1
|
Li W, Wang M, Ruan Z, Ren Y, Zhu L, Zhang B. SFRP4 Knockdown Attenuates Dsg2-Deficient Arrhythmogenic Cardiomyopathy by Down-Regulating TGF-β and Smad3. Biochem Genet 2025:10.1007/s10528-025-11052-z. [PMID: 40019607 DOI: 10.1007/s10528-025-11052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
Although secreted frizzled-related protein 4 (SFRP4) has been linked to the development of cardiovascular diseases; it is yet unknown how exactly it functions in arrhythmogenic cardiomyopathy (ACM) remains unclear. Data from the Gene Expression Omnibus (GEO) were used to identify genes that were differentially expressed and linked to ACM. A mouse model known as desmoglein 2 (Dsg2) knockout (Dsg2-/-) was employed to investigate ACM. Myocardial fibrosis was evaluated by histological analysis, while heart function was evaluated by echocardiography. Angiotensin II (Ang II) was used to stimulate cardiac fibroblasts (CFs) and cause a fibrotic phenotype. The ability of CFs to migrate was evaluate using a wound healing assay. Gene Set Enrichment Analysis (GSEA) was used to do an enrichment study of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The levels of SFRP4, transforming growth factor beta receptor 2 (TGFBR2), TGF-β2, and Smad family member 3 (Smad3) were assessed using quantitative real-time PCR and Western blot. Our findings show that SFRP4 is highly expressed in Dsg2-/- mice. SFRP4 knockdown markedly reduced myocardial fibrosis, ventricular compliance, and cardiac dilation in Dsg2-/- mice. The level of SFRP4 was higher in CFs treated with Ang II, andSFRP4 inhibition markedly decreased the migration of Ang II-induced CFs. Moreover, SFRP4 activates the TGF-β signaling pathway, with SFRP4 knockdown resulting in a significant decrease in the expression levels of TGF-β2, TGFBR2, and Smad3 in Dsg2-/- mice. In summary, SFRP4 knockdown reduced cardiac fibrosis in ACM by inhibiting the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Meixiang Wang
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Zhongbao Ruan
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
| | - Yin Ren
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Li Zhu
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Bo Zhang
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| |
Collapse
|
2
|
Li L, Gao PP, Chen TT, Li N, Zhang HJ, Li MQ, Chen YN, Wei W, Wang H, Sun WY. SUMO: A new perspective to decipher fibrosis. Acta Physiol (Oxf) 2024; 240:e14240. [PMID: 39404508 DOI: 10.1111/apha.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 11/10/2024]
Abstract
Fibrosis is characterized by excessive extracellular matrix (ECM) deposition resulting from dysregulated wound healing and connective tissue repair mechanisms. Excessive accumulation of ECM leads to fibrous tissue formation, impairing organ function and driving the progression of various fibrotic diseases. Recently, the role of small ubiquitin-like modifiers (SUMO) in fibrotic diseases has attracted significant attention. SUMO-mediated SUMOylation, a highly conserved posttranslational modification, participates in a variety of biological processes, including nuclear-cytosolic transport, cell cycle progression, DNA damage repair, and cellular metabolism. Conversely, SUMO-specific proteases cleave the isopeptide bond of SUMO conjugates, thereby regulating the deSUMOylation process. Mounting evidence indicates that SUMOylation and deSUMOylation regulate the functions of several proteins, such as Smad3, NF-κB, and promyelocytic leukemia protein, which are implicated in fibrotic diseases like liver fibrosis, myocardial fibrosis, and pulmonary fibrosis. This review summarizes the role of SUMO in fibrosis-related pathways and explores its pathological relevance in various fibrotic diseases. All evidence suggest that the SUMO pathway is important targets for the development of treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Ling Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ping-Ping Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Hui-Juan Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Meng-Qi Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ya-Ning Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Hua Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| |
Collapse
|
3
|
Wei B, Yang F, Yu L, Qiu C. Crosstalk between SUMOylation and other post-translational modifications in breast cancer. Cell Mol Biol Lett 2024; 29:107. [PMID: 39127633 DOI: 10.1186/s11658-024-00624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer represents the most prevalent tumor type and a foremost cause of mortality among women globally. The complex pathophysiological processes of breast cancer tumorigenesis and progression are regulated by protein post-translational modifications (PTMs), which are triggered by different carcinogenic factors and signaling pathways, with small ubiquitin-like modifier (SUMOylation) emerging as a particularly pivotal player in this context. Recent studies have demonstrated that SUMOylation does not act alone, but interacts with other PTMs, such as phosphorylation, ubiquitination, acetylation, and methylation, thereby leading to the regulation of various pathological activities in breast cancer. This review explores novel and existing mechanisms of crosstalk between SUMOylation and other PTMs. Typically, SUMOylation is regulated by phosphorylation to exert feedback control, while also modulates subsequent ubiquitination, acetylation, or methylation. The crosstalk pairs in promoting or inhibiting breast cancer are protein-specific and site-specific. In mechanism, alterations in amino acid side chain charges, protein conformations, or the occupation of specific sites at specific domains or sites underlie the complex crosstalk. In summary, this review centers on elucidating the crosstalk between SUMOylation and other PTMs in breast cancer oncogenesis and progression and discuss the molecular mechanisms contributing to these interactions, offering insights into their potential applications in facilitating novel treatments for breast cancer.
Collapse
Affiliation(s)
- Bajin Wei
- The Department of Breast Surgery, Key Laboratory of Organ Transplantation, Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zijingang Campus, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Cong Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zijingang Campus, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Li J, Zou Y, Kantapan J, Su H, Wang L, Dechsupa N. TGF‑β/Smad signaling in chronic kidney disease: Exploring post‑translational regulatory perspectives (Review). Mol Med Rep 2024; 30:143. [PMID: 38904198 PMCID: PMC11208996 DOI: 10.3892/mmr.2024.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
The TGF‑β/Smad signaling pathway plays a pivotal role in the onset of glomerular and tubulointerstitial fibrosis in chronic kidney disease (CKD). The present review delves into the intricate post‑translational modulation of this pathway and its implications in CKD. Specifically, the impact of the TGF‑β/Smad pathway on various biological processes was investigated, encompassing not only renal tubular epithelial cell apoptosis, inflammation, myofibroblast activation and cellular aging, but also its role in autophagy. Various post‑translational modifications (PTMs), including phosphorylation and ubiquitination, play a crucial role in modulating the intensity and persistence of the TGF‑β/Smad signaling pathway. They also dictate the functionality, stability and interactions of the TGF‑β/Smad components. The present review sheds light on recent findings regarding the impact of PTMs on TGF‑β receptors and Smads within the CKD landscape. In summary, a deeper insight into the post‑translational intricacies of TGF‑β/Smad signaling offers avenues for innovative therapeutic interventions to mitigate CKD progression. Ongoing research in this domain holds the potential to unveil powerful antifibrotic treatments, aiming to preserve renal integrity and function in patients with CKD.
Collapse
Affiliation(s)
- Jianchun Li
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuanxia Zou
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jiraporn Kantapan
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hongwei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Nathupakorn Dechsupa
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Cui N, Liu C, Tang X, Song L, Xiao Z, Wang C, Wu Y, Zhou Y, Peng C, Liu Y, Zheng L, Liu X, Huang K, Chen H. ISG15 accelerates acute kidney injury and the subsequent AKI-to-CKD transition by promoting TGFβR1 ISGylation. Theranostics 2024; 14:4536-4553. [PMID: 39113797 PMCID: PMC11303071 DOI: 10.7150/thno.95796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Rationale: Acute kidney injury (AKI) has substantial rates of mortality and morbidity, coupled with an absence of efficacious treatment options. AKI commonly transits into chronic kidney disease (CKD) and ultimately culminates in end-stage renal failure. The interferon-stimulated gene 15 (ISG15) level was upregulated in the kidneys of mice injured by ischemia-reperfusion injury (IRI), cisplatin, or unilateral ureteral obstruction (UUO), however, its role in AKI development and subsequent AKI-to-CKD transition remains unknown. Methods: Isg15 knockout (Isg15 KO) mice challenged with bilateral or unilateral IRI, cisplatin, or UUO were used to investigate its role in AKI. We established cellular models with overexpression or knockout of ISG15 and subjected them to hypoxia-reoxygenation, cisplatin, or transforming growth factor- β1 (TGF-β1) stimulation. Renal RNA-seq data obtained from AKI models sourced from public databases and our studies, were utilized to examine the expression profiles of ISG15 and its associated genes. Additionally, published single cell RNA-seq data from human kidney allograft biopsies and mouse IRI model were analyzed to investigate the expression patterns of ISG15 and the type I TGF-β receptor (TGFβR1). Western blotting, qPCR, co-immunoprecipitation, and immunohistochemical staining assays were performed to validate our findings. Results: Alleviated pathological injury and renal function were observed in Isg15 KO mice with IRI-, cisplatin-, or UUO-induced AKI and the following AKI-to-CKD transition. In hypoxia-reoxygenation, cisplatin or TGF-β1 treated HK-2 cells, knockout ISG15 reduced stimulus-induced cell fibrosis, while overexpression of ISG15 with modification capacity exacerbated cell fibrosis. Immunoprecipitation assays demonstrated that ISG15 promoted ISGylation of TGFβR1, and inhibited its ubiquitination. Moreover, knockout of TGFβR1 blocked ISG15's fibrosis-exacerbating effect in HK-2 cells, while overexpression of TGFβR1 abolished the renal protective effect of ISG15 knockout during IRI-induced kidney injury. Conclusions: ISG15 plays an important role in the development of AKI and subsequent AKI-to-CKD transition by promoting TGFβR1 ISGylation.
