undefined. Here, we show that fibroblastic reticular cells (FRCs) are an essential component of the LN macrophage niche. Genetic ablation of FRCs caused rapid loss of macrophages and monocytes from LNs across two in vivo models. Macrophages co-localized with FRCs in human LNs, and murine single-cell RNA-sequencing revealed that FRC subsets broadly expressed master macrophage regulator CSF1. Functional assays containing purified FRCs and monocytes showed that CSF1R signaling was sufficient to support macrophage development. These effects were conserved between mouse and human systems. These data indicate an important role for FRCs in maintaining the LN parenchymal macrophage niche.
Collapse
Affiliation(s)
- Joshua D'Rozario
- Department of Biochemistry and Molecular Biology, and Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Konstantin Knoblich
- Department of Biochemistry and Molecular Biology, and Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Yannick O Alexandre
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Melbourne, Australia
| | - David Roberts
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Joana Campos
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Emma E Dutton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Muath Suliman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Alice E Denton
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Richard L Boyd
- Cartherics Pty Ltd, Hudson Institute for Medical Research, Clayton, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Melbourne, Australia
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Australia
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, and Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Reilly L, Semenza ER, Koshkaryan G, Mishra S, Chatterjee S, Abramson E, Mishra P, Sei Y, Wank SA, Donowitz M, Snyder SH, Guha P. Loss of PI3k activity of inositol polyphosphate multikinase impairs PDK1-mediated AKT activation, cell migration, and intestinal homeostasis. iScience 2023; 26:106623. [PMID: 37216099 PMCID: PMC10197106 DOI: 10.1016/j.isci.2023.106623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
Protein kinase B (AKT) is essential for cell survival, proliferation, and migration and has been associated with several diseases. Here, we demonstrate that inositol polyphosphate multikinase (IPMK's) lipid kinase property drives AKT activation via increasing membrane localization and activation of PDK1 (3-Phosphoinositide-dependent kinase 1), largely independent of class I PI3k (cPI3K). Deletion of IPMK impairs cell migration, which is partially associated with the abolition of PDK1-mediated ROCK1 disinhibition and subsequent myosin light chain (MLC) phosphorylation. IPMK is highly expressed in intestinal epithelial cells (IEC). Deleting IPMK in IEC reduced AKT phosphorylation and diminished the number of Paneth cells. Ablation of IPMK impaired IEC regeneration both basally and after chemotherapy-induced damage, suggesting a broad role for IPMK in activating AKT and intestinal tissue regeneration. In conclusion, the PI3k activity of IPMK is necessary for PDK1-mediated AKT activation and intestinal homeostasis.
Collapse
Affiliation(s)
- Luke Reilly
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Evan R. Semenza
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - George Koshkaryan
- Nevada Institute of Personalized Medicine (NIPM), University of Nevada, Las Vegas, NV 89154, USA
| | - Subrata Mishra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Reference Standard Laboratory, United States Pharmacopeial Convention, Rockville, MD 20852, USA
| | - Sujan Chatterjee
- Nevada Institute of Personalized Medicine (NIPM), University of Nevada, Las Vegas, NV 89154, USA
| | - Efrat Abramson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pamela Mishra
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Yoshitasu Sei
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen A. Wank
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Prasun Guha
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Nevada Institute of Personalized Medicine (NIPM), University of Nevada, Las Vegas, NV 89154, USA
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
12
|
Bartish M, Abraham MJ, Gonçalves C, Larsson O, Rolny C, Del Rincón SV. The role of eIF4F-driven mRNA translation in regulating the tumour microenvironment. Nat Rev Cancer 2023; 23:408-425. [PMID: 37142795 DOI: 10.1038/s41568-023-00567-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Cells can rapidly adjust their proteomes in dynamic environments by regulating mRNA translation. There is mounting evidence that dysregulation of mRNA translation supports the survival and adaptation of cancer cells, which has stimulated clinical interest in targeting elements of the translation machinery and, in particular, components of the eukaryotic initiation factor 4F (eIF4F) complex such as eIF4E. However, the effect of targeting mRNA translation on infiltrating immune cells and stromal cells in the tumour microenvironment (TME) has, until recently, remained unexplored. In this Perspective article, we discuss how eIF4F-sensitive mRNA translation controls the phenotypes of key non-transformed cells in the TME, with an emphasis on the underlying therapeutic implications of targeting eIF4F in cancer. As eIF4F-targeting agents are in clinical trials, we propose that a broader understanding of their effect on gene expression in the TME will reveal unappreciated therapeutic vulnerabilities that could be used to improve the efficacy of existing cancer therapies.
Collapse
Affiliation(s)
- Margarita Bartish
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Madelyn J Abraham
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Christophe Gonçalves
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Ola Larsson
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Rolny
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Sonia V Del Rincón
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
13
|
Borkowsky S, Gass M, Alavizargar A, Hanewinkel J, Hallstein I, Nedvetsky P, Heuer A, Krahn MP. Phosphorylation of LKB1 by PDK1 Inhibits Cell Proliferation and Organ Growth by Decreased Activation of AMPK. Cells 2023; 12:cells12050812. [PMID: 36899949 PMCID: PMC10000615 DOI: 10.3390/cells12050812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The master kinase LKB1 is a key regulator of se veral cellular processes, including cell proliferation, cell polarity and cellular metabolism. It phosphorylates and activates several downstream kinases, including AMP-dependent kinase, AMPK. Activation of AMPK by low energy supply and phosphorylation of LKB1 results in an inhibition of mTOR, thus decreasing energy-consuming processes, in particular translation and, thus, cell growth. LKB1 itself is a constitutively active kinase, which is regulated by posttranslational modifications and direct binding to phospholipids of the plasma membrane. Here, we report that LKB1 binds to Phosphoinositide-dependent kinase (PDK1) by a conserved binding motif. Furthermore, a PDK1-consensus motif is located within the kinase domain of LKB1 and LKB1 gets phosphorylated by PDK1 in vitro. In Drosophila, knockin of phosphorylation-deficient LKB1 results in normal survival of the flies, but an increased activation of LKB1, whereas a phospho-mimetic LKB1 variant displays decreased AMPK activation. As a functional consequence, cell growth as well as organism size is decreased in phosphorylation-deficient LKB1. Molecular dynamics simulations of PDK1-mediated LKB1 phosphorylation revealed changes in the ATP binding pocket, suggesting a conformational change upon phosphorylation, which in turn can alter LKB1's kinase activity. Thus, phosphorylation of LKB1 by PDK1 results in an inhibition of LKB1, decreased activation of AMPK and enhanced cell growth.
Collapse
Affiliation(s)
- Sarah Borkowsky
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Maximilian Gass
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Azadeh Alavizargar
- Institute of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Johannes Hanewinkel
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Ina Hallstein
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Pavel Nedvetsky
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Andreas Heuer
- Institute of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Michael P. Krahn
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8357052
| |
Collapse
|
14
|
Ou R, Liu X. LncRNA IUR Is Downregulated in Gastric Carcinoma and Associated with Poor Survival. Cancer Biother Radiopharm 2023; 38:116-121. [PMID: 32783641 DOI: 10.1089/cbr.2019.3436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: LncRNA IUR has been recently identified as a key regulator of Bcr-Abl-induced tumorigenesis, while its role in gastric carcinoma (GC) is unknown. This study investigated the involvement of IUR in GC. Materials and Methods: Gene expression levels were measured by performing quantitative polymerase chain reaction. Interactions between IUR and ROCK1 were analyzed by transfection experiments. Cell invasion and migration were analyzed by Transwell assay. Results: In this study, the authors showed that IUR was downregulated in GC. A follow-up study showed that low IUR expression levels predicted poor survival. In GC tissues, ROCK1 was upregulated in GC tissues and inversely correlated with IUR. In GC cells, IUR overexpression mediated the downregulation of ROCK1. ROCK1 overexpression resulted in increased GC cell invasion and migration, while IUR overexpression played an opposite role. Conclusion: IUR is downregulated in GC and inhibits GC cell invasion and migration by downregulating ROCK1.
