1
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
2
|
Øye H, Lundekvam M, Caiella A, Hellesvik M, Arnesen T. Protein N-terminal modifications: molecular machineries and biological implications. Trends Biochem Sci 2025; 50:290-310. [PMID: 39837675 DOI: 10.1016/j.tibs.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
The majority of eukaryotic proteins undergo N-terminal (Nt) modifications facilitated by various enzymes. These enzymes, which target the initial amino acid of a polypeptide in a sequence-dependent manner, encompass peptidases, transferases, cysteine oxygenases, and ligases. Nt modifications - such as acetylation, fatty acylations, methylation, arginylation, and oxidation - enhance proteome complexity and regulate protein targeting, stability, and complex formation. Modifications at protein N termini are thereby core components of a large number of biological processes, including cell signaling and motility, autophagy regulation, and plant and animal oxygen sensing. Dysregulation of Nt-modifying enzymes is implicated in several human diseases. In this feature review we provide an overview of the various protein Nt modifications occurring either co- or post-translationally, the enzymes involved, and the biological impact.
Collapse
Affiliation(s)
- Hanne Øye
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Malin Lundekvam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessia Caiella
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
3
|
Agrata R, Komander D. Ubiquitin-A structural perspective. Mol Cell 2025; 85:323-346. [PMID: 39824171 DOI: 10.1016/j.molcel.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/10/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques. Here, we review the current knowledge of ubiquitin signals through a ubiquitin-centric, structural biology lens. We amalgamate the information from 240 structures in the Protein Data Bank (PDB), combined with single-molecule, molecular dynamics, and nuclear magnetic resonance (NMR) studies, to provide a comprehensive picture of ubiquitin and polyubiquitin structures and dynamics. We close with a discussion of the latest frontiers in ubiquitin research, namely the modification of ubiquitin by other post-translational modifications (PTMs) and the notion that ubiquitin is attached to biomolecules beyond proteins.
Collapse
Affiliation(s)
- Rashmi Agrata
- Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - David Komander
- Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Edgington R, Wilburn DB. Mass Spectral Feature Analysis of Ubiquitylated Peptides Provides Insights into Probing the Dark Ubiquitylome. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2849-2858. [PMID: 39332818 PMCID: PMC11623170 DOI: 10.1021/jasms.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/29/2024]
Abstract
Ubiquitylation is a structurally and functionally diverse post-translational modification that involves the covalent attachment of the small protein ubiquitin to other protein substrates. Trypsin-based proteomics is the most common approach for globally identifying ubiquitylation sites. However, we estimate that such methods are unable to detect ∼40% of ubiquitylation sites in the human proteome, i.e., "the dark ubiquitylome", including many important for human health and disease. In this meta-analysis of three large ubiquitylomic data sets, we performed a series of bioinformatic analyses to assess experimental features that could aid in uniquely identifying site-specific ubiquitylation events. Spectral predictions from Prosit were compared to experimental spectra of tryptic ubiquitylated peptides, revealing previously uncharacterized fragmentation of the diGly scar. Analysis of the LysC-derived ubiquitylated peptides reveals systematic, multidimensional peptide fragmentation, including diagnostic b-ions from fragmentation of the LysC ubiquitin scar. Comprehensively, these findings provide diagnostic spectral signatures of modification events that could be applied to new analysis methods for nontryptic ubiquitylomics.
Collapse
Affiliation(s)
- Regina
M. Edgington
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Damien B. Wilburn
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Wanhong H, Yingbo P, Wenqi W, Muneer Ahmed J, Shuang T, Zengqi P, Yawei Z. An impact of l-histidine on the phosphorylation and stability of pyruvate kinase at low NaCl level. Food Chem 2024; 442:138449. [PMID: 38242003 DOI: 10.1016/j.foodchem.2024.138449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
As one of the key rate limiting enzymes in glycolysis process, the characteristics of pyruvate kinase (PK) play an important role in regulating the muscle quality. Given the close relationship between kinase phosphorylation level and its stability, the present study investigated the impact of exogenous l-histidine (l-his) on PK phosphorylation and activity at 1% NaCl level in the early postmortem. An incubation system was also constructed and the results showed that the introduction of 0.06% l-his caused the dephosphorylation and increased the activity of PK at 1% NaCl. Compared with 1% NaCl treatment, three differential phosphorylation sites were produced when l-his was introduced. The PK secondary structure was shift from order to disorder, leading to a distinct degradation. This present study provided us with inspiration that meat quality could be improved by exogenous l-his at early postmortem under low NaCl conditions.
Collapse
Affiliation(s)
- He Wanhong
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Peng Yingbo
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Wang Wenqi
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Jamali Muneer Ahmed
- Department of Animal Products Technology, Sindh Agriculture University, Tandojam, Pakistan
| | - Teng Shuang
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Peng Zengqi
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Zhang Yawei
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
6
|
Abdul Rehman SA, Cazzaniga C, Di Nisio E, Antico O, Knebel A, Johnson C, Şahin AT, Ibrahim PEGF, Lamoliatte F, Negri R, Muqit MMK, De Cesare V. Discovery and characterization of noncanonical E2-conjugating enzymes. SCIENCE ADVANCES 2024; 10:eadh0123. [PMID: 38536929 PMCID: PMC10971424 DOI: 10.1126/sciadv.adh0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/20/2024] [Indexed: 04/10/2024]
Abstract
E2-conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the attachment of ubiquitin to a substrate. This process, termed ubiquitylation, is required to maintain cellular homeostasis and affects almost all cellular process. By interacting with multiple E3 ligases, E2s dictate the ubiquitylation landscape within the cell. Since its discovery, ubiquitylation has been regarded as a posttranslational modification that specifically targets lysine side chains (canonical ubiquitylation). We used Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry to identify and characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine. We used structural modeling and prediction tools to identify the key activity determinants that these E2s use to interact with ubiquitin as well as their substrates. Our results unveil the missing E2s necessary for noncanonical ubiquitylation, underscoring the adaptability and versatility of ubiquitin modifications.
Collapse
Affiliation(s)
- Syed Arif Abdul Rehman
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Chiara Cazzaniga
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Elena Di Nisio
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
- MRCPPU Reagents and Services, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, via dei Sardi, 70 00185 Rome, Italy
| | - Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Clare Johnson
- MRCPPU Reagents and Services, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Alp T. Şahin
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Peter E. G. F. Ibrahim
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dow St, Dundee DD1 5EH, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Rodolfo Negri
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, via dei Sardi, 70 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, CNR, Via degli Apuli 4, 00185 Rome, Italy
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Virginia De Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
7
|
van Overbeek NK, Aguirre T, van der Heden van Noort GJ, Blagoev B, Vertegaal ACO. Deciphering non-canonical ubiquitin signaling: biology and methodology. Front Mol Biosci 2024; 10:1332872. [PMID: 38414868 PMCID: PMC10897730 DOI: 10.3389/fmolb.2023.1332872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 02/29/2024] Open
Abstract
Ubiquitination is a dynamic post-translational modification that regulates virtually all cellular processes by modulating function, localization, interactions and turnover of thousands of substrates. Canonical ubiquitination involves the enzymatic cascade of E1, E2 and E3 enzymes that conjugate ubiquitin to lysine residues giving rise to monomeric ubiquitination and polymeric ubiquitination. Emerging research has established expansion of the ubiquitin code by non-canonical ubiquitination of N-termini and cysteine, serine and threonine residues. Generic methods for identifying ubiquitin substrates using mass spectrometry based proteomics often overlook non-canonical ubiquitinated substrates, suggesting that numerous undiscovered substrates of this modification exist. Moreover, there is a knowledge gap between in vitro studies and comprehensive understanding of the functional consequence of non-canonical ubiquitination in vivo. Here, we discuss the current knowledge about non-lysine ubiquitination, strategies to map the ubiquitinome and their applicability for studying non-canonical ubiquitination substrates and sites. Furthermore, we elucidate the available chemical biology toolbox and elaborate on missing links required to further unravel this less explored subsection of the ubiquitin system.
Collapse
Affiliation(s)
- Nila K. van Overbeek
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Tim Aguirre
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
8
|
Santhosh Kumar S, Naseri NN, Pather SR, Hallacli E, Ndayisaba A, Buenaventura C, Acosta K, Roof J, Fazelinia H, Spruce LA, Luk K, Khurana V, Rhoades E, Shalem O. Sequential CRISPR screening reveals partial NatB inhibition as a strategy to mitigate alpha-synuclein levels in human neurons. SCIENCE ADVANCES 2024; 10:eadj4767. [PMID: 38335281 PMCID: PMC10857481 DOI: 10.1126/sciadv.adj4767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Alpha-synuclein (αSyn) protein levels correlate with the risk and severity of Parkinson's disease and related neurodegenerative diseases. Lowering αSyn is being actively investigated as a therapeutic modality. Here, we systematically map the regulatory network that controls endogenous αSyn using sequential CRISPR-knockout and -interference screens in an αSyn gene (SNCA)-tagged cell line and induced pluripotent stem cell-derived neurons (iNeurons). We uncover αSyn modifiers at multiple regulatory layers, with amino-terminal acetyltransferase B (NatB) enzymes being the most potent endogenous αSyn modifiers in both cell lines. Amino-terminal acetylation protects the cytosolic αSyn from rapid degradation by the proteasome in a Ube2w-dependent manner. Moreover, we show that pharmacological inhibition of methionyl-aminopeptidase 2, a regulator of NatB complex formation, attenuates endogenous αSyn in iNeurons carrying SNCA triplication. Together, our study reveals several gene networks that control endogenous αSyn, identifies mechanisms mediating the degradation of nonacetylated αSyn, and illustrates potential therapeutic pathways for decreasing αSyn levels in synucleinopathies.
