1
|
Zhou TP, Fan Y, Zhang J, Wang B. Mechanistic Perspective on C-N and C-S Bond Construction Catalyzed by Cytochrome P450 Enzymes. ACS BIO & MED CHEM AU 2025; 5:16-30. [PMID: 39990936 PMCID: PMC11843346 DOI: 10.1021/acsbiomedchemau.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 02/25/2025]
Abstract
Cytochrome P450 enzymes catalyze a large number of oxidative transformations that are responsible for natural product synthesis. Recent studies have revealed their unique ability to catalyze the formation of C-N and C-S bonds, broadening their biosynthetic applications. However, the enzymatic mechanisms behind these reactions are still unclear. This review focuses on theoretical insights into the mechanisms of P450-catalyzed C-N and C-S bond formation. The key roles of the conformational dynamics of substrate radicals, influenced by the enzyme environment, in modulating selectivity and reactivity are highlighted. Understanding these reaction mechanisms offers valuable guidance for P450 enzyme engineering and the design of biosynthetic applications.
Collapse
Affiliation(s)
- Tai-Ping Zhou
- State Key Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yakun Fan
- State Key Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinyan Zhang
- State Key Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binju Wang
- State Key Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Hu WX, Yu KH, Jia FC, Gu SX. Convergent Assembly of 1,4-Benzothiazide Spiroindolinones via [4 + 2] Spiroannulation Under Open-Air Conditions. J Org Chem 2024; 89:16531-16541. [PMID: 39495730 DOI: 10.1021/acs.joc.4c01782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
This report discloses a transition-metal-free [4 + 2] spirocyclization of isatin-derived β-silylcarbinols and 2-aminobenzenethiols, providing a facile approach to 1,4-benzothiazide spiroindolinones in decent yields. Control experiments indicate that 3-methylene oxindoles and disulfides are key intermediates in this tandem reaction. Moreover, the resulting products can be facilely converted into pharmaceutically significant sulfone and sulfoxide scaffolds, which further demonstrates the potential utility of this protocol.
Collapse
Affiliation(s)
- Wen-Xiang Hu
- School of Chemistry and Environmental Engineering, and Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Kai-Heng Yu
- School of Chemistry and Environmental Engineering, and Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Feng-Cheng Jia
- School of Chemistry and Environmental Engineering, and Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Xi Gu
- School of Chemical Engineering & Pharmacy, and Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
3
|
Stout CN, Renata H. Total Synthesis Facilitates In Vitro Reconstitution of the C-S Bond-Forming P450 in Griseoviridin Biosynthesis. J Am Chem Soc 2024; 146:21815-21823. [PMID: 39042396 DOI: 10.1021/jacs.4c06080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Griseoviridin is a group A streptogramin natural product from Streptomyces with broad-spectrum antibacterial activity. A hybrid polyketide-nonribosomal peptide, it comprises a 23-membered macrocycle, an embedded oxazole motif, and a macrolactone with a unique ene-thiol linkage. Recent analysis of the griseoviridin biosynthetic gene cluster implicated SgvP, a cytochrome P450 monooxygenase, in late-stage installation of the critical C-S bond. While genetic and crystallographic experiments provided indirect evidence to support this hypothesis, the exact function of SgvP has never been confirmed biochemically. Herein, we report a convergent total synthesis of pre-griseoviridin, the putative substrate of P450 SgvP and precursor to griseoviridin. Our strategy features concise and rapid assembly of two fragments joined via sequential peptide coupling and Stille macrocyclization. Access to pre-griseoviridin then enabled in vitro validation of SgvP as the C-S bond-forming P450 during griseoviridin biosynthesis, culminating in a nine-step chemoenzymatic synthesis of griseoviridin.
Collapse
Affiliation(s)
- Carter N Stout
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Meng LH, Awakawa T, Li XM, Quan Z, Yang SQ, Wang BG, Abe I. Discovery of (±)-Penindolenes Reveals an Unusual Indole Ring Cleavage Pathway Catalyzed by P450 Monooxygenase. Angew Chem Int Ed Engl 2024; 63:e202403963. [PMID: 38635317 DOI: 10.1002/anie.202403963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
(±)-Penindolenes A-D (1-4), the first representatives of indole terpenoids featuring a γ-lactam skeleton, were isolated from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Our bioactivity tests revealed their potent antimicrobial and acetylcholinesterase inhibitory activities. The biosynthetic reactions by the five enzymes PbaABCDE leading to γ-lactam ring formation were identified with heterologous expression and in vitro enzymatic assays. Remarkably, the cytochrome P450 monooxygenase PbaB and its homolog in Aspergillus oryzae catalyzed the 2,3-cleavage of the indole ring to generate two keto groups in 1. This is the first example of the oxidative cleavage of indole by a P450 monooxygenase. In addition, rare secondary amide bond formation by the glutamine synthetase-like enzyme PbaD was reported. These findings will contribute to the engineered biosynthesis of unnatural, bioactive indole terpenoids.
Collapse
Affiliation(s)
- Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Zhiyang Quan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
5
|
Zhou TP, Feng J, Wang Y, Li S, Wang B. Substrate Conformational Switch Enables the Stereoselective Dimerization in P450 NascB: Insights from Molecular Dynamics Simulations and Quantum Mechanical/Molecular Mechanical Calculations. JACS AU 2024; 4:1591-1604. [PMID: 38665654 PMCID: PMC11040706 DOI: 10.1021/jacsau.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
P450 NascB catalyzes the coupling of cyclo-(l-tryptophan-l-proline) (1) to generate (-)-naseseazine C (2) through intramolecular C-N bond formation and intermolecular C-C coupling. A thorough understanding of its catalytic mechanism is crucial for the engineering or design of P450-catalyzed C-N dimerization reactions. By employing MD simulations, QM/MM calculations, and enhanced sampling, we assessed various mechanisms from recent works. Our study demonstrates that the most favorable pathway entails the transfer of a hydrogen atom from N7-H to Cpd I. Subsequently, there is a conformational change in the substrate radical, shifting it from the Re-face to the Si-face of N7 in Substrate 1. The Si-face conformation of Substrate 1 is stabilized by the protein environment and the π-π stacking interaction between the indole ring and heme porphyrin. The subsequent intermolecular C3-C6' bond formation between Substrate 1 radical and Substrate 2 occurs via a radical attack mechanism. The conformational switch of the Substrate 1 radical not only lowers the barrier of the intermolecular C3-C6' bond formation but also yields the correct stereoselectivity observed in experiments. In addition, we evaluated the reactivity of the ferric-superoxide species, showing it is not reactive enough to initiate the hydrogen atom abstraction from the indole NH group of the substrate. Our simulation provides a comprehensive mechanistic insight into how the P450 enzyme precisely controls both the intramolecular C-N cyclization and intermolecular C-C coupling. The current findings align with the available experimental data, emphasizing the pivotal role of substrate dynamics in governing P450 catalysis.