Collapse
Affiliation(s)
- Rui Ou
- Department of Hepatobiliary Surgery, Huanggang Central Hospital, Huanggang City, China
| | - Xin Liu
- Plastic Surgery Department, Puyang Oilfield General Hospital, Fuyang City, China
| |
Collapse
|
15
|
Liu H, Yin H, Wang Z, Yuan Q, Xu F, Chen Y, Li C. Rho A/ROCK1 signaling-mediated metabolic reprogramming of valvular interstitial cells toward Warburg effect accelerates aortic valve calcification via AMPK/RUNX2 axis. Cell Death Dis 2023; 14:108. [PMID: 36774349 PMCID: PMC9922265 DOI: 10.1038/s41419-023-05642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/13/2023]
Abstract
The aberrant differentiation of valvular interstitial cells (VICs) to osteogenic lineages promotes calcified aortic valves disease (CAVD), partly activated by potentially destructive hemodynamic forces. These involve Rho A/ROCK1 signaling, a mechano-sensing pathway. However, how Rho A/ROCK1 signaling transduces mechanical signals into cellular responses and disrupts normal VIC homeostasis remain unclear. We examined Rho A/ROCK1 signaling in human aortic valves, and further detected how Rho A/ROCK1 signaling regulates mineralization in human VICs. Aortic valves (CAVD n = 22, normal control (NC) n = 12) from patients undergoing valve replacement were investigated. Immunostaining and western blotting analysis indicated that Rho A/ROCK1 signaling, as well as key transporters and enzymes involved in the Warburg effect, were markedly upregulated in human calcified aortic valves compared with those in the controls. In vitro, Rho A/ROCK1-induced calcification was confirmed as AMPK-dependent, via a mechanism involving metabolic reprogramming of human VICs to Warburg effect. Y-27632, a selective ROCK1 inhibitor, suppressed the Warburg effect, rescued AMPK activity and subsequently increased RUNX2 ubiquitin-proteasome degradation, leading to decreased RUNX2 protein accumulation in human VICs under pathological osteogenic stimulus. Rho A/ROCK1 signaling, which is elevated in human calcified aortic valves, plays a positive role in valvular calcification, partially through its ability to drive metabolic switching of VICs to the Warburg effect, leading to altered AMPK activity and RUNX2 protein accumulation. Thus, Rho A/ROCK1 signaling could be an important and unrecognized hub of destructive hemodynamics and cellular aerobic glycolysis that is essential to promote the CAVD process.
Collapse
Affiliation(s)
- Huiruo Liu
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hang Yin
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhen Wang
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qiuhuan Yuan
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Feng Xu
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuguo Chen
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Chuanbao Li
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
16
|
Kang S, Kim J, Park A, Koh M, Shin W, Park G, Lee TA, Kim HJ, Han H, Kim Y, Choi MK, Park JH, Lee E, Cho HS, Park HW, Cheon JH, Lee S, Park B. TRIM40 is a pathogenic driver of inflammatory bowel disease subverting intestinal barrier integrity. Nat Commun 2023; 14:700. [PMID: 36755029 PMCID: PMC9908899 DOI: 10.1038/s41467-023-36424-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
The cortical actin cytoskeleton plays a critical role in maintaining intestinal epithelial integrity, and the loss of this architecture leads to chronic inflammation, as seen in inflammatory bowel disease (IBD). However, the exact mechanisms underlying aberrant actin remodeling in pathological states remain largely unknown. Here, we show that a subset of patients with IBD exhibits substantially higher levels of tripartite motif-containing protein 40 (TRIM40), a gene that is hardly detectable in healthy individuals. TRIM40 is an E3 ligase that directly targets Rho-associated coiled-coil-containing protein kinase 1 (ROCK1), an essential kinase involved in promoting cell-cell junctions, markedly decreasing the phosphorylation of key signaling factors critical for cortical actin formation and stabilization. This causes failure of the epithelial barrier function, thereby promoting a long-lived inflammatory response. A mutant TRIM40 lacking the RING, B-box, or C-terminal domains has impaired ability to accelerate ROCK1 degradation-driven cortical actin disruption. Accordingly, Trim40-deficient male mice are highly resistant to dextran sulfate sodium (DSS)-induced colitis. Our findings highlight that aberrant upregulation of TRIM40, which is epigenetically silenced under healthy conditions, drives IBD by subverting cortical actin formation and exacerbating epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Sujin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Jaekyung Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Areum Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Minsoo Koh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Wonji Shin
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Gayoung Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Taeyun A Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Hyung Jin Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Heonjong Han
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, 10408, South Korea
| | - Yongbo Kim
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, 10408, South Korea
| | - Myung Kyung Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Jae Hyung Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Eunhye Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Sungwook Lee
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, 10408, South Korea.
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
17
|
George S, Martin JAJ, Graziani V, Sanz-Moreno V. Amoeboid migration in health and disease: Immune responses versus cancer dissemination. Front Cell Dev Biol 2023; 10:1091801. [PMID: 36699013 PMCID: PMC9869768 DOI: 10.3389/fcell.2022.1091801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Cell migration is crucial for efficient immune responses and is aberrantly used by cancer cells during metastatic dissemination. Amoeboid migrating cells use myosin II-powered blebs to propel themselves, and change morphology and direction. Immune cells use amoeboid strategies to respond rapidly to infection or tissue damage, which require quick passage through several barriers, including blood, lymph and interstitial tissues, with complex and varied environments. Amoeboid migration is also used by metastatic cancer cells to aid their migration, dissemination and survival, whereby key mechanisms are hijacked from professionally motile immune cells. We explore important parallels observed between amoeboid immune and cancer cells. We also consider key distinctions that separate the lifespan, state and fate of these cell types as they migrate and/or fulfil their function. Finally, we reflect on unexplored areas of research that would enhance our understanding of how tumour cells use immune cell strategies during metastasis, and how to target these processes.
Collapse
|
18
|
Tiu YC, Gong L, Zhang Y, Luo J, Yang Y, Tang Y, Lee WM, Guan XY. GLIPR1 promotes proliferation, metastasis and 5-fluorouracil resistance in hepatocellular carcinoma by activating the PI3K/PDK1/ROCK1 pathway. Cancer Gene Ther 2022; 29:1720-1730. [PMID: 35760898 DOI: 10.1038/s41417-022-00490-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC) contributes to a heavy disease burden for its high prevalence and poor prognosis, with limited effective systemic therapies available. In the era of precision medicine, treatment efficacy might be improved by combining personalized systemic therapies. Since oncogenic activation is one of the primary driving forces in HCC, characterization of these oncogenes can provide insights for developing new targeted therapies. Based on RNA sequencing of epithelial-mesenchymal transition (EMT)-induced HCC cells, this study discovers and characterizes glioma pathogenesis-related protein 1 (GLIPR1) that robustly drives HCC progression and can potentially serve as a prognostic biomarker and therapeutic target with clinical utility. GLIPR1 serves opposing roles and involves distinct mechanisms in different cancers. However, based on integrated in-silico analysis, in vitro and in vivo functional investigations, we demonstrate that GLIPR1 plays a multi-faceted oncogenic role in HCC development via enhancing tumor proliferation, metastasis, and 5FU resistance. We also found that GLIPR1 induces EMT and is actively involved in the PI3K/PDK1/ROCK1 singling axis to exert its oncogenic effects. Thus, pre-clinical evaluation of GLIPR1 and its downstream factors in HCC patients might facilitate further discovery of therapeutic targets, as well as improve HCC chemotherapeutic outcomes and prognosis.