Collapse
Affiliation(s)
- Na Cui
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 430000
| | - Xiang Tang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Liangliang Song
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Zixuan Xiao
- ISA Wenhua Wuhan High School, Fenglin Road, Junshan New Town, Wuhan Economics & Technological Development Zone, Wuhan, Hubei, China, 430119
| | - Chen Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Yancai Wu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Yihao Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Chentai Peng
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Yuxia Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Hong Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030
| |
Collapse
|
6
|
Muñoz Forti K, Weisman GA, Jasmer KJ. Cell type-specific transforming growth factor-β (TGF-β) signaling in the regulation of salivary gland fibrosis and regeneration. J Oral Biol Craniofac Res 2024; 14:257-272. [PMID: 38559587 PMCID: PMC10979288 DOI: 10.1016/j.jobcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Salivary gland damage and hypofunction result from various disorders, including autoimmune Sjögren's disease (SjD) and IgG4-related disease (IgG4-RD), as well as a side effect of radiotherapy for treating head and neck cancers. There are no therapeutic strategies to prevent the loss of salivary gland function in these disorders nor facilitate functional salivary gland regeneration. However, ongoing aquaporin-1 gene therapy trials to restore saliva flow show promise. To identify and develop novel therapeutic targets, we must better understand the cell-specific signaling processes involved in salivary gland regeneration. Transforming growth factor-β (TGF-β) signaling is essential to tissue fibrosis, a major endpoint in salivary gland degeneration, which develops in the salivary glands of patients with SjD, IgG4-RD, and radiation-induced damage. Though the deposition and remodeling of extracellular matrix proteins are essential to repair salivary gland damage, pathological fibrosis results in tissue hardening and chronic salivary gland dysfunction orchestrated by multiple cell types, including fibroblasts, myofibroblasts, endothelial cells, stromal cells, and lymphocytes, macrophages, and other immune cell populations. This review is focused on the role of TGF-β signaling in the development of salivary gland fibrosis and the potential for targeting TGF-β as a novel therapeutic approach to regenerate functional salivary glands. The studies presented highlight the divergent roles of TGF-β signaling in salivary gland development and dysfunction and illuminate specific cell populations in damaged or diseased salivary glands that mediate the effects of TGF-β. Overall, these studies strongly support the premise that blocking TGF-β signaling holds promise for the regeneration of functional salivary glands.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Gary A. Weisman
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Kimberly J. Jasmer
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| |
Collapse
|
7
|
Aykaç M, Balkan E, Gedi̇kli̇ S, Öztürk N. Resveratrol treatment ameliorates hepatic damage via the TGF-β/SMAD signaling pathway in a phenobarbital/CCl 4-induced hepatic fibrosis model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1124-1133. [PMID: 39055873 PMCID: PMC11266736 DOI: 10.22038/ijbms.2024.75737.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/06/2024] [Indexed: 07/28/2024]
Abstract
Objectives Liver fibrosis is a wound healing response characterized by excessive accumulation of extracellular matrix proteins. This study aimed to investigate the effects of resveratrol treatment on the TGF-β/SMAD signaling pathway and related biochemical parameters, apoptosis, and liver regeneration phenobarbital-CCl4 induced hepatic fibrosis rat model. Materials and Methods This model was created through phenobarbital and CCl4 (0.2-0.35 ml/kg). Resveratrol (1 mg/kg/day) was administered to the fibrosis and control groups. Immunohistochemical staining was performed to evaluate αSMA, TGF-β1, and PCNA in liver tissue. The TUNEL method and Masson's Trichome staining were used to determine apoptosis and collagen accumulation. AST, ALP, ALT, total protein, and total bilirubin levels were measured to determine biochemical status. SMAD2, SMAD3, SMAD4, and SMAD7 expression levels were measured to determine TGF-β1 related hepatic fibrosis. Results The SMAD2, SMAD3, and SMAD4 mRNA expression levels were increased and the SMAD7 mRNA expression level was decreased in the fibrosis control group. The SMAD7 mRNA expression level was higher in the phenobarbital-CCl4 induced resveratrol treated group. Increased biochemical parameters indicating hepatic damage, increased number of apoptotic cells, and collagen accumulation surrounding the central vein were observed in the fibrosis group compared with the other groups. It was concluded that administration of resveratrol ameliorates the adverse effects of hepatic fibrosis by regulating biochemical parameters, controlling TGF-β1/SMAD signaling, enhancing tissue regeneration, and reducing apoptosis in liver cells. Conclusion Resveratrol can be a beneficial option for the prevention of liver damage in a phenobarbital-CCl4 induced hepatic fibrosis.
Collapse
Affiliation(s)
- Merve Aykaç
- Department of Medical Biology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Eda Balkan
- Department of Medical Biology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Semin Gedi̇kli̇
- Department of Histology and Embrylogy, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Nurinnisa Öztürk
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, Erzurum,Turkey
| |
Collapse
|
8
|
Yao H, Shi H, Jiang C, Fan M, Zhang Y, Qian W, Lin R. L-Fucose promotes enteric nervous system regeneration in type 1 diabetic mice by inhibiting SMAD2 signaling pathway in enteric neural precursor cells. Cell Commun Signal 2023; 21:273. [PMID: 37798789 PMCID: PMC10552466 DOI: 10.1186/s12964-023-01311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Diabetes can lead to extensive damage to the enteric nervous system (ENS), causing gastrointestinal motility disorders. However, there is currently a lack of effective treatments for diabetes-induced ENS damage. Enteric neural precursor cells (ENPCs) closely regulate the structural and functional integrity of the ENS. L-Fucose, is a dietary sugar that has been showed to effectively ameliorate central nervous system injuries, but its potential for ameliorating ENS damage and the involvement of ENPCs in this process remains uncertain. METHODS Genetically engineered mice were generated for lineage tracing of ENPCs in vivo. Using diabetic mice in vivo and high glucose-treated primary ENPCs in vitro, the effects of L-Fucose on the injured ENS and ENPCs was evaluated by assessing gastrointestinal motility, ENS structure, and the differentiation of ENPCs. The key signaling pathways in regulating neurogenesis and neural precursor cells properties, transforming growth factor-β (TGF-β) and its downstream signaling pathways were further examined to clarify the potential mechanism of L-Fucose on the injured ENS and ENPCs. RESULTS L-Fucose improved gastrointestinal motility in diabetic mice, including increased defecation frequency (p < 0.05), reduced total gastrointestinal transmission time (p < 0.001) and bead expulsion time (p < 0.05), as well as enhanced spontaneous contractility and electric field stimulation-induced contraction response in isolated colonic muscle strips (p < 0.001). The decrease in the number of neurons and glial cells in the ENS of diabetic mice were reversed by L-Fucose treatment. More importantly, L-Fucose treatment significantly promoted the proportion of ENPCs differentiated into neurons and glial cells both in vitro and in vivo, accompanied by inhibiting SMAD2 phosphorylation. CONCLUSIONS L-Fucose could promote neurogenesis and gliogenesis derived from ENPCs by inhibiting the SMAD2 signaling, thus facilitating ENS regeneration and gastrointestinal motility recovery in type 1 diabetic mice. Video Abstract.
Collapse
Affiliation(s)
- Hailing Yao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yurui Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Qian
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Zheng J, Wang Y, Tao L, Cai J, Shen Z, Liu Y, Pan H, Li S, Ruan Y, Chen T, Ye Z, Lin K, Sun Y, Xu J, Liang X. Circ-RAPGEF5 promotes intrahepatic cholangiocarcinoma progression by stabilizing SAE1 to facilitate SUMOylation. J Exp Clin Cancer Res 2023; 42:239. [PMID: 37705041 PMCID: PMC10498551 DOI: 10.1186/s13046-023-02813-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy with a poor prognosis. The underlying functions and mechanisms of circular RNA and SUMOylation in the development of ICC remain poorly understood. METHODS Circular RNA hsa_circ_0001681 (termed Circ-RAPGEF5 hereafter) was identified by circular RNA sequencing from 19 pairs of ICC and adjacent tissue samples. The biological function of Circ-RAPGEF5 in tumor proliferation and metastasis was examined by a series of in vitro assays. A preclinical model was used to validate the therapeutic effect of targeting Circ-RAPGEF5. RNA pull-down and dual-luciferase reporter assays were used to access the RNA interactions. Western blot and Co-IP assays were used to detect SUMOylation levels. RESULTS Circ-RAPGEF5, which is generated from exons 2 to 6 of the host gene RAPGEF5, was upregulated in ICC. In vitro and in vivo assays showed that Circ-RAPGEF5 promoted ICC tumor proliferation and metastasis, and inhibited apoptosis. Additionally, high Circ-RAPGEF5 expression was significantly correlated with a poor prognosis. Further investigation showed that SAE1, a potential target of Circ-RAPGEF5, was also associated with poor oncological outcomes. RNA pull-down and dual-luciferase reporter assays showed an interaction of miR-3185 with Circ-RAPGEF5 and SAE1. Co-IP and western blot assays showed that Circ-RAPGEF5 is capable of regulating SUMOylation. CONCLUSION Circ-RAPGEF5 promotes ICC tumor progression and SUMOylation by acting as a sponge for miR-3185 to stabilize SAE1. Targeting Circ-RAPGEF5 or SAE1 might be a novel diagnostic and therapeutic strategy in ICC.