Collapse
Affiliation(s)
- Tai-Ping Zhou
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianqiang Feng
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yongchao Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shengying Li
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Binju Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Cárdenas PD, Landtved JP, Larsen SH, Lindegaard N, Wøhlk S, Jensen KR, Pattison DI, Burow M, Bak S, Crocoll C, Agerbirk N. Phytoalexins of the crucifer Barbarea vulgaris: Structural profile and correlation with glucosinolate turnover. PHYTOCHEMISTRY 2023; 213:113742. [PMID: 37269935 DOI: 10.1016/j.phytochem.2023.113742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Phytoalexins are antimicrobial plant metabolites elicited by microbial attack or abiotic stress. We investigated phytoalexin profiles after foliar abiotic elicitation in the crucifer Barbarea vulgaris and interactions with the glucosinolate-myrosinase system. The treatment for abiotic elicitation was a foliar spray with CuCl2 solution, a usual eliciting agent, and three independent experiments were carried out. Two genotypes of B. vulgaris (G-type and P-type) accumulated the same three major phytoalexins in rosette leaves after treatment: phenyl-containing nasturlexin D and indole-containing cyclonasturlexin and cyclobrassinin. Phytoalexin levels were investigated daily by UHPLC-QToF MS and tended to differ among plant types and individual phytoalexins. In roots, phytoalexins were low or not detected. In treated leaves, typical total phytoalexin levels were in the range 1-10 nmol/g fresh wt. during three days after treatment while typical total glucosinolate (GSL) levels were three orders of magnitude higher. Levels of some minor GSLs responded to the treatment: phenethylGSL (PE) and 4-substituted indole GSLs. Levels of PE, a suggested nasturlexin D precursor, were lower in treated plants than controls. Another suggested precursor GSL, 3-hydroxyPE, was not detected, suggesting PE hydrolysis to be a key biosynthetic step. Levels of 4-substituted indole GSLs differed markedly between treated and control plants in most experiments, but not in a consistent way. The dominant GSLs, glucobarbarins, are not believed to be phytoalexin precursors. We observed statistically significant linear correlations between total major phytoalexins and the glucobarbarin products barbarin and resedine, suggesting that GSL turnover for phytoalexin biosynthesis was unspecific. In contrast, we did not find correlations between total major phytoalexins and raphanusamic acid or total glucobarbarins and barbarin. In conclusion, two groups of phytoalexins were detected in B. vulgaris, apparently derived from the GSLs PE and indol-3-ylmethylGSL. Phytoalexin biosynthesis was accompanied by depletion of the precursor PE and by turnover of major non-precursor GSLs to resedine. This work paves the way for identifying and characterizing genes and enzymes in the biosyntheses of phytoalexins and resedine.
Collapse
Affiliation(s)
- Pablo D Cárdenas
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Jonas P Landtved
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Signe H Larsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Nicolai Lindegaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Sebastian Wøhlk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Karen R Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - David I Pattison
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Meike Burow
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Søren Bak
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Christoph Crocoll
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
7
|
Shen Y, Wang J, Shaw RK, Sheng X, Yu H, Branca F, Gu H. Comparative Transcriptome and Targeted Metabolome Profiling Unravel the Key Role of Phenylpropanoid and Glucosinolate Pathways in Defense against Alternaria brassicicola in Broccoli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6499-6510. [PMID: 37061924 DOI: 10.1021/acs.jafc.2c08486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Alternaria brassicicola (Ab) can cause a major yield and quality-limiting disease of Brassica oleracea called black spot, and the genetic resources conferring complete resistance against Ab have not been identified to date. Here, comparative transcriptome and targeted metabolome analysis were performed utilizing a newly identified resistant (R) line and a broccoli susceptible (S) line at 6, 24, and 72 h post-inoculation (hpi). Kyoto encyclopedia of genes and genomes pathway enrichment and the weighted gene co-expression network analyses showed that the phenylpropanoid pathway regulates the resistance to Ab in broccoli. One metabolite, cinnamic acid, was significantly upregulated in the Ab_inoculated R line compared with the mock treatment but no significant difference in the S line, indicating that the cinnamic acid may cause the resistance difference between R and S lines. Our results also revealed that three indolic glucosinolates of I3G, 4MI3G, and 1MI3G were significantly increased in the Ab_inoculated R line compared with the mock treatment, and some related genes were differentially expressed between the R and S lines. These results provided new insights into the mechanism of Ab defense in B. oleracea and have laid a theoretical foundation for effectively utilizing resistant germplasm resources in broccoli breeding.
Collapse
Affiliation(s)
- Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiansheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ranjan K Shaw
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoguang Sheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huifang Yu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment, University of Catania, Catania 95123, Italy
| | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
8
|
Wang Z, Diao W, Wu P, Li J, Fu Y, Guo Z, Cao Z, Shaik S, Wang B. How the Conformational Movement of the Substrate Drives the Regioselective C-N Bond Formation in P450 TleB: Insights from Molecular Dynamics Simulations and Quantum Mechanical/Molecular Mechanical Calculations. J Am Chem Soc 2023; 145:7252-7267. [PMID: 36943409 DOI: 10.1021/jacs.2c12962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
P450 TleB catalyzes the oxidative cyclization of the dipeptide N-methylvalyl-tryptophanol into indolactam V through selective intramolecular C-H bond amination at the indole C4 position. Understanding its catalytic mechanism is instrumental for the engineering or design of P450-catalyzed C-H amination reactions. Using multiscale computational methods, we show that the reaction proceeds through a diradical pathway, involving a hydrogen atom transfer (HAT) from N1-H to Cpd I, a conformational transformation of the substrate radical species, and a second HAT from N13-H to Cpd II. Intriguingly, the conformational transformation is found to be the key to enabling efficient and selective C-N coupling between N13 and C4 in the subsequent diradical coupling reaction. The underlined conformational transformation is triggered by the first HAT, which proceeds with an energy-demanding indole ring flip and is followed by the facile approach of the N13-H group to Cpd II. Detailed analysis shows that the internal electric field (IEF) from the protein environment plays key roles in the transformation process, which not only provides the driving force but also stabilizes the flipped conformation of the indole radical. Our simulations provide a clear picture of how the P450 enzyme can smartly modulate the selective C-N coupling reaction. The present findings are in line with all available experimental data, highlighting the crucial role of substrate dynamics in controlling this highly valuable reaction.
Collapse
Affiliation(s)
- Zhanfeng Wang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Wenwen Diao
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junfeng Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Functional-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhiyong Guo
- State Key Laboratory of Food Science and Technology, School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Tan YQ, Wang YN, Feng HY, Guo ZY, Li X, Nie XL, Zhao YY. Host/microbiota interactions-derived tryptophan metabolites modulate oxidative stress and inflammation via aryl hydrocarbon receptor signaling. Free Radic Biol Med 2022; 184:30-41. [PMID: 35367341 DOI: 10.1016/j.freeradbiomed.2022.03.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that induces the expression of a broad range of downstream genes such as cytochromes P450 enzymes and cyclooxygenase-2. Recent research focuses are shifting from AhR activation induced by xenobiotics to its response patterns to physiological ligands that expand our understanding of how endogenous metabolites as ligands to modulate AhR signaling pathway under homeostasis and pathological conditions. With increasing interest in AhR and its endogenous ligands, it would seem advisable to summarize a variety of endogenous ligands especially host/gut microbiota-derived tryptophan metabolites. Mounting evidence has indicated that AhR play a critical role in the regulation of redox homeostasis and immune responses. In this review, we outline the canonical and non-canonical AhR signalling pathway that is mediated by host/gut microbiota-derived tryptophan metabolites. Through several typical endogenous AhR ligands, we investigated the molecular mechanisms of AhR-induced oxidative stress and inflammation in the pathological milieu, including diabetes, diabetic kidney disease and end-stage renal disease. Finally, we summarize and emphasize the limitations and breakthrough of endogenous AhR ligands from host/microbial tryptophan catabolites. This review might provide novel diagnostic and prognostic approach for refractory human diseases and establish new therapeutic strategies for AhR activation.