Collapse
Affiliation(s)
- Saranya Santhosh Kumar
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nima N. Naseri
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarshan R. Pather
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erinc Hallacli
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alain Ndayisaba
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Chris Buenaventura
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karen Acosta
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Roof
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hossein Fazelinia
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A. Spruce
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vikram Khurana
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Suen TC, DeBruyne JP. Lysine-independent ubiquitination and degradation of REV-ERBα involves a bi-functional degradation control sequence at its N-terminus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538963. [PMID: 37205588 PMCID: PMC10187254 DOI: 10.1101/2023.05.01.538963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
REV-ERBα and REV-ERBβ proteins play crucial roles in linking the circadian system to overt daily rhythms in mammalian physiology and behavior. In most tissues, REV-ERBα protein robustly cycles such that it is detected only within a tight interval of 4-6 hours each day, suggesting both its synthesis and degradation are tightly controlled. Several ubiquitin ligases are known to drive REV-ERBα degradation, but how they interact with REV-ERBα and which lysine residues they ubiquitinate to promote degradation are unknown. In this study, we attempted to identify both ubiquitin-ligase-binding and ubiquitination sites within REV-ERBα required for its degradation. Surprisingly, mutating all lysine residues, the common sites for ubiquitin conjugation, in REV-ERBα to arginines (K20R), did very little to impair its degradation in cells. K20R were degraded much faster by co-expression of two E3 ligases, SIAH2 or SPSB4, suggesting possible N-terminal ubiquitination. To explore this, we examined if small deletions at the N-terminus of REV-ERBα would alter its degradation. Interestingly, deletion of amino acid (AA) residues 2 to 9 (delAA2-9) clearly resulted in a less stable REV-ERBα. We found that it was the length (i.e. 8 AA), and not the specific sequence, that confers stability in this region. Simultaneously, we also mapped the interaction site of the E3 ligase SPSB4 to this same region, specifically requiring AA4-9 of REV-ERBα. Thus, the first 9 AA of REV-ERBα has two opposing roles in regulating REV-ERBα turnover. Further, deleting eight additional AAs (delAA2-17) from the N-terminus strongly prevents REV-ERBα degradation. Combined, these results suggest that complex interactions within the first 25AAs potentially act as an endogenous 'switch' that allows REV-ERBα to exist in a stabilized conformation in order to accumulate at one time of day, but then rapidly shifts to a destabilized form, to enhance its removal at the end of its daily cycle.
Collapse
|
10
|
Chang YH. Impact of Protein N α-Modifications on Cellular Functions and Human Health. Life (Basel) 2023; 13:1613. [PMID: 37511988 PMCID: PMC10381334 DOI: 10.3390/life13071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Most human proteins are modified by enzymes that act on the α-amino group of a newly synthesized polypeptide. Methionine aminopeptidases can remove the initiator methionine and expose the second amino acid for further modification by enzymes responsible for myristoylation, acetylation, methylation, or other chemical reactions. Specific acetyltransferases can also modify the initiator methionine and sometimes the acetylated methionine can be removed, followed by further modifications. These modifications at the protein N-termini play critical roles in cellular protein localization, protein-protein interaction, protein-DNA interaction, and protein stability. Consequently, the dysregulation of these modifications could significantly change the development and progression status of certain human diseases. The focus of this review is to highlight recent progress in our understanding of the roles of these modifications in regulating protein functions and how these enzymes have been used as potential novel therapeutic targets for various human diseases.
Collapse
Affiliation(s)
- Yie-Hwa Chang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Medical School, Saint Louis, MO 63104, USA
| |
Collapse
|
11
|
Kiss L, Rhinesmith T, Luptak J, Dickson CF, Weidenhausen J, Smyly S, Yang JC, Maslen SL, Sinning I, Neuhaus D, Clift D, James LC. Trim-Away ubiquitinates and degrades lysine-less and N-terminally acetylated substrates. Nat Commun 2023; 14:2160. [PMID: 37061529 PMCID: PMC10105713 DOI: 10.1038/s41467-023-37504-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/20/2023] [Indexed: 04/17/2023] Open
Abstract
TRIM proteins are the largest family of E3 ligases in mammals. They include the intracellular antibody receptor TRIM21, which is responsible for mediating targeted protein degradation during Trim-Away. Despite their importance, the ubiquitination mechanism of TRIM ligases has remained elusive. Here we show that while Trim-Away activation results in ubiquitination of both ligase and substrate, ligase ubiquitination is not required for substrate degradation. N-terminal TRIM21 RING ubiquitination by the E2 Ube2W can be inhibited by N-terminal acetylation, but this doesn't prevent substrate ubiquitination nor degradation. Instead, uncoupling ligase and substrate degradation prevents ligase recycling and extends functional persistence in cells. Further, Trim-Away degrades substrates irrespective of whether they contain lysines or are N-terminally acetylated, which may explain the ability of TRIM21 to counteract fast-evolving pathogens and degrade diverse substrates.
Collapse
Affiliation(s)
- Leo Kiss
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| | - Tyler Rhinesmith
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jakub Luptak
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Claire F Dickson
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging School of Medical Sciences, UNSW Sydney, NSW, 2052, Australia
| | - Jonas Weidenhausen
- Biochemiezentrum der Universität Heidelberg (BZH), INF328, D-69120, Heidelberg, Germany
- EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Shannon Smyly
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Irmgard Sinning
- Biochemiezentrum der Universität Heidelberg (BZH), INF328, D-69120, Heidelberg, Germany
| | - David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Dean Clift
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
12
|
Antibody-free approach for ubiquitination profiling by selectively clicking the ubiquitination sites. Anal Chim Acta 2023; 1246:340877. [PMID: 36764771 DOI: 10.1016/j.aca.2023.340877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
Ubiquitination is a reversible post-translational modification that plays a pivotal role in numerous biological processes. Antibody-based approaches, as the most used methods for identifying ubiquitination sites, exist sequence recognition bias, high cost, and ubiquitin-like protein modification interference, limiting their widespread application. Here, we proposed an Antibody-Free approach for Ubiquitination Profiling, termed AFUP, by selectively clicking the ubiquitinated lysine to enrich and profile endogenous ubiquitinated peptides using mass spectrometry. Briefly, protein amines were blocked with formaldehyde, and then the ubiquitin molecules were hydrolyzed from the ubiquitinated proteins by non-specific deubiquitinases USP2 and USP21 to release the free ε-amine of lysine. Peptides containing free ε-amines were selectively enriched with streptavidin beads upon NHS-SS-biotin labeling. Finally, the enriched peptides were eluted by DTT and analyzed by LC-MS/MS, resulting in ubiquitination profiling. Preliminary experiment showed that 349 ± 7 ubiquitination sites were identified in 0.8 mg HeLa lysates with excellent reproducibility (CV = 2%) and high quantitative stability (Pearson, r ≥ 0.91) using our method. With the combination of AFUP and simple basic C18 pre-fractionation, approximately 4000 ubiquitination sites were identified in a single run of 293T cells. In addition, we showed that 209 ubiquitination sites were significantly regulated in UBE2O knockdown cells after normalized to protein abundance. In conclusion, our results demonstrated that AFUP is a robust alternative strategy for ubiquitomics research.
Collapse
|
13
|
Parker HV, Tooley JG, Schaner Tooley CE. Optimizing purification and activity assays of N-terminal methyltransferase complexes. Methods Enzymol 2023; 684:71-111. [PMID: 37230594 PMCID: PMC10619428 DOI: 10.1016/bs.mie.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
In vitro methyltransferase assays have traditionally been carried out with tritiated S-adenosyl-methionine (SAM) as the methyl donor, as site-specific methylation antibodies are not always available for Western or dot blots and structural requirements of many methyltransferases prohibit the use of peptide substrates in luminescent or colorimetric assays. The discovery of the first N-terminal methyltransferase, METTL11A, has allowed for a second look at non-radioactive in vitro methyltransferase assays, as N-terminal methylation is amenable to antibody production and the limited structural requirements of METTL11A allow for its methylation of peptide substrates. We have used a combination of Western blots and luminescent assays to verify substrates of METTL11A and the two other known N-terminal methyltransferases, METTL11B and METTL13. We have also developed these assays for use beyond substrate identification, showing that METTL11A activity is opposingly regulated by METTL11B and METTL13. Here we provide two methods for non-radioactive characterization of N-terminal methylation, Western blots with full-length recombinant protein substrates and luminescent assays with peptide substrates, and describe how each can be additionally adapted to look at regulatory complexes. We will review the advantages and disadvantages of each method in context with the other types of in vitro methyltransferase assays and discuss why these types of assays could be of general use to the N-terminal modification field.