Collapse
Affiliation(s)
- Yuen Chak Tiu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yu Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jie Luo
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuma Yang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ying Tang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wing-Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China. .,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China. .,State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
19
|
Imashiro C, Mei J, Friend J, Takemura K. Quantifying cell adhesion through forces generated by acoustic streaming. ULTRASONICS SONOCHEMISTRY 2022; 90:106204. [PMID: 36257212 PMCID: PMC9583098 DOI: 10.1016/j.ultsonch.2022.106204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The strength of cell adhesion is important in understanding the cell's health and in culturing them. Quantitative measurement of cell adhesion strength is a significant challenge in bioengineering research. For this, the present study describes a system that can measure cell adhesion strength using acoustic streaming induced by Lamb waves. Cells are cultured on an ultrasound transducer using a range of preculture and incubation times with phosphate-buffered saline (PBS) just before the measurement. Acoustic streaming is then induced using several Lamb wave intensities, exposing the cells to shear flows and eventually detaching them. By relying upon a median detachment rate of 50 %, the corresponding detachment force, or force of cell adhesion, was determined to be on the order of several nN, consistent with previous reports. The stronger the induced shear flow, the more cells were detached. Further, we employed a preculture time of 8 to 24 h and a PBS incubation time of 0 to 60 min, producing cell adhesion forces that varied from 1.2 to 13 nN. Hence, the developed system can quantify cell adhesion strength over a wide range, possibly offering a fundamental tool for cell-based bioengineering.
Collapse
Affiliation(s)
- Chikahiro Imashiro
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Jiyang Mei
- Medically Advanced Devices Laboratory, Center for Medical Devices, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, University of California, San Diego, CA 92093, USA
| | - James Friend
- Medically Advanced Devices Laboratory, Center for Medical Devices, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Kenjiro Takemura
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
20
|
Tsai HL, Tsai YC, Chen YC, Huang CW, Chen PJ, Li CC, Su WC, Chang TK, Yeh YS, Yin TC, Wang JY. MicroRNA-148a induces apoptosis and prevents angiogenesis with bevacizumab in colon cancer through direct inhibition of ROCK1/ c-Met via HIF-1α under hypoxia. Aging (Albany NY) 2022; 14:6668-6688. [PMID: 35997665 PMCID: PMC9467409 DOI: 10.18632/aging.204243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
Angiogenesis and antiapoptosis effects are the major factors influencing malignancy progression. Hypoxia induces multiple mechanisms involving microRNA (miRNA) activity. Vascular endothelial growth factor (VEGF) is correlated with angiogenesis. An antiapoptotic factor, myeloid leukemia 1 (Mcl-1) is the main regulator of cell death. This study examined the role of miR-148a in inhibiting VEGF and Mcl-1 secretion by directly targeting ROCK1/c-Met by downregulating HIF-1α under hypoxia. The protein expression of ROCK1 or Met/HIF-1α/Mcl-1 in HCT116 and HT29 cells (all P < 0.05) was significantly reduced by miR-148a. The tube-formation assay revealed that miR-148a significantly suppressed angiogenesis and synergistically enhanced the effects of bevacizumab (both P < 0.05). The MTT assay revealed the inhibitory ability of miR-148a in HCT116 and HT29 cells (both P < 0.05). miR-148a and bevacizumab exerted synergistic antitumorigenic effects (P < 0.05) in an animal model. Serum miR-148a expression of metastatic colorectal cancer (mCRC) patients with a partial response was higher than that of mCRC patients with disease progression (P = 0.026). This result revealed that miR-148a downregulated HIF-1α/VEGF and Mcl-1 by directly targeting ROCK1/c-Met to decrease angiogenesis and increase the apoptosis of colon cancer cells. Furthermore, serum miR-148a levels have prognostic/predictive value in patients with mCRC receiving bevacizumab.
Collapse
Affiliation(s)
- Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yueh-Chiao Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Jung Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Chun Li
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yung-Sung Yeh
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Trauma and Surgical Critical Care, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Emergency Medicine, Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
| | - Tzu-Chieh Yin
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Kaohsiung Municipal Tatung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung 90054, Taiwan
| |
Collapse
|
21
|
Schick J, Raz E. Blebs—Formation, Regulation, Positioning, and Role in Amoeboid Cell Migration. Front Cell Dev Biol 2022; 10:926394. [PMID: 35912094 PMCID: PMC9337749 DOI: 10.3389/fcell.2022.926394] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
In the context of development, tissue homeostasis, immune surveillance, and pathological conditions such as cancer metastasis and inflammation, migrating amoeboid cells commonly form protrusions called blebs. For these spherical protrusions to inflate, the force for pushing the membrane forward depends on actomyosin contraction rather than active actin assembly. Accordingly, blebs exhibit distinct dynamics and regulation. In this review, we first examine the mechanisms that control the inflation of blebs and bias their formation in the direction of the cell’s leading edge and present current views concerning the role blebs play in promoting cell locomotion. While certain motile amoeboid cells exclusively form blebs, others form blebs as well as other protrusion types. We describe factors in the environment and cell-intrinsic activities that determine the proportion of the different forms of protrusions cells produce.
Collapse
|
22
|
Umetsu D. Cell mechanics and cell-cell recognition controls by Toll-like receptors in tissue morphogenesis and homeostasis. Fly (Austin) 2022; 16:233-247. [PMID: 35579305 PMCID: PMC9116419 DOI: 10.1080/19336934.2022.2074783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Signal transduction by the Toll-like receptors (TLRs) is conserved and essential for innate immunity in metazoans. The founding member of the TLR family, Drosophila Toll-1, was initially identified for its role in dorsoventral axis formation in early embryogenesis. The Drosophila genome encodes nine TLRs that display dynamic expression patterns during development, suggesting their involvement in tissue morphogenesis and homeostasis. Recent progress on the developmental functions of TLRs beyond dorsoventral patterning has revealed not only their diverse functions in various biological processes, but also unprecedented molecular mechanisms in directly regulating cell mechanics and cell-cell recognition independent of the canonical signal transduction pathway involving transcriptional regulation of target genes. In this review, I feature and discuss the non-immune functions of TLRs in the control of epithelial tissue homeostasis, tissue morphogenesis, and cell-cell recognition between cell populations with different cell identities.
Collapse
Affiliation(s)
- Daiki Umetsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
23
|
S6K1-mediated phosphorylation of PDK1 impairs AKT kinase activity and oncogenic functions. Nat Commun 2022; 13:1548. [PMID: 35318320 PMCID: PMC8941131 DOI: 10.1038/s41467-022-28910-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Functioning as a master kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1) plays a fundamental role in phosphorylating and activating protein kinases A, B and C (AGC) family kinases, including AKT. However, upstream regulation of PDK1 remains largely elusive. Here we report that ribosomal protein S6 kinase beta 1 (S6K1), a member of AGC kinases and downstream target of mechanistic target of rapamycin complex 1 (mTORC1), directly phosphorylates PDK1 at its pleckstrin homology (PH) domain, and impairs PDK1 interaction with and activation of AKT. Mechanistically, S6K1-mediated phosphorylation of PDK1 augments its interaction with 14-3-3 adaptor protein and homo-dimerization, subsequently dissociating PDK1 from phosphatidylinositol 3,4,5 triphosphate (PIP3) and retarding its interaction with AKT. Pathologically, tumor patient-associated PDK1 mutations, either attenuating S6K1-mediated PDK1 phosphorylation or impairing PDK1 interaction with 14-3-3, result in elevated AKT kinase activity and oncogenic functions. Taken together, our findings not only unravel a delicate feedback regulation of AKT signaling via S6K1-mediated PDK1 phosphorylation, but also highlight the potential strategy to combat mutant PDK1-driven cancers. The direct upstream regulation of PDK1 is not fully understood. Here the authors demonstrate that S6K1 directly phosphorylates PDK1 to inhibit AKT kinase activity and its ability to drive tumourigenesis.
