1
|
Wang L, Yang H, Huang W, Ran G, He X, Bradley M, Qian S. Tumor-specific cathepsin B-triggered fluorescence imaging and prodrug activation. Eur J Med Chem 2025; 292:117661. [PMID: 40286448 DOI: 10.1016/j.ejmech.2025.117661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Bioorthogonal activation chemistries have great potential in the development of novel drug treatments due to their versatility, tunability, and the ability to generate therapies with improved spatial targeting. The upregulation of Cathepsin B is highly correlated with the development of cancers, however, few fluorescent probes or prodrugs-based on Cathepsin B activity have demonstrated high tumor selectivity, since Cathepsin B is expressed in a variety of normal tissues. In this study, we report a strain-promoted azide-alkyne cycloaddition-activation strategy whereby a para-azido safety-catch linker is triggered by the tumor locating Biotin-TCO (trans-cyclooctene) conjugate, with subsequent tumor-specific Cathepsin B-triggered activation, generating a fluorescent reporter/cytotoxic drug, with high tumor selectivity. Our results suggest that this dual AND-Gate strategy of orthogonal Biotin AND Cathepsin B action would be advantageous for tumor-specific fluorescence labelling, fluorescence-guided surgery and targeted treatment.
Collapse
Affiliation(s)
- Luyang Wang
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Xihua University, Chengdu 610039, PR China
| | - Houchi Yang
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Xihua University, Chengdu 610039, PR China
| | - Wanyun Huang
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Xihua University, Chengdu 610039, PR China
| | - Guojun Ran
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Xihua University, Chengdu 610039, PR China
| | - Xiaolong He
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Xihua University, Chengdu 610039, PR China.
| | - Mark Bradley
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House London E1 1HH, UK
| | - Shan Qian
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Xihua University, Chengdu 610039, PR China.
| |
Collapse
|
2
|
Wu T, Fei Y, Deng Y, Chen X, Duan Y, Liu Y, Bai Y. Creation of Artificial Subcellular Organelles Using Compartmentalized Escherichia coli Bodies for Artificial Metalloenzyme-Mediated Abiotic Catalysis in Eukaryotic Cells. J Am Chem Soc 2025; 147:15229-15241. [PMID: 40269669 DOI: 10.1021/jacs.5c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Artificial metalloenzymes (ArMs) stand out as excellent tools mediating intracellular abiotic transformations due to their multifaceted advantages, including their adaptability through directed evolution and availability as whole-cell catalysts. However, the applications of ArMs as exogenous agents in eukaryotic systems remain challenging due to issues with protein purification and delivery, metalloenzyme stability, and complex catalyst preparation. In this article, we present a method inspired by nature's endosymbiotic process, enabling the direct use of ArMs residing within the bacterial cells that express them as whole-cell-based catalytic platforms in eukaryotic cells. This approach utilizes HaloTag-SNAPTag fusion protein as the ArM scaffold, which undergoes liquid-liquid phase separation to form sanctuaries in Escherichia coli for different ArMs created from the same fusion protein. Such compartmentalized E. coli are then sterilized and granted cell permeability with polymer decoration so that they may enter eukaryotic cells and work as artificial subcellular organelles, mediating abiotic transformations using those well-protected ArMs residing within. We further demonstrate the potential of this strategy in therapeutic applications in proof-of-concept demonstrations, by showing that these encapsulated ArMs can be viable options for intracellular bacterial pathogen elimination and cancer therapy through prodrug activation in live cells and animals. Likely, this strategy will suggest a different pathway for expanding ArM applications in chemical biology and biomedicine.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Chemo- and Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yating Fei
- State Key Laboratory of Chemo- and Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingjiao Deng
- State Key Laboratory of Chemo- and Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xianhui Chen
- State Key Laboratory of Chemo- and Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuli Duan
- State Key Laboratory of Chemo- and Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ying Liu
- State Key Laboratory of Chemo- and Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo- and Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Brejchova K, Rahm M, Benova A, Domanska V, Reyes-Gutierez P, Dzubanova M, Trubacova R, Vondrackova M, Cajka T, Tencerova M, Vrabel M, Kuda O. Uncovering mechanisms of thiazolidinediones on osteogenesis and adipogenesis using spatial fluxomics. Metabolism 2025; 166:156157. [PMID: 39947516 DOI: 10.1016/j.metabol.2025.156157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE Insulin-sensitizing drugs, despite their broad use against type 2 diabetes, can adversely affect bone health, and the mechanisms underlying these side effects remain largely unclear. Here, we investigated the different metabolic effects of a series of thiazolidinediones, including rosiglitazone, pioglitazone, and the second-generation compound MSDC-0602K, on human mesenchymal stem cells (MSCs). METHODS We developed 13C subcellular metabolomic tracer analysis measuring separate mitochondrial and cytosolic metabolite pools, lipidomic network-based isotopologue models, and bioorthogonal click chemistry, to demonstrate that MSDC-0602K differentially affected bone marrow-derived MSCs (BM-MSCs) and adipose tissue-derived MSCs (AT-MSCs). In BM-MSCs, MSDC-0602K promoted osteoblastic differentiation and suppressed adipogenesis. This effect was clearly distinct from that of the earlier drugs and that on AT-MSCs. RESULTS Fluxomic data reveal unexpected differences between this drug's effect on MSCs and provide mechanistic insight into the pharmacologic inhibition of mitochondrial pyruvate carrier 1 (MPC). Our study demonstrates that MSDC-0602K retains the capacity to inhibit MPC, akin to rosiglitazone but unlike pioglitazone, enabling the utilization of alternative metabolic pathways. Notably, MSDC-0602K exhibits a limited lipogenic potential compared to both rosiglitazone and pioglitazone, each of which employs a distinct lipogenic strategy. CONCLUSIONS These findings indicate that the new-generation drugs do not compromise bone structure, offering a safer alternative for treating insulin resistance. Moreover, these results highlight the ability of cell compartment-specific metabolite labeling by click reactions and tracer metabolomics analysis of complex lipids to discover molecular mechanisms within the intersection of carbohydrate and lipid metabolism.
Collapse
Affiliation(s)
- Kristyna Brejchova
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Michal Rahm
- Chemistry of Bioconjugates, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czechia
| | - Andrea Benova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Veronika Domanska
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Paul Reyes-Gutierez
- Chemistry of Bioconjugates, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czechia
| | - Martina Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia; Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Radka Trubacova
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Michaela Vondrackova
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Tomas Cajka
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia
| | - Milan Vrabel
- Chemistry of Bioconjugates, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czechia
| | - Ondrej Kuda
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czechia.
| |
Collapse
|
4
|
Zhou Z, Sun Y, Pang J, Long YQ. Advances in the Delivery, Activation and Therapeutics Applications of Bioorthogonal Prodrugs. Med Res Rev 2025; 45:887-908. [PMID: 39692238 DOI: 10.1002/med.22095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Traditional prodrug strategies have been leveraged to overcome many inherent drawbacks of active native drugs in the drug research and development. However, endogenous stimuli such as specific microenvironment or enzymes are relied on to achieve the prodrug activation, resulting in unintended drug release and systemic toxicity. Alternatively, bioorthogonal cleavage reaction-enabled bioorthogonal prodrugs activation via exogenous triggers has emerged as a valuable approach, featuring spatiotemporally controlled drug release. Such bioorthogonal prodrug strategies would ensure targeted drug delivery and/or in situ generation, further circumventing systemic toxicity or premature elimination of active drugs. In recent years, metal-free bioorthogonal cleavage reactions with fast kinetics have boomed in the bioorthogonal prodrug design. Meanwhile, transition-metal-catalyzed and photocatalytic deprotection reactions have also been developed to trigger prodrug activation in biological systems. Besides traditional small molecule prodrugs, gasotransmitters have been successfully delivered to specific organelles or cells via bioorthogonal reactions, and nanosystems have been devised into bioorthogonal triggers as well. Herein, we present an overview of the latest advances in these bioorthogonally-uncaged prodrugs, focused on the delivery, activation and therapeutics applications.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yuanjun Sun
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Jing Pang
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Ya-Qiu Long
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Wu Y, Sun L, Zhang X, Zhong W, Chen X, Wang S, Chen Y, Wang D, He T, Chen H, Guo J, Zeng F, Li M, Luo Z, Wu S, Zhao Y. Unnatural Triggers Converted From Tetrazine-Attached Sialic Acid for Activation of Optoacoustic Imaging-Guided Cancer Theranostics. Angew Chem Int Ed Engl 2025:e202503850. [PMID: 40257825 DOI: 10.1002/anie.202503850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/22/2025]
Abstract
Constructing chemical groups on cell membranes through metabolic glycoengineering of unnatural sugars is an effective means to solve the issue of insufficient or even lack of targets in cancer theranostics. Herein, we address the limitations by developing a tetrazine precursor (SiaTz) based on a nonO-acetylated sialic acid scaffold and then utilizing it to create unnatural tetrazine triggers on the surface of cancer cells. SiaTz exhibits a good balance between the stability and reaction kinetics under physiological conditions and can be efficiently converted into corresponding tetrazine trigger through bypassing several size-limiting steps in metabolic glycoengineering process. We also prepare a proof-of-concept theranostic combination of a trans-cyclooctene derivative (CyTCO) and a thermal-sensitive drug 2,2'-azobis[2-(2-imidazolin-2-yl) propane]-dihydrochloride (AIPH) to verify the activation function of tetrazine triggers in theranostics of orthotopic and metastatic tumors. In the presence of tetrazine triggers, CyTCO can be activated via bio-orthogonal reaction to induce optoacoustic signal enhancement, enabling high-contrast diagnostic imaging and precise tumor localization to guide subsequent treatments. Tetrazine trigger-activated CyTCO displays high photo-to-heat conversion efficiency, which can cause an obvious increase in temperature under laser irradiation and then initiate AIPH decomposition to produce toxic radicals for combined therapy.