Collapse
Affiliation(s)
- Haley V Parker
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
14
|
Mevissen TET, Prasad AV, Walter JC. TRIM21-dependent target protein ubiquitination mediates cell-free Trim-Away. Cell Rep 2023; 42:112125. [PMID: 36807144 PMCID: PMC10435667 DOI: 10.1016/j.celrep.2023.112125] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/02/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Tripartite motif-containing protein 21 (TRIM21) is a cytosolic antibody receptor and E3 ubiquitin ligase that promotes destruction of a broad range of pathogens. TRIM21 also underlies the antibody-dependent protein targeting method Trim-Away. Current evidence suggests that TRIM21 binding to antibodies leads to formation of a self-anchored K63 ubiquitin chain on the N terminus of TRIM21 that triggers the destruction of TRIM21, antibody, and target protein. Here, we report that addition of antibody and TRIM21 to Xenopus egg extracts promotes efficient degradation of endogenous target proteins, establishing cell-free Trim-Away as a powerful tool to interrogate protein function. Chemical methylation of TRIM21 had no effect on target proteolysis, whereas deletion of all lysine residues in targets abolished their ubiquitination and proteasomal degradation. These results demonstrate that target protein, but not TRIM21, polyubiquitination is required for Trim-Away, and they suggest that current models of TRIM21 function should be fundamentally revised.
Collapse
Affiliation(s)
- Tycho E T Mevissen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| | - Anisa V Prasad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
15
|
Genetic code expansion reveals aminoacylated lysine ubiquitination mediated by UBE2W. Nat Struct Mol Biol 2023; 30:62-71. [PMID: 36593310 DOI: 10.1038/s41594-022-00866-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/10/2022] [Indexed: 01/03/2023]
Abstract
Protein post-translational modification (PTM) regulates nearly every aspect of cellular processes in eukaryotes. However, the identification of new protein PTMs is very challenging. Here, using genetically encoded unnatural amino acids as chemical probes, we report the identification and validation of a previously unreported form of protein PTM, aminoacylated lysine ubiquitination, in which the modification occurs on the α-amine group of aminoacylated lysine. We identify more than 2,000 ubiquitination sites on all 20 aminoacylated lysines in two human cell lines. The modifications can mediate rapid protein degradation, complementing the canonical lysine ubiquitination-mediated proteome degradation. Furthermore, we demonstrate that the ubiquitin-conjugating enzyme UBE2W acts as a writer of aminoacylated lysine ubiquitination and facilitates the ubiquitination event on proteins. More broadly, the discovery and validation of aminoacylated lysine ubiquitination paves the way for the identification and verification of new protein PTMs with the genetic code expansion strategy.
Collapse
|
16
|
Sap KA, Geijtenbeek KW, Schipper-Krom S, Guler AT, Reits EA. Ubiquitin-modifying enzymes in Huntington's disease. Front Mol Biosci 2023; 10:1107323. [PMID: 36926679 PMCID: PMC10013475 DOI: 10.3389/fmolb.2023.1107323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the N-terminus of the HTT gene. The CAG repeat expansion translates into a polyglutamine expansion in the mutant HTT (mHTT) protein, resulting in intracellular aggregation and neurotoxicity. Lowering the mHTT protein by reducing synthesis or improving degradation would delay or prevent the onset of HD, and the ubiquitin-proteasome system (UPS) could be an important pathway to clear the mHTT proteins prior to aggregation. The UPS is not impaired in HD, and proteasomes can degrade mHTT entirely when HTT is targeted for degradation. However, the mHTT protein is differently ubiquitinated when compared to wild-type HTT (wtHTT), suggesting that the polyQ expansion affects interaction with (de) ubiquitinating enzymes and subsequent targeting for degradation. The soluble mHTT protein is associated with several ubiquitin-modifying enzymes, and various ubiquitin-modifying enzymes have been identified that are linked to Huntington's disease, either by improving mHTT turnover or affecting overall homeostasis. Here we describe their potential mechanism of action toward improved mHTT targeting towards the proteostasis machinery.
Collapse
Affiliation(s)
- Karen A Sap
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne W Geijtenbeek
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabine Schipper-Krom
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Arzu Tugce Guler
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric A Reits
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Structural and functional asymmetry of RING trimerization controls priming and extension events in TRIM5α autoubiquitylation. Nat Commun 2022; 13:7104. [PMID: 36402777 PMCID: PMC9675739 DOI: 10.1038/s41467-022-34920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
TRIM5α is an E3 ubiquitin ligase of the TRIM family that binds to the capsids of primate immunodeficiency viruses and blocks viral replication after cell entry. Here we investigate how synthesis of K63-linked polyubiquitin is upregulated by transient proximity of three RING domains in honeycomb-like assemblies formed by TRIM5α on the surface of the retroviral capsid. Proximity of three RINGs creates an asymmetric arrangement, in which two RINGs form a catalytic dimer that activates E2-ubiquitin conjugates and the disordered N-terminus of the third RING acts as the substrate for N-terminal autoubiquitylation. RING dimerization is required for activation of the E2s that contribute to the antiviral function of TRIM5α, UBE2W and heterodimeric UBE2N/V2, whereas the proximity of the third RING enhances the rate of each of the two distinct steps in the autoubiquitylation process: the initial N-terminal monoubiquitylation (priming) of TRIM5α by UBE2W and the subsequent extension of the K63-linked polyubiquitin chain by UBE2N/V2. The mechanism we describe explains how recognition of infection-associated epitope patterns by TRIM proteins initiates polyubiquitin-mediated downstream events in innate immunity.
Collapse
|
18
|
Kelsall IR. Non-lysine ubiquitylation: Doing things differently. Front Mol Biosci 2022; 9:1008175. [PMID: 36200073 PMCID: PMC9527308 DOI: 10.3389/fmolb.2022.1008175] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The post-translational modification of proteins with ubiquitin plays a central role in nearly all aspects of eukaryotic biology. Historically, studies have focused on the conjugation of ubiquitin to lysine residues in substrates, but it is now clear that ubiquitylation can also occur on cysteine, serine, and threonine residues, as well as on the N-terminal amino group of proteins. Paradigm-shifting reports of non-proteinaceous substrates have further extended the reach of ubiquitylation beyond the proteome to include intracellular lipids and sugars. Additionally, results from bacteria have revealed novel ways to ubiquitylate (and deubiquitylate) substrates without the need for any of the enzymatic components of the canonical ubiquitylation cascade. Focusing mainly upon recent findings, this review aims to outline the current understanding of non-lysine ubiquitylation and speculate upon the molecular mechanisms and physiological importance of this non-canonical modification.
Collapse
|
19
|
Piersimoni L, Abd El Malek M, Bhatia T, Bender J, Brankatschk C, Calvo Sánchez J, Dayhoff GW, Di Ianni A, Figueroa Parra JO, Garcia-Martinez D, Hesselbarth J, Köppen J, Lauth LM, Lippik L, Machner L, Sachan S, Schmidt L, Selle R, Skalidis I, Sorokin O, Ubbiali D, Voigt B, Wedler A, Wei AAJ, Zorn P, Dunker AK, Köhn M, Sinz A, Uversky VN. Lighting up Nobel Prize-winning studies with protein intrinsic disorder. Cell Mol Life Sci 2022; 79:449. [PMID: 35882686 PMCID: PMC11072364 DOI: 10.1007/s00018-022-04468-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
Intrinsically disordered proteins and regions (IDPs and IDRs) and their importance in biology are becoming increasingly recognized in biology, biochemistry, molecular biology and chemistry textbooks, as well as in current protein science and structural biology curricula. We argue that the sequence → dynamic conformational ensemble → function principle is of equal importance as the classical sequence → structure → function paradigm. To highlight this point, we describe the IDPs and/or IDRs behind the discoveries associated with 17 Nobel Prizes, 11 in Physiology or Medicine and 6 in Chemistry. The Nobel Laureates themselves did not always mention that the proteins underlying the phenomena investigated in their award-winning studies are in fact IDPs or contain IDRs. In several cases, IDP- or IDR-based molecular functions have been elucidated, while in other instances, it is recognized that the respective protein(s) contain IDRs, but the specific IDR-based molecular functions have yet to be determined. To highlight the importance of IDPs and IDRs as general principle in biology, we present here illustrative examples of IDPs/IDRs in Nobel Prize-winning mechanisms and processes.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Marina Abd El Malek
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Twinkle Bhatia
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julian Bender
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Christin Brankatschk
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jaime Calvo Sánchez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Alessio Di Ianni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | - Dailen Garcia-Martinez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julia Hesselbarth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Janett Köppen
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Luca M Lauth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Laurin Lippik
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Machner
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Shubhra Sachan
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Schmidt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Robin Selle
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ioannis Skalidis
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Oleksandr Sorokin
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Daniele Ubbiali
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Bruno Voigt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alice Wedler
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan An Jung Wei
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Peter Zorn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Marcel Köhn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Andrea Sinz
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
20
|
Vijayasimha K, Leestemaker-Palmer AL, Gibbs JS, Yewdell JW, Dolan BP. MLN4924 Inhibits Defective Ribosomal Product Antigen Presentation Independently of Direct NEDDylation of Protein Antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2273-2282. [PMID: 35428693 PMCID: PMC9288214 DOI: 10.4049/jimmunol.2100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 03/01/2022] [Indexed: 05/17/2023]
Abstract
Successful direct MHC class I Ag presentation is dependent on the protein degradation machinery of the cell to generate antigenic peptides that can be loaded onto MHC class I molecules for surveillance by CD8+ T cells of the immune system. Most often this process involves the ubiquitin (Ub)-proteasome system; however, other Ub-like proteins have also been implicated in protein degradation and direct Ag presentation. In this article, we examine the role of neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) in direct Ag presentation in mouse cells. NEDD8 is the Ub-like protein with highest similarity to Ub, and fusion of NEDD8 to the N terminus of a target protein can lead to the degradation of target proteins. We find that appending NEDD8 to the N terminus of the model Ag OVA resulted in degradation by both the proteasome and the autophagy protein degradation pathways, but only proteasomal degradation, involving the proteasomal subunit NEDD8 ultimate buster 1, resulted in peptide presentation. When directly compared with Ub, NEDD8 fusion was less efficient at generating peptides. However, inactivation of the NEDD8-conugation machinery by treating cells with MLN4924 inhibited the presentation of peptides from the defective ribosomal product-derived form of a model Ag. These results demonstrate that NEDD8 activity in the cell is important for direct Ag presentation, but not by directly targeting proteins for degradation.