Collapse
Affiliation(s)
- Junhao Zheng
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Liye Tao
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jingwei Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Zefeng Shen
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yang Liu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Haoyu Pan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Shihao Li
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Tianyi Chen
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Zhengtao Ye
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Kainan Lin
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yin Sun
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Xiao Liang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment 310016, Hangzhou, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
10
|
Banerjee P, Rosales JE, Chau K, Nguyen MTH, Kotla S, Lin SH, Deswal A, Dantzer R, Olmsted-Davis EA, Nguyen H, Wang G, Cooke JP, Abe JI, Le NT. Possible molecular mechanisms underlying the development of atherosclerosis in cancer survivors. Front Cardiovasc Med 2023; 10:1186679. [PMID: 37332576 PMCID: PMC10272458 DOI: 10.3389/fcvm.2023.1186679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFβR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Julia Enterría Rosales
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- School of Medicine, Instituto Tecnológico de Monterrey, Guadalajara, Mexico
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
11
|
Liu Z, Liu X, Liu L, Wang Y, Zheng J, Li L, Li S, Zhang H, Ni J, Ma C, Gao X, Bian X, Fan G. SUMO1 regulates post-infarct cardiac repair based on cellular heterogeneity. J Pharm Anal 2023; 13:170-186. [PMID: 36908856 PMCID: PMC9999303 DOI: 10.1016/j.jpha.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/19/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022] Open
Abstract
Small ubiquitin-related modifier (SUMOylation) is a dynamic post-translational modification that maintains cardiac function and can protect against a hypertrophic response to cardiac pressure overload. However, the function of SUMOylation after myocardial infarction (MI) and the molecular details of heart cell responses to SUMO1 deficiency have not been determined. In this study, we demonstrated that SUMO1 protein was inconsistently abundant in different cell types and heart regions after MI. However, SUMO1 knockout significantly exacerbated systolic dysfunction and infarct size after myocardial injury. Single-nucleus RNA sequencing revealed the differential role of SUMO1 in regulating heart cells. Among cardiomyocytes, SUMO1 deletion increased the Nppa + Nppb + Ankrd1 + cardiomyocyte subcluster proportion after MI. In addition, the conversion of fibroblasts to myofibroblasts subclusters was inhibited in SUMO1 knockout mice. Importantly, SUMO1 loss promoted proliferation of endothelial cell subsets with the ability to reconstitute neovascularization and expressed angiogenesis-related genes. Computational analysis of ligand/receptor interactions suggested putative pathways that mediate cardiomyocytes to endothelial cell communication in the myocardium. Mice preinjected with cardiomyocyte-specific AAV-SUMO1, but not the endothelial cell-specific form, and exhibited ameliorated cardiac remodeling following MI. Collectively, our results identified the role of SUMO1 in cardiomyocytes, fibroblasts, and endothelial cells after MI. These findings provide new insights into SUMO1 involvement in the pathogenesis of MI and reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Zhihao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, 300450, China
| | - Li Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Ying Wang
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, 300450, China
| | - Jie Zheng
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, 300450, China
| | - Lan Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Sheng Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Jingyu Ni
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Xiumei Gao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiyun Bian
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, 300450, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
12
|
Yu Z, Zhang J, Liang Z, Wu J, Liu K, You G. Pancreatic Hormone Insulin Modulates Organic Anion Transporter 1 in the Kidney: Regulation via Remote Sensing and Signaling Network. AAPS J 2023; 25:13. [PMID: 36627500 PMCID: PMC10695010 DOI: 10.1208/s12248-022-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Organic anion transporter 1 (OAT1) expressed in the kidney plays an important role in the elimination of numerous anionic drugs used in the clinic. We report here that insulin, a pancreas-secreted hormone, regulated the expression and activity of kidney-specific OAT1 both in cultured cells and in rats. We showed that treatment of OAT1-expressing cells with insulin led to an increase in OAT1 expression, transport activity, and SUMOylation. Such insulin-induced increase was blocked by afuresertib, a specific inhibitor for protein kinase B (PKB), suggesting insulin regulates OAT1 through PKB signaling pathway. Furthermore, insulin stimulated transport activity and SUMOylation of endogenously expressed OAT1 in rat kidneys. In conclusion, our data support a remote sensing and signaling model, in which OAT1 plays an essential role in intercellular and inter-organ communication and in maintaining local and whole-body homeostasis. Such complex and dedicated communication is carried out by insulin, and PKB signaling and membrane sorting.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Jinghui Zhang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Zhengxuan Liang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Jingjing Wu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
13
|
Liu J, Jin J, Liang T, Feng XH. To Ub or not to Ub: a regulatory question in TGF-β signaling. Trends Biochem Sci 2022; 47:1059-1072. [PMID: 35810076 DOI: 10.1016/j.tibs.2022.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022]
Abstract
The transforming growth factor β (TGF-β) superfamily controls a wide spectrum of biological processes in metazoans, including cell proliferation, apoptosis, differentiation, cell-fate determination, and embryonic development. Deregulation of TGF-β-Smad signaling contributes to developmental anomalies and a variety of disorders and diseases such as tumorigenesis, fibrotic disorders, and immune diseases. In cancer, TGF-β has dual effects through its antiproliferative and prometastatic actions. At the cellular level, TGF-β functions mainly through the canonical Smad-dependent pathway in a cell type-specific and context-dependent manner. Accumulating evidence has demonstrated that ubiquitination plays a vital role in regulating TGF-β-Smad signaling. We summarize current progress on ubiquitination (Ub) and the ubiquitin ligases that regulate TGF-β-Smad signaling.
Collapse
Affiliation(s)
- Jinquan Liu
- Ministry of Education (MOE) Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianping Jin
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin-Hua Feng
- Ministry of Education (MOE) Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
14
|
Liu J, Wang Q, Kang Y, Xu S, Pang D. Unconventional protein post-translational modifications: the helmsmen in breast cancer. Cell Biosci 2022; 12:22. [PMID: 35216622 PMCID: PMC8881842 DOI: 10.1186/s13578-022-00756-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
AbstractBreast cancer is the most prevalent malignant tumor and a leading cause of mortality among females worldwide. The tumorigenesis and progression of breast cancer involve complex pathophysiological processes, which may be mediated by post-translational modifications (PTMs) of proteins, stimulated by various genes and signaling pathways. Studies into PTMs have long been dominated by the investigation of protein phosphorylation and histone epigenetic modifications. However, with great advances in proteomic techniques, several other PTMs, such as acetylation, glycosylation, sumoylation, methylation, ubiquitination, citrullination, and palmitoylation have been confirmed in breast cancer. Nevertheless, the mechanisms, effects, and inhibitors of these unconventional PTMs (particularly, the non-histone modifications other than phosphorylation) received comparatively little attention. Therefore, in this review, we illustrate the functions of these PTMs and highlight their impact on the oncogenesis and progression of breast cancer. Identification of novel potential therapeutic drugs targeting PTMs and development of biological markers for the detection of breast cancer would be significantly valuable for the efficient selection of therapeutic regimens and prediction of disease prognosis in patients with breast cancer.
Collapse
|
15
|
Liu P, Zhang J, Wang Y, Wang C, Qiu X, Chen DQ. Natural Products Against Renal Fibrosis via Modulation of SUMOylation. Front Pharmacol 2022; 13:800810. [PMID: 35308200 PMCID: PMC8931477 DOI: 10.3389/fphar.2022.800810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Renal fibrosis is the common and final pathological process of kidney diseases. As a dynamic and reversible post-translational modification, SUMOylation and deSUMOylation of transcriptional factors and key mediators significantly affect the development of renal fibrosis. Recent advances suggest that SUMOylation functions as the promising intervening target against renal fibrosis, and natural products prevent renal fibrosis via modulating SUMOylation. Here, we introduce the mechanism of SUMOylation in renal fibrosis and therapeutic effects of natural products. This process starts by summarizing the key mediators and enzymes during SUMOylation and deSUMOylation and its regulation role in transcriptional factors and key mediators in renal fibrosis, then linking the mechanism findings of SUMOylation and natural products to develop novel therapeutic candidates for treating renal fibrosis, and concludes by commenting on promising therapeutic targets and candidate natural products in renal fibrosis via modulating SUMOylation, which highlights modulating SUMOylation as a promising strategy for natural products against renal fibrosis.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Jing Zhang
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Yun Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chen Wang
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Xinping Qiu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Dan-Qian Chen,
| |
Collapse
|
16
|
Laget J, Duranton F, Argilés À, Gayrard N. Renal insufficiency and chronic kidney disease – Promotor or consequence of pathological post-translational modifications. Mol Aspects Med 2022; 86:101082. [DOI: 10.1016/j.mam.2022.101082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
17
|
Wang X, Liu T, Huang Y, Dai Y, Lin H. Regulation of transforming growth factor-β signalling by SUMOylation and its role in fibrosis. Open Biol 2021; 11:210043. [PMID: 34753319 PMCID: PMC8580444 DOI: 10.1098/rsob.210043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is an abnormal healing process that only repairs the structure of an organ after injury and does not address damaged functions. The pathogenesis of fibrosis is multifactorial and highly complex; numerous signalling pathways are involved in this process, with the transforming growth factor-β (TGF-β) signalling pathway playing a central role. TGF-β regulates the generation of myofibroblasts and the epithelial-mesenchymal transition by regulating transcription and translation of downstream genes and precisely regulating fibrogenesis. The TGF-β signalling pathway can be modulated by various post-translational modifications, of which SUMOylation has been shown to play a key role. In this review, we focus on the function of SUMOylation in canonical and non-canonical TGF-β signalling and its role in fibrosis, providing promising therapeutic strategies for fibrosis.
Collapse
Affiliation(s)
- Xinyi Wang
- First Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Ting Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yifei Huang
- First Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yifeng Dai
- Second Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|
18
|
Prado LG, Barbosa AS. Understanding the Renal Fibrotic Process in Leptospirosis. Int J Mol Sci 2021; 22:ijms221910779. [PMID: 34639117 PMCID: PMC8509513 DOI: 10.3390/ijms221910779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Leptospirosis is a neglected infectious disease caused by pathogenic species of the genus Leptospira. The acute disease is well-described, and, although it resembles other tropical diseases, it can be diagnosed through the use of serological and molecular methods. While the chronic renal disease, carrier state, and kidney fibrosis due to Leptospira infection in humans have been the subject of discussion by researchers, the mechanisms involved in these processes are still overlooked, and relatively little is known about the establishment and maintenance of the chronic status underlying this infectious disease. In this review, we highlight recent findings regarding the cellular communication pathways involved in the renal fibrotic process, as well as the relationship between renal fibrosis due to leptospirosis and CKD/CKDu.