Collapse
|
24
|
The Landscape of PDK1 in Breast Cancer. Cancers (Basel) 2022; 14:cancers14030811. [PMID: 35159078 PMCID: PMC8834120 DOI: 10.3390/cancers14030811] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Given that 3-phosphoinositide-dependent kinase 1 (PDK1) plays a crucial role in the malignant biological behaviors of a wide range of cancers, we review the influence of PDK1 in breast cancer (BC). First, we describe the power of PDK1 in cellular behaviors and characterize the interaction networks of PDK1. Then, we establish the roles of PDK1 in carcinogenesis, growth and survival, metastasis, and chemoresistance in BC cells. More importantly, we sort the current preclinical or clinical trials of PDK1-targeted therapy in BC and find that, even though no selective PDK1 inhibitor is currently available for BC therapy, the combination trials of PDK1-targeted therapy and other agents have provided some benefit. Thus, there is increasing anticipation that PDK1-targeted therapy will have its space in future therapeutic approaches related to BC, and we hope the novel approaches of targeted therapy will be conducive to ameliorating the dismal prognosis of BC patients.
Collapse
|
25
|
Imashiro C, Kang B, Lee Y, Hwang YH, Im S, Kim DE, Takemura K, Lee H. Propagating acoustic waves on a culture substrate regulate the directional collective cell migration. MICROSYSTEMS & NANOENGINEERING 2021; 7:90. [PMID: 34786204 PMCID: PMC8581020 DOI: 10.1038/s41378-021-00304-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/16/2021] [Accepted: 05/20/2021] [Indexed: 06/02/2023]
Abstract
Collective cell migration plays a critical role in physiological and pathological processes such as development, wound healing, and metastasis. Numerous studies have demonstrated how various types of chemical, mechanical, and electrical cues dictate the collective migratory behaviors of cells. Although an acoustic cue can be advantageous because of its noninvasiveness and biocompatibility, cell migration in response to acoustic stimulation remains poorly understood. In this study, we developed a device that is able to apply surface acoustic waves to a cell culture substrate and investigated the effect of propagating acoustic waves on collective cell migration. The migration distance estimated at various wave intensities revealed that unidirectional cell migration was enhanced at a critical wave intensity and that it was suppressed as the intensity was further increased. The increased migration might be attributable to cell orientation alignment along the direction of the propagating wave, as characterized by nucleus shape. Thicker actin bundles indicative of a high traction force were observed in cells subjected to propagating acoustic waves at the critical intensity. Our device and technique can be useful for regulating cellular functions associated with cell migration.
Collapse
Affiliation(s)
- Chikahiro Imashiro
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Shinjuku, Japan
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Byungjun Kang
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Yunam Lee
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Youn-Hoo Hwang
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Seonghun Im
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Dae-Eun Kim
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Kenjiro Takemura
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| |
Collapse
|
26
|
Singh A, Behl T, Sehgal A, Singh S, Sharma N, Mani V, Alsubayiel AM, Bhatia S, Al-Harrasi A, Bungau S. Exploring the therapeutic promise of targeting Rho kinase in rheumatoid arthritis. Inflammopharmacology 2021; 29:1641-1651. [PMID: 34704172 DOI: 10.1007/s10787-021-00884-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/10/2021] [Indexed: 01/28/2023]
Abstract
Rheumatoid arthritis (RA) is a prevalent systemic autoimmune disease caused by dysregulated inflammatory reactions, T lymphocyte invasion into the joints, and articular thickening. Immune cells, primarily tumor necrosis factor-alpha (TNF-α) and chemokines (interleukin or IL-1), which are predominantly generated by activated macrophages cells, have also been involved with the pathogenesis of rheumatoid arthritis. Rho GTPases are integral factors of biochemical cascades utilized by antigens, and also by cellular receptors, cytokines, and chemokines, to modulate inflammatory reactions, according to growing data. The Rho family is a group of G proteins that govern a variety of biological and physiological activities such as mobility, actin stress fiber production, growth, and polarity. Research suggests that the Rho A and Rho-associated coiled-coil kinase (ROCK) regulatory cascade could be essential in several autoimmune conditions, including RA. ROCK is activated in the synovial of rheumatoid arthritis patients, while the blocking of ROCK with fasudil could also decrease IL-6, TNF-α, and IL-1. This review covers current developments in understanding the overactivation of Rho enzyme activity in RA suppressed by ROCK inhibitors which can be utilized for the treatment of autoimmune disease. We offer an outline of the function of ROCK inhibitors in immune cells and discuss findings which emphasize the rising participation of this category of kinases within the pathological process of autoimmune disorders. Assuming the potential ability of ROCK as a therapeutic, we define approaches that might be used to inhibit Rho kinase activity in rheumatoid disorders.
Collapse
Affiliation(s)
- Anuja Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Amal M Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman.,School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
27
|
PDK1 Inhibitor BX795 Improves Cisplatin and Radio-Efficacy in Oral Squamous Cell Carcinoma by Downregulating the PDK1/CD47/Akt-Mediated Glycolysis Signaling Pathway. Int J Mol Sci 2021; 22:ijms222111492. [PMID: 34768921 PMCID: PMC8584253 DOI: 10.3390/ijms222111492] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) has a high prevalence and predicted global mortality rate of 67.1%, necessitating better therapeutic strategies. Moreover, the recurrence and resistance of OSCC after chemo/radioresistance remains a major bottleneck for its effective treatment. Molecular targeting is one of the new therapeutic approaches to target cancer. Among a plethora of targetable signaling molecules, PDK1 is currently rising as a potential target for cancer therapy. Its aberrant expression in many malignancies is observed associated with glycolytic re-programming and chemo/radioresistance. Methods: Furthermore, to better understand the role of PDK1 in OSCC, we analyzed tissue samples from 62 patients with OSCC for PDK1 expression. Combining in silico and in vitro analysis approaches, we determined the important association between PDK1/CD47/LDHA expression in OSCC. Next, we analyzed the effect of PDK1 expression and its connection with OSCC orosphere generation and maintenance, as well as the effect of the combination of the PDK1 inhibitor BX795, cisplatin and radiotherapy in targeting it. Results: Immunohistochemical analysis revealed that higher PDK1 expression is associated with a poor prognosis in OSCC. The immunoprecipitation assay indicated PDK1/CD47 binding. PDK1 ligation significantly impaired OSCC orosphere formation and downregulated Sox2, Oct4, and CD133 expression. The combination of BX795 and cisplatin markedly reduced in OSCC cell’s epithelial-mesenchymal transition, implying its synergistic effect. p-PDK1, CD47, Akt, PFKP, PDK3 and LDHA protein expression were significantly reduced, with the strongest inhibition in the combination group. Chemo/radiotherapy together with abrogation of PDK1 inhibits the oncogenic (Akt/CD47) and glycolytic (LDHA/PFKP/PDK3) signaling and, enhanced or sensitizes OSCC to the anticancer drug effect through inducing apoptosis and DNA damage together with metabolic reprogramming. Conclusions: Therefore, the results from our current study may serve as a basis for developing new therapeutic strategies against chemo/radioresistant OSCC.
Collapse
|
28
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
29
|
Blackley DG, Cooper JH, Pokorska P, Ratheesh A. Mechanics of developmental migration. Semin Cell Dev Biol 2021; 120:66-74. [PMID: 34275746 DOI: 10.1016/j.semcdb.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/01/2023]
Abstract
The ability to migrate is a fundamental property of animal cells which is essential for development, homeostasis and disease progression. Migrating cells sense and respond to biochemical and mechanical cues by rapidly modifying their intrinsic repertoire of signalling molecules and by altering their force generating and transducing machinery. We have a wealth of information about the chemical cues and signalling responses that cells use during migration. Our understanding of the role of forces in cell migration is rapidly evolving but is still best understood in the context of cells migrating in 2D and 3D environments in vitro. Advances in live imaging of developing embryos combined with the use of experimental and theoretical tools to quantify and analyse forces in vivo, has begun to shed light on the role of mechanics in driving embryonic cell migration. In this review, we focus on the recent studies uncovering the physical basis of embryonic cell migration in vivo. We look at the physical basis of the classical steps of cell migration such as protrusion formation and cell body translocation and review the recent research on how these processes work in the complex 3D microenvironment of a developing organism.