Collapse
Affiliation(s)
- Yue-Qi Tan
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Hao-Yu Feng
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Zhi-Yuan Guo
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xia Li
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China; Department of General Practice, Xi'an International Medical Center Hospital, Northwest University, No. 777 Xitai Road, Xi'an, Shaanxi, 710100, China.
| | - Xiao-Li Nie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong, 510315, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
10
|
Khatri P, Wally O, Rajcan I, Dhaubhadel S. Comprehensive Analysis of Cytochrome P450 Monooxygenases Reveals Insight Into Their Role in Partial Resistance Against Phytophthora sojae in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:862314. [PMID: 35498648 PMCID: PMC9048032 DOI: 10.3389/fpls.2022.862314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/10/2022] [Indexed: 05/31/2023]
Abstract
Cytochrome P450 monooxygenases (P450) participate in the catalytic conversion of biological compounds in a plethora of metabolic pathways, such as the biosynthesis of alkaloids, terpenoids, phenylpropanoids, and hormones in plants. Plants utilize these metabolites for growth and defense against biotic and abiotic stress. In this study, we identified 346 P450 (GmP450) enzymes encoded by 317 genes in soybean where 26 GmP450 genes produced splice variants. The genome-wide comparison of both A-type and non-A-type GmP450s for their motifs composition, gene structure, tissue-specific expression, and their chromosomal distribution were determined. Even though conserved P450 signature motifs were found in all GmP450 families, larger variation within a specific motif was observed in the non-A-type GmP450s as compared with the A-type. Here, we report that the length of variable region between two conserved motifs is exact in the members of the same family in majority of the A-type GmP450. Analyses of the transcriptomic datasets from soybean-Phytophthora sojae interaction studies, quantitative trait loci (QTL) associated with P. sojae resistance, and co-expression analysis identified some GmP450s that may be, in part, play an important role in partial resistance against P. sojae. The findings of our CYPome study provides novel insights into the functions of GmP450s and their involvements in metabolic pathways in soybean. Further experiments will elucidate their roles in general and legume-specific function.
Collapse
Affiliation(s)
- Praveen Khatri
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Owen Wally
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
11
|
Baloch AA, Raza AM, Rana SSA, Ullah S, Khan S, Zaib-un-Nisa, Zahid H, Malghani GK, Kakar KU. BrCNGC gene family in field mustard: genome-wide identification, characterization, comparative synteny, evolution and expression profiling. Sci Rep 2021; 11:24203. [PMID: 34921218 PMCID: PMC8683401 DOI: 10.1038/s41598-021-03712-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022] Open
Abstract
CNGCs are ligand-gated calcium signaling channels, which participate in important biological processes in eukaryotes. However, the CNGC gene family is not well-investigated in Brassica rapa L. (i.e., field mustard) that is economically important and evolutionary model crop. In this study, we systematically identified 29 member genes in BrCNGC gene family, and studied their physico-chemical properties. The BrCNGC family was classified into four major and two sub phylogenetic groups. These genes were randomly localized on nine chromosomes, and dispersed into three sub-genomes of B. rapa L. Both whole-genome triplication and gene duplication (i.e., segmental/tandem) events participated in the expansion of the BrCNGC family. Using in-silico bioinformatics approaches, we determined the gene structures, conserved motif compositions, protein interaction networks, and revealed that most BrCNGCs can be regulated by phosphorylation and microRNAs of diverse functionality. The differential expression patterns of BrCNGC genes in different plant tissues, and in response to different biotic, abiotic and hormonal stress types, suggest their strong role in plant growth, development and stress tolerance. Notably, BrCNGC-9, 27, 18 and 11 exhibited highest responses in terms of fold-changes against club-root pathogen Plasmodiophora brassicae, Pseudomonas syringae pv. maculicola, methyl-jasmonate, and trace elements. These results provide foundation for the selection of candidate BrCNGC genes for future breeding of field mustard.
Collapse
Affiliation(s)
- Akram Ali Baloch
- grid.440526.10000 0004 0609 3164Department of Biotechnology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta, 87300 Pakistan
| | - Agha Muhammad Raza
- grid.440526.10000 0004 0609 3164Department of Microbiology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, 87300 Pakistan
| | - Shahjahan Shabbir Ahmed Rana
- grid.440526.10000 0004 0609 3164Department of Biotechnology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta, 87300 Pakistan
| | - Saad Ullah
- grid.440526.10000 0004 0609 3164Department of Microbiology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, 87300 Pakistan
| | - Samiullah Khan
- grid.440526.10000 0004 0609 3164Department of Biotechnology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta, 87300 Pakistan
| | - Zaib-un-Nisa
- grid.411555.10000 0001 2233 7083Department of Botany, GC University Lahore, Lahore, Pakistan
| | - Humera Zahid
- grid.413062.2Department of Zoology, University of Balochistan, Quetta, Pakistan
| | - Gohram Khan Malghani
- grid.440526.10000 0004 0609 3164Department of Environmental Sciences, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, 87300 Pakistan
| | - Kaleem U. Kakar
- grid.440526.10000 0004 0609 3164Department of Microbiology, Faculty of Life Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, 87300 Pakistan
| |
Collapse
|
12
|
Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. Plant cytochrome P450 plasticity and evolution. MOLECULAR PLANT 2021; 14:1244-1265. [PMID: 34216829 DOI: 10.1016/j.molp.2021.06.028] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/28/2021] [Accepted: 06/30/2021] [Indexed: 05/27/2023]
Abstract
The superfamily of cytochrome P450 (CYP) enzymes plays key roles in plant evolution and metabolic diversification. This review provides a status on the CYP landscape within green algae and land plants. The 11 conserved CYP clans known from vascular plants are all present in green algae and several green algae-specific clans are recognized. Clan 71, 72, and 85 remain the largest CYP clans and include many taxa-specific CYP (sub)families reflecting emergence of linage-specific pathways. Molecular features and dynamics of CYP plasticity and evolution are discussed and exemplified by selected biosynthetic pathways. High substrate promiscuity is commonly observed for CYPs from large families, favoring retention of gene duplicates and neofunctionalization, thus seeding acquisition of new functions. Elucidation of biosynthetic pathways producing metabolites with sporadic distribution across plant phylogeny reveals multiple examples of convergent evolution where CYPs have been independently recruited from the same or different CYP families, to adapt to similar environmental challenges or ecological niches. Sometimes only a single or a few mutations are required for functional interconversion. A compilation of functionally characterized plant CYPs is provided online through the Plant P450 Database (erda.dk/public/vgrid/PlantP450/).