Collapse
Affiliation(s)
- Luan Gavião Prado
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil;
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Angela Silva Barbosa
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil;
- Correspondence:
| |
Collapse
|
19
|
Aashaq S, Batool A, Mir SA, Beigh MA, Andrabi KI, Shah ZA. TGF-β signaling: A recap of SMAD-independent and SMAD-dependent pathways. J Cell Physiol 2021; 237:59-85. [PMID: 34286853 DOI: 10.1002/jcp.30529] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β (TGF-β) is a proinflammatory cytokine known to control a diverse array of pathological and physiological conditions during normal development and tumorigenesis. TGF-β-mediated physiological effects are heterogeneous and vary among different types of cells and environmental conditions. TGF-β serves as an antiproliferative agent and inhibits tumor development during primary stages of tumor progression; however, during the later stages, it encourages tumor development and mediates metastatic progression and chemoresistance. The fundamental elements of TGF-β signaling have been divulged more than a decade ago; however, the process by which the signals are relayed from cell surface to nucleus is very complex with additional layers added in tumor cell niches. Although the intricate understanding of TGF-β-mediated signaling pathways and their regulation are still evolving, we tried to make an attempt to summarize the TGF-β-mediated SMAD-dependent andSMAD-independent pathways. This manuscript emphasizes the functions of TGF-β as a metastatic promoter and tumor suppressor during the later and initial phases of tumor progression respectively.
Collapse
Affiliation(s)
- Sabreena Aashaq
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| | - Asiya Batool
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Srinagar, JK, India
| | | | | | | | - Zaffar Amin Shah
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, JK, India
| |
Collapse
|
20
|
Fu S, Zheng Y, Sun Y, Lai M, Qiu J, Gui F, Zeng Q, Liu F. Suppressing long noncoding RNA OGRU ameliorates diabetic retinopathy by inhibition of oxidative stress and inflammation via miR-320/USP14 axis. Free Radic Biol Med 2021; 169:361-381. [PMID: 33762162 DOI: 10.1016/j.freeradbiomed.2021.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are important regulators in various diseases including diabetic retinopathy (DR). In this study, DR patients exhibited significantly increased expression of serum LncRNA-OGRU compared with normal individuals. Streptozotocin (STZ)-challenged rats with DR also had higher OGRU expression in retinas than that of the control group, which was confirmed in Müller cells upon high glucose (HG) stimulation. OGRU knockdown remarkably decreased vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1) expression in HG-incubated Müller cells. HG-induced inflammatory response and oxidative stress in vitro were markedly mitigated by OGRU knockdown through restraining IκBɑ/nuclear factor kappa beta (NF-κB) and improving nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, respectively. Further studies indicated that OGRU suppression greatly restored miR-320 expression, and a negative correlation between them was detected in DR patients. We also found that miR-320 over-expression considerably restrained TGF-β1 signaling, and hindered inflammation and reactive oxygen species (ROS) production in HG-stimulated Müller cells. Additionally, OGRU knockdown or miR-320 over-expression could dramatically down-regulate ubiquitin-specific peptidase 14 (USP14) expression levels in HG-incubated Müller cells, and miR-320 could directly target USP14. Notably, OGRU/miR-320 axis-mediated TGF-β1 signaling, inflammation and ROS were largely dependent on USP14. Intriguingly, our results showed that USP14 directly interacted with transforming growth factor-beta type 1 receptor (TβR1), and impeded TβR1 ubiquitination and degradation. Furthermore, USP14 could also facilitate IκBɑ deubiquitination and degradation, exacerbating IκBɑ phosphorylation and NF-κB activation. Finally, our in vivo studies confirmed that OGRU knockdown considerably ameliorated DR progression in STZ-challenged rats through mediating the mechanisms observed in vitro. Collectively, these findings implicated that LncRNA-OGRU mediated DR progression through competing for miR-320 to regulate USP14 expression, and thus LncRNA-OGRU/miR-320/USP14 axis may be considered as a therapeutic target for DR treatment.
Collapse
Affiliation(s)
- Shuhua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China.
| | - Yunyao Zheng
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Yawen Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Meichen Lai
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Jingjing Qiu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Fu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Qinqin Zeng
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Fei Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| |
Collapse
|
21
|
Sinha A, Iyengar PV, ten Dijke P. E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression. Int J Mol Sci 2021; 22:E476. [PMID: 33418880 PMCID: PMC7825147 DOI: 10.3390/ijms22020476] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a secreted growth and differentiation factor that influences vital cellular processes like proliferation, adhesion, motility, and apoptosis. Regulation of the TGFβ signaling pathway is of key importance to maintain tissue homeostasis. Perturbation of this signaling pathway has been implicated in a plethora of diseases, including cancer. The effect of TGFβ is dependent on cellular context, and TGFβ can perform both anti- and pro-oncogenic roles. TGFβ acts by binding to specific cell surface TGFβ type I and type II transmembrane receptors that are endowed with serine/threonine kinase activity. Upon ligand-induced receptor phosphorylation, SMAD proteins and other intracellular effectors become activated and mediate biological responses. The levels, localization, and function of TGFβ signaling mediators, regulators, and effectors are highly dynamic and regulated by a myriad of post-translational modifications. One such crucial modification is ubiquitination. The ubiquitin modification is also a mechanism by which crosstalk with other signaling pathways is achieved. Crucial effector components of the ubiquitination cascade include the very diverse family of E3 ubiquitin ligases. This review summarizes the diverse roles of E3 ligases that act on TGFβ receptor and intracellular signaling components. E3 ligases regulate TGFβ signaling both positively and negatively by regulating degradation of receptors and various signaling intermediates. We also highlight the function of E3 ligases in connection with TGFβ's dual role during tumorigenesis. We conclude with a perspective on the emerging possibility of defining E3 ligases as drug targets and how they may be used to selectively target TGFβ-induced pro-oncogenic responses.
Collapse
Affiliation(s)
| | | | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.S.); (P.V.I.)
| |
Collapse
|
22
|
Chen A, Wang H, Su Y, Zhang C, Qiu Y, Zhou Y, Wan Y, Hu B, Li Y. Exosomes: Biomarkers and Therapeutic Targets of Diabetic Vascular Complications. Front Endocrinol (Lausanne) 2021; 12:720466. [PMID: 34456875 PMCID: PMC8387814 DOI: 10.3389/fendo.2021.720466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic vascular complications (DVC) including macrovascular and microvascular lesions, have a significant impact on public health, and lead to increased patient mortality. Disordered intercellular cascades play a vital role in diabetic systemic vasculopathy. Exosomes participate in the abnormal signal transduction of local vascular cells and mediate the transmission of metabolic disorder signal molecules in distant organs and cells through the blood circulation. They can store different signaling molecules in the membrane structure and release them into the blood, urine, and tears. In recent years, the carrier value and therapeutic effect of exosomes derived from stem cells have garnered attention. Exosomes are not only a promising biomarker but also a potential target and tool for the treatment of DVC. This review explored changes in the production process of exosomes in the diabetic microenvironment and exosomes' early warning role in DVC from different systems and their pathological processes. On the basis of these findings, we discussed the future direction of exosomes in the treatment of DVC, and the current limitations of exosomes in DVC research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Hu
- *Correspondence: Yanan Li, ; Bo Hu,
| | - Yanan Li
- *Correspondence: Yanan Li, ; Bo Hu,
| |
Collapse
|
23
|
Regulation of organic anion transporters: Role in physiology, pathophysiology, and drug elimination. Pharmacol Ther 2020; 217:107647. [PMID: 32758646 DOI: 10.1016/j.pharmthera.2020.107647] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Abstract
The members of the organic anion transporter (OAT) family are mainly expressed in kidney, liver, placenta, intestine, and brain. These transporters play important roles in the disposition of clinical drugs, pesticides, signaling molecules, heavy metal conjugates, components of phytomedicines, and toxins, and therefore critical for maintaining systemic homeostasis. Alterations in the expression and function of OATs contribute to the intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs, and to many pathophysiological conditions. Consequently, the activity of these transporters must be highly regulated to carry out their normal functions. This review will present an update on the recent advance in understanding the cellular and molecular mechanisms underlying the regulation of renal OATs, emphasizing on the post-translational modification (PTM), the crosstalk among these PTMs, and the remote sensing and signaling network of OATs. Such knowledge will provide significant insights into the roles of these transporters in health and disease.
Collapse
|
24
|
Rabellino A, Khanna KK. The implication of the SUMOylation pathway in breast cancer pathogenesis and treatment. Crit Rev Biochem Mol Biol 2020; 55:54-70. [PMID: 32183544 DOI: 10.1080/10409238.2020.1738332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed malignancy in woman worldwide, and is the second most common cause of death in developed countries. The transformation of a normal cell into a malignant derivate requires the acquisition of diverse genomic and proteomic changes, including enzymatic post-translational modifications (PTMs) on key proteins encompassing critical cell signaling events. PTMs occur on proteins after translation, and regulate several aspects of proteins activity, including their localization, activation and turnover. Deregulation of PTMs can potentially lead to tumorigenesis, and several de-regulated PTM pathways contribute to abnormal cell proliferation during breast tumorigenesis. SUMOylation is a PTM that plays a pivotal role in numerous aspects of cell physiology, including cell cycle regulation, protein trafficking and turnover, and DNA damage repair. Consistently with this, the deregulation of the SUMO pathway is observed in different human pathologies, including breast cancer. In this review we will describe the role of SUMOylation in breast tumorigenesis and its implication for breast cancer therapy.
Collapse
Affiliation(s)
- Andrea Rabellino
- QIMR Berghofer Medical Research Institute, Brisbane City, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane City, Australia
| |
Collapse
|
25
|
Gâtel P, Piechaczyk M, Bossis G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:29-54. [PMID: 32274752 DOI: 10.1007/978-3-030-38266-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.