Collapse
Affiliation(s)
- Deannah G Blackley
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jack H Cooper
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Paulina Pokorska
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Aparna Ratheesh
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
30
|
Muñoz VR, Gaspar RC, Severino MB, Macêdo APA, Simabuco FM, Ropelle ER, Cintra DE, da Silva ASR, Kim YB, Pauli JR. Exercise Counterbalances Rho/ROCK2 Signaling Impairment in the Skeletal Muscle and Ameliorates Insulin Sensitivity in Obese Mice. Front Immunol 2021; 12:702025. [PMID: 34234788 PMCID: PMC8256841 DOI: 10.3389/fimmu.2021.702025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Physical exercise is considered a fundamental strategy in improving insulin sensitivity and glucose uptake in skeletal muscle. However, the molecular mechanisms underlying this regulation, primarily on skeletal muscle glucose uptake, are not fully understood. Recent evidence has shown that Rho-kinase (ROCK) isoforms play a pivotal role in regulating skeletal muscle glucose uptake and systemic glucose homeostasis. The current study evaluated the effect of physical exercise on ROCK2 signaling in skeletal muscle of insulin-resistant obese animals. Physiological (ITT) and molecular analysis (immunoblotting, and RT-qPCR) were performed. The contents of RhoA and ROCK2 protein were decreased in skeletal muscle of obese mice compared to control mice but were restored to normal levels in response to physical exercise. The exercised animals also showed higher phosphorylation of insulin receptor substrate 1 (IRS1 Serine 632/635) and protein kinase B (Akt) in the skeletal muscle. However, phosphatase and tensin homolog (PTEN) and protein-tyrosine phosphatase-1B (PTP-1B), both inhibitory regulators for insulin action, were increased in obesity but decreased after exercise. The impact of ROCK2 action on muscle insulin signaling is further underscored by the fact that impaired IRS1 and Akt phosphorylation caused by palmitate in C2C12 myotubes was entirely restored by ROCK2 overexpression. These results suggest that the exercise-induced upregulation of RhoA-ROCK2 signaling in skeletal muscle is associated with increased systemic insulin sensitivity in obese mice and further implicate that muscle ROCK2 could be a potential target for treating obesity-linked metabolic disorders.
Collapse
Affiliation(s)
- Vitor R Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Brazil
| | - Rafael C Gaspar
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Brazil
| | - Matheus B Severino
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, Brazil
| | - Ana P A Macêdo
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Brazil
| | - Fernando M Simabuco
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Brazil
| | - Dennys E Cintra
- Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
31
|
Tamada M, Shi J, Bourdot KS, Supriyatno S, Palmquist KH, Gutierrez-Ruiz OL, Zallen JA. Toll receptors remodel epithelia by directing planar-polarized Src and PI3K activity. Dev Cell 2021; 56:1589-1602.e9. [PMID: 33932332 DOI: 10.1016/j.devcel.2021.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/11/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Toll-like receptors are essential for animal development and survival, with conserved roles in innate immunity, tissue patterning, and cell behavior. The mechanisms by which Toll receptors signal to the nucleus are well characterized, but how Toll receptors generate rapid, localized signals at the cell membrane to produce acute changes in cell polarity and behavior is not known. We show that Drosophila Toll receptors direct epithelial convergent extension by inducing planar-polarized patterns of Src and PI3-kinase (PI3K) activity. Toll receptors target Src activity to specific sites at the membrane, and Src recruits PI3K to the Toll-2 complex through tyrosine phosphorylation of the Toll-2 cytoplasmic domain. Reducing Src or PI3K activity disrupts planar-polarized myosin assembly, cell intercalation, and convergent extension, whereas constitutive Src activity promotes ectopic PI3K and myosin cortical localization. These results demonstrate that Toll receptors direct cell polarity and behavior by locally mobilizing Src and PI3K activity.
Collapse
Affiliation(s)
- Masako Tamada
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jay Shi
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Kia S Bourdot
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sara Supriyatno
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Karl H Palmquist
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Omar L Gutierrez-Ruiz
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
32
|
Schneider B, Baudry A, Pietri M, Alleaume-Butaux A, Bizingre C, Nioche P, Kellermann O, Launay JM. The Cellular Prion Protein-ROCK Connection: Contribution to Neuronal Homeostasis and Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:660683. [PMID: 33912016 PMCID: PMC8072021 DOI: 10.3389/fncel.2021.660683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 01/10/2023] Open
Abstract
Amyloid-based neurodegenerative diseases such as prion, Alzheimer's, and Parkinson's diseases have distinct etiologies and clinical manifestations, but they share common pathological events. These diseases are caused by abnormally folded proteins (pathogenic prions PrPSc in prion diseases, β-amyloids/Aβ and Tau in Alzheimer's disease, α-synuclein in Parkinson's disease) that display β-sheet-enriched structures, propagate and accumulate in the nervous central system, and trigger neuronal death. In prion diseases, PrPSc-induced corruption of the physiological functions exerted by normal cellular prion proteins (PrPC) present at the cell surface of neurons is at the root of neuronal death. For a decade, PrPC emerges as a common cell surface receptor for other amyloids such as Aβ and α-synuclein, which relays, at least in part, their toxicity. In lipid-rafts of the plasma membrane, PrPC exerts a signaling function and controls a set of effectors involved in neuronal homeostasis, among which are the RhoA-associated coiled-coil containing kinases (ROCKs). Here we review (i) how PrPC controls ROCKs, (ii) how PrPC-ROCK coupling contributes to neuronal homeostasis, and (iii) how the deregulation of the PrPC-ROCK connection in amyloid-based neurodegenerative diseases triggers a loss of neuronal polarity, affects neurotransmitter-associated functions, contributes to the endoplasmic reticulum stress cascade, renders diseased neurons highly sensitive to neuroinflammation, and amplifies the production of neurotoxic amyloids.
Collapse
Affiliation(s)
- Benoit Schneider
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Anne Baudry
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Mathéa Pietri
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Aurélie Alleaume-Butaux
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France.,Université de Paris - BioMedTech Facilities- INSERM US36
- CNRS UMS2009 - Structural and Molecular Analysis Platform, Paris, France
| | - Chloé Bizingre
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Pierre Nioche
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France.,Université de Paris - BioMedTech Facilities- INSERM US36
- CNRS UMS2009 - Structural and Molecular Analysis Platform, Paris, France
| | - Odile Kellermann
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Jean-Marie Launay
- Inserm UMR 942, Hôpital Lariboisière, Paris, France.,Pharma Research Department, Hoffmann-La-Roche Ltd., Basel, Switzerland
| |
Collapse
|
33
|
Muñoz VR, Gaspar RC, Kuga GK, Pavan ICB, Simabuco FM, da Silva ASR, de Moura LP, Cintra DE, Ropelle ER, Pauli JR. The Effects of Aging on Rho-Kinase and Insulin Signaling in Skeletal Muscle and White Adipose Tissue of Rats. J Gerontol A Biol Sci Med Sci 2020; 75:432-436. [PMID: 30596894 DOI: 10.1093/gerona/gly293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
The insulin receptor substrate 1 regulates insulin-mediated glucose uptake and is a target of Rho-kinase (Rock); however, the relationship between age-related insulin resistance and Rock signaling specifically in skeletal muscle and adipose tissue is unknown. We evaluated the content and activity of Rock in C2C12 myotubes, and in skeletal muscle and white adipose tissue (WAT) from two rodent models that differ in their patterns of body fat accumulation during aging (Wistar and Fischer 344 rats). Body fat gain in the Wistar rats was greater than in Fischer rats and only Wistar rats had impairment of whole-body insulin sensitivity. Rock activity and insulin signaling were impaired in skeletal muscle in both rat models, but only middle-aged Wistar rats had higher Rock activity in WAT. These data are consistent with a positive role of Rock in regulating insulin signaling in both skeletal muscle and its negative role in the adipose tissue, suggesting that Rock activity in adipose tissue is important in age-related insulin resistance.