Collapse
Affiliation(s)
- Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Lihe Sun
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shihuai Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Dongdong Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Ting He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hongzhong Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, P.R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, P.R. China
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
6
|
Liu X, Zhou E, Qi Q, Xiong W, Tian T, Zhou X. Innovative Chemical Strategies for Advanced CRISPR Modulation. Acc Chem Res 2025; 58:1262-1274. [PMID: 40173086 DOI: 10.1021/acs.accounts.5c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
ConspectusOver the past decade, RNA-guided gene editing technologies, particularly those derived from CRISPR systems, have revolutionized life sciences and opened unprecedented opportunities for therapeutic innovation. Despite their transformative potential, achieving precise control over the activity and specificity of these molecular tools remains a formidable challenge, requiring advanced and innovative regulatory strategies. We and others have developed new approaches that integrate chemical ingenuity with bioorthogonal techniques to achieve remarkable precision in CRISPR regulation. One key innovation lies in the chemical modulation of guide RNA (gRNA), significantly expanding the CRISPR toolkit. Strategies such as CRISPR-ON and CRISPR-OFF switches rely on selective chemical masking and demasking of gRNA. These approaches use either bulky chemical groups to preemptively mask RNA or minor, less obstructive groups to fine-tune its function, followed by bioorthogonal reactions to restore or suppress activity. These methodologies have proven to be pivotal for controlled gene editing and expression, addressing the challenges of precision, reversibility, and dynamic regulation.Parallel to these advances, the development of mesoporous metal-organic frameworks (MOFs) has emerged as a promising solution for RNA deprotection and activation. By serving as catalytic tools, MOFs enhance the versatility and efficiency of CRISPR systems, pushing their applications beyond the conventional boundaries. In addition, the synthesis of novel small molecules for regulating CRISPR-Cas9 activity marks a critical milestone in the evolution of gene therapy protocols. Innovative RNA structural control strategies have also emerged, particularly through the engineering of G-quadruplex (G4) motifs and G-G mismatches. These methods exploit the structural propensities of engineered gRNAs, employing small-molecule ligands to induce specific conformational changes that modulate the CRISPR activity. Whether stabilizing G4 formation or promoting G-G mismatches, these strategies demonstrate the precision and sophistication required for the molecular-level control of gene editing.Further enhancing these innovations, techniques like host-guest chemistry and conditional diacylation cross-linking have been developed to directly alter gRNA structure and function. These approaches provide nuanced, reversible, and safe control over CRISPR systems, advancing both the precision and reliability of gene editing technologies. In conclusion, this body of work highlights the convergence of chemistry, materials science, and molecular biology to create integrative solutions for gene editing. By combination of bioorthogonal chemistry, RNA engineering, and advanced materials, these advancements offer unprecedented accuracy and control for both fundamental research and therapeutic applications. These innovations not only advance genetic research but also contribute to developing safer and more effective gene editing strategies, moving us closer to realizing the full potential of these technologies.
Collapse
Affiliation(s)
- Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| | - Enyi Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| | - Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| | - Wei Xiong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Liu X, Qi Q, Xiong W, Zhang Y, Shen W, Xu X, Zhao Y, Li M, Zhou E, Tian T, Zhou X. Tailoring and reversing m6A editing with sequential RNA bioorthogonal chemistry. Nucleic Acids Res 2025; 53:gkaf283. [PMID: 40219967 PMCID: PMC11992675 DOI: 10.1093/nar/gkaf283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 03/23/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Many existing methods for post-transcriptional RNA modification rely on a single-step approach, limiting the ability to reversibly control m6A methylation at specific sites. Here, we address this challenge by developing a multi-step system that builds on the concept of sequential RNA bioorthogonal chemistry. Our strategy uses an azide-based reagent (NAI-N3) capable of both cleavage and ligation reactions, thereby allowing iterative and reversible modifications of RNA in living cells. By applying this approach in CRISPR (clustered regularly interspaced short palindromic repeats)-based frameworks, we demonstrate tailored editing of m6A marks at targeted RNA sites, overcoming the one-way restriction of conventional bioorthogonal methods. This sequential protocol not only broadens the scope for fine-tuned RNA regulation but also provides a versatile platform for exploring dynamic m6A function in genetic and epigenetic research.
Collapse
Affiliation(s)
- Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Xiong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Yuanyuan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Xinyan Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Yunting Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Ming Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Enyi Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
8
|
Shen R, Zhang B, Zhao L, Chang B, Zhang F, Chen Y, Fang J. A tunable stimuli-responsive module based on an α-hydroxymethyl-α,β-unsaturated carbonyl scaffold. J Mater Chem B 2025; 13:3980-3989. [PMID: 40029635 DOI: 10.1039/d4tb02818j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The α-hydroxymethyl-α,β-unsaturated carbonyl (HMUC) scaffold represents a valuable framework for constructing nucleophile-responsive materials. However, nucleophiles are largely limited to thiols and amines. Given the ubiquity of thiols and amines in biological systems, this limitation hinders the creation of materials that can be selectively activated by exogenous stimuli. By tuning the electron density of the double bond and assessing its reactivity with various nucleophiles, we present here the discovery of the N-ethyl-2-(hydroxymethyl)acrylamide (NEHMAA) scaffold as a versatile building block for fabricating exogenous stimuli-responsive materials. The selenol species 4-cyanobenzylselenol (from its precursor bis(4-cyanobenzyl)diselenide, Se4) effectively activates NEHMAA-decorated "caged" molecules. Furthermore, the NEHMAA unit was employed to prepare prodrugs, and Se4-dependent cytotoxicity of these prodrugs was observed in cancer cells. The orthogonal reactivity between the NEHMAA unit and Se4 enriches the existing repertoire for constructing exogenous stimuli-responsive smart materials.
Collapse
Affiliation(s)
- Ruipeng Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yating Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
9
|
Caldwell S, Demyan IR, Falcone GN, Parikh A, Lohmueller J, Deiters A. Conditional Control of Benzylguanine Reaction with the Self-Labeling SNAP-tag Protein. Bioconjug Chem 2025; 36:540-548. [PMID: 39977950 PMCID: PMC11926790 DOI: 10.1021/acs.bioconjchem.5c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
SNAP-tag, a mutant of the O6-alkylguanine-DNA-alkyltransferase, self-labels by reacting with benzylguanine (BG) substrates, thereby forming a thioether bond. SNAP-tag has been genetically fused to a wide range of proteins of interest in order to covalently modify them. In the context of both diagnostic and therapeutic applications, as well as use as a biological recording device, precise control in a spatial and temporal fashion over the covalent bond-forming reaction is desired to direct inputs, readouts, or therapeutic actions to specific locations, at specific time points, in cells and organisms. Here, we introduce a comprehensive suite of six caged BG molecules: one light-triggered and five others that can be activated through various chemical and biochemical stimuli, such as small molecules, transition metal catalysts, reactive oxygen species, and enzymes. These molecules are unable to react with SNAP-tag until the trigger is present, which leads to near complete SNAP-tag conjugation, as illustrated both in biochemical assays and on human cell surfaces. This approach holds promise for targeted therapeutic assembly at disease sites, offering the potential to reduce off-target effects and toxicity through precise trigger titration.