Collapse
Affiliation(s)
- Cecilie Cetti Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Daniele Werck-Reichhart
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France.
| |
Collapse
|
13
|
Shi Y, Jiang Z, Hu X, Hu X, Gu R, Jiang B, Zuo L, Li X, Sun H, Zhang C, Wang L, Wu L, Hong B. The Cytochrome P450 Catalyzing C−S Bond Formation in
S
‐Heterocyclization of Chuangxinmycin Biosynthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yuanyuan Shi
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Zhibo Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Xiaowen Hu
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Xiaomin Hu
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Renjie Gu
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Bingya Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Lijie Zuo
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Xingxing Li
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Hongmin Sun
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Cong Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Lifei Wang
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Linzhuan Wu
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| |
Collapse
|
14
|
Shi Y, Jiang Z, Hu X, Hu X, Gu R, Jiang B, Zuo L, Li X, Sun H, Zhang C, Wang L, Wu L, Hong B. The Cytochrome P450 Catalyzing C−S Bond Formation in
S
‐Heterocyclization of Chuangxinmycin Biosynthesis. Angew Chem Int Ed Engl 2021; 60:15399-15404. [DOI: 10.1002/anie.202015814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/08/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Yuanyuan Shi
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Zhibo Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Xiaowen Hu
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Xiaomin Hu
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Renjie Gu
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Bingya Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Lijie Zuo
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Xingxing Li
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Hongmin Sun
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Cong Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Lifei Wang
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Linzhuan Wu
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics CAMS Key Laboratory of Synthetic Biology for Drug Innovation Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College No.1 Tiantan Xili Beijing 100050 China
| |
Collapse
|
15
|
Pharmacophore-inspired discovery of FLT3 inhibitor from kimchi. Food Chem 2021; 361:130139. [PMID: 34062461 DOI: 10.1016/j.foodchem.2021.130139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/23/2021] [Accepted: 05/16/2021] [Indexed: 01/27/2023]
Abstract
Globally consumed kimchi is manufactured through fermenting cruciferous vegetables containing indole glucosinolates (IG). But few reports describe the IG metabolism during the fermentation. Here, we show that indole-3-carbinol (I3C), a breakdown product of IG, is transformed during the kimchi fermentation into 3,3'-diindolylmethane (DIM) and 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (LTr1). LTr1 was found to kill the acute myeloid leukemia (AML) cells with FMS-like tyrosine kinase 3 (FLT3) receptor mutations, by inhibiting the FLT3 phosphorylation and the expression of downstream proteins (STAT5, ERK, and AKT). In the immune-depleted mice xenografted with human MV4-11 cells, LTr1 was demonstrated to reduce the tumor growth and synergize with sorafenib, an anti-AML agent in clinic. The work updates the chemical and biological knowledge about kimchi, and in particular establishes LTr1 as an FLT3 inhibitor that is effective and synergistic with sorafenib in treating AML.
Collapse
|
16
|
One-pot enantioselective synthesis of (S)-spirobrassinin and non-natural (S)-methylspirobrassinin from amino acids using a turnip enzyme. J Nat Med 2021; 75:308-318. [PMID: 33389552 DOI: 10.1007/s11418-020-01468-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The enantioselective synthesis of (S)-(-)-spirobrassinin, which features a unique sulfur-containing spirooxindole skeleton, was achieved by focusing on the phytoalexin generation in Brassicaceae plants. Specifically, (S)-(-)-spirobrassinin was obtained in a one-pot fashion from L-tryptophan through a reaction involving S-spirocyclization with various turnip enzymes and constituents, i.e., using the turnip as a reaction reagent, catalyst, and reaction vessel. Surprisingly, this strategy also enabled the one-pot enantioselective synthesis of the novel non-natural spirooxindole (S)-(-)-5-methylspirobrassinin from 5-methyl-DL-tryptophan.
Collapse
|
17
|
Morita I, Mori T, Abe I. Enzymatic Formation of Indolactam Scaffold by C−N Bond‐Forming Cytochrome P450 Oxidases in Teleocidin Biosynthesis. Chemistry 2020; 27:2963-2972. [DOI: 10.1002/chem.202003899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Iori Morita
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113–8657 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113–8657 Japan
| |
Collapse
|
18
|
Calgaro-Kozina A, Vuu KM, Keasling JD, Loqué D, Sattely ES, Shih PM. Engineering Plant Synthetic Pathways for the Biosynthesis of Novel Antifungals. ACS CENTRAL SCIENCE 2020; 6:1394-1400. [PMID: 32875080 PMCID: PMC7453567 DOI: 10.1021/acscentsci.0c00241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Indexed: 05/21/2023]
Abstract
Plants produce a wealth of biologically active compounds, many of which are used to defend themselves from various pests and pathogens. We explore the possibility of expanding upon the natural chemical diversity of plants and create molecules that have enhanced properties, by engineering metabolic pathways new to nature. We rationally broaden the set of primary metabolites that can be utilized by the core biosynthetic pathway of the natural biopesticide, brassinin, producing in planta a novel class of compounds that we call crucifalexins. Two of our new-to-nature crucifalexins are more potent antifungals than brassinin and, in some instances, comparable to commercially used fungicides. Our findings highlight the potential to push the boundaries of plant metabolism for the biosynthesis of new biopesticides.