Collapse
Affiliation(s)
- Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Gabriel Keine Kuga
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Isadora Carolina Betim Pavan
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Postgraduate Program in Motor Science - São Paulo State University (UNESP).,CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys Esper Cintra
- OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
34
|
de Sousa GR, Vieira GM, das Chagas PF, Pezuk JA, Brassesco MS. Should we keep rocking? Portraits from targeting Rho kinases in cancer. Pharmacol Res 2020; 160:105093. [PMID: 32726671 DOI: 10.1016/j.phrs.2020.105093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Cancer targeted therapy, either alone or in combination with conventional chemotherapy, could allow the survival of patients with neoplasms currently considered incurable. In recent years, the dysregulation of the Rho-associated coiled-coil kinases (ROCK1 and ROCK2) has been associated with increased metastasis and poorer patient survival in several tumor types, and due to their essential roles in regulating the cytoskeleton, have gained popularity and progressively been researched as targets for the development of novel anti-cancer drugs. Nevertheless, in a pediatric scenario, the influence of both isoforms on prognosis remains a controversial issue. In this review, we summarize the functions of ROCKs, compile their roles in human cancer and their value as prognostic factors in both, adult and pediatric cancer. Moreover, we provide the up-to-date advances on their pharmacological inhibition in pre-clinical models and clinical trials. Alternatively, we highlight and discuss detrimental effects of ROCK inhibition provoked not only by the action on off-targets, but most importantly, by pro-survival effects on cancer stem cells, dormant cells, and circulating tumor cells, along with cell-context or microenvironment-dependent contradictory responses. Together these drawbacks represent a risk for cancer cell dissemination and metastasis after anti-ROCK intervention, a caveat that should concern scientists and clinicians.
Collapse
Affiliation(s)
| | | | | | | | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|
35
|
Vanderboor CMG, Thibeault PE, Nixon KCJ, Gros R, Kramer J, Ramachandran R. Proteinase-Activated Receptor 4 Activation Triggers Cell Membrane Blebbing through RhoA and β-Arrestin. Mol Pharmacol 2020; 97:365-376. [PMID: 32234808 DOI: 10.1124/mol.119.118232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
Proteinase-activated receptors (PARs) are a four-member family of G-protein-coupled receptors that are activated via proteolysis. PAR4 is a member of this family that is cleaved and activated by serine proteinases such as thrombin, trypsin, and cathepsin-G. PAR4 is expressed in a variety of tissues and cell types, including platelets, vascular smooth muscle cells, and neuronal cells. In studying PAR4 signaling and trafficking, we observed dynamic changes in the cell membrane, with spherical membrane protrusions that resemble plasma membrane blebbing. Since nonapoptotic membrane blebbing is now recognized as an important regulator of cell migration, cancer cell invasion, and vesicular content release, we sought to elucidate the signaling pathway downstream of PAR4 activation that leads to such events. Using a combination of pharmacological inhibition and CRISPR/CRISPR-associated protein 9 (Cas9)-mediated gene editing approaches, we establish that PAR4-dependent membrane blebbing occurs independently of the Gα q/11- and Gα i-signaling pathways and is dependent on signaling via the β-arrestin-1/2 and Ras homolog family member A (RhoA) signaling pathways. Together these studies provide further mechanistic insight into PAR4 regulation of cellular function. SIGNIFICANCE STATEMENT: We find that the thrombin receptor PAR4 triggers cell membrane blebbing in a RhoA-and β-arrestin-dependent manner. In addition to identifying novel cellular responses mediated by PAR4, these data provide further evidence for biased signaling in PAR4 since membrane blebbing was dependent on some, but not all, signaling pathways activated by PAR4.
Collapse
Affiliation(s)
- Christina M G Vanderboor
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Pierre E Thibeault
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kevin C J Nixon
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Robert Gros
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jamie Kramer
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
36
|
Hyperglycemia-induced transcriptional regulation of ROCK1 and TGM2 expression is involved in small artery remodeling in obese diabetic Göttingen Minipigs. Clin Sci (Lond) 2020; 133:2499-2516. [PMID: 31830262 DOI: 10.1042/cs20191066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Obesity and diabetes in humans are associated with hypertrophic remodeling and increased media:lumen ratio of small resistance arteries, which is an independent predictor of cardiovascular events. In order to minimize increases in media:lumen ratio, hypertrophic remodeling should be accompanied by outward remodeling. We aimed to investigate the mechanisms of structural remodeling in small pial arteries (PAs) and terminal mesenteric arteries (TMAs) from obese Göttingen Minipigs with or without diabetes. Göttingen Minipigs received either control diet (lean control (LC)), high fat/high fructose/high cholesterol diet (FFC), or FFC diet with streptozotocin (STZ)-induced diabetes (FFC/STZ) for 13 months. At the end of the study (20 months), we assessed body weight, fasting plasma biochemistry, passive vessel dimensions, mRNA expression (matrix metallopeptidases 2/9 (MMP2, MMP9), tissue inhibitor of metallopeptidase 1 (TIMP1), transglutaminase 2 (TGM2), Rho-kinase 1 (ROCK1), TGFβ-receptor 2 (TGFBR2), and IGF1-receptor (IGFR1) genes), and immunofluorescence in PAs and TMAs. We performed multiple linear correlation analyses using plasma values, structural data, and gene expression data. We detected outward hypertrophic remodeling in TMAs and hypertrophic remodeling in PAs from FFC/STZ animals. ROCK1 and TGM2 genes were up-regulated in PAs and TMAs from the FFC/STZ group. Passive lumen diameter (PLD) of TMAs was correlated with plasma values of glucose (GLU), fructosamine (FRA), total cholesterol (TC), and triglycerides (TGs). ROCK1 and TGM2 expressions in TMAs were correlated with PLD, plasma GLU, fructosamine, and TC. ROCK1 and TGM2 proteins were immunolocalized in the media of PAs and TMAs, and their fluorescence levels were increased in the FFC/STZ group. Hyperglycemia/hyperlipidemia is involved in regulation of ROCK1 and TGM2 expression leading to outward remodeling of small resistance arteries in obese diabetic Göttingen Minipigs.
Collapse
|
37
|
Guzman A, Avard RC, Devanny AJ, Kweon OS, Kaufman LJ. Delineating the role of membrane blebs in a hybrid mode of cancer cell invasion in three-dimensional environments. J Cell Sci 2020; 133:jcs236778. [PMID: 32193332 PMCID: PMC7197870 DOI: 10.1242/jcs.236778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
The study of cancer cell invasion in 3D environments in vitro has revealed a variety of invasive modes, including amoeboid migration, characterized by primarily round cells that invade in a protease- and adhesion-independent manner. Here, we delineate a contractility-dependent migratory mode of primarily round breast cancer cells that is associated with extensive integrin-mediated extracellular matrix (ECM) reorganization that occurs at membrane blebs, with bleb necks sites of integrin clustering and integrin-dependent ECM alignment. We show that the spatiotemporal distribution of blebs and their utilization for ECM reorganization is mediated by functional β1 integrin receptors and other components of focal adhesions. Taken together, the work presented here characterizes a migratory mode of primarily round cancer cells in complex 3D environments and reveals a fundamentally new function for membrane blebs in cancer cell invasion.