Collapse
Affiliation(s)
- Kartikeya Vijayasimha
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR; and
| | - Amy L Leestemaker-Palmer
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR; and
| | - James S Gibbs
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, MD
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, MD
| | - Brian P Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR; and
| |
Collapse
|
21
|
New classes of E3 ligases illuminated by chemical probes. Curr Opin Struct Biol 2022; 73:102341. [DOI: 10.1016/j.sbi.2022.102341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 11/23/2022]
|
22
|
Welsh KA, Bolhuis DL, Nederstigt AE, Boyer J, Temple BRS, Bonacci T, Gu L, Ordureau A, Harper JW, Steimel JP, Zhang Q, Emanuele MJ, Harrison JS, Brown NG. Functional conservation and divergence of the helix-turn-helix motif of E2 ubiquitin-conjugating enzymes. EMBO J 2022; 41:e108823. [PMID: 34942047 PMCID: PMC8804933 DOI: 10.15252/embj.2021108823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023] Open
Abstract
Polyubiquitination by E2 and E3 enzymes is crucial to cell cycle control, epigenetic regulation, and development. The hallmark of the E2 family is the ubiquitin (Ub)-conjugating (UBC) domain that forms a dynamic thioester conjugate with ubiquitin (E2~Ub). Numerous studies have focused on E2 surfaces, such as the N-terminal and crossover helices, that directly interact with an E3 or the conjugated ubiquitin to stabilize the active, "closed" state of the E2~Ub. However, it remains unclear how other E2 surfaces regulate ubiquitin transfer. Here, we demonstrate the helix-turn-helix (HTH) motif of the UBC tunes the intrinsic polyubiquitination activity through distinct functions in different E2s. Interestingly, the E2HTH motif is repurposed in UBE2S and UBE2R2 to interact with the conjugated or acceptor ubiquitin, respectively, modulating ubiquitin transfer. Furthermore, we propose that Anaphase-Promoting Complex/Cyclosome binding to the UBE2SHTH reduces the conformational space of the flexible E2~Ub, demonstrating an atypical E3-dependent activation mechanism. Altogether, we postulate the E2HTH motif evolved to provide new functionalities that can be harnessed by E3s and permits additional regulation to facilitate specific E2-E3-mediated polyubiquitination.
Collapse
Affiliation(s)
- Kaeli A Welsh
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Derek L Bolhuis
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | | | - Joshua Boyer
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Brenda R S Temple
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
- R L Juliano Structural Bioinformatics Core FacilityUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Thomas Bonacci
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Li Gu
- Department of ChemistryUniversity of the PacificStocktonCAUSA
| | - Alban Ordureau
- Department of Cell BiologyBlavatnik Institute of Harvard Medical SchoolBostonMAUSA
- Present address:
Cell Biology ProgramSloan Kettering InstituteMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - J Wade Harper
- Department of Cell BiologyBlavatnik Institute of Harvard Medical SchoolBostonMAUSA
| | - Joshua P Steimel
- Department of Mechanical EngineeringUniversity of the PacificStocktonCAUSA
| | - Qi Zhang
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | | | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| |
Collapse
|
23
|
Kats I, Reinbold C, Kschonsak M, Khmelinskii A, Armbruster L, Ruppert T, Knop M. Up-regulation of ubiquitin-proteasome activity upon loss of NatA-dependent N-terminal acetylation. Life Sci Alliance 2021; 5:5/2/e202000730. [PMID: 34764209 PMCID: PMC8605321 DOI: 10.26508/lsa.202000730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
Inactivation of N-terminal acetyltransferase A is found to alter Rpn4 as well as E3 ligase abundance, causing up-regulation of Ubiquitin–proteasome activity. In this context, Tom1 is also identified as a novel chain-elongating enzyme of the UFD-pathway. N-terminal acetylation is a prominent protein modification, and inactivation of N-terminal acetyltransferases (NATs) cause protein homeostasis stress. Using multiplexed protein stability profiling with linear ubiquitin fusions as reporters for the activity of the ubiquitin proteasome system, we observed increased ubiquitin proteasome system activity in NatA, but not NatB or NatC mutants. We find several mechanisms contributing to this behavior. First, NatA-mediated acetylation of the N-terminal ubiquitin–independent degron regulates the abundance of Rpn4, the master regulator of the expression of proteasomal genes. Second, the abundance of several E3 ligases involved in degradation of UFD substrates is increased in cells lacking NatA. Finally, we identify the E3 ligase Tom1 as a novel chain-elongating enzyme (E4) involved in the degradation of linear ubiquitin fusions via the formation of branched K11, K29, and K48 ubiquitin chains, independently of the known E4 ligases involved in UFD, leading to enhanced ubiquitination of the UFD substrates.
Collapse
Affiliation(s)
- Ilia Kats
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christian Reinbold
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Marc Kschonsak
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Laura Armbruster
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Thomas Ruppert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany .,Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
24
|
Genomewide analysis of sperm whale E2 ubiquitin conjugating enzyme genes. J Genet 2021. [DOI: 10.1007/s12041-021-01333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
The BRCA1/BARD1 ubiquitin ligase and its substrates. Biochem J 2021; 478:3467-3483. [PMID: 34591954 DOI: 10.1042/bcj20200864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022]
Abstract
Mutations in breast cancer type 1 susceptibility protein (BRCA1) and its heterodimeric binding partner BARD1 confer a high risk for the development of breast and ovarian cancers. The sole enzymatic function of the BRCA1/BARD1 complex is as a RING-type E3 ubiquitin (Ub) ligase, leading to the deposition of Ub signals onto a variety of substrate proteins. Distinct types of Ub signals deposited by BRCA1/BARD1 (i.e. degradative vs. non-degradative; mono-Ub vs. poly-Ub chains) on substrate proteins mediate aspects of its function in DNA double-stranded break repair, cell-cycle regulation, and transcriptional regulation. While cancer-predisposing mutations in both subunits lead to the inactivation of BRCA1/BARD1 ligase activity, controversy remains as to whether its Ub ligase activity directly inhibits tumorigenesis. Investigation of BRCA1/BARD1 substrates using rigorous, well-validated mutants and experimental systems will ultimately clarify the role of its ligase activity in cancer and possibly establish prognostic and diagnostic metrics for patients with mutations. In this review, we discuss the Ub ligase function of BRCA1/BARD1, highlighting experimental approaches, mechanistic considerations, and reagents that are useful in the study of substrate ubiquitylation. We also discuss the current understanding of two well-established BRCA1/BARD1 substrates (nucleosomal H2A and estrogen receptor α) and several recently discovered substrates (p50, NF2, Oct1, and LARP7). Lessons from the current body of work should provide a road map to researchers examining novel substrates and biological functions attributed to BRCA1/BARD1 Ub ligase activity.