Collapse
Affiliation(s)
- Steven
E. Caldwell
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Isabella R. Demyan
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Gianna N. Falcone
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Avani Parikh
- Department
of Surgery, Division of Surgical Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Jason Lohmueller
- Department
of Surgery, Division of Surgical Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Center
for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander Deiters
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Center
for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
Wang L, Huang Y, Wang J, Jiang Y, Jiang BP, Chen H, Liang H, Shen XC. Bioorthogonal Reaction of β-Chloroacroleins with meta-Aminothiophenol to Develop Near-Infrared Fluorogenic Probes for Simultaneous Two-color Imaging. J Am Chem Soc 2025; 147:6707-6716. [PMID: 39932871 DOI: 10.1021/jacs.4c16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Highly fluorogenic probe based bioorthogonal chemistry has become a promising tool in biomedical applications. However, the majority of fluorogenic probes are designed by introducing a bioorthogonal partner as a fluorescence quencher into classical fluorophores, and these probes exhibit a deteriorating fluorogenicity as the emission wavelength shifts toward the near-infrared (NIR) region, greatly limiting their applications in vivo. Herein, we report a novel fluorogenic bioorthogonal reaction involving β-chloroacroleins (β-CAs) and meta-aminothiophenol (m-AT1), whose fluorescence increases more than 500-fold upon in situ generating fluorophores. β-CAs are stable under physiological conditions and react rapidly (β-CA9, k2 = 2.2 × 102 M-1 s-1, in H2O) and chemoselectively with m-AT1 in the presence of biological nucleophiles, and delightfully, the reaction proceeds swiftly even under solvent-free conditions. Furthermore, manipulating the conjugate length of β-CAs enables the emission wavelength of the probes to be fine-tuned from 627 to 778 nm. These probes allow the simultaneous labeling of multiple cellular organelles without washing steps, and two-color tumor visualization is achieved in living mice. We believe this study not only provides new insights for the development of NIR fluorogenic probes with superior turn-on behaviors but also presents a promising fluorogenic bioorthogonal reaction CA-AT with widespread potential applications in biomedical research.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yujie Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Jing Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yulan Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
11
|
Li J, Cheng M, Zhang H, Wang Y, Guo W, Zheng Y. A Tetrazine Amplification System for Visual Detection of Trace Analytes via Click-Release Reactions. Angew Chem Int Ed Engl 2025; 64:e202414246. [PMID: 39623886 DOI: 10.1002/anie.202414246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Achieving visual detection of analytes at ultra-low concentrations in complex mixtures remains a persistent challenge. While sophisticated techniques offer single-molecule sensitivity, practical hurdles remain, necessitating tailored signal amplification systems for direct visual detection. In this study, we develop a strategy for the visualized detection of tetrazine through a "click-release-oxidation-cycle" (CROC) cascade amplification process. We systematically describe the construction and synthesis of this system, the kinetic process of click release, the kinetics of oxidation to tetrazine and its cascade amplification effect in trace amounts of tetrazine. This system is capable of amplifying the signal of tetrazine at a concentration as low as 2 nM by 105-fold, thereby providing a clearly visible purple signal. Finally, as proof of concept, we successfully apply this method to visually detect trace β-galactosidase (β-gal) and Pd2+.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Mingxin Cheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Hongbo Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Yichen Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Weiwei Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P. R. China
- School of Science, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Yueqin Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
12
|
Wang C, Chen D, Wei Z, Tan J, Wu C, Zhang X. Metal-Catalyzed Abiotic Cleavage of C═C Bonds for Effective Fluorescence Imaging of Cu(II) and Fe(III) in Living Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412407. [PMID: 39784410 PMCID: PMC11848571 DOI: 10.1002/advs.202412407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/25/2024] [Indexed: 01/12/2025]
Abstract
Imaging abnormal copper/iron with effective fluorescent tools is essential to comprehensively put insight into many pathological events. However, conventional coordination-based detection is mired in the fluorescence quenching induced by paramagnetic Cu(II)/Fe(III). Moreover, the strong chelating property of the probe will consume dissociative metal ions and inevitably interfere with the physiological microenvironment. Here, a new strategy is developed by employing this aberrant Cu(II)/Fe(III) to catalyze bond cleavage for fluorescent imaging of them. A short series of near-infrared fluorescent molecules (NIRB1-NIRB6) is devised as substrates, wherein the specific C═C bonds can be effectively cleaved to activate red fluorophore by Cu(II)/Fe(III) catalyzing. Representatively, NIRB1 is applied for fluorescent imaging of Cu(II)/Fe(III) in living cells, zebrafish, and Alzheimer's disease (AD)-afflicted mouse brains which is of significance to monitor metal safety. The successful cleavage of C═C bonds catalyzed by Cu(II)/Fe(III) enriches the application of abiotic bond cleavage reactions in metal detection, and may also inspire the development of fluorescent tools for the future diagnosis and therapy of diseases.
Collapse
Affiliation(s)
- Chunfei Wang
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
- Department of PharmacologySchool of PharmacyWannan Medical CollegeWuhuAnhui241002China
| | - Dandan Chen
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Zixiang Wei
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
| | - Jingyun Tan
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Xuanjun Zhang
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
- MOE Frontiers Science Centre for Precision OncologyUniversity of MacauMacau SAR999078China
| |
Collapse
|
13
|
Hai W, Bao X, Sun K, Li B, Peng J, Xu Y. In situ labeling of pretargeted hyaluronan for PET/MR imaging of CD44+ tumors. Bioorg Chem 2025; 155:108110. [PMID: 39756203 DOI: 10.1016/j.bioorg.2024.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Tumor-specific molecular probe-based imaging strategies have shown great potential for tumor diagnosis. However, the sensitivity and contrast of imaging may interfere with the complex labeling process and degradation of tumor-specific imaging probes. We sought to adapt a pretargeting strategy and an in vivo bioorthogonal reaction to improve hyaluronan (HA)-based tumor multimodal imaging diagnosis. METHODS Transcyclooctene-labeled HA (HA-TCO) and tetrazine-labeled NODA (NODA-Tz) were synthesized and purified. Probes Gd-NODA-Tz and [18F]AlF-NODA-Tz for magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging were prepared. The bioorthogonal reaction of HA-TCO with NODA-Tz and the stability of the products were confirmed and analyzed. CD44 + A549 tumor-bearing mice were injected with HA-TCO via the tail vein, followed by Gd-NODA-Tz or [18F]AlF-NODA-Tz administration half an hour later, and subsequently imaged by MR or PET. The images were analyzed and tumor uptake was quantified. RESULTS HA-TCO efficiently bound to CD44-overexpressing A549 cells and selectively reacted with the Tz-imaging group. In vivo MR and PET images were obtained after probe injection and subsequent bioorthogonal labeling. The images showed a tumor mass with a high target background ratio (TBR) and clear boundaries. CONCLUSION In situ labeling of pretargeted HA-TCO enabled MRI and PET imaging of tumor tissues in mice with high sensitivity and improved TBR.
Collapse
Affiliation(s)
- Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiao Bao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Kang Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; College of Pharmacy, Dali University, Xia Guan, Dali, Yunnan 6710000, PR China.
| |
Collapse
|
14
|
Zenmyo N, Matsumoto Y, Yasuda A, Uchinomiya S, Shindo N, Sasaki-Tabata K, Mishiro-Sato E, Tamura T, Hamachi I, Ojida A. A Protein Cleavage Platform Based on Selective Formylation at Cysteine Residues. J Am Chem Soc 2025; 147:3080-3091. [PMID: 39818953 DOI: 10.1021/jacs.4c10991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Site-selective cleavage of the peptide backbone in proteins is an important class of post-translational modification (PTM) in nature. However, the organic chemistry for such site-selective peptide bond cleavages has yet to be fully explored. Herein, we report cysteine S-formylation as a means of selective protein backbone cleavage. We developed N-formyl sulfonylanilide as a cysteine-selective formylation reagent for peptides and proteins. Upon S-formylation with the reagent, the amide bond adjacent to the S-formylated cysteine is cleaved by hydrolysis under neutral aqueous conditions. Formylation probes bearing a protein ligand enabled the affinity-based selective cleavage of the target proteins not only in the test tube but also under biorelevant conditions such as in crude cell lysate and on the cell surface. These results demonstrate the high biocompatibility of this protein cleavage technology. A proof-of-concept study of cleavage-induced protein activation further demonstrates its utility as a platform for the functional regulation of proteins by artificial PTM.
Collapse
Affiliation(s)
- Naoki Zenmyo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuya Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akihiro Yasuda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shohei Uchinomiya
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoya Shindo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kaori Sasaki-Tabata
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Emi Mishiro-Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| | - Tomonori Tamura
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- CREST (Core Research for Evolutional Science and Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
15
|
Rahm M, Keppel P, Šlachtová V, Dzijak R, Dračínský M, Bellová S, Reyes-Gutiérrez PE, Štěpánová S, Raffler J, Tloušťová E, Mertlíková-Kaiserová H, Mikula H, Vrabel M. Sulfonated Hydroxyaryl-Tetrazines with Increased pK a for Accelerated Bioorthogonal Click-to-Release Reactions in Cells. Angew Chem Int Ed Engl 2025; 64:e202411713. [PMID: 39298292 DOI: 10.1002/anie.202411713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/21/2024]
Abstract
Bioorthogonal reactions that enable switching molecular functions by breaking chemical bonds have gained prominence, with the tetrazine-mediated cleavage of trans-cyclooctene caged compounds (click-to-release) being particularly noteworthy for its high versatility, biocompatibility, and fast reaction rates. Despite several recent advances, the development of highly reactive tetrazines enabling quantitative elimination from trans-cyclooctene linkers remains challenging. In this study, we present the synthesis and application of sulfo-tetrazines, a class of derivatives featuring phenolic hydroxyl groups with increased acidity constants (pKa). This unique property leads to accelerated elimination and complete release of the caged molecules within minutes. Moreover, the inclusion of sulfonate groups provides a valuable synthetic handle, enabling further derivatization into sulfonamides, modified with diverse substituents. Significantly, we demonstrate the utility of sulfo-tetrazines in efficiently activating fluorogenic compounds and prodrugs in living cells, offering exciting prospects for their application in bioorthogonal chemistry.