Collapse
Affiliation(s)
- Asja Guzman
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Rachel C Avard
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | - Oh Sang Kweon
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Laura J Kaufman
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
38
|
Zhang N, Ma S. Research Progress of 70 kDa Ribosomal Protein S6 Kinase (P70S6K) Inhibitors as Effective Therapeutic Tools for Obesity, Type II Diabetes and Cancer. Curr Med Chem 2020; 27:4699-4719. [PMID: 31942845 DOI: 10.2174/0929867327666200114113139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/06/2019] [Accepted: 01/05/2020] [Indexed: 01/07/2023]
Abstract
At present, diseases such as obesity, type Ⅱ diabetes and cancer have brought serious health problems, which are closely related to mTOR pathway. 70 kDa ribosomal protein S6 kinase (p70S6K), as a significant downstream effector of mTOR, mediates protein synthesis, RNA processing, glucose homeostasis, cell growth and apoptosis. Inhibiting the function of p70S6K can reduce the risk of obesity which helps to treat dyslipidemia, enhance insulin sensitivity, and extend the life span of mammals. Therefore, p70S6K has become a potential target for the treatment of these diseases. So far, except for the first p70S6K specific inhibitor PF-4708671 developed by Pfizer and LY2584702 developed by Lilai, all of them are in preclinical research. This paper briefly introduces the general situation of p70S6K and reviews their inhibitors in recent years, which are mainly classified into two categories: natural compounds and synthetic compounds. In particular, their inhibitory activities, structure-activity relationships (SARs) and mechanisms are highlighted.
Collapse
Affiliation(s)
- Na Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| |
Collapse
|
39
|
Jing P, Zhou S, Xu P, Cui P, Liu X, Liu X, Liu X, Wang H, Xu W. PDK1 promotes metastasis by inducing epithelial–mesenchymal transition in hypopharyngeal carcinoma via the Notch1 signaling pathway. Exp Cell Res 2020; 386:111746. [DOI: 10.1016/j.yexcr.2019.111746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/19/2022]
|
40
|
Berger AJ, Renner CM, Hale I, Yang X, Ponik SM, Weisman PS, Masters KS, Kreeger PK. Scaffold stiffness influences breast cancer cell invasion via EGFR-linked Mena upregulation and matrix remodeling. Matrix Biol 2020; 85-86:80-93. [PMID: 31323325 PMCID: PMC6962577 DOI: 10.1016/j.matbio.2019.07.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/06/2019] [Accepted: 07/15/2019] [Indexed: 12/25/2022]
Abstract
Clinically, increased breast tumor stiffness is associated with metastasis and poorer outcomes. Yet, in vitro studies of tumor cells in 3D scaffolds have found decreased invasion in stiffer environments. To resolve this apparent contradiction, MDA-MB-231 breast tumor spheroids were embedded in 'low' (2 kPa) and 'high' (12 kPa) stiffness 3D hydrogels comprised of methacrylated gelatin/collagen I, a material that allows for physiologically-relevant changes in stiffness while matrix density is held constant. Cells in high stiffness materials exhibited delayed invasion, but more abundant actin-enriched protrusions, compared to those in low stiffness. We find that cells in high stiffness had increased expression of Mena, an invadopodia protein associated with metastasis in breast cancer, as a result of EGFR and PLCγ1 activation. As invadopodia promote invasion through matrix remodeling, we examined matrix organization and determined that spheroids in high stiffness displayed a large fibronectin halo. Interestingly, this halo did not result from increased fibronectin production, but rather from Mena/α5 integrin dependent organization. In high stiffness environments, FN1 knockout inhibited invasion while addition of exogenous cellular fibronectin lessened the invasion delay. Analysis of fibronectin isoforms demonstrated that EDA-fibronectin promoted invasion and that clinical invasive breast cancer specimens displayed elevated EDA-fibronectin. Combined, our data support a mechanism by which breast cancer cells respond to stiffness and render the environment conducive to invasion. More broadly, these findings provide important insight on the roles of matrix stiffness, composition, and organization in promoting tumor invasion.
Collapse
Affiliation(s)
- Anthony J Berger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Carine M Renner
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Isaac Hale
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Xinhai Yang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Paul S Weisman
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America; Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Kristyn S Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, United States of America.
| | - Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America; Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.
| |
Collapse
|
41
|
Obeidy P, Ju LA, Oehlers SH, Zulkhernain NS, Lee Q, Galeano Niño JL, Kwan RY, Tikoo S, Cavanagh LL, Mrass P, Cook AJ, Jackson SP, Biro M, Roediger B, Sixt M, Weninger W. Partial loss of actin nucleator actin-related protein 2/3 activity triggers blebbing in primary T lymphocytes. Immunol Cell Biol 2019; 98:93-113. [PMID: 31698518 PMCID: PMC7028084 DOI: 10.1111/imcb.12304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
T lymphocytes utilize amoeboid migration to navigate effectively within complex microenvironments. The precise rearrangement of the actin cytoskeleton required for cellular forward propulsion is mediated by actin regulators, including the actin‐related protein 2/3 (Arp2/3) complex, a macromolecular machine that nucleates branched actin filaments at the leading edge. The consequences of modulating Arp2/3 activity on the biophysical properties of the actomyosin cortex and downstream T cell function are incompletely understood. We report that even a moderate decrease of Arp3 levels in T cells profoundly affects actin cortex integrity. Reduction in total F‐actin content leads to reduced cortical tension and disrupted lamellipodia formation. Instead, in Arp3‐knockdown cells, the motility mode is dominated by blebbing migration characterized by transient, balloon‐like protrusions at the leading edge. Although this migration mode seems to be compatible with interstitial migration in three‐dimensional environments, diminished locomotion kinetics and impaired cytotoxicity interfere with optimal T cell function. These findings define the importance of finely tuned, Arp2/3‐dependent mechanophysical membrane integrity in cytotoxic effector T lymphocyte activities.
Collapse
Affiliation(s)
- Peyman Obeidy
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Lining A Ju
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.,Heart Research Institute and Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program, The Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia.,Discipline of Infectious Diseases & Immunology, Marie Bashir Institute, The University of Sydney, Sydney, NSW, 2006, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nursafwana S Zulkhernain
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Quintin Lee
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Jorge L Galeano Niño
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Kensington, NSW, 2033, Australia
| | - Rain Yq Kwan
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Shweta Tikoo
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Lois L Cavanagh
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Paulus Mrass
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Adam Jl Cook
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shaun P Jackson
- Heart Research Institute and Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.,Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Maté Biro
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Kensington, NSW, 2033, Australia
| | - Ben Roediger
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Michael Sixt
- Institute of Science and Technology, Klosterneuburg, 3400, Austria
| | - Wolfgang Weninger
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.,Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
42
|
Muñoz VR, Gaspar RC, Minuzzi LG, dos Santos Canciglieri R, da Silva ASR, de Moura LP, Cintra DE, Ropelle ER, Pauli JR. Rho-kinase activity is upregulated in the skeletal muscle of aged exercised rats. Exp Gerontol 2019; 128:110746. [DOI: 10.1016/j.exger.2019.110746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/30/2023]
|
43
|
Pivotal role of PDK1 in megakaryocyte cytoskeletal dynamics and polarization during platelet biogenesis. Blood 2019; 134:1847-1858. [DOI: 10.1182/blood.2019000185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022] Open
Abstract
The investigators explore the role of PDK1 (phosphoinositide-dependent protein kinase 1) in the cytoskeletal regulation of platelet production and furnish new insights into megakaryocyte maturation and proplatelet formation.
Collapse
|
44
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
45
|
Abstract
INTRODUCTION 3-Phosphoinositide-dependent kinase 1 (PDK1), the 'master kinase of the AGC protein kinase family', plays a key role in cancer development and progression. Although it has been rather overlooked, in the last decades a growing number of molecules have been developed to effectively modulate the PDK1 enzyme. AREAS COVERED This review collects different PDK1 inhibitors patented from October 2014 to December 2018. The molecules have been classified on the basis of the chemical structure/type of inhibition, and for each general structure, examples have been discussed in extenso. EXPERT OPINION The role of PDK1 in cancer development and progression as well as in metastasis formation and in chemoresistance has been confirmed by many studies. Therefore, the pharmaceutical discovery in both public and private institutions is still ongoing despite the plentiful molecules already published. The majority of the new molecules synthetized interact with binding sites different from the ATP binding site (i.e. PIF pocket or DFG-out conformation). However, many researchers are still looking for innovative PDK1 modulation strategy such as combination of well-known inhibitory agents or multitarget ligands, aiming to block, together with PDK1, other different critical players in the wide panorama of proteins involved in tumor pathways.