Collapse
Affiliation(s)
- Amy Calgaro-Kozina
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Khanh M. Vuu
- Joint
BioEnergy Institute, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Joint
BioEnergy Institute, Emeryville, California 94608, United States
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, California 94720, United States
- Department
of Bioengineering, UC Berkeley, Berkeley, California 94720, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| | - Dominique Loqué
- Joint
BioEnergy Institute, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Elizabeth S. Sattely
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Howard
Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
- E-mail:
| | - Patrick M. Shih
- Joint
BioEnergy Institute, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Plant Biology, University of California,
Davis, Davis, California 95616, United States
- Genome
Center, University of California, Davis, Davis, California 95616, United States
- E-mail:
| |
Collapse
|
19
|
Zhu Y, Zhang Q, Fang C, Zhang Y, Ma L, Liu Z, Zhai S, Peng J, Zhang L, Zhu W, Zhang C. Refactoring the Concise Biosynthetic Pathway of Cyanogramide Unveils Spirooxindole Formation Catalyzed by a P450 Enzyme. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd. Nansha District Guangzhou 511458 China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd. Nansha District Guangzhou 511458 China
| | - Chunyan Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
| | - Yingli Zhang
- College of Life Sciences Hebei Normal University Shijiazhuang 050024 China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd. Nansha District Guangzhou 511458 China
| | - Zhiwen Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
| | - Shilan Zhai
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
| | - Jing Peng
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd. Nansha District Guangzhou 511458 China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs Chinese Ministry of Education School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd. Nansha District Guangzhou 511458 China
| |
Collapse
|
20
|
Zhu Y, Zhang Q, Fang C, Zhang Y, Ma L, Liu Z, Zhai S, Peng J, Zhang L, Zhu W, Zhang C. Refactoring the Concise Biosynthetic Pathway of Cyanogramide Unveils Spirooxindole Formation Catalyzed by a P450 Enzyme. Angew Chem Int Ed Engl 2020; 59:14065-14069. [PMID: 32329169 DOI: 10.1002/anie.202004978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/19/2020] [Indexed: 12/12/2022]
Abstract
Cyanogramide (1) from the marine actinomycete Actinoalloteichus cyanogriseus WH1-2216-6 features a unique spirooxindole skeleton and exhibits significant bioactivity to efficiently reverse drug resistance in tumor cells. The biosynthetic gene cluster of 1 in A. cyanogriseus WH1-2216-6 was identified and refactored by promoter engineering for heterologous expression in Streptomyces coelicolor YF11, thereby enabling the production of 1 and five new derivatives. Interesting, four of them, including 1, were identified as enantiomeric mixtures in different ratios. The functions of tailoring enzymes, including two methyltransferases (CyaEF), and three cytochrome P450 monooxygenases (CyaGHI) were confirmed by gene inactivation and feeding experiments, leading to the elucidation of a concise biosynthetic pathway for 1. Notably, CyaH was biochemically verified to catalyze the formation of the spirooxindole skeleton in 1 through an unusual carbocation-mediated semipinacol-type rearrangement reaction.
Collapse
Affiliation(s)
- Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd. Nansha District, Guangzhou, 511458, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd. Nansha District, Guangzhou, 511458, China
| | - Chunyan Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Yingli Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd. Nansha District, Guangzhou, 511458, China
| | - Zhiwen Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Shilan Zhai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Jing Peng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd. Nansha District, Guangzhou, 511458, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd. Nansha District, Guangzhou, 511458, China
| |
Collapse
|
21
|
Morita I, Mori T, Mitsuhashi T, Hoshino S, Taniguchi Y, Kikuchi T, Nagae K, Nasu N, Fujita M, Ohwada T, Abe I. Exploiting a C–N Bond Forming Cytochrome P450 Monooxygenase for C–S Bond Formation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Iori Morita
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shotaro Hoshino
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Yoshimasa Taniguchi
- Central Laboratories for Key Technologies Kirin Holdings Co. Ltd. 1-13-5, Fukuura Kana-zawa-ku Yokohama-shi Kanagawa 236-0004 Japan
| | - Takashi Kikuchi
- Rigaku Corporation 3-9-12 Matsubara-cho, Akishima-shi Tokyo 196-8666 Japan
| | - Kei Nagae
- Nissan Chemical Corporation 2-10-1 Tsuboi-nishi, Funabashi-shi Chiba 274-8507 Japan
| | - Norihiro Nasu
- Mitsui Chemical Analysis & Consulting Service, Inc. 580-32 Nagaura, Sodegaura-city Chiba 299-0265 Japan
| | - Makoto Fujita
- Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Division of Advanced Molecular Science Institute for Molecular Science National Institutes of Natural Sciences 5-1 Higashiyama Myodaiji, Okazaki 444-8787 Japan
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
22
|
Morita I, Mori T, Mitsuhashi T, Hoshino S, Taniguchi Y, Kikuchi T, Nagae K, Nasu N, Fujita M, Ohwada T, Abe I. Exploiting a C-N Bond Forming Cytochrome P450 Monooxygenase for C-S Bond Formation. Angew Chem Int Ed Engl 2020; 59:3988-3993. [PMID: 31886618 DOI: 10.1002/anie.201916269] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 01/01/2023]
Abstract
C-S bond formation reactions are widely distributed in the biosynthesis of biologically active molecules, and thus have received much attention over the past decades. Herein, we report intramolecular C-S bond formation by a P450 monooxygenase, TleB, which normally catalyzes a C-N bond formation in teleocidin biosynthesis. Based on the proposed reaction mechanism of TleB, a thiol-substituted substrate analogue was synthesized and tested in the enzyme reaction, which afforded the unprecedented sulfur-containing thio-indolactam V, in addition to an unusual indole-fused 6/5/8-tricyclic product whose structure was determined by the crystalline sponge method. Interestingly, conformational analysis revealed that the SOFA conformation is stable in thio-indolactam V, in sharp contrast to the major TWIST form in indolactam V, resulting in differences in their biological activities.
Collapse
Affiliation(s)
- Iori Morita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shotaro Hoshino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshimasa Taniguchi
- Central Laboratories for Key Technologies, Kirin Holdings Co. Ltd., 1-13-5, Fukuura Kana-zawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo, 196-8666, Japan
| | - Kei Nagae
- Nissan Chemical Corporation, 2-10-1 Tsuboi-nishi, Funabashi-shi, Chiba, 274-8507, Japan
| | - Norihiro Nasu
- Mitsui Chemical Analysis & Consulting Service, Inc., 580-32 Nagaura, Sodegaura-city, Chiba, 299-0265, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Division of Advanced Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
23
|
Blažević I, Montaut S, Burčul F, Olsen CE, Burow M, Rollin P, Agerbirk N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. PHYTOCHEMISTRY 2020; 169:112100. [PMID: 31771793 DOI: 10.1016/j.phytochem.2019.112100] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/04/2019] [Accepted: 08/18/2019] [Indexed: 05/05/2023]
Abstract
The glucosinolates (GSLs) is a well-defined group of plant metabolites characterized by having an S-β-d-glucopyrano unit anomerically connected to an O-sulfated (Z)-thiohydroximate function. After enzymatic hydrolysis, the sulfated aglucone can undergo rearrangement to an isothiocyanate, or form a nitrile or other products. The number of GSLs known from plants, satisfactorily characterized by modern spectroscopic methods (NMR and MS) by mid-2018, is 88. In addition, a group of partially characterized structures with highly variable evidence counts for approximately a further 49. This means that the total number of characterized GSLs from plants is somewhere between 88 and 137. The diversity of GSLs in plants is critically reviewed here, resulting in significant discrepancies with previous reviews. In general, the well-characterized GSLs show resemblance to C-skeletons of the amino acids Ala, Val, Leu, Trp, Ile, Phe/Tyr and Met, or to homologs of Ile, Phe/Tyr or Met. Insufficiently characterized, still hypothetic GSLs include straight-chain alkyl GSLs and chain-elongated GSLs derived from Leu. Additional reports (since 2011) of insufficiently characterized GSLs are reviewed. Usually the crucial missing information is correctly interpreted NMR, which is the most effective tool for GSL identification. Hence, modern use of NMR for GSL identification is also reviewed and exemplified. Apart from isolation, GSLs may be obtained by organic synthesis, allowing isotopically labeled GSLs and any kind of side chain. Enzymatic turnover of GSLs in plants depends on a considerable number of enzymes and other protein factors and furthermore depends on GSL structure. Identification of GSLs must be presented transparently and live up to standard requirements in natural product chemistry. Unfortunately, many recent reports fail in these respects, including reports based on chromatography hyphenated to MS. In particular, the possibility of isomers and isobaric structures is frequently ignored. Recent reports are re-evaluated and interpreted as evidence of the existence of "isoGSLs", i.e. non-GSL isomers of GSLs in plants. For GSL analysis, also with MS-detection, we stress the importance of using authentic standards.