Collapse
Affiliation(s)
- Pierre Gâtel
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Guillaume Bossis
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
26
|
Lachiondo-Ortega S, Mercado-Gómez M, Serrano-Maciá M, Lopitz-Otsoa F, Salas-Villalobos TB, Varela-Rey M, Delgado TC, Martínez-Chantar ML. Ubiquitin-Like Post-Translational Modifications (Ubl-PTMs): Small Peptides with Huge Impact in Liver Fibrosis. Cells 2019; 8:1575. [PMID: 31817258 PMCID: PMC6953033 DOI: 10.3390/cells8121575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is characterized by the excessive deposition of extracellular matrix proteins including collagen that occurs in most types of chronic liver disease. Even though our knowledge of the cellular and molecular mechanisms of liver fibrosis has deeply improved in the last years, therapeutic approaches for liver fibrosis remain limited. Profiling and characterization of the post-translational modifications (PTMs) of proteins, and more specifically NEDDylation and SUMOylation ubiquitin-like (Ubls) modifications, can provide a better understanding of the liver fibrosis pathology as well as novel and more effective therapeutic approaches. On this basis, in the last years, several studies have described how changes in the intermediates of the Ubl cascades are altered during liver fibrosis and how specific targeting of particular enzymes mediating these ubiquitin-like modifications can improve liver fibrosis, mainly in in vitro models of hepatic stellate cells, the main fibrogenic cell type, and in pre-clinical mouse models of liver fibrosis. The development of novel inhibitors of the Ubl modifications as well as novel strategies to assess the modified proteome can provide new insights into the overall role of Ubl modifications in liver fibrosis.
Collapse
Affiliation(s)
- Sofia Lachiondo-Ortega
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - Maria Mercado-Gómez
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - Marina Serrano-Maciá
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | | | - Tanya B Salas-Villalobos
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León 66450, Mexico;
| | - Marta Varela-Rey
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - Teresa C. Delgado
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - María Luz Martínez-Chantar
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| |
Collapse
|
27
|
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal 2019; 12:12/570/eaav5183. [PMID: 30808818 DOI: 10.1126/scisignal.aav5183] [Citation(s) in RCA: 524] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Encoded in mammalian cells by 33 genes, the transforming growth factor-β (TGF-β) family of secreted, homodimeric and heterodimeric proteins controls the differentiation of most, if not all, cell lineages and many aspects of cell and tissue physiology in multicellular eukaryotes. Deregulation of TGF-β family signaling leads to developmental anomalies and disease, whereas enhanced TGF-β signaling contributes to cancer and fibrosis. Here, we review the fundamentals of the signaling mechanisms that are initiated upon TGF-β ligand binding to its cell surface receptors and the dependence of the signaling responses on input from and cooperation with other signaling pathways. We discuss how cells exquisitely control the functional presentation and activation of heteromeric receptor complexes of transmembrane, dual-specificity kinases and, thus, define their context-dependent responsiveness to ligands. We also introduce the mechanisms through which proteins called Smads act as intracellular effectors of ligand-induced gene expression responses and show that the specificity and impressive versatility of Smad signaling depend on cross-talk from other pathways. Last, we discuss how non-Smad signaling mechanisms, initiated by distinct ligand-activated receptor complexes, complement Smad signaling and thus contribute to cellular responses.
Collapse
Affiliation(s)
- Rik Derynck
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Erine H Budi
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
28
|
Wang H, Zhang J, You G. Activation of Protein Kinase A Stimulates SUMOylation, Expression, and Transport Activity of Organic Anion Transporter 3. AAPS JOURNAL 2019; 21:30. [PMID: 30761470 DOI: 10.1208/s12248-019-0303-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022]
Abstract
Organic anion transporter 3 (OAT3) plays a vital role in removing a broad variety of anionic drugs from kidney, thus avoiding their possible toxicity in the body. We earlier established that activation of protein kinase C (PKC) enhances OAT3 ubiquitination, which promotes OAT3 internalization from the cell plasma membrane to intracellular endosomes and consequent degradation. As a result, OAT3 expression and transport activity are reduced. In the current study, we discovered that protein kinase A (PKA) had an opposite effect to PKC on the regulation of OAT3. We showed that activation of PKA by Bt2-cAMP stimulated OAT3 transport activity, which was largely caused by an enhanced plasma membrane expression of the transporter, kinetically reflected as an augmented maximal transport velocity Vmax without notable alteration in substrate-binding affinity Km. Additionally, we showed that PKA activation accelerated the rate of OAT3 recycling from intracellular compartments to the plasma membrane and decelerated the rate of OAT3 degradation. We further showed that OAT3 is subjected to post-translational modification by SUMO-2 and SUMO-3 not by SUMO-1. PKA activation enhanced OAT3 SUMOylation, which was accompanied by a reduced OAT3 ubiquitination. Finally, insulin-like growth factor 1 significantly stimulated OAT3 transport activity and SUMOylation through PKA signaling pathway. In conclusion, this is the first demonstration that PKA stimulated OAT3 expression and transport activity by altering the trafficking kinetics of OAT3 possibly through the crosstalk between SUMOylation and ubiquitination. Our studies are consistent with a remote sensing and signaling model for transporters (Wu et al. in Mol Pharmacol. 79(5):795-805, 2011).
Collapse
Affiliation(s)
- Haoxun Wang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Jinghui Zhang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
29
|
Kim SY, Baek KH. TGF-β signaling pathway mediated by deubiquitinating enzymes. Cell Mol Life Sci 2019; 76:653-665. [PMID: 30349992 PMCID: PMC11105597 DOI: 10.1007/s00018-018-2949-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
Ubiquitination is a reversible cellular process mediated by ubiquitin-conjugating enzymes, whereas deubiquitinating enzymes (DUBs) detach the covalently conjugated ubiquitin from target substrates to counter ubiquitination. DUBs play a crucial role in regulating various signal transduction pathways and biological processes including apoptosis, cell proliferation, DNA damage repair, metastasis, differentiation, etc. Since the transforming growth factor-β (TGF-β) signaling pathway participates in various cellular functions such as inflammation, metastasis and embryogenesis, aberrant regulation of TGF-β signaling induces abnormal cellular functions resulting in numerous diseases. This review focuses on DUBs regulating the TGF-β signaling pathway. We discuss the molecular mechanisms of DUBs involved in TGF-β signaling pathway, and biological and therapeutic implications for various diseases.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
30
|
Yang Z, Zhang Y, Sun S. Deciphering the SUMO code in the kidney. J Cell Mol Med 2018; 23:711-719. [PMID: 30506859 PMCID: PMC6349152 DOI: 10.1111/jcmm.14021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/08/2018] [Accepted: 10/20/2018] [Indexed: 01/18/2023] Open
Abstract
SUMOylation of proteins is an important regulatory element in modulating protein function and has been implicated in the pathogenesis of numerous human diseases such as cancers, neurodegenerative diseases, brain injuries, diabetes, and familial dilated cardiomyopathy. Growing evidence has pointed to a significant role of SUMO in kidney diseases such as DN, RCC, nephritis, AKI, hypertonic stress and nephrolithiasis. Recently, emerging studies in podocytes demonstrated that SUMO might have a protective role against podocyte apoptosis. However, the SUMO code responsible for beneficial outcome in the kidney remains to be decrypted. Our recent experiments have revealed that the expression of both SUMO and SUMOylated proteins is appreciably elevated in hypoxia‐induced tubular epithelial cells (TECs) as well as in the unilateral ureteric obstruction (UUO) mouse model, suggesting a role of SUMO in TECs injury and renal fibrosis. In this review, we attempt to decipher the SUMO code in the development of kidney diseases by summarizing the defined function of SUMO and looking forward to the potential role of SUMO in kidney diseases, especially in the pathology of renal fibrosis and CKD, with the goal of developing strategies that maximize correct interpretation in clinical therapy and prognosis.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Yuming Zhang
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Shiren Sun
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
31
|
Oo HZ, Seiler R, Black PC, Daugaard M. Post-translational modifications in bladder cancer: Expanding the tumor target repertoire. Urol Oncol 2018; 38:858-866. [PMID: 30342880 DOI: 10.1016/j.urolonc.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/09/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022]
Abstract
Over the past decade, genomic and transcriptomic analyses have uncovered promising tumor antigens including immunotherapeutic targets in bladder cancer (BCa). Conventional tumor antigens are proteins expressed on the plasma membrane of tumor cells such as EGFR, FGFR3, and ERBB2 in BCa, which can be targeted by antibodies or similar epitope-specific binding reagents. The cellular proteome consists of ∼100,000 proteins but the expression of these proteins is rarely unique to tumor cells. Many tumor-associated proteins are post-translationally modified with phosphorylation, glycosylation, ubiquitination, or SUMOylation moieties. Although these modifications expand the complexity, they potentially offer novel targeting opportunities across tumor sub-populations. Experimental targeting of cancer-specific post-translational modifications (PTMs) has shown encouraging results in pre-clinical models of BCa, which could potentially overcome issues with inherent intra-tumor heterogeneity due to simultaneous expression on different proteins. Here, we review current knowledge on post-translational modifications in BCa and highlight recent efforts in experimental targeting strategies.