Collapse
|
26
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
27
|
Davies CW, Vidal SE, Phu L, Sudhamsu J, Hinkle TB, Chan Rosenberg S, Schumacher FR, Zeng YJ, Schwerdtfeger C, Peterson AS, Lill JR, Rose CM, Shaw AS, Wertz IE, Kirkpatrick DS, Koerber JT. Antibody toolkit reveals N-terminally ubiquitinated substrates of UBE2W. Nat Commun 2021; 12:4608. [PMID: 34326324 PMCID: PMC8322077 DOI: 10.1038/s41467-021-24669-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin conjugating enzyme UBE2W catalyzes non-canonical ubiquitination on the N-termini of proteins, although its substrate repertoire remains unclear. To identify endogenous N-terminally-ubiquitinated substrates, we discover four monoclonal antibodies that selectively recognize tryptic peptides with an N-terminal diglycine remnant, corresponding to sites of N-terminal ubiquitination. Importantly, these antibodies do not recognize isopeptide-linked diglycine (ubiquitin) modifications on lysine. We solve the structure of one such antibody bound to a Gly-Gly-Met peptide to reveal the molecular basis for its selective recognition. We use these antibodies in conjunction with mass spectrometry proteomics to map N-terminal ubiquitination sites on endogenous substrates of UBE2W. These substrates include UCHL1 and UCHL5, where N-terminal ubiquitination distinctly alters deubiquitinase (DUB) activity. This work describes an antibody toolkit for enrichment and global profiling of endogenous N-terminal ubiquitination sites, while revealing functionally relevant substrates of UBE2W.
Collapse
Affiliation(s)
- Christopher W. Davies
- grid.418158.10000 0004 0534 4718Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA USA
| | - Simon E. Vidal
- grid.418158.10000 0004 0534 4718Departments of Molecular Oncology and Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA USA
| | - Lilian Phu
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | - Jawahar Sudhamsu
- grid.418158.10000 0004 0534 4718Department of Structural Biology, Genentech, Inc., South San Francisco, CA USA
| | - Trent B. Hinkle
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | - Scott Chan Rosenberg
- grid.418158.10000 0004 0534 4718Departments of Molecular Oncology and Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA USA
| | - Frances-Rose Schumacher
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | - Yi Jimmy Zeng
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | | | - Andrew S. Peterson
- grid.418158.10000 0004 0534 4718Department of Molecular Biology, Genentech, Inc., South San Francisco, CA USA
| | - Jennie R. Lill
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | - Christopher M. Rose
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA
| | - Andrey S. Shaw
- grid.418158.10000 0004 0534 4718Research Biology, Genentech, Inc., South San Francisco, CA USA
| | - Ingrid E. Wertz
- grid.418158.10000 0004 0534 4718Departments of Molecular Oncology and Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA USA ,grid.419971.3Present Address: Bristol Myers Squibb, 1000 Sierra Point Parkway, Brisbane, CA USA
| | - Donald S. Kirkpatrick
- grid.418158.10000 0004 0534 4718Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA USA ,Present Address: Interline Therapeutics, South San Francisco, CA USA
| | - James T. Koerber
- grid.418158.10000 0004 0534 4718Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA USA
| |
Collapse
|
28
|
Osborne HC, Irving E, Forment JV, Schmidt CK. E2 enzymes in genome stability: pulling the strings behind the scenes. Trends Cell Biol 2021; 31:628-643. [PMID: 33685796 DOI: 10.1016/j.tcb.2021.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Ubiquitin and ubiquitin-like proteins (UBLs) function as critical post-translational modifiers in the maintenance of genome stability. Ubiquitin/UBL-conjugating enzymes (E2s) are responsible, as part of a wider enzymatic cascade, for transferring single moieties or polychains of ubiquitin/UBLs to one or multiple residues on substrate proteins. Recent advances in structural and mechanistic understanding of how ubiquitin/UBL substrate attachment is orchestrated indicate that E2s can exert control over chain topology, substrate-site specificity, and downstream physiological effects to help maintain genome stability. Drug discovery efforts have typically focussed on modulating other members of the ubiquitin/UBL cascades or the ubiquitin-proteasome system. Here, we review the current standing of E2s in genome stability and revisit their potential as pharmacological targets for developing novel anti-cancer therapies.
Collapse
Affiliation(s)
- Hugh C Osborne
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Elsa Irving
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Josep V Forment
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Christine K Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK.
| |
Collapse
|
29
|
Liwocha J, Krist DT, van der Heden van Noort GJ, Hansen FM, Truong VH, Karayel O, Purser N, Houston D, Burton N, Bostock MJ, Sattler M, Mann M, Harrison JS, Kleiger G, Ovaa H, Schulman BA. Linkage-specific ubiquitin chain formation depends on a lysine hydrocarbon ruler. Nat Chem Biol 2020; 17:272-279. [PMID: 33288957 PMCID: PMC7904580 DOI: 10.1038/s41589-020-00696-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/10/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Virtually all aspects of cell biology are regulated by a ubiquitin code
where distinct ubiquitin chain architectures guide the binding events and
itineraries of modified substrates. Various combinations of E2 and E3 enzymes
accomplish chain formation by forging isopeptide bonds between the C-terminus of
their transiently-linked donor ubiquitin and a specific nucleophilic amino acid
on the acceptor ubiquitin, yet it is unknown whether the fundamental feature of
most acceptors - the lysine side-chain - affects catalysis. Here, use of
synthetic ubiquitins with non-natural acceptor site replacements reveals that
the aliphatic side-chain specifying reactive amine geometry is a determinant of
the ubiquitin code, through unanticipated and complex reliance of many distinct
ubiquitin carrying enzymes on a canonical acceptor lysine.
Collapse
Affiliation(s)
- Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David T Krist
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.,Carle Illinois College of Medicine, Champaign, IL, USA
| | - Gerbrand J van der Heden van Noort
- Oncode Institute and Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Vinh H Truong
- Department of Chemistry, University of the Pacific, Stockton, CA, USA
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Daniel Houston
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Nicole Burton
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Mark J Bostock
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Joseph S Harrison
- Department of Chemistry, University of the Pacific, Stockton, CA, USA
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
30
|
Kanack A, Vittal V, Haver H, Keppel T, Gundry RL, Klevit RE, Scaglione KM. UbcH5 Interacts with Substrates to Participate in Lysine Selection with the E3 Ubiquitin Ligase CHIP. Biochemistry 2020; 59:2078-2088. [PMID: 32401531 DOI: 10.1021/acs.biochem.0c00084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The E3 ubiquitin ligase C-terminus of Hsc70 interacting protein (CHIP) plays a critical role in regulating the ubiquitin-dependent degradation of misfolded proteins. CHIP mediates the ubiquitination of the α-amino-terminus of substrates with the E2 Ube2w and facilitates the ubiquitination of lysine residues with the E2 UbcH5. While it is known that Ube2w directly interacts with the disordered regions at the N-terminus of its substrates, it is unclear how CHIP and UbcH5 mediate substrate lysine selection. Here, we have decoupled the contributions of the E2, UbcH5, and the E3, CHIP, in ubiquitin transfer. We show that UbcH5 selects substrate lysine residues independent of CHIP, and that CHIP participates in lysine selection by fine-tuning the subset of substrate lysines that are ubiquitinated. We also identify lysine 128 near the C-terminus of UbcH5 as a critical residue for the efficient ubiquitin transfer by UbcH5 in both the presence and absence of CHIP. Together, these data demonstrate an important role of the UbcH5/substrate interactions in mediating the efficient ubiquitin transfer by the CHIP/UbcH5 complex.
Collapse
Affiliation(s)
- Adam Kanack
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Vinayak Vittal
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Holly Haver
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, United States
| | - Theodore Keppel
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Kenneth Matthew Scaglione
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, United States.,Department of Neurology, Duke University, Durham, North Carolina 27710, United States.,Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
31
|
Eldeeb MA, Fahlman RP, Ragheb MA, Esmaili M. Does N‐Terminal Protein Acetylation Lead to Protein Degradation? Bioessays 2019; 41:e1800167. [DOI: 10.1002/bies.201800167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 08/12/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Mohamed A. Eldeeb
- Department of Chemistry (Biochemistry Division)Faculty of ScienceCairo University Giza 12613 Egypt
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill University Montreal Quebec H3A 2B4 Canada
| | - Richard P. Fahlman
- Department of BiochemistryUniversity of Alberta Edmonton Alberta T6G 2R3 Canada
| | - Mohamed A. Ragheb
- Department of Chemistry (Biochemistry Division)Faculty of ScienceCairo University Giza 12613 Egypt
| | - Mansoore Esmaili
- Department of BiochemistryUniversity of Alberta Edmonton Alberta T6G 2R3 Canada
| |
Collapse
|
32
|
Ye Y, Klenerman D, Finley D. N-Terminal Ubiquitination of Amyloidogenic Proteins Triggers Removal of Their Oligomers by the Proteasome Holoenzyme. J Mol Biol 2019; 432:585-596. [PMID: 31518613 PMCID: PMC6990400 DOI: 10.1016/j.jmb.2019.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022]
Abstract
Aggregation of amyloidogenic proteins is an abnormal biological process implicated in neurodegenerative disorders. Whereas the aggregation process of amyloid-forming proteins has been studied extensively, the mechanism of aggregate removal is poorly understood. We recently demonstrated that proteasomes could fragment filamentous aggregates into smaller entities, restricting aggregate size [1]. Here, we show in vitro that UBE2W can modify the N-terminus of both α-synuclein and a tau tetra-repeat domain with a single ubiquitin. We demonstrate that an engineered N-terminal ubiquitin modification changes the aggregation process of both proteins, resulting in the formation of structurally distinct aggregates. Single-molecule approaches further reveal that the proteasome can target soluble oligomers assembled from ubiquitin-modified proteins independently of its peptidase activity, consistent with our recently reported fibril-fragmenting activity. Based on these results, we propose that proteasomes are able to target oligomers assembled from N-terminally ubiquitinated proteins. Our data suggest a possible disassembly mechanism by which N-terminal ubiquitination and the proteasome may together impede aggregate formation. Amyloid proteins α-synuclein and tauK18 can be ubiquitinated by UBE2W. N-terminal ubiquitin modification on amyloid proteins delays aggregation. Proteasomes can remove N-terminal ubiquitin-modified oligomers. Proteasomes remove oligomers primarily by enabling their dissociation.