Collapse
Affiliation(s)
- Michal Rahm
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- University of Chemistry and Technology, Department of Chemistry of Natural Compounds, Technická 5, 166 28, Prague 6, Czech Republic
| | - Patrick Keppel
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Veronika Šlachtová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Simona Bellová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Paul E Reyes-Gutiérrez
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Jakob Raffler
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| |
Collapse
|
16
|
Wilkovitsch M, Kuba W, Keppel P, Sohr B, Löffler A, Kronister S, Del Castillo AF, Goldeck M, Dzijak R, Rahm M, Vrabel M, Svatunek D, Carlson JCT, Mikula H. Transforming Aryl-Tetrazines into Bioorthogonal Scissors for Systematic Cleavage of trans-Cyclooctenes. Angew Chem Int Ed Engl 2025; 64:e202411707. [PMID: 39254137 DOI: 10.1002/anie.202411707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Bioorthogonal bond-cleavage reactions have emerged as a powerful tool for precise spatiotemporal control of (bio)molecular function in the biological context. Among these chemistries, the tetrazine-triggered elimination of cleavable trans-cyclooctenes (click-to-release) stands out due to high reaction rates, versatility, and selectivity. Despite an increasing understanding of the underlying mechanisms, application of this reaction remains limited by the cumulative performance trade-offs (i.e., click kinetics, release kinetics, release yield) of existing tools. Efficient release has been restricted to tetrazine scaffolds with comparatively low click reactivity, while highly reactive aryl-tetrazines give only minimal release. By introducing hydroxyl groups onto phenyl- and pyridyl-tetrazine scaffolds, we have developed a new class of 'bioorthogonal scissors' with unique chemical performance. We demonstrate that hydroxyaryl-tetrazines achieve near-quantitative release upon accelerated click reaction with cleavable trans-cyclooctenes, as exemplified by click-triggered activation of a caged prodrug, intramitochondrial cleavage of a fluorogenic probe (turn-on) in live cells, and rapid intracellular bioorthogonal disassembly (turn-off) of a ligand-dye conjugate.
Collapse
Affiliation(s)
- Martin Wilkovitsch
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Walter Kuba
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Patrick Keppel
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Barbara Sohr
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Andreas Löffler
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Stefan Kronister
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Andres Fernandez Del Castillo
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
- Center for Systems Biology & Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 02114, Boston, MA, USA
| | - Marion Goldeck
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000, Prague 6, Czech Republic
| | - Michal Rahm
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000, Prague 6, Czech Republic
- University of Chemistry and Technology, Department of Chemistry of Natural Compounds, 16628, Prague 6, Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000, Prague 6, Czech Republic
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| | - Jonathan C T Carlson
- Center for Systems Biology & Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 02114, Boston, MA, USA
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, TU Wien, 1060, Vienna, Austria
| |
Collapse
|
17
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
18
|
Li BL, Li S, Zhang C, Zhou Y, Zhao X, Yu Z. Photoclick and Release for Spatiotemporally Localized Theranostics of Single Cells via In Situ Generation of 1,3-Diaryl-1H-benzo[f]indazole-4,9-dione. Angew Chem Int Ed Engl 2025; 64:e202416111. [PMID: 39492593 DOI: 10.1002/anie.202416111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/05/2024]
Abstract
Bioorthogonal click-release chemistry is a cutting-edge tool for exploring and manipulating biomolecule functions in native biological systems. However, it is challenging to achieve the precise regulation or therapy of individual cells via click-release strategies driven by proximity and thermodynamics. Herein, we propose a novel photoclick-release approach based on a photo-induced cycloaddition between 4,4'-bis(N-arylsydnone) or C-bithienyl-diarylsydnone and 2-arylamino-naphthoquinone via irradiation with 405 or 485 nm light. It constructs 1,3-diaryl-1H-benzo[f]indazole-4,9-dione (BIZON) as a pharmacophore while releases an arylamine for fluorescence turn-on probing. Both photoclick reagents were tailored by connecting to the triphenyl phosphonium delivery motif for enrichment in the mitochondria of live cells. This enables an intracellular photoclick and release under the control of 405 or 485 nm light. We then discovered that the in situ photo-generated BIZON is capable of photosensitizing upon 485 or 520 nm light to produce singlet oxygen inside the mitochondria under aerobic conditions. Therefore, we realized wash-free fluorescence tracking and subsequent anti-cancer efficacy at single-cell resolution using global illumination, which provides a foundation for wavelength-gated single-cell theranostics.
Collapse
Affiliation(s)
- Bao-Lin Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Sitong Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Cefei Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaohu Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
19
|
Chen Y, Clay N, Phan N, Lothrop E, Culkins C, Robinson B, Stubblefield A, Ferguson A, Kimmel BR. Molecular Matchmakers: Bioconjugation Techniques Enhance Prodrug Potency for Immunotherapy. Mol Pharm 2025; 22:58-80. [PMID: 39570179 DOI: 10.1021/acs.molpharmaceut.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Cancer patients suffer greatly from the severe off-target side effects of small molecule drugs, chemotherapy, and radiotherapy─therapies that offer little protection following remission. Engineered immunotherapies─including cytokines, immune checkpoint blockade, monoclonal antibodies, and CAR-T cells─provide better targeting and future tumor growth prevention. Still, issues such as ineffective activation, immunogenicity, and off-target effects remain primary concerns. "Prodrug" therapies─classified as therapies administered as inactive and then selectively activated to control the time and area of release─hold significant promise in overcoming these concerns. Bioconjugation techniques (e.g., natural linker conjugation, bioorthogonal reactions, and noncanonical amino acid incorporation) enable the rapid and homogeneous synthesis of prodrugs and offer selective loading of immunotherapeutic agents to carrier molecules and protecting groups to prevent off-target effects after administration. Several prodrug activation mechanisms have been highlighted for cancer therapeutics, including endogenous activation by hypoxic or acidic conditions common in tumors, exogenous activation by targeted bioorthogonal cleavage, or stimuli-responsive light activation, and dual-stimuli activation, which adds specificity by combining these mechanisms. This review will explore modern prodrug conjugation and activation options, focusing on how these strategies can enhance immunotherapy responses and improve patient outcomes. We will also discuss the implications of computational methodology for therapy design and recommend procedures to determine how and where to conjugate carrier systems and "prodrug" groups onto therapeutic agents to enhance the safety and control of these delivery platforms.
Collapse
Affiliation(s)
- Yinuo Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Natalie Clay
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan Phan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Elijah Lothrop
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Courtney Culkins
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise Robinson
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ariana Stubblefield
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alani Ferguson
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise R Kimmel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Engineering, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
20
|
Gu J, Lao L, Chen Y, Lin S. Investigation of protein post-translational modifications with site-specifically incorporated non-canonical amino acids. Bioorg Med Chem 2025; 117:118013. [PMID: 39602864 DOI: 10.1016/j.bmc.2024.118013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Despite the important functions of protein post-translational modifications (PTMs) in numerous cellular processes, understanding the biological roles of PTMs remains quite challenging. Here, we summarize our efforts in recent years to incorporate a variety of non-canonical amino acids (ncAAs) to study the biological functions of protein PTMs in mammalian cells, with a focus on the use of ncAA tools to probe the biological functions of various protein PTMs. We design length-tunable lipidation mimics for studying lipidation function and designing protein drugs. We highlight the use of genetically encoded lysine aminoacylations as chemical baits to identify aminoacylated lysine ubiquitination. Finally, we discuss the use of genetically encoded electron-rich Trp derivatives to design binding affinity-enhancing histone methylations readers.
Collapse
Affiliation(s)
- Jiayu Gu
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lihui Lao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yulin Chen
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
| | - Shixian Lin
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
21
|
Ou L, Yi Z, Zhang Y, Zhao Y, Fu H. Staudinger Cleavages of Amides on Naphthalene for the Ipsilateral Effect of 1,8-Substituents. Org Lett 2024; 26:11190-11194. [PMID: 39680935 DOI: 10.1021/acs.orglett.4c04337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
8-(Azidomethyl)-1-naphthoic acid was elaborately prepared, and its coupling with amines provided the corresponding 8-(azidomethyl)-1-naphthamides. The Staudinger reactions of 8-(azidomethyl)-1-naphthamides with phosphine produced iminophosphoranes, and easy intramolecular cyclization of the iminophosphoranes afforded 2,3-dihydro-1H-benzo[de]isoquinolin-1-one leaving amines with almost quantitative conversion rates for the ipsilateral effect of 1,8-substituents on naphthalene. The protocol exhibits some advantages, including a readily available protecting group, cleavages of amides in almost quantitative conversion rates, an aqueous medium, reactions at room temperature, a broad substrate scope, wide functional group tolerance, and suitable scale-up reactions.