Collapse
Affiliation(s)
- Htoo Zarni Oo
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| | - Roland Seiler
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Urology, University of Bern, Bern, Switzerland
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
32
|
Zhao C, Shen Q. Overexpression of small ubiquitin‑like modifier 2 ameliorates high glucose‑induced reductions in cardiomyocyte proliferation via the transforming growth factor‑β/Smad pathway. Mol Med Rep 2018; 18:4877-4885. [PMID: 30280191 PMCID: PMC6236294 DOI: 10.3892/mmr.2018.9522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Hyperglycemia may induce diabetic cardiomyopathy (DC). In the current study, the mechanism underlying the alleviation of high glucose (HG)-induced impairments in the proliferation of H9c2 embryo cardiomyocyte proliferation by small ubiquitin-like modifier 2 (SUMO2) overexpression was investigated. H9c2 cell morphology was identified as classical long shuttle type by optical microscopy. The viability of HG-injured H9c2 cells was evaluated by a Cell Counting Kit-8 assay and the results indicated that viability was inhibited in a dose-dependent (5.6, 10, 20 and 30 mmol/l) and time-dependent (6, 12 and 24 h) manner. H9c2 cells treated with 20 mmol/l HG for 24 h were selected for subsequent experiments due to the extent of injury caused at a low density. Flow cytometry was conducted to confirm cell cycle arrest between G1/S phases and apoptosis promotion in HG-injured H9c2 cells, and the subsequent alleviating effect of SUMO2 overexpression on these HG-induced effects. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were performed to detect mRNA and protein expression levels of cell cycle-and apoptosis-associated factors. The results indicated that the expression ofthe cell cycle-associated factors CyclinA2 and C-Myc was upregulated, and cyclin-dependent kinase inhibitor 1a was downregulated. The expression of the apoptosis-associated factor Bcl-2 was upregulated, while Bcl-2-associated X and caspase-3 expression was downregulated, by SUMO2 overexpression. Furthermore, the effect of SUMO2 overexpression on the transforming growth factor (TGF)-β/Smad pathway was also determined using RT-qPCR and western blot analysis. The results indicated the mRNA and protein levels of TGF-β1 and Smad3 in HG-injured H9c2 cells were significantly decreased following SUMO2 overexpression. Thus, the results demonstrated that overexpression of SUMO2 may alleviate H9c2 cardiomyocyte cell cycle arrest and apoptosis promotion induced by HG via regulation of cell cycle- and apoptosis-associated factors, as well as inhibition of the TGF-β/Smad pathway. These results may therefore provide a novel strategy for the protection of cardiomyocytes and may aid the diagnosis and prognosis of patients with DC.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Geriatric, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| | - Qile Shen
- Department of Geriatric, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
33
|
TGF-β receptors: In and beyond TGF-β signaling. Cell Signal 2018; 52:112-120. [PMID: 30184463 DOI: 10.1016/j.cellsig.2018.09.002] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/07/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
Abstract
Transforming growth factor β (TGF-β) plays an important role in normal development and homeostasis. Dysregulation of TGF-β responsiveness and its downstream signaling pathways contribute to many diseases, including cancer initiation, progression, and metastasis. TGF-β ligands bind to three isoforms of the TGF-β receptor (TGFBR) with different affinities. TGFBR1 and 2 are both serine/threonine and tyrosine kinases, but TGFBR3 does not have any kinase activity. They are necessary for activating canonical or noncanonical signaling pathways, as well as for regulating the activation of other signaling pathways. Another prominent feature of TGF-β signaling is its context-dependent effects, temporally and spatially. The diverse effects and context dependency are either achieved by fine-tuning the downstream components or by regulating the expressions and activities of the ligands or receptors. Focusing on the receptors in events in and beyond TGF-β signaling, we review the membrane trafficking of TGFBRs, the kinase activity of TGFBR1 and 2, the direct interactions between TGFBR2 and other receptors, and the novel roles of TGFBR3.
Collapse
|
34
|
Saito A, Horie M, Nagase T. TGF-β Signaling in Lung Health and Disease. Int J Mol Sci 2018; 19:ijms19082460. [PMID: 30127261 PMCID: PMC6121238 DOI: 10.3390/ijms19082460] [Citation(s) in RCA: 338] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor (TGF)-β is an evolutionarily conserved pleiotropic factor that regulates a myriad of biological processes including development, tissue regeneration, immune responses, and tumorigenesis. TGF-β is necessary for lung organogenesis and homeostasis as evidenced by genetically engineered mouse models. TGF-β is crucial for epithelial-mesenchymal interactions during lung branching morphogenesis and alveolarization. Expression and activation of the three TGF-β ligand isoforms in the lungs are temporally and spatially regulated by multiple mechanisms. The lungs are structurally exposed to extrinsic stimuli and pathogens, and are susceptible to inflammation, allergic reactions, and carcinogenesis. Upregulation of TGF-β ligands is observed in major pulmonary diseases, including pulmonary fibrosis, emphysema, bronchial asthma, and lung cancer. TGF-β regulates multiple cellular processes such as growth suppression of epithelial cells, alveolar epithelial cell differentiation, fibroblast activation, and extracellular matrix organization. These effects are closely associated with tissue remodeling in pulmonary fibrosis and emphysema. TGF-β is also central to T cell homeostasis and is deeply involved in asthmatic airway inflammation. TGF-β is the most potent inducer of epithelial-mesenchymal transition in non-small cell lung cancer cells and is pivotal to the development of tumor-promoting microenvironment in the lung cancer tissue. This review summarizes and integrates the current knowledge of TGF-β signaling relevant to lung health and disease.
Collapse
Affiliation(s)
- Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
35
|
Chanda A, Sarkar A, Bonni S. The SUMO System and TGFβ Signaling Interplay in Regulation of Epithelial-Mesenchymal Transition: Implications for Cancer Progression. Cancers (Basel) 2018; 10:cancers10080264. [PMID: 30096838 PMCID: PMC6115711 DOI: 10.3390/cancers10080264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein post-translational modification by the small ubiquitin-like modifier (SUMO), or SUMOylation, can regulate the stability, subcellular localization or interactome of a protein substrate with key consequences for cellular processes including the Epithelial-Mesenchymal Transition (EMT). The secreted protein Transforming Growth Factor beta (TGFβ) is a potent inducer of EMT in development and homeostasis. Importantly, the ability of TGFβ to induce EMT has been implicated in promoting cancer invasion and metastasis, resistance to chemo/radio therapy, and maintenance of cancer stem cells. Interestingly, TGFβ-induced EMT and the SUMO system intersect with important implications for cancer formation and progression, and novel therapeutics identification.
Collapse
Affiliation(s)
- Ayan Chanda
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Anusi Sarkar
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
36
|
Fang S, Qiu J, Wu Z, Bai T, Guo W. Down-regulation of UBC9 increases the sensitivity of hepatocellular carcinoma to doxorubicin. Oncotarget 2018; 8:49783-49795. [PMID: 28572537 PMCID: PMC5564807 DOI: 10.18632/oncotarget.17939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/05/2017] [Indexed: 12/21/2022] Open
Abstract
UBC9 is an E2-conjugating enzyme that is required for SUMOylation and has been implicated in regulating several critical cellular pathways. UBC9 is overexpressed in certain tumors, such as lung adenocarcinoma, ovarian carcinoma and melanoma, which implies that it has special clinical significance. However, the role of UBC9 in Hepatocellular carcinoma (HCC) drug responsiveness is not clear. In this study, we investigated the clinicopathological significance of UBC9 in HCC and investigated the mechanism of UBC9-mediated chemosensitivity to doxorubicin (DOX) in hepatocellular carcinoma cells. We found that relative to adjacent normal tissues, UBC9 was markedly overexpressed in HCC, which closely correlated with tumor size, tumor microsatellite formation, and tumor encapsulation. Our results also showed that down-regulation of UBC9 by shRNA reduced the expression of Bcl-2 and Bcl-xl and increased the expression of cleaved-Caspase3, which is a proapoptotic protein. These changes were associated with reduced apoptosis in response to DOX. Furthermore, we observed a mechanism involving modulation of the P38 and ERK1/2 signaling pathways. Together, our results indicate that down-regulation of UBC9 sensitizes cells to anticancer drugs, is possibly associated with the regulation of ERK1/2 and P38 activation and interacts with the intrinsic apoptosis pathway. Thus, knockdown of UBC9 may have a tumor suppressor effect and UBC9 could be a potential target for the treatment of HCC cancer.
Collapse
Affiliation(s)
- Sufen Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Junyao Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zheng Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Tao Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wuhua Guo
- Department of Interventional Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
| |
Collapse
|
37
|
Zhang Z, Wang J, Zeng X, Li D, Ding M, Guan R, Yuan L, Zhou Q, Guo M, Xiong M, Dong L, Lu W. Two-stage study of lung cancer risk modification by a functional variant in the 3'-untranslated region of SMAD5 based on the bone morphogenetic protein pathway. Mol Clin Oncol 2018; 8:38-46. [PMID: 29387395 PMCID: PMC5769268 DOI: 10.3892/mco.2017.1490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence supports a key role for the bone morphogenetic protein (BMP) signaling pathway in lung vasculogenesis and angiogenesis. Genetic variations in BMP genes have been found to be correlated with cancer risk. In particular, the mutation in the 3′-untranslated region of BMPs may significantly affect gene function, leading to cancer susceptibility. The aim of the present study was to determine whether genetic variations in the components of the BMP family are associated with lung cancer risk. A total of 314 tag single-nucleotide polymorphisms were identified in 18 genes, which are considered to either compose or regulate BMPs, and their association with lung cancer risk was evaluated in a two-stage case-control study with 4,680 cases and controls. A consistently significant association of SMAD5 rs12719482 with elevated lung cancer risk was observed in the three types of sources of populations (adjusted additive model in the combined population: Odds ratio=1.32, 95% confidence interval: 1.16–1.51). The lung cancer risk statistically significantly increased with the increasing number of variant alleles of SMAD5 rs12719482 in a dose-dependent pattern (P for trend=4.9×10−5). Consistent evidence was identified for a significant interaction between the rs12719482 and cigarette smoking, performed as either a continuous or discrete variable. These findings indicated that SMAD5 rs12719482 may be a possible candidate marker for susceptibility to lung cancer in the Chinese population.
Collapse
Affiliation(s)
- Zili Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, AZ 85721-0202, USA
| | - Xiansheng Zeng
- Department of Respiratory Medicine, Xiangyang Central Hospital, Xiangyang, Hubei 441021, P.R. China
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Mingjing Ding
- Department of Respiratory Medicine, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010017, Inner Mongolia Autonomous Region, P.R. China
| | - Ruijuan Guan
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Liang Yuan
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Qipeng Zhou
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Meihua Guo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Mingmei Xiong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Lian Dong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, AZ 85721-0202, USA.,Department of Laboratory Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
38
|
Zitti B, Molfetta R, Fionda C, Quatrini L, Stabile H, Lecce M, de Turris V, Ricciardi MR, Petrucci MT, Cippitelli M, Gismondi A, Santoni A, Paolini R. Innate immune activating ligand SUMOylation affects tumor cell recognition by NK cells. Sci Rep 2017; 7:10445. [PMID: 28874810 PMCID: PMC5585267 DOI: 10.1038/s41598-017-10403-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/08/2017] [Indexed: 01/02/2023] Open
Abstract
Natural Killer cells are innate lymphocytes involved in tumor immunosurveillance. They express activating receptors able to recognize self-molecules poorly expressed on healthy cells but up-regulated upon stress conditions, including transformation. Regulation of ligand expression in tumor cells mainly relays on transcriptional mechanisms, while the involvement of ubiquitin or ubiquitin-like modifiers remains largely unexplored. Here, we focused on the SUMO pathway and demonstrated that the ligand of DNAM1 activating receptor, PVR, undergoes SUMOylation in multiple myeloma. Concurrently, we found that PVR is preferentially located in intracellular compartments in human multiple myeloma cell lines and malignant plasma cells and that inhibition of the SUMO pathway promotes its translocation to the cell surface, increasing tumor cell susceptibility to NK cell-mediated cytolysis. Our findings provide the first evidence of an innate immune activating ligand regulated by SUMOylation, and confer to this modification a novel role in impairing recognition and killing of tumor cells.