Collapse
Affiliation(s)
- Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia.
| | - Sabine Montaut
- Department of Chemistry and Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Franko Burčul
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Patrick Rollin
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans et CNRS, UMR 7311, BP 6759, F-45067, Orléans Cedex 2, France
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
24
|
Marshall-Colón A, Kliebenstein DJ. Plant Networks as Traits and Hypotheses: Moving Beyond Description. TRENDS IN PLANT SCIENCE 2019; 24:840-852. [PMID: 31300195 DOI: 10.1016/j.tplants.2019.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 05/04/2023]
Abstract
Biology relies on the central thesis that the genes in an organism encode molecular mechanisms that combine with stimuli and raw materials from the environment to create a final phenotypic expression representative of the genomic programming. While conceptually simple, the genotype-to-phenotype linkage in a eukaryotic organism relies on the interactions of thousands of genes and an environment with a potentially unknowable level of complexity. Modern biology has moved to the use of networks in systems biology to try to simplify this complexity to decode how an organism's genome works. Previously, biological networks were basic ways to organize, simplify, and analyze data. However, recent advances are allowing networks to move beyond description and become phenotypes or hypotheses in their own right. This review discusses these efforts, like mapping responses across biological scales, including relationships among cellular entities, and the direct use of networks as traits or hypotheses.
Collapse
Affiliation(s)
- Amy Marshall-Colón
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
25
|
Abstract
Information in public sequence databases on the genomes and metagenomes of microbes and plants has grown rapidly. In conjunction with technological developments in computational identification of biosynthetic gene clusters, molecular biology, synthetic biology, and analytical tools, this has revealed genes for enzymes with optimal and targeted function, as well as a rich pool of uncharacterized metabolic pathways. This chapter discusses different approaches to discovery of genes and metabolic pathways in microbes and plants in nature, such as genomic mining, transcriptome analysis, and metabolite profiling.
Collapse
|
26
|
Sun M, Ma N, He T, Johnston LJ, Ma X. Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR). Crit Rev Food Sci Nutr 2019; 60:1760-1768. [PMID: 30924357 DOI: 10.1080/10408398.2019.1598334] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intestinal homeostasis is an orchestrated dynamic equilibrium state composed of the coexistence and interactions among the nutrients, microbial flora, and immune system. The intestinal balance disorder can trigger a series of diseases, such as inflammatory bowel disease (IBD). Many of tryptophan (Trp) metabolites, such as kynurenine and indole, generated under a series of endogenous enzymes or microbial metabolism, have been reported enable to bind and activate the aryl hydrocarbon receptor (AhR), this series of process is termed the Trp-AhR pathway. The activated Trp-AhR pathway can induce the expression of downstream cytokines such as interleukin-22 (IL-22) and interleukin-17 (IL-17), thereby regulating the intestinal homeostasis. This review highlights the advance of Trp-AhR pathway in the regulation of intestinal homeostasis and provides some insights for the clinical strategies that expect to effectively prevent and treat gut diseases via intervening the Trp-AhR pathway.
Collapse
Affiliation(s)
- Meige Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Department of Internal Medicine Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
27
|
Liu J, Lin Z, Li Y, Zheng Q, Chen D, Liu W. Insights into the thioamidation of thiopeptins to enhance the understanding of the biosynthetic logic of thioamide-containing thiopeptides. Org Biomol Chem 2019; 17:3727-3731. [DOI: 10.1039/c9ob00402e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In vivo experiments show that the thioamide moiety of thiopeptins is generated by a TfuA–YcaO pair, before the maturation of the bicyclic scaffold.
Collapse
Affiliation(s)
- Jingyu Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Zhi Lin
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Yuqing Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Qingfei Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Dandan Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
28
|
Sugiyama R, Hirai MY. Atypical Myrosinase as a Mediator of Glucosinolate Functions in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1008. [PMID: 31447873 PMCID: PMC6691170 DOI: 10.3389/fpls.2019.01008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/18/2019] [Indexed: 05/04/2023]
Abstract
Glucosinolates (GLSs) are a well-known class of specialized plant metabolites, distributed mostly in the order Brassicales. A vast research field in basic and applied sciences has grown up around GLSs owing to their presence in important agricultural crops and the model plant Arabidopsis thaliana, and their broad range of bioactivities beneficial to human health. The major purpose of GLSs in plants has been considered their function as a chemical defense against predators. GLSs are physically separated from a specialized class of beta-thioglucosidases called myrosinases, at the tissue level or at the single-cell level. They are brought together as a consequence of tissue damage, primarily triggered by herbivores, and their interaction results in the release of toxic volatile chemicals including isothiocyanates. In addition, recent studies have suggested that plants may adopt other strategies independent of tissue disruption for initiating GLS breakdown to cope with certain biotic/abiotic stresses. This hypothesis has been further supported by the discovery of an atypical class of GLS-hydrolyzing enzymes possessing features that are distinct from those of the classical myrosinases. Nevertheless, there is only little information on the physiological importance of atypical myrosinases. In this review, we focus on the broad diversity of the beta-glucosidase subclasses containing known atypical myrosinases in A. thaliana to discuss the hypothesis that numerous members of these subclasses can hydrolyze GLSs to regulate their diverse functions in plants. Also, the increasingly broadening functional repertoires of known atypical/classical myrosinases are described with reference to recent findings. Assessment of independent insights gained from A. thaliana with respect to (1) the phenotype of mutants lacking genes in the GLS metabolic/breakdown pathways, (2) fluctuation in GLS contents/metabolism under specific conditions, and (3) the response of plants to exogenous GLSs or their hydrolytic products, will enable us to reconsider the physiological importance of GLS breakdown in particular situations, which is likely to be regulated by specific beta-glucosidases.
Collapse
|
29
|
Nett RS, Guan X, Smith K, Faust AM, Sattely ES, Fischer CR. D 2O Labeling to Measure Active Biosynthesis of Natural Products in Medicinal Plants. AIChE J 2018; 64:4319-4330. [PMID: 31235979 PMCID: PMC6590064 DOI: 10.1002/aic.16413] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Indexed: 12/28/2022]
Abstract
Plant natural products have served as a prominent source of medicines throughout human history, and are still used today as clinically-approved pharmaceuticals. However, many medicinal plants that produce useful compounds are slow-growing or recalcitrant to cultivation, making it difficult to investigate the underlying genetic/enzymatic machinery responsible for biosynthesis. To better understand the metabolism of bioactive natural products in slow-growing medicinal plants, we used D2O labeling and LC-MS-based metabolomics to explore the biosynthesis of medically-relevant alkaloids in three plant species. Our results provide evidence for sites of active biosynthesis for these alkaloids, and demonstrate that D2O labeling can be used as a general method to determine sites of active secondary metabolism over relatively short time scales. We anticipate that these results will facilitate discovery of complete metabolic pathways for plant natural products of medicinal importance, especially for approaches that rely upon transcriptomics and knowledge of active metabolism to identify biosynthetic enzymes.