Collapse
Affiliation(s)
- Lunyu Ou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhengyi Yi
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yue Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Zhou H, Pang XY, Xie X, Phillips DL, Gong HY, Sessler JL, Jiang W. Amide-Based Naphthotubes as Biomimetic Receptors for Acetal Protection and Other Substrates in Water via Noncovalent Interactions. J Am Chem Soc 2024; 146:34842-34851. [PMID: 39637361 DOI: 10.1021/jacs.4c13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Active compound protection can allow inherently unstable molecules to be stabilized and latent reactivity to be masked. Synthetic receptors are attractive in terms of providing such protection. Nevertheless, preserving the activity and functionality of organic molecules in water poses a challenge. Here, we show that biomimetic receptors, specifically amide naphthotubes and an amide anthryltube, allow the efficient preservation of functional organic molecules in water. In particular, the amide naphthotubes were found to extend the half-lives of acetal-containing substrates ("acetals") against acid-catalyzed hydrolysis by up to 3000 times. This kinetic protection effect was ascribed to hydrogen bond-based recognition of the organic guests. A substrate dependence was seen that was further exploited to achieve the kinetic resolution of acetal isomers. To the best of our knowledge, the present study constitutes one of the most effective acetal protection strategies reported to date. The recognition-based protection approach reported here appears generalizable as evidenced by the protection of eight different substrates against six distinct chemical reactions. Based on the present findings, we propose that it is possible to design receptors that provide for the protection of specific substrates under a variety of reaction conditions including those carried out in water.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xin-Yu Pang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
23
|
Cui ZH, Zhang H, Zheng FH, Xue JH, Yin QH, Xie XL, Wang YX, Wang T, Zhou L, Fang GM. Generation of antibody-drug conjugates by proximity-driven acyl transfer and sortase-mediated ligation. Org Biomol Chem 2024; 23:188-196. [PMID: 39530194 DOI: 10.1039/d4ob01624f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We report a sortase-based site-specific antibody-drug conjugation strategy, which involves an affinity peptide-directed acyl transfer reaction and sortase-mediated peptide ligation. Through the affinity peptide-mediated acyl transfer reaction, an LPXTG-containing peptide is conjugated to a specific Lys side chain of an antibody. Under the assistance of sortase, a protein drug bearing a GG motif reacts specifically with the LPXTG moiety to produce an antibody-drug conjugate. Our strategy for antibody conjugation can be applied not only to chemically synthesized drugs, but also to biologically expressed proteins, and will provide a new sortase-based strategy for the preparation of antibody-drug conjugates.
Collapse
Affiliation(s)
- Zhi-Hui Cui
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| | - Hua Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| | - Feng-Hao Zheng
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| | - Jun-Hao Xue
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| | - Qing-Hong Yin
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| | - Xiao-Lei Xie
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| | - Yu-Xuan Wang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| | - Tao Wang
- University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Li Zhou
- Anhui Provincial Peptide Drug Engineering Laboratory, Hefei KS-V Peptide Biological Technology Co., Ltd, P. R. China.
| | - Ge-Min Fang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| |
Collapse
|
24
|
Wang X, Wen S, Wu Z, Jiang JH. Orthogonal Control of Nucleic Acid Function via Chemical Caging-Decaging Strategies. Chembiochem 2024; 25:e202400516. [PMID: 39141545 DOI: 10.1002/cbic.202400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
The ability to precisely control the function of nucleic acids plays an important role in biosensing and biomedicine. In recent years, novel strategies employing biological, physical, and chemical triggers have been developed to modulate the function of nucleic acids spatiotemporally. These approaches commonly involve the incorporation of stimuli-responsive groups onto nucleic acids to block their functions until triggers-induced decaging restore activity. These inventive strategies deepen our comprehension of nucleic acid molecules' dynamic behavior and provide new techniques for precise disease diagnosis and treatment. Focusing on the spatiotemporal regulation of nucleic acid molecules through the chemical caging-decaging strategy, we here present an overview of the innovative triggered control mechanisms and accentuate their implications across the fields of chemical biology, biomedicine, and biosensing.
Collapse
Affiliation(s)
- Xiangnan Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
- School of Resource & Environment, Hunan University of Technology and Business, Changsha, Hunan, 410082, P. R. China
| | - Siyu Wen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
25
|
Abbas SJ, Yesmin S, Vittala SK, Sepay N, Xia F, Ali SI, Chang WC, Hung YC, Ma WL. Target Bioconjugation of Protein Through Chemical, Molecular Dynamics, and Artificial Intelligence Approaches. Metabolites 2024; 14:668. [PMID: 39728449 DOI: 10.3390/metabo14120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Covalent modification of proteins at specific, predetermined sites is essential for advancing biological and biopharmaceutical applications. Site-selective labeling techniques for protein modification allow us to effectively track biological function, intracellular dynamics, and localization. Despite numerous reports on modifying target proteins with functional chemical probes, unique organic reactions that achieve site-selective integration without compromising native functional properties remain a significant challenge. In this review, we delve into site-selective protein modification using synthetic probes, highlighting both chemical and computational methodologies for chemo- and regioselective modifications of naturally occurring amino acids, as well as proximity-driven protein-selective chemical modifications. We also underline recent traceless affinity labeling strategies that involve exchange/cleavage reactions and catalyst tethering modifications. The rapid development of computational infrastructure and methods has made the bioconjugation of proteins more accessible, enabling precise predictions of structural changes due to protein modifications. Hence, we discuss bioconjugational computational approaches, including molecular dynamics and artificial intelligence, underscoring their potential applications in enhancing our understanding of cellular biology and addressing current challenges in the field.
Collapse
Affiliation(s)
- Sk Jahir Abbas
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Sabina Yesmin
- Institute of Chemistry, Academia Sinica, Taipei 115201, Taiwan
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Sandeepa K Vittala
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata 700017, India
| | - Fangfang Xia
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Wei-Chun Chang
- Ph.D. Program for Health Science and Industry, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yao-Ching Hung
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
26
|
Song G, Yang Z, Huang Y, Bai H, Lv F, Wang S. Chemically engineered exogenous organic reactions in living cells for in situ fluorescence imaging and biomedical applications. J Mater Chem B 2024; 12:11852-11866. [PMID: 39485083 DOI: 10.1039/d4tb01925c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The unique microenvironment within living cells, characterized by high glutathione levels, reactive oxygen species concentrations, and active enzymes, facilitates the execution of chemical reactions. Recent advances in organic chemistry and chemical biology have leveraged living cells as reactors for chemical synthesis. This review summarizes recent reports on key intracellular in situ synthesis processes, including the synthesis of near-infrared fluorescent dyes, intracellular oxidative cross-linking, bioorthogonal reactions, and intracellular polymerization reactions. These methods have been applied to fluorescence imaging, tumor treatment, and the enhancement of biological functions. Finally, we discuss the challenges and opportunities in the field of in situ intracellular synthesis. We aim to guide the design of chemical molecules for in situ synthesis, improving the efficiency and control of artificial reactions in living cells, and ultimately achieving cell factory-like exogenous biological synthesis, biological function enhancement, and biomedical applications.
Collapse
Affiliation(s)
- Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Chang M, Dong Y, Cruickshank-Taylor AB, Gnawali G, Bi F, Wang W. Senolytic Prodrugs: A Promising Approach to Enhancing Senescence-Targeting Intervention. Chembiochem 2024; 25:e202400355. [PMID: 39058554 PMCID: PMC11576250 DOI: 10.1002/cbic.202400355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Cellular senescence has emerged as a potential therapeutic target for aging and a wide range of age-related disorders. Despite the encouraging therapeutic impact of senolytic agents on improving lifespan and the outcomes of pharmacological intervention, the senolytic induced side effects pose barriers to clinical application. There is a pressing need for selective ablation of senescent cells (SnCs). The design of senolytic prodrugs has been demonstrated as a promising approach to addressing these issues. These prodrugs are generally designed via modification of senolytics with a cleavable galactose moiety to respond to the senescent biomarker - senescence-associated β-galactosidase (SA-β-gal) to restore their therapeutic effects. In this Concept, we summarize the developments by categorizing these prodrugs into two classes: 1) galactose-modified senolytic prodrugs, in which sensing unit galactose is either directly conjugated to the drug or via a self-immolative linker and 2) bioorthogonal activation of senolytic prodrugs. In the bioorthogonal prodrug design, galactose is incorporated into dihydrotetrazine to sense SA-β-gal for click activation. Notably, in addition to repurposed chemotherapeutics and small molecule inhibitors, PROTACs and photodynamic therapy have been introduced as new senolytics in the prodrug design. It is expected that the senolytic prodrugs would facilitate translating small-molecule senolytics into clinical use.
Collapse
Affiliation(s)
- Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, USA
| | - Yue Dong
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85721, USA
| | | | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Fangchao Bi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Wei Wang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, University of Arizona Cancer Center, and BIO5 Institute, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
28
|
Liu Z, Zhang W, Zhao H, Sun M, Zhao C, Ren J, Qu X. Light-Controlled Bioorthogonal Chemistry Altered Natural Killer Cell Activity for Boosted Adoptive Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202411905. [PMID: 39112373 DOI: 10.1002/anie.202411905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 10/15/2024]
Abstract
Natural killer (NK) cell-based immunotherapy has received much attention in recent years. However, its practical application is still suffering from the decreased function and inadequate infiltration of NK cells in the immunosuppressive microenvironment of solid tumors. Herein, we construct light-responsive porphyrin Fe array-armed NK cells (denoted as NK@p-Fe) for cell behavior modulation via bioorthogonal catalysis. By installing cholesterol-modified porphyrin Fe molecules on the NK cell surface, a catalytic array with light-harvesting capabilities is formed. This functionality transforms NK cells into cellular factories capable of catalyzing the production of active agents in a light-controlled manner. NK@p-Fe can generate the active antineoplastic drug doxorubicin through bioorthogonal reactions to enhance the cytotoxic function of NK cells. Beyond drug synthesis, NK@p-Fe can also bioorthogonally catalyze the production of the FDA-approved immune agonist imiquimod (IMQ). The activated immune agonist plays a dual role, inducing dendritic cell maturation for NK cell activation and reshaping the tumor immunosuppressive microenvironment for NK cell infiltration. This work represents a paradigm for the modulation of adoptive cell behaviors to boost cancer immunotherapy by bioorthogonal catalysis.