Collapse
Affiliation(s)
- Yu Ye
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; UK Dementia Research Institute at Imperial College London, London W12 0NN, UK.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; UK Dementia Research Institute at the University of Cambridge, Cambridge CB2 0XY, UK
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Brühl J, Trautwein J, Schäfer A, Linne U, Bouazoune K. The DNA repair protein SHPRH is a nucleosome-stimulated ATPase and a nucleosome-E3 ubiquitin ligase. Epigenetics Chromatin 2019; 12:52. [PMID: 31434570 PMCID: PMC6702750 DOI: 10.1186/s13072-019-0294-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022] Open
Abstract
Background Maintenance of genome integrity during DNA replication is crucial to the perpetuation of all organisms. In eukaryotes, the bypass of DNA lesions by the replication machinery prevents prolonged stalling of the replication fork, which could otherwise lead to greater damages such as gross chromosomal rearrangements. Bypassing DNA lesions and subsequent repair are accomplished by the activation of DNA damage tolerance pathways such as the template switching (TS) pathway. In yeast, the RAD5 (Radiation-sensitive 5) protein plays a crucial role in initiating the TS pathway by catalyzing the polyubiquitination of PCNA (Proliferation Cell Nuclear Antigen). Likewise, one of the mammalian RAD5-homologs, SHPRH (SNF2, histone linker, PHD, RING, helicase) mediates PCNA polyubiquitination. To date, the study of SHPRH enzymatic functions has been limited to this modification. It is therefore unclear how SHPRH carries out its function in DNA repair. Moreover, how this protein regulates gene transcription at the enzymatic level is also unknown. Results Given that SHPRH harbors domains found in chromatin remodeling proteins, we investigated its biochemical properties in the presence of nucleosomal substrates. We find that SHPRH binds equally well to double-stranded (ds) DNA and to nucleosome core particles, however, like ISWI and CHD-family remodelers, SHPRH shows a strong preference for nucleosomes presenting extranucleosomal DNA. Moreover, nucleosomes but not dsDNA strongly stimulate the ATPase activity of SHPRH. Intriguingly, unlike typically observed with SNF2-family enzymes, ATPase activity does not translate into conventional nucleosome remodeling, under standard assay conditions. To test whether SHPRH can act as a ubiquitin E3 ligase for nucleosomes, we performed a screen using 26 E2-conjugating enzymes. We uncover that SHPRH is a potent nucleosome E3-ubiquitin-ligase that can function with at least 7 different E2s. Mass spectrometry analyses of products generated in the presence of the UBE2D1-conjugating enzyme reveal that SHPRH can catalyze the formation of polyubiquitin linkages that are either branched or associated with the recruitment of DNA repair factors, as well as linkages involved in proteasomal degradation. Conclusions We propose that, in addition to polyubiquitinating PCNA, SHPRH promotes DNA repair or transcriptional regulation in part through chromatin ubiquitination. Our study sets a biochemical framework for studying other RAD5- and RAD16-related protein functions through the ubiquitination of nucleosomes. Electronic supplementary material The online version of this article (10.1186/s13072-019-0294-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joanna Brühl
- Institut für Molekularbiologie und Tumorforschung (IMT), Biomedizinisches Forschungszentrum, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Jonathan Trautwein
- Institut für Molekularbiologie und Tumorforschung (IMT), Biomedizinisches Forschungszentrum, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Agnes Schäfer
- Institut für Molekularbiologie und Tumorforschung (IMT), Biomedizinisches Forschungszentrum, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Uwe Linne
- Fachbereich Chemie und Synmikro, Gerätezentrum Massenspektrometrie und Elementanalaytik, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Karim Bouazoune
- Institut für Molekularbiologie und Tumorforschung (IMT), Biomedizinisches Forschungszentrum, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany.
| |
Collapse
|
34
|
Abstract
Many receptor tyrosine kinases (RTKs, such as EGFR, MET) are negatively regulated by ubiquitination and degradation mediated by Cbl proteins, a family of RING finger (RF) ubiquitin ligases (E3s). Loss of Cbl protein function is associated with malignant transformation driven by increased RTK activity. RF E3s, such as the Cbl proteins, interact with a ubiquitin-conjugating enzyme (E2) to confer specificity to the ubiquitination process and direct the transfer of ubiquitin from the E2 to one or more lysines on the target proteins. Using in vitro E3 assays and yeast two-hybrid screens, we found that Ube2d, Ube2e families, Ube2n/2v1, and Ube2w catalyze autoubiquitination of the Cbl protein and Ube2d2, Ube2e1, and Ube 2n/2v1 catalyze Cbl-mediated substrate ubiquitination of the EGFR and SYK. Phosphorylation of the Cbl protein by by Src resulted in increased E3 activity compared to unphosphorylated cbl or Cbl containing a phosphomimetic Y371E mutation. Ubiquitin chain formation depended on the E2 tested with Cbl with Ube2d2 forming both K48 and K63 linked chains, Ube2n/2v1 forming only K63 linked chains, and Ube2w inducing monoubiquitination. In cells, the Ube2d family, Ube2e family, and Ube2n/2v1 contributed to EGFR ubiquitination. Our data suggest that multiple E2s can interact with Cbl and modulate its E3 activity in vitro and in cells.
Collapse
|
35
|
Fletcher AJ, Vaysburd M, Maslen S, Zeng J, Skehel JM, Towers GJ, James LC. Trivalent RING Assembly on Retroviral Capsids Activates TRIM5 Ubiquitination and Innate Immune Signaling. Cell Host Microbe 2018; 24:761-775.e6. [PMID: 30503508 PMCID: PMC6299210 DOI: 10.1016/j.chom.2018.10.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/31/2018] [Accepted: 10/16/2018] [Indexed: 01/14/2023]
Abstract
TRIM5 is a RING domain E3 ubiquitin ligase with potent antiretroviral function. TRIM5 assembles into a hexagonal lattice on retroviral capsids, causing envelopment of the infectious core. Concomitantly, TRIM5 initiates innate immune signaling and orchestrates disassembly of the viral particle, yet how these antiviral responses are regulated by capsid recognition is unclear. We show that hexagonal assembly triggers N-terminal polyubiquitination of TRIM5 that collectively drives antiviral responses. In uninfected cells, N-terminal monoubiquitination triggers non-productive TRIM5 turnover. Upon TRIM5 assembly on virus, a trivalent RING arrangement allows elongation of N-terminally anchored K63-linked ubiquitin chains (N-K63-Ub). N-K63-Ub drives TRIM5 innate immune stimulation and proteasomal degradation. Inducing ubiquitination before TRIM5 assembly triggers premature degradation and ablates antiviral restriction. Conversely, driving N-K63 ubiquitination after TRIM5 assembly enhances innate immune signaling. Thus, the hexagonal geometry of TRIM5's antiviral lattice converts a capsid-binding protein into a multifunctional antiviral platform.
Collapse
Affiliation(s)
- Adam J Fletcher
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Marina Vaysburd
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jingwei Zeng
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Greg J Towers
- Infection and Immunity, University College London, Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
36
|
Nguyen KT, Mun SH, Lee CS, Hwang CS. Control of protein degradation by N-terminal acetylation and the N-end rule pathway. Exp Mol Med 2018; 50:1-8. [PMID: 30054456 PMCID: PMC6063864 DOI: 10.1038/s12276-018-0097-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 11/10/2022] Open
Abstract
Nα-terminal acetylation (Nt-acetylation) occurs very frequently and is found in most proteins in eukaryotes. Despite the pervasiveness and universality of Nt-acetylation, its general functions in terms of physiological outcomes remain largely elusive. However, several recent studies have revealed that Nt-acetylation has a significant impact on protein stability, activity, folding patterns, cellular localization, etc. In addition, Nt-acetylation marks specific proteins for degradation by a branch of the N-end rule pathway, a subset of the ubiquitin-mediated proteolytic system. The N-end rule associates a protein's in vivo half-life with its N-terminal residue or modifications on its N-terminus. This review provides a current understanding of intracellular proteolysis control by Nt-acetylation and the N-end rule pathway.
