1
|
van de Kooij B, van der Wal FJ, Rother MB, Wiegant WW, Creixell P, Stout M, Joughin BA, Vornberger J, Altmeyer M, van Vugt MATM, Yaffe MB, van Attikum H. The Fanconi anemia core complex promotes CtIP-dependent end resection to drive homologous recombination at DNA double-strand breaks. Nat Commun 2024; 15:7076. [PMID: 39152113 PMCID: PMC11329772 DOI: 10.1038/s41467-024-51090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/17/2024] [Indexed: 08/19/2024] Open
Abstract
During the repair of interstrand crosslinks (ICLs) a DNA double-strand break (DSB) is generated. The Fanconi anemia (FA) core complex, which is recruited to ICLs, promotes high-fidelity repair of this DSB by homologous recombination (HR). However, whether the FA core complex also promotes HR at ICL-independent DSBs, for example induced by ionizing irradiation or nucleases, remains controversial. Here, we identified the FA core complex members FANCL and Ube2T as HR-promoting factors in a CRISPR/Cas9-based screen. Using isogenic cell line models, we further demonstrated an HR-promoting function of FANCL and Ube2T, and of their ubiquitination substrate FANCD2. We show that FANCL and Ube2T localize at DSBs in a FANCM-dependent manner, and are required for the DSB accumulation of FANCD2. Mechanistically, we demonstrate that FANCL ubiquitin ligase activity is required for the accumulation of CtIP at DSBs, thereby promoting end resection and Rad51 loading. Together, these data demonstrate a dual genome maintenance function of the FA core complex and FANCD2 in promoting repair of both ICLs and DSBs.
Collapse
Affiliation(s)
- Bert van de Kooij
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Fenna J van der Wal
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Pau Creixell
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- CRUK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Merula Stout
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Vornberger
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Surgery, Beth Israel Deaconess Medical Center, Divisions of Acute Care Surgery, Trauma, and Critical Care and Surgical Oncology, Harvard Medical School, Boston, USA.
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
2
|
Jin Y, Li Y, He S, Ge Y, Zhao Y, Zhu K, He A, Li S, Yan S, Cao C. ATM participates in fine particulate matter-induced airway inflammation through regulating DNA damage and DNA damage response. ENVIRONMENTAL TOXICOLOGY 2023; 38:2668-2678. [PMID: 37483094 DOI: 10.1002/tox.23901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
The relationship between fine particulate matter (PM2.5) and chronic airway inflammatory diseases, such as chronic obstructive pulmonary disease and asthma, have garnered public attention, while the detailed mechanisms of PM2.5-induced airway inflammation remain unclear. This study reveals that PM2.5 induces airway inflammation both in vivo and in vitro, and, moreover, identifies DNA damage and DNA damage repair (DDR) as results of this exposure. Ataxia telangiectasia-mutated heterozygous (ATM+/- ) and wild-type C57BL/6 (WT) mice were exposed to PM2.5. The results show that, following exposure to PM2.5, the number of neutrophils in broncho alveolar lavage fluid and the mRNA expression of CXCL-1 in lung tissues of the ATM+/- mice were lower than those of the WT mice. The mRNA expression of FANCD2 and FANCI were also down-regulated. Human bronchial epithelial (HBE) cells were transfected with ATM-siRNA to induce down-regulation of ATM gene expression and were subsequently stimulated with PM2.5. The results show that the mRNA expression of TNF-α decreased in the ATM-siRNA-transfected cells. The mRNA expression of CXCL-1 and CXCL-2 in peritoneal macrophages, derived from ATM-null mice in which experiments showed that the protein expression of FANCD2 and FANCI decreased, were also decreased after PM2.5 exposure in ATM-siRNA-transfected HBE cells. In conclusion, PM2.5-induced airway inflammation is alleviated in ATM+/- mice compared with WT mice. ATM promotes PM2.5-induced airway inflammation, which may be attributed to the regulation of DNA damage and DDR.
Collapse
Affiliation(s)
- Yan Jin
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Yiting Li
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shiyi He
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yijun Ge
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yun Zhao
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ke Zhu
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Andong He
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Siyu Li
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Siyu Yan
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chao Cao
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
3
|
van de Kooij B, van der Wal FJ, Rother MB, Creixell P, Stout M, Wiegant W, Joughin BA, Vornberger J, van Vugt MA, Altmeyer M, Yaffe MB, van Attikum H. The Fanconi anemia core complex promotes CtIP-dependent end-resection to drive homologous recombination at DNA double-strand breaks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556391. [PMID: 37732274 PMCID: PMC10508776 DOI: 10.1101/2023.09.05.556391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Homologous Recombination (HR) is a high-fidelity repair mechanism of DNA Double-Strand Breaks (DSBs), which are induced by irradiation, genotoxic chemicals or physiological DNA damaging processes. DSBs are also generated as intermediates during the repair of interstrand crosslinks (ICLs). In this context, the Fanconi anemia (FA) core complex, which is effectively recruited to ICLs, promotes HR-mediated DSB-repair. However, whether the FA core complex also promotes HR at ICL-independent DSBs remains controversial. Here, we identified the FA core complex members FANCL and Ube2T as HR-promoting factors in a CRISPR/Cas9-based screen with cells carrying the DSB-repair reporter DSB-Spectrum. Using isogenic cell-line models, we validated the HR-function of FANCL and Ube2T, and demonstrated a similar function for their ubiquitination-substrate FANCD2. We further show that FANCL and Ube2T are directly recruited to DSBs and are required for the accumulation of FANCD2 at these break sites. Mechanistically, we demonstrate that FANCL ubiquitin ligase activity is required for the accumulation of the nuclease CtIP at DSBs, and consequently for optimal end-resection and Rad51 loading. CtIP overexpression rescues HR in FANCL-deficient cells, validating that FANCL primarily regulates HR by promoting CtIP recruitment. Together, these data demonstrate that the FA core complex and FANCD2 have a dual genome maintenance function by promoting repair of DSBs as well as the repair of ICLs.
Collapse
Affiliation(s)
- Bert van de Kooij
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Current address: Department of Medical Oncology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Fenna J. van der Wal
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Magdalena B. Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Pau Creixell
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Current address: CRUK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Merula Stout
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Wouter Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Brian A. Joughin
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Vornberger
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Marcel A.T.M. van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Michael B. Yaffe
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Divisions of Acute Care Surgery, Trauma, and Critical Care and Surgical Oncology, Harvard Medical School, Boston
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
4
|
Wang Y, Zhang Z, Jiao W, Wang Y, Wang X, Zhao Y, Fan X, Tian L, Li X, Mi J. Ferroptosis and its role in skeletal muscle diseases. Front Mol Biosci 2022; 9:1051866. [PMID: 36406272 PMCID: PMC9669482 DOI: 10.3389/fmolb.2022.1051866] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Ferroptosis is characterized by the accumulation of iron and lipid peroxidation products, which regulates physiological and pathological processes in numerous organs and tissues. A growing body of research suggests that ferroptosis is a key causative factor in a variety of skeletal muscle diseases, including sarcopenia, rhabdomyolysis, rhabdomyosarcoma, and exhaustive exercise-induced fatigue. However, the relationship between ferroptosis and various skeletal muscle diseases has not been investigated systematically. This review’s objective is to provide a comprehensive summary of the mechanisms and signaling factors that regulate ferroptosis, including lipid peroxidation, iron/heme, amino acid metabolism, and autophagy. In addition, we tease out the role of ferroptosis in the progression of different skeletal muscle diseases and ferroptosis as a potential target for the treatment of multiple skeletal muscle diseases. This review can provide valuable reference for the research on the pathogenesis of skeletal muscle diseases, as well as for clinical prevention and treatment.
Collapse
Affiliation(s)
- Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Weikai Jiao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yanyan Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiuge Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yunyun Zhao
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xuechun Fan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Tian
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| | - Jia Mi
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| |
Collapse
|
5
|
Gao L, Hua W, Tian L, Zhou X, Wang D, Yang Y, Ni G. Molecular Mechanism of Ferroptosis in Orthopedic Diseases. Cells 2022; 11:2979. [PMID: 36230941 PMCID: PMC9563396 DOI: 10.3390/cells11192979] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis is a new iron-dependent programmed cell death process that is directly mediated by the accumulation of lipid peroxides and reactive oxygen species. Numerous studies have shown that ferroptosis is important in regulating the occurrence and development of bone-related diseases, but the underlying mechanisms are not completely clear. Herein, we review the progress of the mechanism of ferroptosis in bone marrow injury, osteoporosis, osteoarthritis, and osteosarcoma and attempt to deeply understand the regulatory targets of ferroptosis, which will open up a new way for the prevention and treatment of orthopedic diseases.
Collapse
Affiliation(s)
- Lu Gao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Weizhong Hua
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Lixiang Tian
- School of Physical Education, Shanghai University, Shanghai 200444, China
| | - Xuchang Zhou
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Dongxue Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yajing Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Guoxin Ni
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
6
|
Sun Z, Wang X, Wang J, Wang J, Liu X, Huang R, Chen C, Deng M, Wang H, Han F. Key radioresistance regulation models and marker genes identified by integrated transcriptome analysis in nasopharyngeal carcinoma. Cancer Med 2021; 10:7404-7417. [PMID: 34432380 PMCID: PMC8525106 DOI: 10.1002/cam4.4228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy that is endemic to China and Southeast Asia. Radiotherapy is the usual treatment, however, radioresistance remains a major reason for failure. This study aimed to find key radioresistance regulation models and marker genes of NPC and clarify the mechanism of NPC radioresistance by RNA sequencing and bioinformatics analysis of the differences in gene expression profiles between radioresistant and radiosensitive NPC tissues. A total of 21 NPC biopsy specimens with different radiosensitivity were analyzed by RNA sequencing. Differentially expressed genes in RNA sequencing data were identified using R software. The differentially expressed gene data derived from RNA sequencing as well as prior knowledge in the form of pathway databases were integrated to find sub‐networks of related genes. The data of RNA sequencing with the GSE48501 data from the GEO database were combined to further search for more reliable genes associated with radioresistance of NPC. Survival analyses using the Kaplan–Meier method based on the expression of the genes were conducted to facilitate the understanding of the clinical significance of the differentially expressed genes. RT‐qPCR was performed to validate the expression levels of the differentially expressed genes. We identified 1182 differentially expressed genes between radioresistant and radiosensitive NPC tissue samples. Compared to the radiosensitive group, 22 genes were significantly upregulated and 1160 genes were downregulated in the radioresistant group. In addition, 10 major NPC radiation resistance network models were identified through integration analysis with known NPC radiation resistance‐associated genes and mechanisms. Furthermore, we identified three core genes, DOCK4, MCM9, and POPDC3 among 12 common downregulated genes in the two datasets, which were validated by RT‐qPCR. The findings of this study provide new clues for clarifying the mechanism of NPC radioresistance, and further experimental studies of these core genes are warranted.