Collapse
Affiliation(s)
- Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huisi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
29
|
Li J, Zhang T, Wu D, He C, Weng H, Zheng T, Liu J, Yao H, Chen J, Ren Y, Zhu Z, Xu J, Xu S. Palladium-Mediated Bioorthogonal System for Prodrug Activation of N-Benzylbenzamide-Containing Tubulin Polymerization Inhibitors for the Treatment of Solid Tumors. J Med Chem 2024; 67:19905-19924. [PMID: 39484713 DOI: 10.1021/acs.jmedchem.4c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Bioorthogonal cleavage reactions have been developed as an intriguing strategy to enhance the safety of chemotherapeutics. Aiming to reduce the toxicity and improve the targeted release properties of the colchicine binding site inhibitors (CBSIs) based on previous work, a series of biologically inert prodrugs were further designed and synthesized through a bioorthogonal prodrug strategy. The therapeutic effects of prodrugs could be "turned-on" once combined with palladium resins. Particularly, prodrug 2b was 68.3-fold less cytotoxic compared to the parent compound, while its cytotoxicity was recovered in situ in the presence of palladium resins. Mechanism studies confirmed that 2b inhibited cell growth in the same manner as CBSIs. More importantly, in vivo efficacy studies demonstrated the efficient activation of 2b by palladium resins, resulting in significant inhibition of tumor growth (63.2%). These results suggest that prodrug 2b with improved safety and targeted release property catalyzed by a Pd-mediated bioorthogonal cleavage reaction deserves further investigation.
Collapse
Affiliation(s)
- Jinlong Li
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Tong Zhang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Di Wu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Chen He
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Haoxiang Weng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Tiandong Zheng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Jie Liu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Hong Yao
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yansong Ren
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Jinyi Xu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Shengtao Xu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou 215132, P.R. China
| |
Collapse
|
30
|
Ma C, Liu G, Yin J, Sun J, Luo D, Yang D, Pang S, Hou W, Hemu X, Ye B, Bi X. Repurposing Copper(II)/THPTA as A Bioorthogonal Catalyst for Thiazolidine Bond Cleavage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408180. [PMID: 39297310 PMCID: PMC11558081 DOI: 10.1002/advs.202408180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/07/2024] [Indexed: 11/14/2024]
Abstract
Metal-mediated chemical transformations are promising approaches to manipulate and regulate proteins in fundamental biological research and therapeutic development. Nevertheless, unlike bond-forming reactions, the exploration of selective bond cleavage reactions catalyzed by metals that are fully compatible with proteins and living systems remains relatively limited. Here, it is reported that Copper(II)/tris(3-hydroxypropyltriazolylmethyl)amine (THPTA), commonly used in copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, can be repurposed as a new bioorthogonal catalyst for thiazolidine (Thz) bond cleavage. This process liberates an α-oxo-aldehyde group under physiological conditions, without requiring additional additives. To showcase the utility of this method, this simple catalyst system is coupled with genetic code expansion technology to achieve on-demand activation of genetically encoded Thz-caged α-oxo-aldehydes, enabling further functionalization of proteins. For the first time, this cell-compatible Thz uncaging reaction allows for the site-specific installation of α-oxo-aldehydes at the internal positions of proteins in phage and bacterial surface display systems, expanding the chemical space of proteins. Overall, this study expands the toolkit of bioorthogonal catalysts and paves the way for metal-promoted chemical reactions in living systems, potentially benefiting various applications in the future.
Collapse
Affiliation(s)
- Chengyun Ma
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014China
| | - Guoqing Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014China
| | - Juan Yin
- Zhejiang Yangshengtang Institute of Natural Medication Co., LtdHangzhou310013China
| | - Jianan Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014China
| | - Disheng Luo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014China
| | - Dechun Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014China
| | - Shuo Pang
- School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Wei Hou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014China
| | - Xinya Hemu
- School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Bangce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014China
| |
Collapse
|
31
|
Yao Y, Chen Y, Zhou C, Zhang Q, He X, Dong K, Yang C, Chu B, Qian Z. Bioorthogonal chemistry-based prodrug strategies for enhanced biosafety in tumor treatments: current progress and challenges. J Mater Chem B 2024; 12:10818-10834. [PMID: 39352785 DOI: 10.1039/d4tb01413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Cancer is a significant global health challenge, and while chemotherapy remains a widely used treatment, its non-specific toxicity and broad distribution can lead to systemic side effects and limit its effectiveness against tumors. Therefore, the development of safer chemotherapy alternatives is crucial. Prodrugs hold great promise, as they remain inactive until they reach the cancer site, where they are selectively activated by enzymes or specific factors, thereby reducing side effects and improving targeting. However, subtle differences in the microenvironments between tumors and normal tissue may still result in unintended cytotoxicity. Bioorthogonal reactions, known for their selectivity and precision without interfering with natural biochemical processes, are gaining attention. When combined with prodrug strategies, these reactions offer the potential to create highly effective chemotherapy drugs. This review examines the safety and efficacy of prodrug strategies utilizing various bioorthogonal reactions in cancer treatment.
Collapse
Affiliation(s)
- Yongchao Yao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Chang Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Quanzhi Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xun He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Kai Dong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Chengli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Bingyang Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
32
|
Wang Q, Song Y, Yuan S, Zhu Y, Wang W, Chu L. Prodrug activation by 4,4'-bipyridine-mediated aromatic nitro reduction. Nat Commun 2024; 15:8643. [PMID: 39368987 PMCID: PMC11455939 DOI: 10.1038/s41467-024-52604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 09/16/2024] [Indexed: 10/07/2024] Open
Abstract
Unleashing prodrugs through nitro-reduction is a promising strategy in cancer treatment. In this study, we present a unique bioorthogonal reaction for aromatic nitro reduction, mediated by 4,4'-bipyridine. The reaction is a rare example of organocatalyst-mediated bioorthogonal reaction. This bioorthogonal reaction demonstrates broad substrate scope and proceeds at low micromolar concentrations under biocompatible conditions. Our mechanistic study reveals that water is essential for the reaction to proceed at biorelevant substrate concentrations. We illustrate the utility of our reaction for controlled prodrug activation in mammalian cells, bacteria, and mouse models. Furthermore, a nitro-reduction-annulation cascade is developed for the synthesis of indole derivatives in living cells.
Collapse
Affiliation(s)
- Qing Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yikang Song
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuowei Yuan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yaoji Zhu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenjing Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Ling Chu
- School of Pharmaceutical Sciences MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
33
|
Zhang W, Zhu J, Ren J, Qu X. Smart Bioorthogonal Nanozymes: From Rational Design to Appropriate Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405318. [PMID: 39149782 DOI: 10.1002/adma.202405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Bioorthogonal chemistry has provided an elaborate arsenal to manipulate native biological processes in living systems. As the great advancement of nanotechnology in recent years, bioorthogonal nanozymes are innovated to tackle the challenges that emerged in practical biomedical applications. Bioorthogonal nanozymes are uniquely positioned owing to their advantages of high customizability and tunability, as well as good adaptability to biological systems, which bring exciting opportunities for biomedical applications. More intriguingly, the great advancement in nanotechnology offers an exciting opportunity for innovating bioorthogonal catalytic materials. In this comprehensive review, the significant progresses of bioorthogonal nanozymes are discussed with both spatiotemporal controllability and high performance in living systems, and highlight their design principles and recent rapid applications. The remaining challenges and future perspectives are then outlined along this thriving field. It is expected that this review will inspire and promote the design of novel bioorthogonal nanozymes, and facilitate their clinical translation.
Collapse
Affiliation(s)
- Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiawei Zhu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
34
|
Shao A, Li R, Li Y, Zhang X, Jiang Y, Lin A, Ni J. Construction of HaloTag-based macromolecular probe for multiple logic gates and photoactivatable bioimaging. Int J Biol Macromol 2024; 278:135043. [PMID: 39182891 DOI: 10.1016/j.ijbiomac.2024.135043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Protein bioconjugation has emerged as one of the most valuable tools for the development of protein-based biochemical assays. Herein, we report a fluorescent macromolecular probe RF12_POI, in which the coumarin derivative RF12 is specifically conjugated onto the HaloTag fused protein of interest (POI) to achieve a dual stimuli-mediated fluorescence response. RF12 is first obtained by installing a photo-cleavable 1-ethyl-2-nitrobenzyl group onto the C7 hydroxy moiety of coumarin fluorophore with a HaloTag ligand attaching to the acid-labile 1,3-dioxane moiety. Upon stimulation, RF12_Halo exhibits a sequential fluorescence response to photon/H+ on both liquid and solid interfaces. Through the conjugation of RF12 onto the GFP_Halo protein, RF12_GFP_Halo presents a fluorescence resonance energy transfer (FRET) from photo-cleaved RF12 to GFP in the protein complex. Furthermore, by utilizing the stimuli-responsive fluorescence characteristics of coumarin derivatives RF12 (photon/H+) and RF16 (H2O2/H+), we construct RF12/RF16_POI based protein films and achieve multiple applications of logic circuits, including AND, OR, XOR, INHIBIT, Half-adder or Half-subtractor. In these circuits, the output value of I/I0 is dependent on the input sequence of photon, H2O2, and H+. Additionally, we evaluate the fluorescence labeling ability of RF12 to intracellular IRE1_Halo protein and demonstrate that RF12 containing the HaloTag ligand could be precisely retained in cells to track IRE1_Halo protein. Hence, we provide a unique structural design strategy to construct fluorescence dual-responsive macromolecules for information encryption and cellular protein visualization.