Collapse
Affiliation(s)
- Ryan S. Nett
- Dept. of Chemical Engineering, Stanford University,
Stanford, CA 94305
| | - Xin Guan
- Dept. of Chemical Engineering, Stanford University,
Stanford, CA 94305
| | - Kevin Smith
- Dept. of Chemical Engineering, Stanford University,
Stanford, CA 94305
| | - Ann Marie Faust
- Novartis Institutes for BioMedical Research, Cambridge, MA
02139
| | | | - Curt R. Fischer
- Chemistry, Engineering and Medicine for Human Health,
Stanford University, Stanford CA 94305
| |
Collapse
|
30
|
Xu X, Zhou H, Liu Y, Liu X, Fu J, Li A, Li YZ, Shen Y, Bian X, Zhang Y. Heterologous Expression Guides Identification of the Biosynthetic Gene Cluster of Chuangxinmycin, an Indole Alkaloid Antibiotic. JOURNAL OF NATURAL PRODUCTS 2018; 81:1060-1064. [PMID: 29565122 DOI: 10.1021/acs.jnatprod.7b00835] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The indole alkaloid antibiotic chuangxinmycin, from Actinobacteria Actinoplanes tsinanensis, containing a unique thiopyrano[4,3,2- cd]indole scaffold, is a potent and selective inhibitor of bacterial tryptophanyl-tRNA synthetase. The chuangxinmycin biosynthetic gene cluster was identified by in silico analysis of the genome sequence, then verified by heterologous expression. Systemic gene inactivation and intermediate identification determined the minimum set of genes for unique thiopyrano[4,3,2- cd]indole formation and the concerted action of a radical S-adenosylmethionine protein plus an unknown protein for addition of the 3-methyl group. These findings set a solid foundation for comprehensively investigating the biosynthesis, optimizing yield, and generating new analogues of chuangxinmycin.
Collapse
Affiliation(s)
- Xiaokun Xu
- Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science , Shandong University , People's Republic of China
| | - Haibo Zhou
- Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science , Shandong University , People's Republic of China
| | - Yang Liu
- Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science , Shandong University , People's Republic of China
| | - Xiaotong Liu
- Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science , Shandong University , People's Republic of China
| | - Jun Fu
- Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science , Shandong University , People's Republic of China
| | - Aiying Li
- Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science , Shandong University , People's Republic of China
| | - Yue-Zhong Li
- Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science , Shandong University , People's Republic of China
| | - Yuemao Shen
- Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science , Shandong University , People's Republic of China
| | - Xiaoying Bian
- Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science , Shandong University , People's Republic of China
| | - Youming Zhang
- Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science , Shandong University , People's Republic of China
| |
Collapse
|
31
|
Abstract
Oxidative cyclizations are important transformations that occur widely during natural product biosynthesis. The transformations from acyclic precursors to cyclized products can afford morphed scaffolds, structural rigidity, and biological activities. Some of the most dramatic structural alterations in natural product biosynthesis occur through oxidative cyclization. In this Review, we examine the different strategies used by nature to create new intra(inter)molecular bonds via redox chemistry. This Review will cover both oxidation- and reduction-enabled cyclization mechanisms, with an emphasis on the former. Radical cyclizations catalyzed by P450, nonheme iron, α-KG-dependent oxygenases, and radical SAM enzymes are discussed to illustrate the use of molecular oxygen and S-adenosylmethionine to forge new bonds at unactivated sites via one-electron manifolds. Nonradical cyclizations catalyzed by flavin-dependent monooxygenases and NAD(P)H-dependent reductases are covered to show the use of two-electron manifolds in initiating cyclization reactions. The oxidative installations of epoxides and halogens into acyclic scaffolds to drive subsequent cyclizations are separately discussed as examples of "disappearing" reactive handles. Last, oxidative rearrangement of rings systems, including contractions and expansions, will be covered.
Collapse
Affiliation(s)
- Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yi Zou
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94305
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Dunbar KL, Scharf DH, Litomska A, Hertweck C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5521-5577. [PMID: 28418240 DOI: 10.1021/acs.chemrev.6b00697] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Daniel H Scharf
- Life Sciences Institute, University of Michigan , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
33
|
Abstract
Brassica crop species are prolific producers of indole-sulfur phytoalexins that are thought to have an important role in plant disease resistance. These molecules are conspicuously absent in the model plant Arabidopsis thaliana, and little is known about the enzymatic steps that assemble the key precursor brassinin. Here, we report the minimum set of biosynthetic genes required to generate cruciferous phytoalexins starting from the well-studied glucosinolate pathway. In vitro biochemical characterization revealed an additional role for the previously described carbon-sulfur lyase SUR1 in processing cysteine-isothiocyanate conjugates, as well as the S-methyltransferase DTCMT that methylates the resulting dithiocarbamate, together completing a pathway to brassinin. Additionally, the β-glucosidase BABG that is present in Brassica rapa but absent in Arabidopsis was shown to act as a myrosinase and may be a determinant of plants that synthesize phytoalexins from indole glucosinolate. Transient expression of the entire pathway in Nicotiana benthamiana yields brassinin, demonstrating that the biosynthesis of indole-sulfur phytoalexins can be engineered into noncruciferous plants. The identification of these biosynthetic enzymes and the heterologous reconstitution of the indole-sulfur phytoalexin pathway sheds light on an important pathway in an edible plant and opens the door to using metabolic engineering to systematically quantify the impact of cruciferous phytoalexins on plant disease resistance and human health.
Collapse
Affiliation(s)
- Andrew P Klein
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | | |
Collapse
|
34
|
Biggs BW, Rouck JE, Kambalyal A, Arnold W, Lim CG, De Mey M, O’Neil-Johnson M, Starks CM, Das A, Ajikumar PK. Orthogonal Assays Clarify the Oxidative Biochemistry of Taxol P450 CYP725A4. ACS Chem Biol 2016; 11:1445-51. [PMID: 26930136 DOI: 10.1021/acschembio.5b00968] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Natural product metabolic engineering potentially offers sustainable and affordable access to numerous valuable molecules. However, challenges in characterizing and assembling complex biosynthetic pathways have prevented more rapid progress in this field. The anticancer agent Taxol represents an excellent case study. Assembly of a biosynthetic pathway for Taxol has long been stalled at its first functionalization, putatively an oxygenation performed by the cytochrome P450 CYP725A4, due to confounding characterizations. Here, through combined in vivo (Escherichia coli), in vitro (lipid nanodisc), and metabolite stability assays, we verify the presence and likely cause of this enzyme's inherent promiscuity. Thereby, we remove the possibility that promiscuity simply existed as an artifact of previous metabolic engineering approaches. Further, spontaneous rearrangement and the stabilizing effect of a hydrophobic overlay suggest a potential role for nonenzymatic chemistry in Taxol's biosynthesis. Taken together, this work confirms taxadiene-5α-ol as a primary enzymatic product of CYP725A4 and provides direction for future Taxol metabolic and protein engineering efforts.