Collapse
Affiliation(s)
- Zhuang Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Xiaohui Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Jingyun Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Jing Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | | | - Runda Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Chunyan Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Meiling Deng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Hanyu Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Fei Han
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Liu J, Ma H, Meng L, Liu X, Lv Z, Zhang Y, Wang J. Construction and External Validation of a Ferroptosis-Related Gene Signature of Predictive Value for the Overall Survival in Bladder Cancer. Front Mol Biosci 2021; 8:675651. [PMID: 34095228 PMCID: PMC8175978 DOI: 10.3389/fmolb.2021.675651] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023] Open
Abstract
Purpose: To identify whether ferroptosis-related genes play predictive roles in bladder cancer patients and to develop a ferroptosis-related gene signature to predict overall survival outcomes. Materials and Methods: We downloaded the mRNA expression files and clinical data of 256 bladder samples (188 bladder tumour and 68 nontumour samples) from the GEO database and 430 bladder samples (411 bladder tumour and 19 nontumour samples) from the TCGA database. A multigene signature based on prognostic ferroptosis-related genes was constructed by least absolute shrinkage and selection operator Cox regression analysis in the GEO cohort. The TCGA cohort was used to validate the ferroptosis-related gene signature. Next, functional enrichment analysis, including both Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses, was performed to elucidate the mechanism underlying the signature. The ssGSEA scores of 16 immune cells and 13 immune-related pathway activities between the high-risk and low-risk groups were also analysed in our study. Results: Thirty-three (67.3%) ferroptosis-related genes were differentially expressed between bladder tumour samples and nontumour samples in the GEO cohort. The intersection of prognostic ferroptosis-related genes and differentially expressed genes identified four prognostic targets, including ALOX5, FANCD2, HMGCR and FADS2. The least absolute shrinkage and selection operator Cox regression successfully built a 4-gene signature: risk score value = esum (each gene's normalized expression * each gene's coefficient). Univariate and multivariate Cox regression analyses were performed in both the GEO and TCGA cohorts to test the independent prognostic value of the 4-gene risk signature. Multivariate Cox regression analysis in the GEO cohort identified age (p < 0.001), grade (p = 0.129) and risk score (p = 0.016) as independent prognostic predictors for overall survival. Multivariate Cox regression analysis in the TCGA cohort also identified age (p = 0.002), stage (p < 0.001) and risk score (p = 0.006) as independent prognostic predictors for overall survival. The type II IFN response was determined to be significantly weakened in the high-risk group in both the GEO and TCGA cohorts. Conclusion: We successfully built a ferroptosis-related gene signature of significant predictive value for bladder cancer. These results suggest a novel research direction for targeted therapy of bladder cancer in the future.
Collapse
Affiliation(s)
- Jingchao Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Ma
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingfeng Meng
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodong Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengtong Lv
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaoguang Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianye Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Subedi P, Gomolka M, Moertl S, Dietz A. Ionizing Radiation Protein Biomarkers in Normal Tissue and Their Correlation to Radiosensitivity: A Systematic Review. J Pers Med 2021; 11:jpm11020140. [PMID: 33669522 PMCID: PMC7922485 DOI: 10.3390/jpm11020140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 12/16/2022] Open
Abstract
Background and objectives: Exposure to ionizing radiation (IR) has increased immensely over the past years, owing to diagnostic and therapeutic reasons. However, certain radiosensitive individuals show toxic enhanced reaction to IR, and it is necessary to specifically protect them from unwanted exposure. Although predicting radiosensitivity is the way forward in the field of personalised medicine, there is limited information on the potential biomarkers. The aim of this systematic review is to identify evidence from a range of literature in order to present the status quo of our knowledge of IR-induced changes in protein expression in normal tissues, which can be correlated to radiosensitivity. Methods: Studies were searched in NCBI Pubmed and in ISI Web of Science databases and field experts were consulted for relevant studies. Primary peer-reviewed studies in English language within the time-frame of 2011 to 2020 were considered. Human non-tumour tissues and human-derived non-tumour model systems that have been exposed to IR were considered if they reported changes in protein levels, which could be correlated to radiosensitivity. At least two reviewers screened the titles, keywords, and abstracts of the studies against the eligibility criteria at the first phase and full texts of potential studies at the second phase. Similarly, at least two reviewers manually extracted the data and accessed the risk of bias (National Toxicology Program/Office for Health Assessment and Translation—NTP/OHAT) for the included studies. Finally, the data were synthesised narratively in accordance to synthesis without meta analyses (SWiM) method. Results: In total, 28 studies were included in this review. Most of the records (16) demonstrated increased residual DNA damage in radiosensitive individuals compared to normo-sensitive individuals based on γH2AX and TP53BP1. Overall, 15 studies included proteins other than DNA repair foci, of which five proteins were selected, Vascular endothelial growth factor (VEGF), Caspase 3, p16INK4A (Cyclin-dependent kinase inhibitor 2A, CDKN2A), Interleukin-6, and Interleukin-1β, that were connected to radiosensitivity in normal tissue and were reported at least in two independent studies. Conclusions and implication of key findings: A majority of studies used repair foci as a tool to predict radiosensitivity. However, its correlation to outcome parameters such as repair deficient cell lines and patients, as well as an association to moderate and severe clinical radiation reactions, still remain contradictory. When IR-induced proteins reported in at least two studies were considered, a protein network was discovered, which provides a direction for further studies to elucidate the mechanisms of radiosensitivity. Although the identification of only a few of the commonly reported proteins might raise a concern, this could be because (i) our eligibility criteria were strict and (ii) radiosensitivity is influenced by multiple factors. Registration: PROSPERO (CRD42020220064).
Collapse
|
9
|
Targeting DNA Repair and Chromatin Crosstalk in Cancer Therapy. Cancers (Basel) 2021; 13:cancers13030381. [PMID: 33498525 PMCID: PMC7864178 DOI: 10.3390/cancers13030381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Targeting aberrant DNA repair in cancers in addition to transcription and replication is an area of interest for cancer researchers. Inhibition of DNA repair selectively in cancer cells leads to cytotoxic or cytostatic effects and overcomes survival advantages imparted by chromosomal translocations or mutations. In this review, we highlight the relevance of DNA repair-linked events in developmental diseases and cancers and also discuss mechanisms to overcome these events that participate in different cellular processes. Abstract Aberrant DNA repair pathways that underlie developmental diseases and cancers are potential targets for therapeutic intervention. Targeting DNA repair signal effectors, modulators and checkpoint proteins, and utilizing the synthetic lethality phenomena has led to seminal discoveries. Efforts to efficiently translate the basic findings to the clinic are currently underway. Chromatin modulation is an integral part of DNA repair cascades and an emerging field of investigation. Here, we discuss some of the key advancements made in DNA repair-based therapeutics and what is known regarding crosstalk between chromatin and repair pathways during various cellular processes, with an emphasis on cancer.
Collapse
|
10
|
Sharapova SO, Pashchenko OE, Bondarenko AV, Vakhlyarskaya SS, Prokofjeva T, Fedorova AS, Savchak I, Mareika Y, Valiev TT, Popa A, Tuzankina IA, Vlasova EV, Sakovich IS, Polyakova EA, Rumiantseva NV, Naumchik IV, Kulyova SA, Aleshkevich SN, Golovataya EI, Minakovskaya NV, Belevtsev MV, Latysheva EA, Latysheva TV, Beznoshchenko AG, Akopyan H, Makukh H, Kozlova O, Varabyou DS, Ballow M, Ong MS, Walter JE, Kondratenko IV, Kostyuchenko LV, Aleinikova OV. Geographical Distribution, Incidence, Malignancies, and Outcome of 136 Eastern Slavic Patients With Nijmegen Breakage Syndrome and NBN Founder Variant c.657_661del5. Front Immunol 2021; 11:602482. [PMID: 33488600 PMCID: PMC7819964 DOI: 10.3389/fimmu.2020.602482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/11/2020] [Indexed: 11/14/2022] Open
Abstract
Nijmegen breakage syndrome (NBS) is a DNA repair disorder characterized by combined immunodeficiency and a high predisposition to lymphoid malignancies. The majority of NBS patients are identified with a homozygous five base pair deletion in the Nibrin (NBN) gene (c.657_661del5, p.K219fsX19) with a founder effect observed in Caucasian European populations, especially of Slavic origin. We present here an analysis of a cohort of 136 NBS patients of Eastern Slav origin across Belarus, Ukraine, Russia, and Latvia with a focus on understanding the geographic distribution, incidence of malignancy, and treatment outcomes of this cohort. Our analysis shows that Belarus had the highest prevalence of NBS (2.3 per 1,000,000), followed by Ukraine (1.3 per 1,000,000), and Russia (0.7 per 1,000,000). Of note, the highest concentration of NBS cases was observed in the western regions of Belarus and Ukraine, where NBS prevalence exceeds 20 cases per 1,000,000 people, suggesting the presence of an “Eastern Slavic NBS hot spot.” The median age at diagnosis of this cohort ranged from 4 to 5 years, and delay in diagnosis was more pervasive in smaller cities and rural regions. A total of 62 (45%) patients developed malignancies, more commonly in males than females (55.2 vs. 34.2%; p=0.017). In 27 patients, NBS was diagnosed following the onset of malignancies (mean age: 8 years). Malignancies were mostly of lymphoid origin and predominantly non-Hodgkin lymphoma (NHL) (n=42, 68%); 38% of patients had diffuse large B-cell lymphoma. The 20-year overall survival rate of patients with malignancy was 24%. However, females with cancer experienced poorer event-free survival rates than males (16.6% vs. 46.8%, p=0.036). Of 136 NBS patients, 13 underwent hematopoietic stem cell transplantation (HSCT) with an overall survival of 3.5 years following treatment (range: 1 to 14 years). Indications for HSCT included malignancy (n=7) and immunodeficiency (n=6). Overall, 9% of patients in this cohort reached adulthood. Adult survivors reported diminished quality of life with significant physical and cognitive impairments. Our study highlights the need to improve timely diagnosis and clinical management of NBS among Eastern Slavs. Genetic counseling and screening should be offered to individuals with a family history of NBS, especially in hot spot regions.