Collapse
Affiliation(s)
- Kha The Nguyen
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sang-Hyeon Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Chang-Seok Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
37
|
UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat Struct Mol Biol 2018; 25:631-640. [PMID: 29967540 DOI: 10.1038/s41594-018-0084-y] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
Ubiquitination is a post-translational modification (PTM) that is essential for balancing numerous physiological processes. To enable delineation of protein ubiquitination at a site-specific level, we generated an antibody, denoted UbiSite, recognizing the C-terminal 13 amino acids of ubiquitin, which remain attached to modified peptides after proteolytic digestion with the endoproteinase LysC. Notably, UbiSite is specific to ubiquitin. Furthermore, besides ubiquitination on lysine residues, protein N-terminal ubiquitination is readily detected as well. By combining UbiSite enrichment with sequential LysC and trypsin digestion and high-accuracy MS, we identified over 63,000 unique ubiquitination sites on 9,200 proteins in two human cell lines. In addition to uncovering widespread involvement of this PTM in all cellular aspects, the analyses reveal an inverse association between protein N-terminal ubiquitination and acetylation, as well as a complete lack of correlation between changes in protein abundance and alterations in ubiquitination sites upon proteasome inhibition.
Collapse
|
38
|
Hormaechea-Agulla D, Kim Y, Song MS, Song SJ. New Insights into the Role of E2s in the Pathogenesis of Diseases: Lessons Learned from UBE2O. Mol Cells 2018; 41:168-178. [PMID: 29562734 PMCID: PMC5881090 DOI: 10.14348/molcells.2018.0008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/23/2022] Open
Abstract
Intracellular communication via ubiquitin (Ub) signaling impacts all aspects of cell biology and regulates pathways critical to human development and viability; therefore aberrations or defects in Ub signaling can contribute to the pathogenesis of human diseases. Ubiquitination consists of the addition of Ub to a substrate protein via coordinated action of E1-activating, E2-conjugating and E3-ligating enzymes. Approximately 40 E2s have been identified in humans, and most are thought to be involved in Ub transfer; although little information is available regarding the majority of them, emerging evidence has highlighted their importance to human health and disease. In this review, we focus on recent insights into the pathogenetic roles of E2s (particularly the ubiquitin-conjugating enzyme E2O [UBE2O]) in debilitating diseases and cancer, and discuss the tantalizing prospect that E2s may someday serve as potential therapeutic targets for human diseases.
Collapse
Affiliation(s)
- Daniel Hormaechea-Agulla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
| | - Youngjo Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151,
Korea
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
- Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151,
Korea
| |
Collapse
|
39
|
Abstract
RING and U-box ubiquitin ligases promote ubiquitin (Ub) transfer by priming Ub-conjugated E2 in a closed conformation to optimize the thioester bond for nucleophilic attack by substrate lysine. Here, we describe a single-turnover lysine discharge assay for direct assessment of the activity of any RING/U-box E3-E2~Ub complex.
Collapse
Affiliation(s)
- Lori Buetow
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mads Gabrielsen
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Danny T Huang
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
40
|
Akimov V, Olsen LCB, Hansen SVF, Barrio-Hernandez I, Puglia M, Jensen SS, Solov’yov IA, Kratchmarova I, Blagoev B. StUbEx PLUS—A Modified Stable Tagged Ubiquitin Exchange System for Peptide Level Purification and In-Depth Mapping of Ubiquitination Sites. J Proteome Res 2017; 17:296-304. [DOI: 10.1021/acs.jproteome.7b00566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology and ‡Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Louise C. B. Olsen
- Department of Biochemistry and Molecular Biology and ‡Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Sten V. F. Hansen
- Department of Biochemistry and Molecular Biology and ‡Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Inigo Barrio-Hernandez
- Department of Biochemistry and Molecular Biology and ‡Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Michele Puglia
- Department of Biochemistry and Molecular Biology and ‡Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Søren S. Jensen
- Department of Biochemistry and Molecular Biology and ‡Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Ilia A. Solov’yov
- Department of Biochemistry and Molecular Biology and ‡Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Irina Kratchmarova
- Department of Biochemistry and Molecular Biology and ‡Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology and ‡Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
41
|
Wang B, Zeng L, Merillat SA, Fischer S, Ochaba J, Thompson LM, Barmada SJ, Scaglione KM, Paulson HL. The ubiquitin conjugating enzyme Ube2W regulates solubility of the Huntington's disease protein, huntingtin. Neurobiol Dis 2017; 109:127-136. [PMID: 28986324 DOI: 10.1016/j.nbd.2017.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/29/2017] [Accepted: 10/01/2017] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion that encodes a polyglutamine (polyQ) expansion in the HD disease protein, huntingtin (HTT). PolyQ expansion promotes misfolding and aggregation of mutant HTT (mHTT) within neurons. The cellular pathways, including ubiquitin-dependent processes, by which mHTT is regulated remain incompletely understood. Ube2W is the only ubiquitin conjugating enzyme (E2) known to ubiquitinate substrates at their amino (N)-termini, likely favoring substrates with disordered N-termini. By virtue of its N-terminal polyQ domain, HTT has an intrinsically disordered amino terminus. In studies employing immortalized cells, primary neurons and a knock-in (KI) mouse model of HD, we tested the effect of Ube2W deficiency on mHTT levels, aggregation and neurotoxicity. In cultured cells, deficiency of Ube2W activity markedly decreases mHTT aggregate formation and increases the level of soluble monomers, while reducing mHTT-induced cytotoxicity. Consistent with this result, the absence of Ube2W in HdhQ200 KI mice significantly increases levels of soluble monomeric mHTT while reducing insoluble oligomeric species. This study sheds light on the potential function of the non-canonical ubiquitin-conjugating enzyme, Ube2W, in this polyQ neurodegenerative disease.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li Zeng
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, Sichuan Provincial Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Sean A Merillat
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Svetlana Fischer
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph Ochaba
- Department of Neurobiology and Behavior, Institute of Memory Impairment and Neurological Disorders, University of California, Irvine, CA 92697, USA; Department of Psychiatry and Human Behavior, Institute of Memory Impairment and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, Institute of Memory Impairment and Neurological Disorders, University of California, Irvine, CA 92697, USA; Department of Psychiatry and Human Behavior, Institute of Memory Impairment and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kenneth M Scaglione
- Neuroscience Research Center and Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
42
|
DeForte S, Uversky VN. Not an exception to the rule: the functional significance of intrinsically disordered protein regions in enzymes. MOLECULAR BIOSYSTEMS 2017; 13:463-469. [PMID: 28098335 DOI: 10.1039/c6mb00741d] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intrinsically disordered protein regions (IDPRs) are remarkably common and have unique and important biological functions. Enzymes have long been considered an exception to the rule of protein intrinsic disorder due to the structural requirements for catalysis. Although functionally significant IDPRs have been described in several enzymes, there has been no study quantifying the extent of this phenomenon. We have conducted a multilevel computational analysis of missing regions in X-ray crystal structures in the PDB and predicted disorder in 66 representative proteomes. We found that the fraction of predicted disorder was higher in non-enzymes than enzymes, because non-enzymes were more likely to be fully disordered. However, we also found that transferases, hydrolases and enzymes with multiple assigned functional classifications were similar to non-enzymes in terms of the length of the longest continuous stretch of predicted disorder. Both eukaryotic enzymes and non-enzymes had a greater disorder content than was seen in bacteria. Disorder at the proteome level appears to emerge in response to organismic and functional complexity, and enzymes are not an exception to this rule.
Collapse
Affiliation(s)
- Shelly DeForte
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA. and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA and Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| |
Collapse
|
43
|
Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Biochem J 2017; 473:3401-3419. [PMID: 27729585 PMCID: PMC5095918 DOI: 10.1042/bcj20160028] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023]
Abstract
Ubiquitin signalling is a fundamental eukaryotic regulatory system, controlling diverse cellular functions. A cascade of E1, E2, and E3 enzymes is required for assembly of distinct signals, whereas an array of deubiquitinases and ubiquitin-binding modules edit, remove, and translate the signals. In the centre of this cascade sits the E2-conjugating enzyme, relaying activated ubiquitin from the E1 activating enzyme to the substrate, usually via an E3 ubiquitin ligase. Many disease states are associated with dysfunction of ubiquitin signalling, with the E3s being a particular focus. However, recent evidence demonstrates that mutations or impairment of the E2s can lead to severe disease states, including chromosome instability syndromes, cancer predisposition, and immunological disorders. Given their relevance to diseases, E2s may represent an important class of therapeutic targets. In the present study, we review the current understanding of the mechanism of this important family of enzymes, and the role of selected E2s in disease.