Collapse
Affiliation(s)
- Andong Shao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Runqi Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yaxi Li
- Department of Radiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Xuekun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yu Jiang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Ang Lin
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jianming Ni
- Department of Radiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China.
| |
Collapse
|
35
|
Liu X, Ullah I, Yuan Y. Tumor Acidity-Triggered Bioorthogonal Reactions for Biomedical Applications. Chembiochem 2024; 25:e202400452. [PMID: 38940000 DOI: 10.1002/cbic.202400452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Cancer is one of the most serious threats to human health. Over the past few years, researchers have incrementally uncovered the pivotal role of tumor acidity in tumor formation, development, and treatment. In addition, bioorthogonal reactions have been widely used in tumor diagnosis and therapy, owing to their advantageous characteristics, including small ligand size, biocompatibility, fast reaction kinetics, and high chemospecificity. Consequently, bioorthogonal reactions triggered by tumor acidity have become an emerging strategy in biomedical applications. On this basis, we first elucidate the concept and major strategies of tumor acidity-triggered bioorthogonal reactions. Additionally, we review the progress in biomedical applications, with a particular focus on their importance in disease diagnosis and treatment. Finally, clinical challenges and future trends are also outlooked.
Collapse
Affiliation(s)
- Xiajian Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Ihsan Ullah
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
36
|
Zhang Y, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Liu Z, Wang F. Designing intelligent bioorthogonal nanozymes: Recent advances of stimuli-responsive catalytic systems for biomedical applications. J Control Release 2024; 373:929-951. [PMID: 39097195 DOI: 10.1016/j.jconrel.2024.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Bioorthogonal nanozymes have emerged as a potent tool in biomedicine due to their unique ability to perform enzymatic reactions that do not interfere with native biochemical processes. The integration of stimuli-responsive mechanisms into these nanozymes has further expanded their potential, allowing for controlled activation and targeted delivery. As such, intelligent bioorthogonal nanozymes have received more and more attention in developing therapeutic approaches. This review provides a comprehensive overview of the recent advances in the development and application of stimuli-responsive bioorthogonal nanozymes. By summarizing the design outlines for anchoring bioorthogonal nanozymes with stimuli-responsive capability, this review seeks to offer valuable insights and guidance for the rational design of these remarkable materials. This review highlights the significant progress made in this exciting field with different types of stimuli and the various applications. Additionally, it also examines the current challenges and limitations in the design, synthesis, and application of these systems, and proposes potential solutions and research directions. This review aims to stimulate further research toward the development of more efficient and versatile stimuli-responsive bioorthogonal nanozymes for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Fang Lei
- School of Public Health, Nantong University, Nantong 226019, China
| | - Wanlong Qian
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Chengfeng Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Qi Wang
- School of Public Health, Nantong University, Nantong 226019, China
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haiwei Ji
- School of Public Health, Nantong University, Nantong 226019, China
| | - Zhengwei Liu
- Precision Immunology Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York 10029, USA.
| | - Faming Wang
- School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
37
|
Lin Z, Liu B, Lu M, Wang Y, Ren X, Liu Z, Luo C, Shi W, Zou X, Song X, Tang F, Huang H, Huang W. Controlled Reversible N-Terminal Modification of Peptides and Proteins. J Am Chem Soc 2024; 146:23752-23763. [PMID: 39143892 DOI: 10.1021/jacs.4c04894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A reversible modification strategy enables a switchable cage/decage process of proteins with an array of applications for protein function research. However, general N-terminal selective reversible modification strategies which present site selectivity are specifically limited. Herein, we report a general reversible modification strategy compatible with 20 canonical amino acids at the N-terminal site by the palladium-catalyzed cinnamylation of native peptides and proteins under biologically relevant conditions. This approach broadens the substrate adaptability of N-terminal modification of proteins and shows a potential impact on the more challenging protein substrates such as antibodies. In the presence of 1,3-dimethylbarbituric acid, palladium-catalyzed deconjugation released native peptides and proteins efficiently. Harnessing the reversible nature of this protocol, practical applications were demonstrated by precise function modulation of antibodies and traceless enrichment of the protein-of-interest for proteomics analysis. This novel on/off strategy working on the N-terminus will provide new opportunities in chemical biology and medicinal research.
Collapse
Affiliation(s)
- Zeng Lin
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Bo Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Mengru Lu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yongqin Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xuelian Ren
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhaoxi Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Caili Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Wei Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Xiangman Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Xiaohan Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - He Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
38
|
Yang H, Sun H, Chen Y, Wang Y, Yang C, Yuan F, Wu X, Chen W, Yin P, Liang Y, Wu H. Enabling Universal Access to Rapid and Stable Tetrazine Bioorthogonal Probes through Triazolyl-Tetrazine Formation. JACS AU 2024; 4:2853-2861. [PMID: 39211625 PMCID: PMC11350731 DOI: 10.1021/jacsau.3c00843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 09/04/2024]
Abstract
Despite the immense potential of tetrazine bioorthogonal chemistry in biomedical research, the in vivo performance of tetrazine probes is challenged by the inverse correlation between the physiological stability and reactivity of tetrazines. Additionally, the synthesis of functionalized tetrazines is often complex and requires specialized reagents. To overcome these issues, we present a novel tetrazine scaffold-triazolyl-tetrazine-that can be readily synthesized from shelf-stable ethynyl-tetrazines and azides. Triazolyl-tetrazines exhibit improved physiological stability along with high reactivity. We showcase the effectiveness of this approach by creating cell-permeable probes for protein labeling and live cell imaging, as well as efficiently producing 18F-labeled molecular probes for positron emission tomography imaging. By utilizing the readily available pool of functionalized azides, we envisage that this modular approach will provide universal accessibility to tetrazine bioorthogonal tools, facilitating applications in biomedicine and materials science.
Collapse
Affiliation(s)
- Haojie Yang
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbao Sun
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinghan Chen
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering,
Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Yayue Wang
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Yang
- Key
Laboratory of Drug-Targeting and Drug Delivery System of the Education
Ministry and Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Fang Yuan
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department
of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West
China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Chen
- Department
of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West
China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Yin
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yong Liang
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering,
Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Haoxing Wu
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Key
Laboratory of Drug-Targeting and Drug Delivery System of the Education
Ministry and Sichuan Province, Sichuan University, Chengdu 610041, China
| |
Collapse
|
39
|
Unnikrishnan VB, Sabatino V, Amorim F, Estrada MF, Navo CD, Jimenez-Oses G, Fior R, Bernardes GJL. Gold(III)-Induced Amide Bond Cleavage In Vivo: A Dual Release Strategy via π-Acid Mediated Allyl Substitution. J Am Chem Soc 2024; 146:23240-23251. [PMID: 39113488 PMCID: PMC11345771 DOI: 10.1021/jacs.4c05582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
Selective cleavage of amide bonds holds prominent significance by facilitating precise manipulation of biomolecules, with implications spanning from basic research to therapeutic interventions. However, achieving selective cleavage of amide bonds via mild synthetic chemistry routes poses a critical challenge. Here, we report a novel amide bond-cleavage reaction triggered by Na[AuCl4] in mild aqueous conditions, where a crucial cyclization step leads to the formation of a 5-membered ring intermediate that rapidly hydrolyses to release the free amine in high yields. Notably, the reaction exhibits remarkable site-specificity to cleave peptide bonds at the C-terminus of allyl-glycine. The strategic introduction of a leaving group at the allyl position facilitated a dual-release approach through π-acid catalyzed substitution. This reaction was employed for the targeted release of the cytotoxic drug monomethyl auristatin E in combination with an antibody-drug conjugate in cancer cells. Finally, Au-mediated prodrug activation was shown in a colorectal zebrafish xenograft model, leading to a significant increase in apoptosis and tumor shrinkage. Our findings reveal a novel metal-based cleavable reaction expanding the utility of Au complexes beyond catalysis to encompass bond-cleavage reactions for cancer therapy.