Collapse
Affiliation(s)
- Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Olga E Pashchenko
- Immunology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anastasiia V Bondarenko
- Department of Pediatric Infectious Diseases and Pediatric Immunology, Shupyk National Medical Academy of Postgraduate Education, Kiev, Ukraine
| | - Svetlana S Vakhlyarskaya
- Clinical Immunology and Rheumatology Department, Russian Children's Clinical Hospital of Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Alina S Fedorova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Ihor Savchak
- Pediatric Department, West-Ukrainian Specialized Children's Medical Center, Lviv, Ukraine
| | - Yuliya Mareika
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Timur T Valiev
- Chemotherapy Hemoblastoses Department, Pediatric Oncology and Hematology Research Institute of N.N. Blokhin National Cancer Research Center of the Ministry of Health of Russian Federation, Moscow, Russia
| | - Alexander Popa
- Propedevtica of Childhood Diseases Faculty, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Irina A Tuzankina
- Institute of Immunology and Physiology of the Branch of the Russian Academy of Sciences, Federal State Autonomous Educational Intuition of Higher Professional Education (Ural Federal University of a Name of the First President of Russia, B.N. Yeltsin), Yekaterinburg, Russia
| | - Elena V Vlasova
- Clinical Department, Regional Children's Clinical Hospital №1, Yekaterinburg, Russia
| | - Inga S Sakovich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Ekaterina A Polyakova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Irina V Naumchik
- Research Department, Republican Medical Center (Mother and Child), Minsk, Belarus
| | - Svetlana A Kulyova
- Pediatric Oncology Department, N.N. Petrov National Medical Research Center of Oncology, St-Petersburg, Russia
| | - Svetlana N Aleshkevich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Elena I Golovataya
- Research Department, Republican Medical Center (Mother and Child), Minsk, Belarus
| | - Nina V Minakovskaya
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Mikhail V Belevtsev
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Elena A Latysheva
- Immunopathology Department, NRC Institute of Immunology FMBA, Moscow, Russia
| | - Tatiana V Latysheva
- Immunopathology Department, NRC Institute of Immunology FMBA, Moscow, Russia
| | | | - Hayane Akopyan
- Institute of Hereditary Pathology of National Academy of Medical Sciences of Ukraine, Lviv, Ukraine
| | - Halyna Makukh
- Institute of Hereditary Pathology of National Academy of Medical Sciences of Ukraine, Lviv, Ukraine
| | - Olena Kozlova
- West-Ukrainian Specialized Children's Medical Center, Lviv, Ukraine
| | - Dzmitry S Varabyou
- Department of Ecologic Geography, Belarusian State University, Minsk, Belarus
| | - Mark Ballow
- Department of Pediatrics, University of South Florida at Johns Hopkins All Children's Hospital, Saint Petersburg, FL, United States
| | - Mei-Sing Ong
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care, Boston, MA, United States
| | - Jolan E Walter
- Department Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, Saint Petersburg, FL, United States
| | - Irina V Kondratenko
- Clinical Immunology and Rheumatology Department, Russian Children's Clinical Hospital of Pirogov Russian National Research Medical University, Moscow, Russia
| | - Larysa V Kostyuchenko
- Pediatric Department, West-Ukrainian Specialized Children's Medical Center, Lviv, Ukraine
| | - Olga V Aleinikova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| |
Collapse
|
11
|
Ionizing Radiation Protein Biomarkers in Normal Tissue and Their Correlation to Radiosensitivity: Protocol for a Systematic Review. J Pers Med 2020; 11:jpm11010003. [PMID: 33375047 PMCID: PMC7822013 DOI: 10.3390/jpm11010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Background: Radiosensitivity is a significantly enhanced reaction of cells, tissues, organs or organisms to ionizing radiation (IR). During radiotherapy, surrounding normal tissue radiosensitivity often limits the radiation dose that can be applied to the tumour, resulting in suboptimal tumour control or adverse effects on the life quality of survivors. Predicting radiosensitivity is a component of personalized medicine, which will help medical professionals allocate radiation therapy decisions for effective tumour treatment. So far, there are no reviews of the current literature that explore the relationship between proteomic changes after IR exposure and normal tissue radiosensitivity systematically. Objectives: The main objective of this protocol is to specify the search and evaluation strategy for a forthcoming systematic review (SR) dealing with the effects of in vivo and in vitro IR exposure on the proteome of human normal tissue with focus on radiosensitivity. Methods: The SR framework has been developed following the guidelines established in the National Toxicology Program/Office of Health Assessment and Translation (NTP/OHAT) Handbook for Conducting a Literature-Based Health Assessment, which provides a standardised methodology to implement the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to environmental health assessments. The protocol will be registered in PROSPERO, an open source protocol registration system, to guarantee transparency. Eligibility criteria: Only experimental studies, in vivo and in vitro, investigating effects of ionizing radiation on the proteome of human normal tissue correlated with radio sensitivity will be included. Eligible studies will include English peer reviewed articles with publication dates from 2011–2020 which are sources of primary data. Information sources: The search strings will be applied to the scientific literature databases PubMed and Web of Science. The reference lists of included studies will also be manually searched. Data extraction and results: Data will be extracted according to a pre-defined modality and compiled in a narrative report following guidelines presented as a “Synthesis without Meta-analyses” method. Risk of bias: The risk of bias will be assessed based on the NTP/OHAT risk of bias rating tool for human and animal studies (OHAT 2019). Level of evidence rating: A comprehensive assessment of the quality of evidence for both in vivo and in vitro studies will be followed, by assigning a confidence rating to the literature. This is followed by translation into a rating on the level of evidence (high, moderate, low, or inadequate) regarding the research question. Registration: PROSPERO Submission ID 220064.
Collapse
|
12
|
Shibui Y, Kohashi K, Tamaki A, Kinoshita I, Yamada Y, Yamamoto H, Taguchi T, Oda Y. The forkhead box M1 (FOXM1) expression and antitumor effect of FOXM1 inhibition in malignant rhabdoid tumor. J Cancer Res Clin Oncol 2020; 147:1499-1518. [PMID: 33221995 DOI: 10.1007/s00432-020-03438-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Malignant rhabdoid tumor (MRT) is a rare, highly aggressive sarcoma with an uncertain cell of origin. Despite the existing standard of intensive multimodal therapy, the prognosis of patients with MRT is very poor. Novel antitumor agents are needed for MRT patients. Forkhead box transcription factor 1 (FOXM1) is overexpressed and is correlated with the pathogenesis in several human malignancies. In this study, we identified the clinicopathological and prognostic values of the expression of FOXM1 and its roles in the progression of MRT. METHODS We investigated the FOXM1 expression levels and their clinical significance in 23 MRT specimens using immunohistochemistry and performed clinicopathologic and prognostic analyses. We also demonstrated correlations between the downregulation of FOXM1 and oncological characteristics using small interfering RNA (siRNA) and FOXM1 inhibitor in MRT cell lines. RESULTS Histopathological analyses revealed that primary renal MRTs showed significantly low FOXM1 protein expression levels (p = 0.032); however, there were no significant differences in other clinicopathological characteristics or the survival rate. FOXM1 siRNA and FOXM1 inhibitor (thiostrepton) successfully downregulated the mRNA and protein expression of FOXM1 in vitro and the downregulation of FOXM1 inhibited cell proliferation, drug resistance to chemotherapeutic agents, migration, invasion, and caused the cell cycle arrest and apoptosis of MRT cell lines. A cDNA microarray analysis showed that FOXM1 regulated FANCD2 and NBS1, which are key genes for DNA damage repair. CONCLUSION This study demonstrates that FOXM1 may serve as a promising therapeutic target for MRT.
Collapse
Affiliation(s)
- Yuichi Shibui
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akihiko Tamaki
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Izumi Kinoshita
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology Graduate School of Medical Sciences, Kyushu University, Maidashi3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
13
|
The FANC/BRCA Pathway Releases Replication Blockades by Eliminating DNA Interstrand Cross-Links. Genes (Basel) 2020; 11:genes11050585. [PMID: 32466131 PMCID: PMC7288313 DOI: 10.3390/genes11050585] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
DNA interstrand cross-links (ICLs) represent a major barrier blocking DNA replication fork progression. ICL accumulation results in growth arrest and cell death—particularly in cell populations undergoing high replicative activity, such as cancer and leukemic cells. For this reason, agents able to induce DNA ICLs are widely used as chemotherapeutic drugs. However, ICLs are also generated in cells as byproducts of normal metabolic activities. Therefore, every cell must be capable of rescuing lCL-stalled replication forks while maintaining the genetic stability of the daughter cells in order to survive, replicate DNA and segregate chromosomes at mitosis. Inactivation of the Fanconi anemia/breast cancer-associated (FANC/BRCA) pathway by inherited mutations leads to Fanconi anemia (FA), a rare developmental, cancer-predisposing and chromosome-fragility syndrome. FANC/BRCA is the key hub for a complex and wide network of proteins that—upon rescuing ICL-stalled DNA replication forks—allows cell survival. Understanding how cells cope with ICLs is mandatory to ameliorate ICL-based anticancer therapies and provide the molecular basis to prevent or bypass cancer drug resistance. Here, we review our state-of-the-art understanding of the mechanisms involved in ICL resolution during DNA synthesis, with a major focus on how the FANC/BRCA pathway ensures DNA strand opening and prevents genomic instability.
Collapse
|
14
|
CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat Genet 2018; 50:1132-1139. [PMID: 30054595 DOI: 10.1038/s41588-018-0174-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023]
Abstract
CRISPR-Cas genome editing creates targeted DNA double-strand breaks (DSBs) that are processed by cellular repair pathways, including the incorporation of exogenous DNA via single-strand template repair (SSTR). To determine the genetic basis of SSTR in human cells, we developed a coupled inhibition-cutting system capable of interrogating multiple editing outcomes in the context of thousands of individual gene knockdowns. We found that human Cas9-induced SSTR requires the Fanconi anemia (FA) pathway, which is normally implicated in interstrand cross-link repair. The FA pathway does not directly impact error-prone, non-homologous end joining, but instead diverts repair toward SSTR. Furthermore, FANCD2 protein localizes to Cas9-induced DSBs, indicating a direct role in regulating genome editing. Since FA is itself a genetic disease, these data imply that patient genotype and/or transcriptome may impact the effectiveness of gene editing treatments and that treatments biased toward FA repair pathways could have therapeutic value.
Collapse
|
15
|
Kallen ME, Dulau-Florea A, Wang W, Calvo KR. Acquired and germline predisposition to bone marrow failure: Diagnostic features and clinical implications. Semin Hematol 2018; 56:69-82. [PMID: 30573048 DOI: 10.1053/j.seminhematol.2018.05.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022]
Abstract
Bone marrow failure and related syndromes are rare disorders characterized by ineffective bone marrow hematopoiesis and peripheral cytopenias. Although many are associated with characteristic clinical features, recent advances have shown a more complicated picture with a spectrum of broad and overlapping phenotypes and imperfect genotype-phenotype correlations. Distinguishing acquired from inherited forms of marrow failure can be challenging, but is of crucial importance given differences in the risk of disease progression to myelodysplastic syndrome, acute myeloid leukemia, and other malignancies, as well as the potential to genetically screen relatives and select the appropriate donor if hematopoietic stem cell transplantation becomes necessary. Flow cytometry patterns in combination with morphology, cytogenetics, and history can help differentiate several diagnostic marrow failure and/or insufficiency entities and guide genetic testing. Herein we review several overlapping acquired marrow failure entities including aplastic anemia, hypoplastic myelodysplasia, and large granular lymphocyte disorders; and several bone marrow disorders with germline predisposition, including GATA2 deficiency, CTLA4 haploinsufficiency, dyskeratosis congenita and/or telomeropathies, Fanconi anemia, Shwachman-Diamond syndrome, congenital amegakaryocytic thrombocytopenia, severe congenital neutropenia, and Diamond-Blackfan anemia with a focus on advances related to pathophysiology, diagnosis, and management.
Collapse
Affiliation(s)
- Michael E Kallen
- National Cancer Institute, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Alina Dulau-Florea
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Weixin Wang
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, 20892 MD, USA.
| |
Collapse
|
16
|
Paquin KL, Howlett NG. Understanding the Histone DNA Repair Code: H4K20me2 Makes Its Mark. Mol Cancer Res 2018; 16:1335-1345. [PMID: 29858375 DOI: 10.1158/1541-7786.mcr-17-0688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/28/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
Abstract
Chromatin is a highly compact structure that must be rapidly rearranged in order for DNA repair proteins to access sites of damage and facilitate timely and efficient repair. Chromatin plasticity is achieved through multiple processes, including the posttranslational modification of histone tails. In recent years, the impact of histone posttranslational modification on the DNA damage response has become increasingly well recognized, and chromatin plasticity has been firmly linked to efficient DNA repair. One particularly important histone posttranslational modification process is methylation. Here, we focus on the regulation and function of H4K20 methylation (H4K20me) in the DNA damage response and describe the writers, erasers, and readers of this important chromatin mark as well as the combinatorial histone posttranslational modifications that modulate H4K20me recognition. Finally, we discuss the central role of H4K20me in determining if DNA double-strand breaks (DSB) are repaired by the error-prone, nonhomologous DNA end joining pathway or the error-free, homologous recombination pathway. This review article discusses the regulation and function of H4K20me2 in DNA DSB repair and outlines the components and modifications that modulate this important chromatin mark and its fundamental impact on DSB repair pathway choice. Mol Cancer Res; 16(9); 1335-45. ©2018 AACR.