Collapse
|
44
|
Burke HM, McSweeney L, Scanlan EM. Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology. Nat Commun 2017; 8:15655. [PMID: 28537277 PMCID: PMC5458133 DOI: 10.1038/ncomms15655] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
S -to-N acyl transfer is a high-yielding chemoselective process for amide bond formation. It is widely utilized by chemists for synthetic applications, including peptide and protein synthesis, chemical modification of proteins, protein-protein ligation and the development of probes and molecular machines. Recent advances in our understanding of S -to-N acyl transfer processes in biology and innovations in methodology for thioester formation and desulfurization, together with an extension of the size of cyclic transition states, have expanded the boundaries of this process well beyond peptide ligation. As the field develops, this chemistry will play a central role in our molecular understanding of Biology. The conversion of thioesters to amides via acyl transfer has become one of the most important synthetic techniques for the chemical synthesis and modification of proteins. This review discusses this S-to-N acyl transfer process, and highlights some of the key applications across chemistry and biology.
Collapse
Affiliation(s)
- Helen M. Burke
- School of Chemistry, Trinity College Dublin, Dublin D2, Ireland
| | | | - Eoin M. Scanlan
- School of Chemistry, Trinity College Dublin, Dublin D2, Ireland
| |
Collapse
|
45
|
Chemical ubiquitination for decrypting a cellular code. Biochem J 2017; 473:1297-314. [PMID: 27208213 PMCID: PMC5298413 DOI: 10.1042/bj20151195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/15/2016] [Indexed: 02/06/2023]
Abstract
The modification of proteins with ubiquitin (Ub) is an important regulator of eukaryotic biology and deleterious perturbation of this process is widely linked to the onset of various diseases. The regulatory capacity of the Ub signal is high and, in part, arises from the capability of Ub to be enzymatically polymerised to form polyubiquitin (polyUb) chains of eight different linkage types. These distinct polyUb topologies can then be site-specifically conjugated to substrate proteins to elicit a number of cellular outcomes. Therefore, to further elucidate the biological significance of substrate ubiquitination, methodologies that allow the production of defined polyUb species, and substrate proteins that are site-specifically modified with them, are essential to progress our understanding. Many chemically inspired methods have recently emerged which fulfil many of the criteria necessary for achieving deeper insight into Ub biology. With a view to providing immediate impact in traditional biology research labs, the aim of this review is to provide an overview of the techniques that are available for preparing Ub conjugates and polyUb chains with focus on approaches that use recombinant protein building blocks. These approaches either produce a native isopeptide, or analogue thereof, that can be hydrolysable or non-hydrolysable by deubiquitinases. The most significant biological insights that have already been garnered using such approaches will also be summarized.
Collapse
|
46
|
DiBello A, Datta AB, Zhang X, Wolberger C. Role of E2-RING Interactions in Governing RNF4-Mediated Substrate Ubiquitination. J Mol Biol 2016; 428:4639-4650. [PMID: 27678051 DOI: 10.1016/j.jmb.2016.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023]
Abstract
Members of the really interesting new gene (RING) E3 ubiquitin ligase family bind to both substrate and ubiquitin-charged E2 enzyme, promoting the transfer of ubiquitin from the E2 to substrate. Either a single ubiquitin or one of the several types of polyubiquitin chains can be conjugated to substrate proteins, with different types of ubiquitin modifications signaling the distinct outcomes. E2 enzymes play a central role in governing the nature of the ubiquitin modification, although the essential features of the E2 that differentiate mono- versus polyubiquitinating E2 enzymes remain unclear. RNF4 is a compact RING E3 ligase that directs the ubiquitination of polySUMO chains in concert with several different E2 enzymes. RNF4 monoubiquitinates polySUMO substrates in concert with RAD6B and polyubiquitinates substrates together with UBCH5B, a promiscuous E2 that can function with a broad range of E3 ligases. We find that the divergent ubiquitination activities of RAD6B and UBCH5B are governed by differences at the RING-binding surface of the E2. By mutating the RAD6B RING-binding surface to resemble that of UBCH5B, RAD6B can be transformed into a highly active UBCH5B-like E2 that polyubiquitinates SUMO chains in concert with RNF4. The switch in RAD6B activity correlates with increased affinity of the E2 for RNF4. These results point to an important role of the affinity between an E3 and its cognate E2 in governing the multiplicity of substrate ubiquitination.
Collapse
Affiliation(s)
- Anthony DiBello
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Ajit B Datta
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Xiangbin Zhang
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
47
|
Vincent M, Schnell S. A collection of intrinsic disorder characterizations from eukaryotic proteomes. Sci Data 2016; 3:160045. [PMID: 27326998 PMCID: PMC4915274 DOI: 10.1038/sdata.2016.45] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Intrinsically disordered proteins and protein regions lack a stable three-dimensional structure under physiological conditions. Several proteomic investigations of intrinsic disorder have been performed to date and have found disorder to be prevalent in eukaryotic proteomes. Here we present descriptive statistics of intrinsic disorder features for ten model eukaryotic proteomes that have been calculated from computational disorder prediction algorithms. The data descriptor also provides consensus disorder annotations as well as additional physical parameters relevant to protein disorder, and further provides protein existence information for all proteins included in our analysis. The complete datasets can be downloaded freely, and it is envisaged that they will be updated periodically with new proteomes and protein disorder prediction algorithms. These datasets will be especially useful for assessing protein disorder, and conducting novel analyses that advance our understanding of intrinsic disorder and protein structure.
Collapse
Affiliation(s)
- Michael Vincent
- Department of Molecular &Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA
| | - Santiago Schnell
- Department of Molecular &Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA.,Department of Computational Medicine &Bioinformatics, University of Michigan Medical School, Michigan 48109-2218, USA.,Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan 48105-1912, USA
| |
Collapse
|
48
|
Maure JF, Moser SC, Jaffray EG, F. Alpi A, Hay RT. Loss of ubiquitin E2 Ube2w rescues hypersensitivity of Rnf4 mutant cells to DNA damage. Sci Rep 2016; 6:26178. [PMID: 27185577 PMCID: PMC4868978 DOI: 10.1038/srep26178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/27/2016] [Indexed: 12/13/2022] Open
Abstract
SUMO and ubiquitin play important roles in the response of cells to DNA damage. These pathways are linked by the SUMO Targeted ubiquitin Ligase Rnf4 that catalyses transfer of ubiquitin from a ubiquitin loaded E2 conjugating enzyme to a polySUMO modified substrate. Rnf4 can functionally interact with multiple E2s, including Ube2w, in vitro. Chicken cells lacking Rnf4 are hypersensitive to hyroxyurea, DNA alkylating drugs and DNA crosslinking agents, but this sensitivity is suppressed by simultaneous depletion of Ube2w. Cells depleted of Ube2w alone are not hypersensitive to the same DNA damaging agents. Similar results were also obtained in human cells. These data indicate that Ube2w does not have an essential role in the DNA damage response, but is deleterious in the absence of Rnf4. Thus, although Rnf4 and Ube2w functionally interact in vitro, our genetic experiments indicate that in response to DNA damage Ube2w and Rnf4 function in distinct pathways.
Collapse
Affiliation(s)
- Jean-François Maure
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, UK
| | - Sandra C. Moser
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, UK
| | - Ellis G. Jaffray
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, UK
| | - Arno F. Alpi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, DD1 5EH, UK
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, UK
| |
Collapse
|
49
|
Vincent M, Whidden M, Schnell S. Quantitative proteome-based guidelines for intrinsic disorder characterization. Biophys Chem 2016; 213:6-16. [PMID: 27085142 DOI: 10.1016/j.bpc.2016.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/08/2016] [Accepted: 03/29/2016] [Indexed: 11/19/2022]
Abstract
Intrinsically disordered proteins fail to adopt a stable three-dimensional structure under physiological conditions. It is now understood that many disordered proteins are not dysfunctional, but instead engage in numerous cellular processes, including signaling and regulation. Disorder characterization from amino acid sequence relies on computational disorder prediction algorithms. While numerous large-scale investigations of disorder have been performed using these algorithms, and have offered valuable insight regarding the prevalence of protein disorder in many organisms, critical proteome-based descriptive statistical guidelines that would enable the objective assessment of intrinsic disorder in a protein of interest remain to be established. Here we present a quantitative characterization of numerous disorder features using a rigorous non-parametric statistical approach, providing expected values and percentile cutoffs for each feature in ten eukaryotic proteomes. Our estimates utilize multiple ab initio disorder prediction algorithms grounded on physicochemical principles. Furthermore, we present novel threshold values, specific to both the prediction algorithms and the proteomes, defining the longest primary sequence length in which the significance of a continuous disordered region can be evaluated on the basis of length alone. The guidelines presented here are intended to improve the interpretation of disorder content and continuous disorder predictions from the proteomic point of view.
Collapse
Affiliation(s)
- Michael Vincent
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark Whidden
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, MI, USA; Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Abstract
Ubiquitin-conjugating enzymes (E2s) are the central players in the trio of enzymes responsible for the attachment of ubiquitin (Ub) to cellular proteins. Humans have ∼40 E2s that are involved in the transfer of Ub or Ub-like (Ubl) proteins (e.g., SUMO and NEDD8). Although the majority of E2s are only twice the size of Ub, this remarkable family of enzymes performs a variety of functional roles. In this review, we summarize common functional and structural features that define unifying themes among E2s and highlight emerging concepts in the mechanism and regulation of E2s.
Collapse
|