Collapse
Affiliation(s)
- Beatrice Zitti
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy.
| | - Cinzia Fionda
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy
| | - Linda Quatrini
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Helena Stabile
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy
| | - Mario Lecce
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy
| | - Valeria de Turris
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Maria Rosaria Ricciardi
- Division of Hematology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Petrucci
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy.,Istituto Mediterraneo di Neuroscienze, Neuromed, Pozzilli, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, "Sapienza" University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
39
|
Zhu X, Ding S, Qiu C, Shi Y, Song L, Wang Y, Wang Y, Li J, Wang Y, Sun Y, Qin L, Chen J, Simons M, Min W, Yu L. SUMOylation Negatively Regulates Angiogenesis by Targeting Endothelial NOTCH Signaling. Circ Res 2017; 121:636-649. [PMID: 28760777 DOI: 10.1161/circresaha.117.310696] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 07/22/2017] [Accepted: 07/28/2017] [Indexed: 01/12/2023]
Abstract
RATIONALE The highly conserved NOTCH (neurogenic locus notch homolog protein) signaling pathway functions as a key cell-cell interaction mechanism controlling cell fate and tissue patterning, whereas its dysregulation is implicated in a variety of developmental disorders and cancers. The pivotal role of endothelial NOTCH in regulation of angiogenesis is widely appreciated; however, little is known about what controls its signal transduction. Our previous study indicated the potential role of post-translational SUMO (small ubiquitin-like modifier) modification (SUMOylation) in vascular disorders. OBJECTIVE The aim of this study was to investigate the role of SUMOylation in endothelial NOTCH signaling and angiogenesis. METHODS AND RESULTS Endothelial SENP1 (sentrin-specific protease 1) deletion, in newly generated endothelial SENP1 (the major protease of the SUMO system)-deficient mice, significantly delayed retinal vascularization by maintaining prolonged NOTCH1 signaling, as confirmed in cultured endothelial cells. An in vitro SUMOylation assay and immunoprecipitation revealed that when SENP1 associated with N1ICD (NOTCH1 intracellular domain), it functions as a deSUMOylase of N1ICD SUMOylation on conserved lysines. Immunoblot and immunoprecipitation analyses and dual-luciferase assays of natural and SUMO-conjugated/nonconjugated NOTCH1 forms demonstrated that SUMO conjugation facilitated NOTCH1 cleavage. This released N1ICD from the membrane and stabilized it for translocation to the nucleus where it functions as a cotranscriptional factor. Functionally, SENP1-mediated NOTCH1 deSUMOylation was required for NOTCH signal activation in response to DLL4 (Delta-like 4) stimulation. This in turn suppressed VEGF (vascular endothelial growth factor) receptor signaling and angiogenesis, as evidenced by immunoblotted signaling molecules and in vitro angiogenesis assays. CONCLUSIONS These results establish reversible NOTCH1 SUMOylation as a regulatory mechanism in coordinating endothelial angiogenic signaling; SENP1 acts as a critical intrinsic mediator of this process. These findings may apply to NOTCH-regulated biological events in nonvascular tissues and provide a novel therapeutic strategy for vascular diseases and tumors.
Collapse
Affiliation(s)
- Xiaolong Zhu
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Sha Ding
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Cong Qiu
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Yanna Shi
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Lin Song
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Yueyue Wang
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Yuewen Wang
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Jinying Li
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Yiran Wang
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Yi Sun
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Lingfeng Qin
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Jun Chen
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Michael Simons
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Wang Min
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.)
| | - Luyang Yu
- From the Institute of Genetics and Regenerative Biology, College of Life Sciences (X.Z., S.D., C.Q., Y. Shi, L.S., Yueyue Wang, Yuewen Wang, J.L., Yiran Wang, Y. Sun, L.Y.), Research Center for Air Pollution and Health (X.Z., S.D., C.Q., Y. Shi, L.S., Yuewen Wang, J.L., Yiran Wang, L.Y.), and Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Cell Signaling Network, College of Life Sciences (J.C.), Zhejiang University, Hangzhou, China; Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (L.Q., M.S.); Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT (L.Q., W.M.); and The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou, China (W.M.).
| |
Collapse
|
40
|
Tan M, Zhang D, Zhang E, Xu D, Liu Z, Qiu J, Fan Y, Shen B. SENP2 suppresses epithelial-mesenchymal transition of bladder cancer cells through deSUMOylation of TGF-βRI. Mol Carcinog 2017; 56:2332-2341. [PMID: 28574613 DOI: 10.1002/mc.22687] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/20/2017] [Accepted: 06/01/2017] [Indexed: 12/21/2022]
Abstract
SUMO-specific protease 2 (SENP2) is a deSUMOylation protease that plays an important role in the regulation of transforming growth factor-β (TGF-β) signaling. Aberrant TGF-β signaling is common in human cancers and contributes to tumor metastasis by inducing an epithelial-mesenchymal transition (EMT). In previous studies, we demonstrated that SENP2 suppresses bladder cancer cell migration and invasion. However, little is known about whether SENP2 inhibits EMT by regulating TGF-β signaling in bladder cancer progression. Here, we investigated the role of SENP2 in regulating TGF-β signaling and bladder cancer metastasis in vitro and in vivo. We found that SENP2 is frequently downregulated in bladder cancer, especially in metastatic bladder cancer. SENP2 downregulation is associated with more aggressive phenotypes and poor patient outcomes. SENP2 knockdown results in a decrease of E-cadherin and an increase of N-cadherin and fibronectin at both transcript and protein levels, indicating that SENP2 negatively regulates EMT. On the contrary, SENP2 overexpression suppresses TGF-β signaling and TGF-β-induced EMT. We further demonstrated that SENP2 regulates TGF-β signaling partly through deSUMOylation of TGFβ receptor I (TGF-βRI). Functionally, SENP2 suppresses bladder cancer cell invasion in vitro and tumor metastasis in vivo, acts as a tumor suppressor gene in bladder cancer. Our results establish a function of SENP2 in metastatic progression and suggest its candidacy as a new prognostic biomarker and target for clinical management of bladder cancer.
Collapse
Affiliation(s)
- Mingyue Tan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Dingguo Zhang
- Department of Urology, Shanghai Pudong New Area people's Hospital, Shanghai, P. R. China
| | - Encheng Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Dongliang Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Zhihong Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jianxin Qiu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yu Fan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
41
|
Budi EH, Duan D, Derynck R. Transforming Growth Factor-β Receptors and Smads: Regulatory Complexity and Functional Versatility. Trends Cell Biol 2017; 27:658-672. [PMID: 28552280 DOI: 10.1016/j.tcb.2017.04.005] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/06/2023]
Abstract
Transforming growth factor (TGF)-β family proteins control cell physiology, proliferation, and growth, and direct cell differentiation, thus playing key roles in normal development and disease. The mechanisms of how TGF-β family ligands interact with heteromeric complexes of cell surface receptors to then activate Smad signaling that directs changes in gene expression are often seen as established. Even though TGF-β-induced Smad signaling may be seen as a linear signaling pathway with predictable outcomes, this pathway provides cells with a versatile means to induce different cellular responses. Fundamental questions remain as to how, at the molecular level, TGF-β and TGF-β family proteins activate the receptor complexes and induce a context-dependent diversity of cell responses. Among the areas of progress, we summarize new insights into how cells control TGF-β responsiveness by controlling the TGF-β receptors, and into the key roles and versatility of Smads in directing cell differentiation and cell fate selection.
Collapse
Affiliation(s)
- Erine H Budi
- Department of Cell and Tissue Biology, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco CA 94143, USA
| | - Dana Duan
- Department of Cell and Tissue Biology, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco CA 94143, USA
| | - Rik Derynck
- Department of Cell and Tissue Biology, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco CA 94143, USA.
| |
Collapse
|
42
|
Abstract
Post-translational protein modification by small ubiquitin-like modifier (SUMO), termed sumoylation, is an important mechanism in cellular responses to stress and one that appears to be upregulated in many cancers. Here, we examine the role of sumoylation in tumorigenesis as a possibly necessary safeguard that protects the stability and functionality of otherwise easily misregulated gene expression programmes and signalling pathways of cancer cells.
Collapse
Affiliation(s)
- Jacob-Sebastian Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
43
|
Pauws E, Stanier P. Sumoylation in Craniofacial Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:323-335. [PMID: 28197921 DOI: 10.1007/978-3-319-50044-7_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Craniofacial development requires a complex series of coordinated and finely tuned events to take place, during a relatively short time frame. These events are set in motion by switching on and off transcriptional cascades that involve the use of numerous signalling pathways and a multitude of factors that act at the site of gene transcription. It is now well known that amidst the subtlety of this process lies the intricate world of protein modification, and the posttranslational addition of the small ubiquitin -like modifier, SUMO, is an example that has been implicated in this process. Many proteins that are required for formation of various structures in the embryonic head and face adapt specific functions with SUMO modification. Interestingly, the main clinical phenotype reported for a disruption of the SUMO1 locus is the common birth defect cleft lip and palate. In this chapter therefore, we discuss the role of SUMO1 in craniofacial development, with emphasis on orofacial clefts. We suggest that these defects can be a sensitive indication of down regulated SUMO modification at a critical stage during embryogenesis. As well as specific mutations affecting the ability of particular proteins to be sumoylated, non-genetic events may have the effect of down-regulating the SUMO pathway to give the same result. Enzymes regulating the SUMO pathway may become important therapeutic targets in the preventative and treatment therapies for craniofacial defects in the future.