Collapse
Affiliation(s)
- Karissa L Paquin
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island
| | - Niall G Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island.
| |
Collapse
|
17
|
Nepal M, Che R, Ma C, Zhang J, Fei P. FANCD2 and DNA Damage. Int J Mol Sci 2017; 18:ijms18081804. [PMID: 28825622 PMCID: PMC5578191 DOI: 10.3390/ijms18081804] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 02/07/2023] Open
Abstract
Investigators have dedicated considerable effort to understanding the molecular basis underlying Fanconi Anemia (FA), a rare human genetic disease featuring an extremely high incidence of cancer and many congenital defects. Among those studies, FA group D2 protein (FANCD2) has emerged as the focal point of FA signaling and plays crucial roles in multiple aspects of cellular life, especially in the cellular responses to DNA damage. Here, we discuss the recent and relevant studies to provide an updated review on the roles of FANCD2 in the DNA damage response.
Collapse
Affiliation(s)
- Manoj Nepal
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
- Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA.
| | - Raymond Che
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
- Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA.
| | - Chi Ma
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, Rochester, MN 55905, USA.
| | - Peiwen Fei
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
- Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|
18
|
Fujii N. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways. J Med Chem 2017; 60:9932-9959. [PMID: 28654754 DOI: 10.1021/acs.jmedchem.7b00358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article discusses some insights about generating novel mechanistic inhibitors of the DNA damage response and repair (DDR) pathways by focusing on protein-protein interactions (PPIs) of the key DDR components. General requirements for PPI strategies, such as selecting the target PPI site on the basis of its functionality, are discussed first. Next, on the basis of functional rationale and biochemical feasibility to identify a PPI inhibitor, 26 PPIs in DDR pathways (BER, MMR, NER, NHEJ, HR, TLS, and ICL repair) are specifically discussed for inhibitor discovery to benefit cancer therapies using a DNA-damaging agent.
Collapse
Affiliation(s)
- Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
19
|
Nilles N, Fahrenkrog B. Taking a Bad Turn: Compromised DNA Damage Response in Leukemia. Cells 2017; 6:cells6020011. [PMID: 28471392 PMCID: PMC5492015 DOI: 10.3390/cells6020011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 02/01/2023] Open
Abstract
Genomic integrity is of outmost importance for the survival at the cellular and the organismal level and key to human health. To ensure the integrity of their DNA, cells have evolved maintenance programs collectively known as the DNA damage response. Particularly challenging for genome integrity are DNA double-strand breaks (DSB) and defects in their repair are often associated with human disease, including leukemia. Defective DSB repair may not only be disease-causing, but further contribute to poor treatment outcome and poor prognosis in leukemia. Here, we review current insight into altered DSB repair mechanisms identified in leukemia. While DSB repair is somewhat compromised in all leukemic subtypes, certain key players of DSB repair are particularly targeted: DNA-dependent protein kinase (DNA-PK) and Ku70/80 in the non-homologous end-joining pathway, as well as Rad51 and breast cancer 1/2 (BRCA1/2), key players in homologous recombination. Defects in leukemia-related DSB repair may not only arise from dysfunctional repair components, but also indirectly from mutations in key regulators of gene expression and/or chromatin structure, such as p53, the Kirsten ras oncogene (K-RAS), and isocitrate dehydrogenase 1 and 2 (IDH1/2). A detailed understanding of the basis for defective DNA damage response (DDR) mechanisms for each leukemia subtype may allow to further develop new treatment methods to improve treatment outcome and prognosis for patients.
Collapse
Affiliation(s)
- Nadine Nilles
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Birthe Fahrenkrog
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| |
Collapse
|
20
|
Allam WR, Ashour ME, Waly AA, El-Khamisy S. Role of Protein Linked DNA Breaks in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:41-58. [PMID: 28840551 DOI: 10.1007/978-3-319-60733-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Topoisomerases are a group of specialized enzymes that function to maintain DNA topology by introducing transient DNA breaks during transcription and replication. As a result of abortive topoisomerases activity, topoisomerases catalytic intermediates may be trapped on the DNA forming topoisomerase cleavage complexes (Topcc). Topoisomerases trapping on the DNA is the mode of action of several anticancer drugs, it lead to formation of protein linked DAN breaks (PDBs). PDBs are now considered as one of the most dangerous forms of endogenous DNA damage and a major threat to genomic stability. The repair of PDBs involves both the sensing and repair pathways. Unsuccessful repair of PDBs leads to different signs of genomic instabilities such as chromosomal rearrangements and cancer predisposition. In this chapter we will summarize the role of topoisomerases induced PDBs, identification and signaling, repair, role in transcription. We will also discuss the role of PDBs in cancer with a special focus on prostate cancer.
Collapse
Affiliation(s)
- Walaa R Allam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
| | - Mohamed E Ashour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Amr A Waly
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sherif El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt. .,Krebs Institute and Sheffield Institute for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
21
|
Song X, Xie Y, Kang R, Hou W, Sun X, Epperly MW, Greenberger JS, Tang D. FANCD2 protects against bone marrow injury from ferroptosis. Biochem Biophys Res Commun 2016; 480:443-449. [PMID: 27773819 PMCID: PMC6591579 DOI: 10.1016/j.bbrc.2016.10.068] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/04/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
Abstract
Bone marrow injury remains a serious concern in traditional cancer treatment. Ferroptosis is an iron- and oxidative-dependent form of regulated cell death that has become part of an emerging strategy for chemotherapy. However, the key regulator of ferroptosis in bone marrow injury remains unknown. Here, we show that Fanconi anemia complementation group D2 (FANCD2), a nuclear protein involved in DNA damage repair, protects against ferroptosis-mediated injury in bone marrow stromal cells (BMSCs). The classical ferroptosis inducer erastin remarkably increased the levels of monoubiquitinated FANCD2, which in turn limited DNA damage in BMSCs. FANCD2-deficient BMSCs were more sensitive to erastin-induced ferroptosis (but not autophagy) than FANCD2 wild-type cells. Knockout of FANCD2 increased ferroptosis-associated biochemical events (e.g., ferrous iron accumulation, glutathione depletion, and malondialdehyde production). Mechanically, FANCD2 regulated genes and/or expression of proteins involved in iron metabolism (e.g., FTH1, TF, TFRC, HAMP, HSPB1, SLC40A1, and STEAP3) and lipid peroxidation (e.g., GPX4). Collectively, these findings indicate that FANCD2 plays a novel role in the negative regulation of ferroptosis. FANCD2 could represent an amenable target for the development of novel anticancer therapies aiming to reduce the side effects of ferroptosis inducers.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yangchun Xie
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wen Hou
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaofang Sun
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China.
| |
Collapse
|
22
|
Altmann T, Gennery AR. DNA ligase IV syndrome; a review. Orphanet J Rare Dis 2016; 11:137. [PMID: 27717373 PMCID: PMC5055698 DOI: 10.1186/s13023-016-0520-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022] Open
Abstract
DNA ligase IV deficiency is a rare primary immunodeficiency, LIG4 syndrome, often associated with other systemic features. DNA ligase IV is part of the non-homologous end joining mechanism, required to repair DNA double stranded breaks. Ubiquitously expressed, it is required to prevent mutagenesis and apoptosis, which can result from DNA double strand breakage caused by intracellular events such as DNA replication and meiosis or extracellular events including damage by reactive oxygen species and ionising radiation. Within developing lymphocytes, DNA ligase IV is required to repair programmed DNA double stranded breaks induced during lymphocyte receptor development. Patients with hypomorphic mutations in LIG4 present with a range of phenotypes, from normal to severe combined immunodeficiency. All, however, manifest sensitivity to ionising radiation. Commonly associated features include primordial growth failure with severe microcephaly and a spectrum of learning difficulties, marrow hypoplasia and a predisposition to lymphoid malignancy. Diagnostic investigations include immunophenotyping, and testing for radiosensitivity. Some patients present with microcephaly as a predominant feature, but seemingly normal immunity. Treatment is mainly supportive, although haematopoietic stem cell transplantation has been used in a few cases.
Collapse
Affiliation(s)
- Thomas Altmann
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK. .,Great North Children's Hospital, Newcastle upon Tyne, UK.
| |
Collapse
|
23
|
Komatsu K. NBS1 and multiple regulations of DNA damage response. JOURNAL OF RADIATION RESEARCH 2016; 57 Suppl 1:i11-i17. [PMID: 27068998 PMCID: PMC4990113 DOI: 10.1093/jrr/rrw031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/09/2016] [Accepted: 02/13/2016] [Indexed: 05/19/2023]
Abstract
DNA damage response is finely tuned, with several pathways including those for DNA repair, chromatin remodeling and cell cycle checkpoint, although most studies to date have focused on single pathways. Genetic diseases characterized by genome instability have provided novel insights into the underlying mechanisms of DNA damage response. NBS1, a protein responsible for the radiation-sensitive autosomal recessive disorder Nijmegen breakage syndrome, is one of the first factors to accumulate at sites of DNA double-strand breaks (DSBs). NBS1 binds to at least five key proteins, including ATM, RPA, MRE11, RAD18 and RNF20, in the conserved regions within a limited span of the C terminus, functioning in the regulation of chromatin remodeling, cell cycle checkpoint and DNA repair in response to DSBs. In this article, we reviewed the functions of these binding proteins and their comprehensive association with NBS1.
Collapse
Affiliation(s)
- Kenshi Komatsu
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida-Konoecho, Sakyo-Ku, Kyoto 606-8501, Japan
| |
Collapse
|
24
|
Chun MJ, Hwang SK, Kim HG, Goh SH, Kim S, Lee CH. Aurora A kinase is required for activation of the Fanconi anemia/BRCA pathway upon DNA damage. FEBS Open Bio 2016; 6:782-90. [PMID: 27398318 PMCID: PMC4932458 DOI: 10.1002/2211-5463.12087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/09/2016] [Accepted: 05/19/2016] [Indexed: 12/23/2022] Open
Abstract
Previous studies have linked the DNA damage response to mitotic progression machinery. Mitotic kinases, such as Aurora A kinase and Polo‐like kinase, are involved in the phosphorylation of cell cycle regulators in response to DNA damage. Here, we investigated the potential involvement of Aurora A kinase in the activation of the Fanconi anemia (FA)/BRCA pathway, which participates in cellular response to DNA interstrand cross‐link lesions (ICL). Initially, we detected interactions between Aurora A kinase and FANCA protein, one of the components of the FA nuclear core complex. Silencing of Aurora A kinase led to inhibition of monoubiquitination of FANCD2 and formation of nuclear foci, the final consequences of FA/BRCA pathway activation upon ICL induction. An in vitro kinase assay revealed that Aurora A kinase phosphorylates S165 of FANCA. Moreover, this phosphorylation event was induced by the treatment with mitomycin C (MMC), an ICL‐inducing agent. In cells overexpressing S165A mutant FANCA, monoubiquitination of FANCD2 and nuclear foci formation was impaired and cellular sensitivity to MMC was enhanced. These results suggest that S165 phosphorylation by Aurora A kinase is required for proper activation of the FA/BRCA pathway in response to DNA damage.