Collapse
Affiliation(s)
- Bradley Walters Biggs
- Manus Biosynthesis, 1030 Massachusetts
Avenue, Suite 300, Cambridge, Massachusetts 02138, United States
- Department
of Chemical and Biological Engineering (Masters in Biotechnology Program), Northwestern University, Evanston, Illinois 60208, United States
| | - John Edward Rouck
- Department
of Comparative Biosciences, Department of Biochemistry, Department
of Bioengineering, Beckman Institute for Advanced Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Amogh Kambalyal
- Department
of Comparative Biosciences, Department of Biochemistry, Department
of Bioengineering, Beckman Institute for Advanced Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - William Arnold
- Department
of Comparative Biosciences, Department of Biochemistry, Department
of Bioengineering, Beckman Institute for Advanced Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chin Giaw Lim
- Manus Biosynthesis, 1030 Massachusetts
Avenue, Suite 300, Cambridge, Massachusetts 02138, United States
| | - Marjan De Mey
- Manus Biosynthesis, 1030 Massachusetts
Avenue, Suite 300, Cambridge, Massachusetts 02138, United States
- Centre
for Industrial Biotechnology and Biocatalysis, Ghent University, Coupure
Links 653, B-9000, Ghent, Belgium
| | - Mark O’Neil-Johnson
- Sequoia Sciences, 1912 Innerbelt
Business Center Dr., Saint Louis, Missouri 63114, United States
| | - Courtney M. Starks
- Sequoia Sciences, 1912 Innerbelt
Business Center Dr., Saint Louis, Missouri 63114, United States
| | - Aditi Das
- Department
of Comparative Biosciences, Department of Biochemistry, Department
of Bioengineering, Beckman Institute for Advanced Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Parayil Kumaran Ajikumar
- Manus Biosynthesis, 1030 Massachusetts
Avenue, Suite 300, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
35
|
Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis. Nat Commun 2016; 7:11472. [PMID: 27145837 PMCID: PMC4858744 DOI: 10.1038/ncomms11472] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/30/2016] [Indexed: 01/01/2023] Open
Abstract
Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,3′,4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 3′-hydroxylation of 2,4,6-trihydroxybenzophenone and C–O phenol coupling of the resulting 2,3′,4,6-tetrahydroxybenzophenone. Relative to the inserted 3′-hydroxyl, the orthologues Hc/HpCYP81AA1 cyclize via the para position to form 1,3,7-trihydroxyxanthone, whereas the paralogue HpCYP81AA2 directs cyclization to the ortho position, yielding the isomeric 1,3,5-trihydroxyxanthone. Homology modelling and reciprocal mutagenesis reveal the impact of S375, L378 and A483 on controlling the regioselectivity of HpCYP81AA2, which is converted into HpCYP81AA1 by sextuple mutation. However, the reciprocal mutations in HpCYP81AA1 barely affect its regiospecificity. Product docking rationalizes the alternative C–O phenol coupling reactions. Our results help understand the machinery of bifunctional CYPs. Xanthones are pharmacologically and biosynthetically intriguing compounds. Here, the authors identify two cytochrome P450 enzymes, which hydroxylate and cyclize the benzophenone precursor to either 1,3,7- or 1,3,5-trihydroxyxanthones, and pinpoint residues that determine the alternative regioselectivities.
Collapse
|
36
|
Biocatalysts from alkaloid producing plants. Curr Opin Chem Biol 2016; 31:22-30. [DOI: 10.1016/j.cbpa.2015.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
|
37
|
Torrens-Spence MP, Fallon TR, Weng JK. A Workflow for Studying Specialized Metabolism in Nonmodel Eukaryotic Organisms. Methods Enzymol 2016; 576:69-97. [PMID: 27480683 DOI: 10.1016/bs.mie.2016.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eukaryotes contain a diverse tapestry of specialized metabolites, many of which are of significant pharmaceutical and industrial importance to humans. Nevertheless, exploration of specialized metabolic pathways underlying specific chemical traits in nonmodel eukaryotic organisms has been technically challenging and historically lagged behind that of the bacterial systems. Recent advances in genomics, metabolomics, phylogenomics, and synthetic biology now enable a new workflow for interrogating unknown specialized metabolic systems in nonmodel eukaryotic hosts with greater efficiency and mechanistic depth. This chapter delineates such workflow by providing a collection of state-of-the-art approaches and tools, ranging from multiomics-guided candidate gene identification to in vitro and in vivo functional and structural characterization of specialized metabolic enzymes. As already demonstrated by several recent studies, this new workflow opens up a gateway into the largely untapped world of natural product biochemistry in eukaryotes.
Collapse
Affiliation(s)
- M P Torrens-Spence
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
| | - T R Fallon
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States; Massachusetts Institute of Technology, Cambridge, MA, United States
| | - J K Weng
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States; Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
38
|
Wang Y, Wang J, Yu S, Wang F, Ma H, Yue C, Liu M, Deng Z, Huang Y, Qu X. Identifying the Minimal Enzymes for Unusual Carbon-Sulfur Bond Formation in Thienodolin Biosynthesis. Chembiochem 2016; 17:799-803. [PMID: 26854280 DOI: 10.1002/cbic.201500670] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Yaya Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; 185 Donghu Road Wuhan 430071 China
| | - Jiali Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; 185 Donghu Road Wuhan 430071 China
| | - Shuqi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; 185 Donghu Road Wuhan 430071 China
| | - Fan Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; 185 Donghu Road Wuhan 430071 China
| | - Hongmin Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; 185 Donghu Road Wuhan 430071 China
| | - Changwu Yue
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences, 1 Beichen West Road; Beijing 100101 China
- Guizhou Key Laboratory of Microbial Resources and Drug Development; Zunyi Medical College, 201 Dalian Road; Zunyi 563003 China
| | - Minghao Liu
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences, 1 Beichen West Road; Beijing 100101 China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; 185 Donghu Road Wuhan 430071 China
| | - Ying Huang
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences, 1 Beichen West Road; Beijing 100101 China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; 185 Donghu Road Wuhan 430071 China
| |
Collapse
|
39
|
Pedras MSC, To QH. Unveiling the first indole-fused thiazepine: structure, synthesis and biosynthesis of cyclonasturlexin, a remarkable cruciferous phytoalexin. Chem Commun (Camb) 2016; 52:5880-3. [DOI: 10.1039/c6cc02108e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure, synthesis, biosynthesis and antifungal activity of cyclonasturlexin, the most intriguing indolyl phytoalexin isolated from watercress plants, are reported.
Collapse
Affiliation(s)
- M. S. C. Pedras
- Department of Chemistry
- University of Saskatchewan
- Saskatoon SK S7N 5C9
- Canada
| | - Q. H. To
- Department of Chemistry
- University of Saskatchewan
- Saskatoon SK S7N 5C9
- Canada
| |
Collapse
|
40
|
Abstract
A personal selection of 33 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as pseudellone A from Pseudallescheria ellipsoidea.
Collapse
|