Collapse
Affiliation(s)
- Simona Sestito
- a Department of Pharmacy , University of Pisa , Pisa , Italy
| | | |
Collapse
|
46
|
Gagliardi PA, Primo L. Irreversible Activation of Rho-activated Kinases Resulted from Evolution of Proteolytic Sites within Disordered Regions in Coiled-coil Domain. Mol Biol Evol 2018; 36:376-392. [DOI: 10.1093/molbev/msy229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Paolo Armando Gagliardi
- Department of Biology, Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern, Switzerland
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy
| | - Luca Primo
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Turin, Italy
| |
Collapse
|
47
|
ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharmacol Ther 2018; 189:1-21. [DOI: 10.1016/j.pharmthera.2018.03.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Luo D, Xu X, Li J, Chen C, Chen W, Wang F, Xie Y, Li F. The PDK1/c‑Jun pathway activated by TGF‑β induces EMT and promotes proliferation and invasion in human glioblastoma. Int J Oncol 2018; 53:2067-2080. [PMID: 30106127 DOI: 10.3892/ijo.2018.4525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/23/2018] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant tumor affecting the human brain. Despite improvements in therapeutic technologies, patients with GBM have a poor clinical result and the molecular mechanisms responsible for the development of GBM have not yet been fully elucidated. 3-phosphoinositide dependent protein kinase 1 (PDK1) is upregulated in various tumors and promotes tumor invasion. In glioma, transforming growth factor-β (TGF‑β) promotes cell invasion; however, whether TGF‑β directly regulates PDK1 protein and promotes proliferation and invasion is not yet clear. In this study, PDK1 levels were measured in glioma tissues using tissue microarray (TMA) by immunohistochemistry (IHC) and RT‑qPCR. Kaplan-Meier analyses were used to calculate the survival rate of patients with glioma. In vitro, U251 and U87 glioma cell lines were used for functional analyses. Cell proliferation and invasion were analyzed using siRNA transfection, MTT assay, RT‑qPCR, western blot analysis, flow cytometry and invasion assay. In vivo, U251 glioma cell xenografts were established. The results revealed that PDK1 protein was significantly upregulated in glioma tissues compared with non-tumorous tissues. Furthermore, the higher PDK1 levels were associated with a large tumor size (>5.0 cm), a higher WHO grade and a shorter survival of patients with GBM. Univariate and multivariate analyses indicated that PDK1 was an independent prognostic factor. In vivo, PDK1 promoted glioma tumor xenograft growth. In vitro, functional analyses confirmed that TGF‑β upregulated PDK1 protein expression and PDK1 promoted cell migration and invasion, and functioned as an oncogene in GBM, by upregulating c‑Jun protein and inducing epithelial-mesenchymal transition (EMT). c‑Jun protein were overexpressed in glioma tissues and positively correlated with PDK1 levels. Moreover, our findings were further validated by the online Oncomine database. On the whole, the findings of this study indicate that in GBM, PDK1 functions as an oncogene, promoting proliferation and invasion.
Collapse
Affiliation(s)
- Dingyuan Luo
- Department of Vascular and Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xinke Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Junliang Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Cheng Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Wei Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Fangyu Wang
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Yanping Xie
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Fangcheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
49
|
Gong X, Didan Y, Lock JG, Strömblad S. KIF13A-regulated RhoB plasma membrane localization governs membrane blebbing and blebby amoeboid cell migration. EMBO J 2018; 37:embj.201898994. [PMID: 30049714 PMCID: PMC6120662 DOI: 10.15252/embj.201898994] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022] Open
Abstract
Membrane blebbing‐dependent (blebby) amoeboid migration can be employed by lymphoid and cancer cells to invade 3D‐environments. Here, we reveal a mechanism by which the small GTPase RhoB controls membrane blebbing and blebby amoeboid migration. Interestingly, while all three Rho isoforms (RhoA, RhoB and RhoC) regulated amoeboid migration, each controlled motility in a distinct manner. In particular, RhoB depletion blocked membrane blebbing in ALL (acute lymphoblastic leukaemia), melanoma and lung cancer cells as well as ALL cell amoeboid migration in 3D‐collagen, while RhoB overexpression enhanced blebbing and 3D‐collagen migration in a manner dependent on its plasma membrane localization and down‐stream effectors ROCK and Myosin II. RhoB localization was controlled by endosomal trafficking, being internalized via Rab5 vesicles and then trafficked either to late endosomes/lysosomes or to Rab11‐positive recycling endosomes, as regulated by KIF13A. Importantly, KIF13A depletion not only inhibited RhoB plasma membrane localization, but also cell membrane blebbing and 3D‐migration of ALL cells. In conclusion, KIF13A‐mediated endosomal trafficking modulates RhoB plasma membrane localization to control membrane blebbing and blebby amoeboid migration.
Collapse
Affiliation(s)
- Xiaowei Gong
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Yuliia Didan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - John G Lock
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
50
|
Pirpour Tazehkand A, Akbarzadeh M, Velaie K, Sadeghi MR, Samadi N. The role of Her2-Nrf2 axis in induction of oxaliplatin resistance in colon cancer cells. Biomed Pharmacother 2018; 103:755-766. [PMID: 29684854 DOI: 10.1016/j.biopha.2018.04.105] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in promoting chemoresistance by regulation of antioxidants and detoxification enzymes. Her2 is a member of tyrosine kinase receptor family with a key function in resistance of cancer cells to chemotherapeutics. The aim of this study was to investigate the possible cross talk between Nrf2 and Her2 mediated signaling pathways in development of oxaliplatin resistance in colon cancer cells. We first generated oxaliplatin-resistant LS174T and SW480 colon cancer cells with different Her2 expression levels by employing IC50 concentrations followed by a resting period. We evaluated the viability and apoptosis of the cells by MTT and flow cytometry assays, respectively. Nrf2 and Her2 gene expression levels were examined by qRT-PCR. The morphology analysis and combination index calculation were performed using the ImagJ and CompuSyn softwares, respectively. Development of resistant cells revealed a marked increase in half maximal inhibitory concentration (IC50) value from 3.95 ± 0.92 μM to 29.27 ± 3.13 μM in SW480 cells and 377 ± 46 nM to 9.59 ± 0.76 μM in LS174T cells with a significant change in morphology of the cells from elongated to small round shape (p < 0.05). Her2 expression level was increased in both types of resistant cells, but the Nrf2 expression was increased in LS174T resistant (LS174T/Res) cells and decreased in SW480/Res cells which were consistent with the level of resistance in these cells (25 fold increase in IC50 value in LS174T/Res cells versus 7 fold increase in this value in SW480/Res cells). Inhibition of either Nrf2 or Her2 alone and in combination caused a significant increase in oxaliplatin-induced cytotoxicity and apoptosis with maximum effects in SW480/Res cells with low Her2 and Nrf2 expression levels. Altogether, our results suggest that inhibition of Nrf2 signaling in colon cancer patients with Her2 overexpression can be considered as an important strategy to overcome oxaliplatin resistance.
Collapse
Affiliation(s)
- Abbas Pirpour Tazehkand
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Golgasht Street, Imam Reza Hospital, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, Iran; Students' Research Committee, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Golbad Street, Shahid Madani Hospital, Tabriz, Iran.
| | - Kobra Velaie
- Department of Anatomical Science, Faculty of Medicine, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasser Samadi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Golgasht Street, Imam Reza Hospital, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, Iran; Immunology Research Center, Golgasht Street, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|