Collapse
Affiliation(s)
- Min Jeong Chun
- Cancer Cell and Molecular Biology Branch Research Institute National Cancer Center Goyang Gyeonggi Korea
| | - Soo Kyung Hwang
- Cancer Cell and Molecular Biology Branch Research Institute National Cancer Center Goyang Gyeonggi Korea
| | - Hyoun Geun Kim
- Cancer Cell and Molecular Biology Branch Research Institute National Cancer Center Goyang Gyeonggi Korea
| | - Sung-Ho Goh
- Precision Medicine Branch Research Institute National Cancer Center Goyang Gyeonggi Korea
| | - Sunshin Kim
- Precision Medicine Branch Research Institute National Cancer Center Goyang Gyeonggi Korea
| | - Chang-Hun Lee
- Cancer Cell and Molecular Biology Branch Research Institute National Cancer Center Goyang Gyeonggi Korea
| |
Collapse
|
25
|
Michl J, Zimmer J, Tarsounas M. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J 2016; 35:909-23. [PMID: 27037238 PMCID: PMC4865030 DOI: 10.15252/embj.201693860] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
The Fanconi anemia (FA) pathway plays a central role in the repair of DNA interstrand crosslinks (ICLs) and regulates cellular responses to replication stress. Homologous recombination (HR), the error-free pathway for double-strand break (DSB) repair, is required during physiological cell cycle progression for the repair of replication-associated DNA damage and protection of stalled replication forks. Substantial crosstalk between the two pathways has recently been unravelled, in that key HR proteins such as the RAD51 recombinase and the tumour suppressors BRCA1 and BRCA2 also play important roles in ICL repair. Consistent with this, rare patient mutations in these HR genes cause FA pathologies and have been assigned FA complementation groups. Here, we focus on the clinical and mechanistic implications of the connection between these two cancer susceptibility syndromes and on how these two molecular pathways of DNA replication and repair interact functionally to prevent genomic instability.
Collapse
Affiliation(s)
- Johanna Michl
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CRUK-MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK
| | - Jutta Zimmer
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CRUK-MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CRUK-MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Sharp JA, Lefèvre C, Watt A, Nicholas KR. Analysis of human breast milk cells: gene expression profiles during pregnancy, lactation, involution, and mastitic infection. Funct Integr Genomics 2016; 16:297-321. [PMID: 26909879 DOI: 10.1007/s10142-016-0485-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 12/22/2022]
Abstract
The molecular processes underlying human milk production and the effects of mastitic infection are largely unknown because of limitations in obtaining tissue samples. Determination of gene expression in normal lactating women would be a significant step toward understanding why some women display poor lactation outcomes. Here, we demonstrate the utility of RNA obtained directly from human milk cells to detect mammary epithelial cell (MEC)-specific gene expression. Milk cell RNA was collected from five time points (24 h prepartum during the colostrum period, midlactation, two involutions, and during a bout of mastitis) in addition to an involution series comprising three time points. Gene expression profiles were determined by use of human Affymetrix arrays. Milk cells collected during milk production showed that the most highly expressed genes were involved in milk synthesis (e.g., CEL, OLAH, FOLR1, BTN1A1, and ARG2), while milk cells collected during involution showed a significant downregulation of milk synthesis genes and activation of involution associated genes (e.g., STAT3, NF-kB, IRF5, and IRF7). Milk cells collected during mastitic infection revealed regulation of a unique set of genes specific to this disease state, while maintaining regulation of milk synthesis genes. Use of conventional epithelial cell markers was used to determine the population of MECs within each sample. This paper is the first to describe the milk cell transcriptome across the human lactation cycle and during mastitic infection, providing valuable insight into gene expression of the human mammary gland.
Collapse
Affiliation(s)
- Julie A Sharp
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia. .,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia.
| | - Christophe Lefèvre
- Division of Bioinformatics, Walter and Eliza Hall Medical Research Institute, Melbourne, 3000, Australia
| | - Ashalyn Watt
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Kevin R Nicholas
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
27
|
Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V. Update of the human and mouse Fanconi anemia genes. Hum Genomics 2015; 9:32. [PMID: 26596371 PMCID: PMC4657327 DOI: 10.1186/s40246-015-0054-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/10/2015] [Indexed: 12/24/2022] Open
Abstract
Fanconi anemia (FA) is a recessively inherited disease manifesting developmental abnormalities, bone marrow failure, and increased risk of malignancies. Whereas FA has been studied for nearly 90 years, only in the last 20 years have increasing numbers of genes been implicated in the pathogenesis associated with this genetic disease. To date, 19 genes have been identified that encode Fanconi anemia complementation group proteins, all of which are named or aliased, using the root symbol “FANC.” Fanconi anemia subtype (FANC) proteins function in a common DNA repair pathway called “the FA pathway,” which is essential for maintaining genomic integrity. The various FANC mutant proteins contribute to distinct steps associated with FA pathogenesis. Herein, we provide a review update of the 19 human FANC and their mouse orthologs, an evolutionary perspective on the FANC genes, and the functional significance of the FA DNA repair pathway in association with clinical disorders. This is an example of a set of genes––known to exist in vertebrates, invertebrates, plants, and yeast––that are grouped together on the basis of shared biochemical and physiological functions, rather than evolutionary phylogeny, and have been named on this basis by the HUGO Gene Nomenclature Committee (HGNC).
Collapse
Affiliation(s)
- Hongbin Dong
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06250, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee (HGNC), European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, CB10 1SD, UK
| | - David C Thompson
- Department of Clinical Practice, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Hans Joenje
- Department of Clinical Genetics and the Cancer Center Amsterdam/VUmc Institute for Cancer and Immunology, VU University Medical Center, NL-1081 BT, Amsterdam, The Netherlands
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06250, USA.
| |
Collapse
|
28
|
Cartwright IM, Kato TA. Role of various DNA repair pathways in chromosomal inversion formation in CHO mutants. Int J Radiat Biol 2015; 91:925-33. [PMID: 26513271 DOI: 10.3109/09553002.2015.1101499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE In an effort to better understand the formation of chromosomal inversions, we investigated the role of various DNA repair pathways, including the non-homologous end joining (NHEJ), homologous recombination (HR), and Fanconi Anemia (FA) repair pathways for the formation of radiation induced chromosomal inversions. MATERIALS AND METHODS CHO10B2 wild type, CHO DNA repair-deficient, and CHO DNA repair-deficient corrected mutant cells were synchronized into G1 phase and exposed to gamma-rays. First post-irradiation metaphase cells were analyzed for chromosomal inversions by a differential chromatid staining technique involving a single cycle pre-irradiation ethynyl-uridine treatment and statistic calculations. RESULTS It was observed that inhibition of the NHEJ pathway resulted in an overall decrease in the number of radiation-induced inversions, roughly a 50% decrease when compared to the CHO wild type. Interestingly, inhibition of the FA pathway resulted in an increase in both the number of spontaneous inversions and the number of radiation-induced inversions observed after exposure to 2 Gy of ionizing radiation. It was observed that FA-deficient cells contained roughly 330% (1.24 inversions per cell) more spontaneous inversions and 20% (0.4 inversions per cell) more radiation-induced inversions than the wild-type CHO cell lines. The HR mutants, defective in Rad51 foci, showed similar number of spontaneous and radiation-induced inversion as the wild-type cells. Gene complementation resulted in both spontaneous and radiation-induced inversions resembling the CHO wild-type cells. CONCLUSIONS We have concluded that the NHEJ repair pathway contributes to the formation of radiation-induced inversions. Additionally, through an unknown molecular mechanism it appears that the FA signal pathway prevents the formation of both spontaneous and radiation induced inversions.
Collapse
Affiliation(s)
- Ian M Cartwright
- a Department of Environmental and Radiological Health Sciences , Colorado State University , Fort Collins , USA
| | - Takamitsu A Kato
- a Department of Environmental and Radiological Health Sciences , Colorado State University , Fort Collins , USA
| |
Collapse
|
29
|
Saito Y, Komatsu K. Functional Role of NBS1 in Radiation Damage Response and Translesion DNA Synthesis. Biomolecules 2015; 5:1990-2002. [PMID: 26308066 PMCID: PMC4598784 DOI: 10.3390/biom5031990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022] Open
Abstract
Nijmegen breakage syndrome (NBS) is a recessive genetic disorder characterized by increased sensitivity to ionizing radiation (IR) and a high frequency of malignancies. NBS1, a product of the mutated gene in NBS, contains several protein interaction domains in the N-terminus and C-terminus. The C-terminus of NBS1 is essential for interactions with MRE11, a homologous recombination repair nuclease, and ATM, a key player in signal transduction after the generation of DNA double-strand breaks (DSBs), which is induced by IR. Moreover, NBS1 regulates chromatin remodeling during DSB repair by histone H2B ubiquitination through binding to RNF20 at the C-terminus. Thus, NBS1 is considered as the first protein to be recruited to DSB sites, wherein it acts as a sensor or mediator of DSB damage responses. In addition to DSB response, we showed that NBS1 initiates Polη-dependent translesion DNA synthesis by recruiting RAD18 through its binding at the NBS1 C-terminus after UV exposure, and it also functions after the generation of interstrand crosslink DNA damage. Thus, NBS1 has multifunctional roles in response to DNA damage from a variety of genotoxic agents, including IR.
Collapse
Affiliation(s)
- Yuichiro Saito
- Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kenshi Komatsu
- Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
30
|
Solomon PJ, Margaret P, Rajendran R, Ramalingam R, Menezes GA, Shirley AS, Lee SJ, Seong MW, Park SS, Seol D, Seo SH. A case report and literature review of Fanconi Anemia (FA) diagnosed by genetic testing. Ital J Pediatr 2015; 41:38. [PMID: 25953249 PMCID: PMC4438458 DOI: 10.1186/s13052-015-0142-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/22/2015] [Indexed: 12/29/2022] Open
Abstract
Fanconi anemia (FA) is a genetically heterogeneous rare autosomal recessive disorder characterized by congenital malformations, hematological problems and predisposition to malignancies. The genes that have been found to be mutated in FA patients are called FANC. To date 16 distinct FANC genes have been reported. Among these, mutations in FANCA are the most frequent among FA patients worldwide which account for 60- 65%. In this study, a nine years old male child was brought to our hospital one year ago for opinion and advice. He was the third child born to consanguineous parents. The mutation analyses were performed for proband, parents, elder sibling and the relatives [maternal aunt and maternal aunt’s son (cousin)]. Molecular genetic testing [targeted next-generation sequencing (MiSeq, Illumina method)] was performed by mutation analysis in 15 genes involved. Entire coding exons and their flanking regions of the genes were analysed. Sanger sequencing [(ABI 3730 analyzer by Applied Biosystems)] was performed using primers specific for 43 coding exons of the FANCA gene. A novel splice site mutation, c.3066 + 1G > T, (IVS31 + 1G > T), homozygote was detected by sequencing in the patient. The above sequence variant was identified in heterozygous state in his parents. Further, the above sequence variant was not identified in other family members (elder sibling, maternal aunt and cousin). It is concluded that genetic study should be done if possible in all the cases of suspected FA, including siblings, parents and close blood relatives. It will help us to plan appropriate treatment and also to select suitable donor for hematopoietic stem cell transplantation and to plan for genetic counseling. In addition to the case report, the main focus of this manuscript was to review literature on role of FANCA gene in FA since large number of FANCA mutations and polymorphisms have been identified.