Collapse
Affiliation(s)
- Erwin Pauws
- Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Philip Stanier
- Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
44
|
Xu P, Lin X, Feng XH. Posttranslational Regulation of Smads. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a022087. [PMID: 27908935 DOI: 10.1101/cshperspect.a022087] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transforming growth factor β (TGF-β) family signaling dictates highly complex programs of gene expression responses, which are extensively regulated at multiple levels and vary depending on the physiological context. The formation, activation, and destruction of two major functional complexes in the TGF-β signaling pathway (i.e., the TGF-β receptor complexes and the Smad complexes that act as central mediators of TGF-β signaling) are direct targets for posttranslational regulation. Dysfunction of these complexes often leads or contributes to pathogenesis in cancer and fibrosis and in cardiovascular, and autoimmune diseases. Here we discuss recent insights into the roles of posttranslational modifications in the functions of the receptor-activated Smads in the common Smad4 and inhibitory Smads, and in the control of the physiological responses to TGF-β. It is now evident that these modifications act as decisive factors in defining the intensity and versatility of TGF-β responsiveness. Thus, the characterization of posttranslational modifications of Smads not only sheds light on how TGF-β controls physiological and pathological processes but may also guide us to manipulate the TGF-β responses for therapeutic benefits.
Collapse
Affiliation(s)
- Pinglong Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
45
|
Chaikuad A, Bullock AN. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a022111. [PMID: 27549117 DOI: 10.1101/cshperspect.a022111] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Stimulation of the transforming growth factor β (TGF-β) family receptors activates an intracellular phosphorylation-dependent signaling cascade that culminates in Smad transcriptional activation and turnover. Structural studies have identified a number of allosteric mechanisms that control the localization, conformation, and oligomeric state of the receptors and Smads. Such mechanisms dictate the ordered binding of substrate and adaptor proteins that determine the directionality of the signaling process. Activation of the pathway has been illustrated by the various structures of the receptor-activated Smads (R-Smads) with SARA, Smad4, and YAP, respectively, whereas mechanisms of down-regulation have been elucidated by the structural complexes of FKBP12, Ski, and Smurf1. Interesting parallels have emerged between the R-Smads and the Forkhead-associated (FHA) and interferon regulatory factor (IRF)-associated domains, as well as the Hippo pathway. However, important questions remain as to the mechanism of Smad-independent signaling.
Collapse
Affiliation(s)
- Apirat Chaikuad
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
46
|
Abstract
Transforming growth factor β (TGF-β) and related growth factors are secreted pleiotropic factors that play critical roles in embryogenesis and adult tissue homeostasis by regulating cell proliferation, differentiation, death, and migration. The TGF-β family members signal via heteromeric complexes of type I and type II receptors, which activate members of the Smad family of signal transducers. The main attribute of the TGF-β signaling pathway is context-dependence. Depending on the concentration and type of ligand, target tissue, and developmental stage, TGF-β family members transmit distinct signals. Deregulation of TGF-β signaling contributes to developmental defects and human diseases. More than a decade of studies have revealed the framework by which TGF-βs encode a context-dependent signal, which includes various positive and negative modifiers of the principal elements of the signaling pathway, the receptors, and the Smad proteins. In this review, we first introduce some basic components of the TGF-β signaling pathways and their actions, and then discuss posttranslational modifications and modulatory partners that modify the outcome of the signaling and contribute to its context-dependence, including small noncoding RNAs.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
47
|
Abstract
Transforming growth factor β (TGF-β) family members signal via heterotetrameric complexes of type I and type II dual specificity kinase receptors. The activation and stability of the receptors are controlled by posttranslational modifications, such as phosphorylation, ubiquitylation, sumoylation, and neddylation, as well as by interaction with other proteins at the cell surface and in the cytoplasm. Activation of TGF-β receptors induces signaling via formation of Smad complexes that are translocated to the nucleus where they act as transcription factors, as well as via non-Smad pathways, including the Erk1/2, JNK and p38 MAP kinase pathways, and the Src tyrosine kinase, phosphatidylinositol 3'-kinase, and Rho GTPases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
48
|
Liebelt F, Vertegaal ACO. Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am J Physiol Cell Physiol 2016; 311:C284-96. [PMID: 27335169 PMCID: PMC5129774 DOI: 10.1152/ajpcell.00091.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/04/2023]
Abstract
Cellular proteomes are continuously undergoing alterations as a result of new production of proteins, protein folding, and degradation of proteins. The proper equilibrium of these processes is known as proteostasis, implying that proteomes are in homeostasis. Stress conditions can affect proteostasis due to the accumulation of misfolded proteins as a result of overloading the degradation machinery. Proteostasis is affected in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple polyglutamine disorders including Huntington's disease. Owing to a lack of proteostasis, neuronal cells build up toxic protein aggregates in these diseases. Here, we review the role of the ubiquitin-like posttranslational modification SUMO in proteostasis. SUMO alone contributes to protein homeostasis by influencing protein signaling or solubility. However, the main contribution of SUMO to proteostasis is the ability to cooperate with, complement, and balance the ubiquitin-proteasome system at multiple levels. We discuss the identification of enzymes involved in the interplay between SUMO and ubiquitin, exploring the complexity of this crosstalk which regulates proteostasis. These enzymes include SUMO-targeted ubiquitin ligases and ubiquitin proteases counteracting these ligases. Additionally, we review the role of SUMO in brain-related diseases, where SUMO is primarily investigated because of its role during formation of aggregates, either independently or in cooperation with ubiquitin. Detailed understanding of the role of SUMO in these diseases could lead to novel treatment options.
Collapse
Affiliation(s)
- Frauke Liebelt
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
49
|
Transcriptional repression of SIRT1 by protein inhibitor of activated STAT 4 (PIAS4) in hepatic stellate cells contributes to liver fibrosis. Sci Rep 2016; 6:28432. [PMID: 27323886 PMCID: PMC4914937 DOI: 10.1038/srep28432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023] Open
Abstract
Interstitial fibrosis represents a key pathological process in non-alcoholic steatohepatitis (NASH). In the liver, fibrogenesis is primarily mediated by activated hepatic stellate cells (HSCs) transitioning from a quiescent state in response to a host of stimuli. The molecular mechanism underlying HSC activation is not completely understood. Here we report that there was a simultaneous up-regulation of PIAS4 expression and down-regulation of SIRT1 expression accompanying increased hepatic fibrogenesis in an MCD-diet induced mouse model of NASH. In cultured primary mouse HSCs, stimulation with high glucose activated PIAS4 while at the same time repressed SIRT1. Over-expression of PIAS4 directly repressed SIRT1 promoter activity. In contrast, depletion of PIAS4 restored SIRT1 expression in HSCs treated with high glucose. Estrogen, a known NASH-protective hormone, antagonized HSC activation by targeting PIAS4. Lentivirus-mediated delivery of short hairpin RNA (shRNA) targeting PIAS4 in mice ameliorated MCD diet induced liver fibrosis by normalizing SIRT1 expression in vivo. PIAS4 promoted HSC activation in a SIRT1-dependent manner in vitro. Mechanistically, PIAS4 mediated SIRT1 repression led to SMAD3 hyperacetylation and enhanced SMAD3 binding to fibrogenic gene promoters. Taken together, our data suggest SIRT1 trans-repression by PIAS4 plays an important role in HSC activation and liver fibrosis.
Collapse
|
50
|
Wang F, Cai F, Shi R, Wei JN, Wu XT. Hypoxia regulates sumoylation pathways in intervertebral disc cells: implications for hypoxic adaptations. Osteoarthritis Cartilage 2016; 24:1113-24. [PMID: 26826302 DOI: 10.1016/j.joca.2016.01.134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore the hypoxic regulation of sumoylation pathways and cell viability in nucleus pulposus (NP) and annulus fibrosus (AF) cells. DESIGN Expression of small ubiquitin-like modifier (SUMO) molecules, SUMO E1 activating enzymes SAE1 and SAE2, SUMO E2 conjugating enzyme UBC9, and de-sumoylation enzyme sentrin/SUMO-specific proteases (SENP)1 was immunolocalized in rat intervertebral disc (IVD) cells. NP and AF cells were cultured in hypoxia and cell viability was evaluated by quantifying cell proliferation, cellular senescence, apoptosis, and cell cycle distribution. Hypoxic regulation of sumoylation pathways was studied by analyzing the transcription and expression of SUMO molecules and sumoylation enzymes. Loss of function study using SENP1 siRNA was performed to investigate the regulatory role of sumoylation on the function of hypoxia inducible factor 1α (HIF-1α) and the hypoxic tolerance of IVD cells. RESULTS Sumoylation pathways were expressed in IVD cells and localized predominantly in nuclei. Both NP and AF cells maintained viability under hypoxia and upregulated the expression of SENP1. In NP cells hypoxia transiently increased the expression of SUMO-1, SUMO-2/3, SAE2, and UBC9, whereas SUMO-1 was elevated while SUMO-2/3, SAE1, SAE2, and UBC9 were reduced by low oxygen tensions in AF cells. Although downregulation of SENP1 decreased the transcriptional activity of HIF-1α, the viability of disc cells showed no significant loss under hypoxia. CONCLUSIONS NP and AF cells equally tolerate oxygen deficiency, but differently regulate the sumoylation pathways under hypoxia. The distinct sumoylation dynamics may help extend our understanding of the cell-specific regulation of the molecular basis that promotes cell survival in the hypoxic IVD.
Collapse
Affiliation(s)
- F Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - F Cai
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - R Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - J-N Wei
- Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - X-T Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| |
Collapse
|