Collapse
Affiliation(s)
- Ponnumony John Solomon
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Priya Margaret
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Ramya Rajendran
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Revathy Ramalingam
- Department of Physiology/Central research laboratory (CRL), Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Godfred A Menezes
- College of Applied Medical Sciences and Molecular Diagnostics and Personalised Therapeutics Unit (MDPTU), Ha'il University, Ha'il, Kingdom of Saudi Arabia (KSA). .,Worked previously as in-charge and scientist in Central Research Laboratory (CRL), Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Alph S Shirley
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Seung Jun Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Dodam Seol
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
31
|
Abstract
Fanconi anemia (FA) is a genetically and phenotypically heterogeneous disorder characterized by congenital malformations, progressive bone marrow failure, and predisposition to cancer, particularly hematological malignancies and solid tumors of the head and neck. The main role of FA proteins is in the repair of DNA interstrand crosslinks (ICLs). FA results from pathogenic variants in at least sixteen distinct genes, causing genomic instability. Although the highly variable phenotype makes accurate diagnosis on the basis of clinical manifestations difficult in some patients, diagnosis based on a profound sensitivity to DNA-crosslinking agents can be used to identify the pre-anemia patient as well as patients with aplastic anemia or leukemia who may or may not have the physical stigmata associated with the syndrome. Diepoxybutane (DEB) analysis is the preferred test for FA because other agents have higher rates of false-positive and false-negative results.
Collapse
Affiliation(s)
- Arleen D Auerbach
- Program in Human Genetics and Hematology, The Rockefeller University, New York, New York
| |
Collapse
|
32
|
Walden H, Deans AJ. The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder. Annu Rev Biophys 2014; 43:257-78. [PMID: 24773018 DOI: 10.1146/annurev-biophys-051013-022737] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in any of at least sixteen FANC genes (FANCA-Q) cause Fanconi anemia, a disorder characterized by sensitivity to DNA interstrand crosslinking agents. The clinical features of cytopenia, developmental defects, and tumor predisposition are similar in each group, suggesting that the gene products participate in a common pathway. The Fanconi anemia DNA repair pathway consists of an anchor complex that recognizes damage caused by interstrand crosslinks, a multisubunit ubiquitin ligase that monoubiquitinates two substrates, and several downstream repair proteins including nucleases and homologous recombination enzymes. We review progress in the use of structural and biochemical approaches to understanding how each FANC protein functions in this pathway.
Collapse
Affiliation(s)
- Helen Walden
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| | | |
Collapse
|
33
|
DNA repair inhibition in anti-cancer therapeutics. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
34
|
Boisvert RA, Rego MA, Azzinaro PA, Mauro M, Howlett NG. Coordinate nuclear targeting of the FANCD2 and FANCI proteins via a FANCD2 nuclear localization signal. PLoS One 2013; 8:e81387. [PMID: 24278431 PMCID: PMC3836817 DOI: 10.1371/journal.pone.0081387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/12/2013] [Indexed: 12/21/2022] Open
Abstract
Fanconi anemia (FA) is a rare recessive disease, characterized by congenital defects, bone marrow failure, and increased cancer susceptibility. FA is caused by biallelic mutation of any one of sixteen genes. The protein products of these genes function cooperatively in the FA-BRCA pathway to repair DNA interstrand crosslinks (ICLs). A central step in the activation of this pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Monoubiquitinated FANCD2 and FANCI localize to discrete chromatin regions where they function in ICL repair. Despite their critical role in ICL repair, very little is known about the structure, function, and regulation of the FANCD2 and FANCI proteins, or how they are targeted to the nucleus and chromatin. In this study, we describe the functional characterization of an amino-terminal FANCD2 nuclear localization signal (NLS). We demonstrate that the amino terminal 58 amino acids of FANCD2 can promote the nuclear expression of GFP and is necessary for the nuclear localization of FANCD2. Importantly, mutation of this FANCD2 NLS reveals that intact FANCD2 is required for the nuclear localization of a subset of FANCI. In addition, the NLS is necessary for the efficient monoubiquitination of FANCD2 and FANCI and, consequently, for their localization to chromatin. As a result, FANCD2 NLS mutants fail to rescue the ICL sensitivity of FA-D2 patient cells. Our studies yield important insight into the domain structure of the poorly characterized FANCD2 protein, and reveal a previously unknown mechanism for the coordinate nuclear import of a subset of FANCD2 and FANCI, a key early step in the cellular ICL response.
Collapse
Affiliation(s)
- Rebecca A Boisvert
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, United States of America
| | | | | | | | | |
Collapse
|
35
|
Berardinelli F, di Masi A, Antoccia A. NBN Gene Polymorphisms and Cancer Susceptibility: A Systemic Review. Curr Genomics 2013; 14:425-40. [PMID: 24396275 PMCID: PMC3867719 DOI: 10.2174/13892029113146660012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 01/07/2023] Open
Abstract
The relationship between DNA repair failure and cancer is well established as in the case of rare, high penetrant genes in high cancer risk families. Beside this, in the last two decades, several studies have investigated a possible association between low penetrant polymorphic variants in genes devoted to DNA repair pathways and risk for developing cancer. This relationship would be also supported by the observation that DNA repair processes may be modulated by sequence variants in DNA repair genes, leading to susceptibility to environmental carcinogens. In this framework, the aim of this review is to provide the reader with the state of the art on the association between common genetic variants and cancer risk, limiting the attention to single nucleotide polymorphisms (SNPs) of the NBN gene and providing the various odd ratios (ORs). In this respect, the NBN protein, together with MRE11 and RAD50, is part of the MRN complex which is a central player in the very early steps of sensing and processing of DNA double-strand breaks (DSBs), in telomere maintenance, in cell cycle control, and in genomic integrity in general. So far, many papers were devoted to ascertain possible association between common synonymous and non-synonymous NBN gene polymorphisms and increased cancer risk. However, the results still remain inconsistent and inconclusive also in meta-analysis studies for the most investigated E185Q NBN miscoding variant.
Collapse
|
36
|
Du L, Borkowski R, Zhao Z, Ma X, Yu X, Xie XJ, Pertsemlidis A. A high-throughput screen identifies miRNA inhibitors regulating lung cancer cell survival and response to paclitaxel. RNA Biol 2013; 10:1700-13. [PMID: 24157646 DOI: 10.4161/rna.26541] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
microRNAs (miRNAs) are small RNAs endogenously expressed in multiple organisms that regulate gene expression largely by decreasing levels of target messenger RNAs (mRNAs). Over the past few years, numerous studies have demonstrated critical roles for miRNAs in the pathogenesis of many cancers, including lung cancer. Cellular miRNA levels can be easily manipulated, showing the promise of developing miRNA-targeted oligos as next-generation therapeutic agents. In a comprehensive effort to identify novel miRNA-based therapeutic agents for lung cancer treatment, we combined a high-throughput screening platform with a library of chemically synthesized miRNA inhibitors to systematically identify miRNA inhibitors that reduce lung cancer cell survival and those that sensitize cells to paclitaxel. By screening three lung cancer cell lines with different genetic backgrounds, we identified miRNA inhibitors that potentially have a universal cytotoxic effect on lung cancer cells and miRNA inhibitors that sensitize cells to paclitaxel treatment, suggesting the potential of developing these miRNA inhibitors as therapeutic agents for lung cancer. We then focused on characterizing the inhibitors of three miRNAs (miR-133a/b, miR-361-3p, and miR-346) that have the most potent effect on cell survival. We demonstrated that two of the miRNA inhibitors (miR-133a/b and miR-361-3p) decrease cell survival by activating caspase-3/7-dependent apoptotic pathways and inducing cell cycle arrest in S phase. Future studies are certainly needed to define the mechanisms by which the identified miRNA inhibitors regulate cell survival and drug response, and to explore the potential of translating the current findings into clinical applications.
Collapse
Affiliation(s)
- Liqin Du
- Greehey Children's Cancer Research Institute; Department of Cellular and Structural Biology; UT Health Science Center at San Antonio; San Antonio, TX USA
| | - Robert Borkowski
- Division of Basic Sciences; Southwestern Graduate School of Biomedical Sciences; UT Southwestern Medical Center; Dallas, TX USA
| | - Zhenze Zhao
- Greehey Children's Cancer Research Institute; Department of Cellular and Structural Biology; UT Health Science Center at San Antonio; San Antonio, TX USA
| | - Xiuye Ma
- Greehey Children's Cancer Research Institute; Department of Cellular and Structural Biology; UT Health Science Center at San Antonio; San Antonio, TX USA
| | - Xiaojie Yu
- Graduate School of Biomedical Sciences; UT Health Science Center at San Antonio; San Antonio, TX USA
| | - Xian-Jin Xie
- Department of Clinical Sciences; UT Southwestern Medical Center; Dallas, TX USA
| | - Alexander Pertsemlidis
- Greehey Children's Cancer Research Institute; Department of Cellular and Structural Biology; UT Health Science Center at San Antonio; San Antonio, TX USA; Greehey Children's Cancer Research Institute; Department of Pediatrics; UT Health Science Center at San Antonio; San Antonio, TX USA
| |
Collapse
|
37
|
Rodrigues PMG, Grigaravicius P, Remus M, Cavalheiro GR, Gomes AL, Martins MR, Frappart L, Reuss D, McKinnon PJ, von Deimling A, Martins RAP, Frappart PO. Nbn and atm cooperate in a tissue and developmental stage-specific manner to prevent double strand breaks and apoptosis in developing brain and eye. PLoS One 2013; 8:e69209. [PMID: 23935957 PMCID: PMC3728324 DOI: 10.1371/journal.pone.0069209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/06/2013] [Indexed: 01/30/2023] Open
Abstract
Nibrin (NBN or NBS1) and ATM are key factors for DNA Double Strand Break (DSB) signaling and repair. Mutations in NBN or ATM result in Nijmegen Breakage Syndrome and Ataxia telangiectasia. These syndromes share common features such as radiosensitivity, neurological developmental defects and cancer predisposition. However, the functional synergy of Nbn and Atm in different tissues and developmental stages is not yet understood. Here, we show in vivo consequences of conditional inactivation of both genes in neural stem/progenitor cells using Nestin-Cre mice. Genetic inactivation of Atm in the central nervous system of Nbn-deficient mice led to reduced life span and increased DSBs, resulting in increased apoptosis during neural development. Surprisingly, the increase of DSBs and apoptosis was found only in few tissues including cerebellum, ganglionic eminences and lens. In sharp contrast, we showed that apoptosis associated with Nbn deletion was prevented by simultaneous inactivation of Atm in developing retina. Therefore, we propose that Nbn and Atm collaborate to prevent DSB accumulation and apoptosis during development in a tissue- and developmental stage-specific manner.
Collapse
Affiliation(s)
- Paulo M. G. Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulius Grigaravicius
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Remus
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gabriel R. Cavalheiro
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anielle L. Gomes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio R. Martins
- Programa de Pós Graduação em Biofísica, IBCCF, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Lucien Frappart
- Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - David Reuss
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Peter J. McKinnon
- Department of Genetics, St.Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Rodrigo A. P. Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (POF); (RAPM)
| | - Pierre-Olivier Frappart
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (POF); (RAPM)
| |
Collapse
|
38
|
Kim S, Hwang SK, Lee M, Kwak H, Son K, Yang J, Kim SH, Lee CH. Fanconi anemia complementation group A (FANCA) localizes to centrosomes and functions in the maintenance of centrosome integrity. Int J Biochem Cell Biol 2013; 45:1953-61. [PMID: 23806870 DOI: 10.1016/j.biocel.2013.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/07/2013] [Accepted: 06/16/2013] [Indexed: 02/07/2023]
Abstract
Fanconi anemia (FA) proteins are known to play roles in the cellular response to DNA interstrand cross-linking lesions; however, several reports have suggested that FA proteins play additional roles. To elucidate novel functions of FA proteins, we used yeast two-hybrid screening to identify binding partners of the Fanconi anemia complementation group A (FANCA) protein. The candidate proteins included never-in-mitosis-gene A (NIMA)-related kinase 2 (Nek2), which functions in the maintenance of centrosome integrity. The interaction of FANCA and Nek2 was confirmed in human embryonic kidney (HEK) 293T cells. Furthermore, FANCA interacted with γ-tubulin and localized to centrosomes, most notably during the mitotic phase, confirming that FANCA is a centrosomal protein. Knockdown of FANCA increased the frequency of centrosomal abnormalities and enhanced the sensitivity of U2OS osteosarcoma cells to nocodazole, a microtubule-interfering agent. In vitro kinase assays indicated that Nek2 can phosphorylate FANCA at threonine-351 (T351), and analysis with a phospho-specific antibody confirmed that this phosphorylation occurred in response to nocodazole treatment. Furthermore, U2OS cells overexpressing the phosphorylation-defective T351A FANCA mutant showed numerical centrosomal abnormalities, aberrant mitotic arrest, and enhanced nocodazole sensitivity, implying that the Nek2-mediated T351 phosphorylation of FANCA is important for the maintenance of centrosomal integrity. Taken together, this study revealed that FANCA localizes to centrosomes and is required for the maintenance of centrosome integrity, possibly through its phosphorylation at T351 by Nek2.
Collapse
Affiliation(s)
- Sunshin Kim
- New Experimental Therapeutics Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 410-769, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Diagnosis of fanconi anemia: chromosomal breakage analysis. Anemia 2012; 2012:238731. [PMID: 22693659 PMCID: PMC3368163 DOI: 10.1155/2012/238731] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/21/2012] [Indexed: 01/09/2023] Open
Abstract
Fanconi anemia (FA) is a rare inherited syndrome with diverse clinical symptoms including developmental defects, short stature, bone marrow failure, and a high risk of malignancies. Fifteen genetic subtypes have been distinguished so far. The mode of inheritance for all subtypes is autosomal recessive, except for FA-B, which is X-linked. Cells derived from FA patients are-by definition-hypersensitive to DNA cross-linking agents, such as mitomycin C, diepoxybutane, or cisplatinum, which becomes manifest as excessive growth inhibition, cell cycle arrest, and chromosomal breakage upon cellular exposure to these drugs. Here we provide a detailed laboratory protocol for the accurate assessment of the FA diagnosis as based on mitomycin C-induced chromosomal breakage analysis in whole-blood cultures. The method also enables a quantitative estimate of the degree of mosaicism in the lymphocyte compartment of the patient.
Collapse
|
40
|
Abstract
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive syndrome of chromosomal instability mainly characterized by microcephaly at birth, combined immunodeficiency and predisposition to malignancies. Due to a founder mutation in the underlying NBN gene (c.657_661del5) the disease is encountered most frequently among Slavic populations. The principal clinical manifestations of the syndrome are: microcephaly, present at birth and progressive with age, dysmorphic facial features, mild growth retardation, mild-to-moderate intellectual disability, and, in females, hypergonadotropic hypogonadism. Combined cellular and humoral immunodeficiency with recurrent sinopulmonary infections, a strong predisposition to develop malignancies (predominantly of lymphoid origin) and radiosensitivity are other integral manifestations of the syndrome. The NBN gene codes for nibrin which, as part of a DNA repair complex, plays a critical nuclear role wherever double-stranded DNA ends occur, either physiologically or as a result of mutagenic exposure. Laboratory findings include: (1) spontaneous chromosomal breakage in peripheral T lymphocytes with rearrangements preferentially involving chromosomes 7 and 14, (2) sensitivity to ionizing radiation or radiomimetics as demonstrated in vitro by cytogenetic methods or by colony survival assay, (3) radioresistant DNA synthesis, (4) biallelic hypomorphic mutations in the NBN gene, and (5) absence of full-length nibrin protein. Microcephaly and immunodeficiency are common to DNA ligase IV deficiency (LIG4 syndrome) and severe combined immunodeficiency with microcephaly, growth retardation, and sensitivity to ionizing radiation due to NHEJ1 deficiency (NHEJ1 syndrome). In fact, NBS was most commonly confused with Fanconi anaemia and LIG4 syndrome. Genetic counselling should inform parents of an affected child of the 25% risk for further children to be affected. Prenatal molecular genetic diagnosis is possible if disease-causing mutations in both alleles of the NBN gene are known. No specific therapy is available for NBS, however, hematopoietic stem cell transplantation may be one option for some patients. Prognosis is generally poor due to the extremely high rate of malignancies. Zespół Nijmegen (Nijmegen breakage syndrome; NBS) jest rzadkim schorzeniem z wrodzoną niestabilnością chromosomową dziedziczącym się w sposób autosomalny recesywny, charakteryzującym się przede wszystkim wrodzonym małogłowiem, złożonymi niedoborami odporności i predyspozycją do rozwoju nowotworów. Choroba występuje najczęściej w populacjach słowiańskich, w których uwarunkowana jest mutacją założycielską w genie NBN (c.657_661del5). Do najważniejszych objawów zespołu zalicza się: małogłowie obecne od urodzenia i postępujące z wiekiem, charakterystyczne cechy dysmorfii twarzy, opóźnienie wzrastania, niepełnosprawność intelektualną w stopniu lekkim do umiarkowanego oraz hipogonadyzm hipogonadotropowy u dziewcząt. Na obraz choroby składają się także: niedobór odporności komórkowej i humoralnej, który jest przyczyną nawracających infekcji, znaczna predyspozycja do rozwoju nowotworów złośliwych (zwłaszcza układu chłonnego), a także zwiększona wrażliwość na promieniowanie jonizujące. Wyniki badań laboratoryjnych wykazują: (1) spontaniczną łamliwość chromosomów w limfocytach T krwi obwodowej, z preferencją do rearanżacji chromosomów 7 i 14, (2) nadwrażliwość na promieniowanie jonizujące lub radiomimetyki, co można wykazać metodami in vitro, (3) radiooporność syntezy DNA, (4) hipomorficzne mutacje na obu allelach genu NBN, oraz (5) brak w komórkach pełnej cząsteczki białka, nibryny. Małogłowie i niedobór odporności występują także w zespole niedoboru ligazy IV (LIG4) oraz w zespole niedoboru NHEJ1. Rodzice powinni otrzymać poradę genetyczną ze względu na wysokie ryzyko (25%) powtórzenia się choroby u kolejnego potomstwa. Możliwe jest zaproponowanie molekularnej diagnostyki prenatalnej jeżeli znane są obie mutacje będące przyczyną choroby. Nie ma możliwości zaproponowania specyficznej terapii, ale przeszczep szpiku może być alternatywą dla niektórych pacjentów. Generalnie prognoza nie jest pomyślna z uwagi na wysokie ryzyko rozwoju nowotworu.
Collapse
|
41
|
Hromas R, Williamson EA, Fnu S, Lee YJ, Park SJ, Beck BD, You JS, Leitao A, Laitao A, Nickoloff JA, Lee SH. Chk1 phosphorylation of Metnase enhances DNA repair but inhibits replication fork restart. Oncogene 2012; 31:4245-54. [PMID: 22231448 DOI: 10.1038/onc.2011.586] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chk1 both arrests replication forks and enhances repair of DNA damage by phosphorylating downstream effectors. Although there has been a concerted effort to identify effectors of Chk1 activity, underlying mechanisms of effector action are still being identified. Metnase (also called SETMAR) is a SET and transposase domain protein that promotes both DNA double-strand break (DSB) repair and restart of stalled replication forks. In this study, we show that Metnase is phosphorylated only on Ser495 (S495) in vivo in response to DNA damage by ionizing radiation. Chk1 is the major mediator of this phosphorylation event. We had previously shown that wild-type (wt) Metnase associates with chromatin near DSBs and methylates histone H3 Lys36. Here we show that a Ser495Ala (S495A) Metnase mutant, which is not phosphorylated by Chk1, is defective in DSB-induced chromatin association. The S495A mutant also fails to enhance repair of an induced DSB when compared with wt Metnase. Interestingly, the S495A mutant demonstrated increased restart of stalled replication forks compared with wt Metnase. Thus, phosphorylation of Metnase S495 differentiates between these two functions, enhancing DSB repair and repressing replication fork restart. In summary, these data lend insight into the mechanism by which Chk1 enhances repair of DNA damage while at the same time repressing stalled replication fork restart.
Collapse
Affiliation(s)
- R Hromas
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Park SJ, Beck BD, Saadatzadeh MR, Haneline LS, Clapp DW, Lee SH. Fanconi anemia D2 protein is an apoptotic target mediated by caspases. J Cell Biochem 2011; 112:2383-91. [PMID: 21520247 DOI: 10.1002/jcb.23161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
FANCD2, a key factor in the FANC-BRCA1 pathway is monoubiquitinated and targeted to discrete nuclear foci following DNA damage. Since monoubiquitination of FANCD2 is a crucial indicator for cellular response to DNA damage, we monitored the fate of FANCD2 and its monoubiquitination following DNA damage. Disappearance of FANCD2 protein was induced following DNA damage in a dose-dependent manner, which correlated with degradation of BRCA1 and poly-ADP ribose polymerase (PARP), known targets for caspase-mediated apoptosis. Disappearance of FANCD2 was not affected by a proteasome inhibitor but was blocked by a caspase inhibitor. DNA damage-induced disappearance of FANCD2 was also observed in cells lacking FANCA, suggesting that disappearance of FANCD2 does not depend on FANC-BRCA1 pathway and FANCD2 monoubiquitination. In keeping with this, cells treated with TNF-α, an apoptotic stimulus without causing any DNA damage, also induced disappearance of FANCD2 without monoubiquitination. Together, our data suggest that FANCD2 is a target for caspase-mediated apoptotic pathway, which may be an early indicator for apoptotic cell death.
Collapse
Affiliation(s)
- Su-Jung Park
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
43
|
Yang L, Li Y, Cheng M, Huang D, Zheng J, Liu B, Ling X, Li Q, Zhang X, Ji W, Zhou Y, Lu J. A functional polymorphism at microRNA-629-binding site in the 3'-untranslated region of NBS1 gene confers an increased risk of lung cancer in Southern and Eastern Chinese population. Carcinogenesis 2011; 33:338-47. [PMID: 22114071 DOI: 10.1093/carcin/bgr272] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The genetic variations in NBS1 gene have been reported to be associated with cancer risk. The polymorphisms in 3'-untranslated region (3'-UTR) of NBS1 might affect gene's function and thus contribute to cancer susceptibility. We hypothesized that these polymorphisms of NBS1 are associated with the lung cancer risk. In two independent case-control studies conducted in Southern and Eastern Chinese, we genotyped three tagSNPs (rs14448, rs13312986 and rs2735383) in Southern Chinese and then validated the discovered association in Eastern Chinese. No significant association was observed for rs13312986 and rs14448; we only found that the rs2735383CC genotype had a significantly increased risk of lung cancer under a recessive genetic model in the total 1559 cases versus 1679 controls (odds ratio = 1.40, 95% confidence interval = 1.18-1.66, P = 0.0001) when compared with GG or GC genotypes; the rs2735383CC genotype carriers had lower messenger RNA and protein expression levels in tumor tissues than those of other genotypes as quantitative polymerase chain reaction and western blot shown. Luciferase assay revealed that the rs2735383C allele had a lower transcription activity than G allele, and the hsa-miR-629 but not hsa-miR-499-5P had effect on modulation of NBS1 gene in vitro. We further observed that the X-ray radiation induced more chromatid breaks in lymphocyte cells from the carriers of rs2735383CC homozygote than those from the subjects with other genotypes (P = 0.0008). Our data suggested that the rs2735383G>C variation contributes to an increased risk of lung cancer by diminishing gene's expression through binding of microRNA-629 to the polymorphic site in the 3'-UTR of NBS1 gene.
Collapse
Affiliation(s)
- Lei Yang
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Umaña LA, Magoulas P, Bi W, Bacino CA. A male newborn with VACTERL association and Fanconi anemia with a FANCB deletion detected by array comparative genomic hybridization (aCGH). Am J Med Genet A 2011; 155A:3071-4. [PMID: 22052692 DOI: 10.1002/ajmg.a.34296] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/15/2011] [Indexed: 11/05/2022]
Abstract
We report on a male newborn with multiple congenital abnormalities consistent with the diagnosis of VACTERL association (vertebral, anal, cardiac, tracheo-esophageal fistula, renal, and limb anomalies), who had Fanconi anemia (complementation group B) recognized by the detection of a deletion in chromosome Xp22.2 using an oligonucleotide array. The diagnosis of Fanconi anemia was confirmed by increased chromosomal breakage abnormalities observed in cultured cells that were treated with cross-linking agents. This is the first report in the literature of Fanconi anemia complementation group B detected by oligonucleotide array testing postnatally.
Collapse
Affiliation(s)
- Luis A Umaña
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
45
|
Ramaekers CH, van den Beucken T, Meng A, Kassam S, Thoms J, Bristow RG, Wouters BG. Hypoxia disrupts the Fanconi anemia pathway and sensitizes cells to chemotherapy through regulation of UBE2T. Radiother Oncol 2011; 101:190-7. [DOI: 10.1016/j.radonc.2011.05.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 11/25/2022]
|
46
|
Bernard ME, Kim H, Berhane H, Epperly MW, Franicola D, Zhang X, Houghton F, Shields D, Wang H, Bakkenist CJ, Frantz MC, Forbeck EM, Goff JP, Wipf P, Greenberger JS. GS-nitroxide (JP4-039)-mediated radioprotection of human Fanconi anemia cell lines. Radiat Res 2011; 176:603-12. [PMID: 21939290 DOI: 10.1667/rr2624.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fanconi anemia (FA) is an inherited disorder characterized by defective DNA repair and cellular sensitivity to DNA crosslinking agents. Clinically, FA is associated with high risk for marrow failure, leukemia and head and neck squamous cell carcinoma (HNSCC). Radiosensitivity in FA patients compromises the use of total-body irradiation for hematopoietic stem cell transplantation and radiation therapy for HNSCC. A radioprotector for the surrounding tissue would therefore be very valuable during radiotherapy for HNSCC. Clonogenic radiation survival curves were determined for pre- or postirradiation treatment with the parent nitroxide Tempol or JP4-039 in cells of four FA patient-derived cell lines and two transgene-corrected subclonal lines. FancG(-/-) (PD326) and FancD2(-/-) (PD20F) patient lines were more sensitive to the DNA crosslinking agent mitomycin C (MMC) than their transgene-restored subclonal cell lines (both P < 0.0001). FancD2(-/-) cells were more radiosensitive than the transgene restored subclonal cell line (ñ = 2.0 ± 0.7 and 4.7 ± 2.2, respectively, P = 0.03). In contrast, FancG(-/-) cells were radioresistant relative to the transgene-restored subclonal cell line (ñ = 9.4 ± 1.5 and 2.2 ± 05, respectively, P = 0.001). DNA strand breaks measured by the comet assay correlated with radiosensitivity. Cell lines from a Fanc-C and Fanc-A patients showed radiosensitivity similar to that of Fanc-D2(-/-) cells. A fluorophore-tagged JP4-039 (BODIPY-FL) analog targeted the mitochondria of the cell lines. Preirradiation or postirradiation treatment with JP4-039 at a lower concentration than Tempol significantly increased the radioresistance and stabilized the antioxidant stores of all cell lines. Tempol increased the toxicity of MMC in FancD2(-/-) cells. These data provide support for the potential clinical use of JP4-039 for normal tissue radioprotection during chemoradiotherapy in FA patients.
Collapse
Affiliation(s)
- Mark E Bernard
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gatei M, Jakob B, Chen P, Kijas AW, Becherel OJ, Gueven N, Birrell G, Lee JH, Paull TT, Lerenthal Y, Fazry S, Taucher-Scholz G, Kalb R, Schindler D, Waltes R, Dörk T, Lavin MF. ATM protein-dependent phosphorylation of Rad50 protein regulates DNA repair and cell cycle control. J Biol Chem 2011; 286:31542-56. [PMID: 21757780 PMCID: PMC3173097 DOI: 10.1074/jbc.m111.258152] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/12/2011] [Indexed: 02/01/2023] Open
Abstract
The Mre11/Rad50/NBN complex plays a central role in coordinating the cellular response to DNA double-strand breaks. The importance of Rad50 in that response is evident from the recent description of a patient with Rad50 deficiency characterized by chromosomal instability and defective ATM-dependent signaling. We report here that ATM (defective in ataxia-telangiectasia) phosphorylates Rad50 at a single site (Ser-635) that plays an important adaptor role in signaling for cell cycle control and DNA repair. Although a Rad50 phosphosite-specific mutant (S635G) supported normal activation of ATM in Rad50-deficient cells, it was defective in correcting DNA damage-induced signaling through the ATM-dependent substrate SMC1. This mutant also failed to correct radiosensitivity, DNA double-strand break repair, and an S-phase checkpoint defect in Rad50-deficient cells. This was not due to disruption of the Mre11/Rad50/NBN complex revealing for the first time that phosphorylation of Rad50 plays a key regulatory role as an adaptor for specific ATM-dependent downstream signaling through SMC1 for DNA repair and cell cycle checkpoint control in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Magtouf Gatei
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Burkhard Jakob
- Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt, Germany
| | - Philip Chen
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Amanda W. Kijas
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Olivier J. Becherel
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
- the University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Queensland 4072, Australia
| | - Nuri Gueven
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Geoff Birrell
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Ji-Hoon Lee
- The Howard Hughes Medical Institute and the Department of Molecular Genetics and Microbiology, University of Texas, Austin, Texas 78712
| | - Tanya T. Paull
- The Howard Hughes Medical Institute and the Department of Molecular Genetics and Microbiology, University of Texas, Austin, Texas 78712
| | - Yaniv Lerenthal
- the Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shazrul Fazry
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Gisela Taucher-Scholz
- Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt, Germany
| | - Reinhard Kalb
- the Department of Human Genetics, University of Würzburg, Würzburg 97074, Germany
| | - Detlev Schindler
- the Department of Human Genetics, University of Würzburg, Würzburg 97074, Germany
| | | | - Thilo Dörk
- Gynecology, Hannover Medical School, D-30625 Hannover, Germany, and
| | - Martin F. Lavin
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
- the University of Queensland Centre for Clinical Research, Brisbane, Queensland 4029, Australia
| |
Collapse
|
48
|
Ciznadija D, Zhu XH, Koff A. Hdm2- and proteasome-dependent turnover limits p21 accumulation during S phase. Cell Cycle 2011; 10:2714-23. [PMID: 21768776 DOI: 10.4161/cc.10.16.16725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Double-strand DNA breaks detected in different phases of the cell cycle induce molecularly distinct checkpoints downstream of the ATM kinase. p53 is known to induce arrest of cells in G 1 and occasionally G 2 phase but not S phase following ionizing radiation, a time at which the MRN complex and cdc25-dependent mechanisms induce arrest. Our understanding of how cell cycle phase modulates pathway choice and the reasons certain pathways might be favored at different times is limited. In this report, we examined how cell cycle phase affects the activation of the p53 checkpoint and its ability to induce accumulation of the cdk2 inhibitor p21. Using flow cytometric tools and centrifugal elutriation, we found that the p53 response to ionizing radiation is largely intact in all phases of the cell cycle; however, the accumulation of p21 protein is limited to the G 1 and G 2 phase of the cell cycle because of the activity of a proteasome-dependent p21 turnover pathway in S-phase cells. We found that the turnover of p21 was independent of the SCF (skp2) E3 ligase but could be inhibited, at least in part, by reducing hdm2, although this depended on the cell type studied. Our results suggest that there are several redundant pathways active in S-phase cells that can prevent the accumulation of p21.
Collapse
Affiliation(s)
- Daniel Ciznadija
- Program in Molecular Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
49
|
Abstract
Acquired aplastic anemia is a potentially fatal bone marrow failure disorder that is characterized by pancytopenia and a hypocellular bone marrow. Hematopoietic stem-cell transplantation or bone marrow transplantation (BMT) is the treatment of choice for young patients who have a matched sibling donor. Immunosuppression with either anti-thymocyte globulin and cyclosporine or high-dose cyclophosphamide is an effective therapy for patients who are not suitable BMT candidates owing to age or lack of a suitable donor. Results of BMT from unrelated and mismatched donors are improving, but presently this treatment option is best reserved for those patients who do not respond, relapse or develop secondary clonal disorders following immunosuppressive therapy. Efforts are currently underway to both improve immunosuppressive regimens and to expand the application of BMT.
Collapse
Affiliation(s)
- Amy E DeZern
- Division of Medical Oncology, Department of Medicine, The Johns Hopkins School of Medicine, 720 Rutland Avenue Ross Research Building, Room 1025, Baltimore, MD 21205, USA
| | - Robert A Brodsky
- Division of Hematology, Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
50
|
Cherubini G, Naim V, Caruso P, Burla R, Bogliolo M, Cundari E, Benihoud K, Saggio I, Rosselli F. The FANC pathway is activated by adenovirus infection and promotes viral replication-dependent recombination. Nucleic Acids Res 2011; 39:5459-73. [PMID: 21421559 PMCID: PMC3141233 DOI: 10.1093/nar/gkr084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Deciphering the crosstalk between a host cell and a virus during infection is important not only to better define viral biology but also to improve our understanding of cellular processes. We identified the FANC pathway as a helper of viral replication and recombination by searching for cellular targets that are modified by adenovirus (Ad) infection and are involved in its outcome. This pathway, which is involved in the DNA damage response and checkpoint control, is altered in Fanconi anaemia, a rare cancer predisposition syndrome. We show here that Ad5 infection activates the FANC pathway independent of the classical DNA damage response. Infection with a non-replicating Ad shows that the presence of viral DNA is not sufficient to induce the monoubiquitination of FANCD2 but still activates the DNA damage response coordinated by phospho-NBS1 and phospho-CHK1. E1A expression alone fails to induce FANCD2 monoubiquitination, indicating that a productive viral infection and/or replication is required for FANC pathway activation. Our data indicate that Ad5 infection induces FANCD2 activation to promote its own replication. Specifically, we show that FANCD2 is involved in the recombination process that accompanies viral DNA replication. This study provides evidence of a DNA damage-independent function of the FANC pathway and identifies a cellular system involved in Ad5 recombination.
Collapse
Affiliation(s)
- Gioia Cherubini
- University Paris-Sud, UMR8200 CNRS, Institute Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|