Collapse
Affiliation(s)
- V. B. Unnikrishnan
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Valerio Sabatino
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Filipa Amorim
- Champalimaud
Centre for the Unknown, Champalimaud Foundation, Lisboa 1400-038, Portugal
| | - Marta F. Estrada
- Champalimaud
Centre for the Unknown, Champalimaud Foundation, Lisboa 1400-038, Portugal
| | - Claudio D. Navo
- Center
for Cooperative Research in Biosciences (CIC bioGune), Building 800, Derio 48160, Spain
| | - Gonzalo Jimenez-Oses
- Center
for Cooperative Research in Biosciences (CIC bioGune), Building 800, Derio 48160, Spain
- Ikerbasque,
Basque Foundation for Sciencep, Bilbao 48013, Spain
| | - Rita Fior
- Champalimaud
Centre for the Unknown, Champalimaud Foundation, Lisboa 1400-038, Portugal
| | - Gonçalo J. L. Bernardes
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal
| |
Collapse
|
40
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
41
|
Zhao R, Chen Y, Liang Y. Bioorthogonal Delivery of Carbon Disulfide in Living Cells. Angew Chem Int Ed Engl 2024; 63:e202400020. [PMID: 38752888 DOI: 10.1002/anie.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Indexed: 06/27/2024]
Abstract
Carbon disulfide (CS2) is an environmental contaminant, which is deadly hazardous to the workers under chronic or acute exposure. However, the toxicity mechanisms of CS2 are still unclear due to the scarcity of biocompatible donors, which can release CS2 in cells. Here we developed the first bioorthogonal CS2 delivery system based on the "click-and-release" reactions between mesoionic 1,3-thiazolium-5-thiolates (TATs) and strained cyclooctyne exo-BCN-OH. We successfully realized intracellular CS2 release and investigated the causes of CS2-induced hepatotoxicity, including oxidative stress, proteotoxic stress and copper-dependent cell death. It is found that CS2 can be copper vehicles bypassing copper transporters after reacting with nucleophiles in cytoplasm, and extra copper supplementation will exacerbate the loss of homeostasis of cells and ultimately cell death. These findings inspired us to explore the anticancer activity of CS2 in combination with copper by introducing a copper chelating group in our CS2 delivery system.
Collapse
Affiliation(s)
- Ruohan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yinghan Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
42
|
Sun M, Ren J, Qu X. In situ bioorthogonal-modulation of m 6A RNA methylation in macrophages for efficient eradication of intracellular bacteria. Chem Sci 2024; 15:11657-11666. [PMID: 39055012 PMCID: PMC11268468 DOI: 10.1039/d4sc03629h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
N6-Methyladenosine (m6A) methylation plays a critical role in controlling the RNA fate. Emerging evidence has demonstrated that aberrant m6A methylation in immune cells such as macrophages could alter cell homeostasis and function, which can be a promising target for disease treatment. Despite tremendous progress in regulating the level of m6A methylation, the current methods suffer from the time-consuming operation and annoying off-target effect, which hampers the in situ manipulation of m6A methylation. Here, a bioorthogonal in situ modulation strategy of m6A methylation was proposed. Well-designed covalent organic framework (COF) dots (CIDM) could deprotect the agonist prodrug of m6A methyltransferase, resulting in a considerable hypermethylation of m6A modification. Simultaneously, the bioorthogonal catalyst CIDM showed oxidase (OXD)-mimic activity that further promoted the level of m6A methylation. Ultimately, the potential therapeutic effect of bioorthogonal controllable regulation of m6A methylation was demonstrated through intracellular bacteria eradication. The remarkable antimicrobial outcomes indicate that upregulating m6A methylation in macrophages could reprogram them into the M1 phenotype with high bactericidal activity. We believe that our bioorthogonal chemistry-controlled epigenetics regulatory strategy will provide a unique insight into the development of controllable m6A methylation.
Collapse
Affiliation(s)
- Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 China
| |
Collapse
|
43
|
Xie X, Lin S. Targeting and Manipulating Tryptophan Interactions on Proteins. ACS Chem Biol 2024; 19:1211-1213. [PMID: 38785570 DOI: 10.1021/acschembio.4c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Tryptophan, commonly regarded as buried within the interior cores of proteins to maintain secondary structures, is now being recognized for its significant contributions to protein functionality. However, investigating functional tryptophan-involved interactions across the proteome and manipulating these interactions in live cells are considerable challenges. In this In Focus article, we summarize emerging advances in the field, describing innovative chemistries that leverage distinctive biochemical properties of the indole moiety for targeting and functionally manipulating tryptophan interactions.
Collapse
Affiliation(s)
- Xiao Xie
- California Institute of Quantitative Biosciences, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Shixian Lin
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
44
|
Luu T, Gristwood K, Knight JC, Jörg M. Click Chemistry: Reaction Rates and Their Suitability for Biomedical Applications. Bioconjug Chem 2024; 35:715-731. [PMID: 38775705 PMCID: PMC11191409 DOI: 10.1021/acs.bioconjchem.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024]
Abstract
Click chemistry has become a commonly used synthetic method due to the simplicity, efficiency, and high selectivity of this class of chemical reactions. Since their initial discovery, further click chemistry methods have been identified and added to the toolbox of click chemistry reactions for biomedical applications. However, selecting the most suitable reaction for a specific application is often challenging, as multiple factors must be considered, including selectivity, reactivity, biocompatibility, and stability. Thus, this review provides an overview of the benefits and limitations of well-established click chemistry reactions with a particular focus on the importance of considering reaction rates, an often overlooked criterion with little available guidance. The importance of understanding each click chemistry reaction beyond simply the reaction speed is discussed comprehensively with reference to recent biomedical research which utilized click chemistry. This review aims to provide a practical resource for researchers to guide the selection of click chemistry classes for different biomedical applications.
Collapse
Affiliation(s)
- Tracey Luu
- Medicinal
Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Katie Gristwood
- School
of Natural & Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K.
| | - James C. Knight
- School
of Natural & Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K.
| | - Manuela Jörg
- Medicinal
Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School
of Natural & Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K.
| |
Collapse
|
45
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
46
|
Chu G, Li YM. Lighting up kinase contacts in situ. Nat Chem Biol 2024; 20:544-545. [PMID: 38302605 DOI: 10.1038/s41589-024-01543-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Affiliation(s)
- Guochao Chu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.
| |
Collapse
|
47
|
Bardhan A, Brown W, Albright S, Tsang M, Davidson LA, Deiters A. Direct Activation of Nucleobases with Small Molecules for the Conditional Control of Antisense Function. Angew Chem Int Ed Engl 2024; 63:e202318773. [PMID: 38411401 DOI: 10.1002/anie.202318773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Conditionally controlled antisense oligonucleotides provide precise interrogation of gene function at different developmental stages in animal models. Only one example of small molecule-induced activation of antisense function exist. This has been restricted to cyclic caged morpholinos that, based on sequence, can have significant background activity in the absence of the trigger. Here, we provide a new approach using azido-caged nucleobases that are site-specifically introduced into antisense morpholinos. The caging group design is a simple azidomethylene (Azm) group that, despite its very small size, efficiently blocks Watson-Crick base pairing in a programmable fashion. Furthermore, it undergoes facile decaging via Staudinger reduction when exposed to a small molecule phosphine, generating the native antisense oligonucleotide under conditions compatible with biological environments. We demonstrated small molecule-induced gene knockdown in mammalian cells, zebrafish embryos, and frog embryos. We validated the general applicability of this approach by targeting three different genes.
Collapse
Affiliation(s)
- Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Savannah Albright
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Michael Tsang
- Department of Cell Biology, Center for Integrative Organ Systems., University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Lance A Davidson
- Department of Bioengineering, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
48
|
He X, Li J, Liang X, Mao W, Deng X, Qin M, Su H, Wu H. An all-in-one tetrazine reagent for cysteine-selective labeling and bioorthogonal activable prodrug construction. Nat Commun 2024; 15:2831. [PMID: 38565562 PMCID: PMC10987521 DOI: 10.1038/s41467-024-47188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
The prodrug design strategy offers a potent solution for improving therapeutic index and expanding drug targets. However, current prodrug activation designs are mainly responsive to endogenous stimuli, resulting in unintended drug release and systemic toxicity. In this study, we introduce 3-vinyl-6-oxymethyl-tetrazine (voTz) as an all-in-one reagent for modular preparation of tetrazine-caged prodrugs and chemoselective labeling peptides to produce bioorthogonal activable peptide-prodrug conjugates. These stable prodrugs can selectively bind to target cells, facilitating cellular uptake. Subsequent bioorthogonal cleavage reactions trigger prodrug activation, significantly boosting potency against tumor cells while maintaining exceptional off-target safety for normal cells. In vivo studies demonstrate the therapeutic efficacy and safety of this prodrug design approach. Given the broad applicability of functional groups and labeling versatility with voTz, we foresee that this strategy will offer a versatile solution to enhance the therapeutic range of cytotoxic agents and facilitate the development of bioorthogonal activatable biopharmaceuticals and biomaterials.
Collapse
Affiliation(s)
- Xinyu He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xinxin Liang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wuyu Mao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xinglong Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, China
| | - Meng Qin
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Haoxing Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, China.
| |
Collapse
|
49
|
Zhu Y, Ding W, Chen Y, Shan Y, Liu C, Fan X, Lin S, Chen PR. Genetically encoded bioorthogonal tryptophan decaging in living cells. Nat Chem 2024; 16:533-542. [PMID: 38418535 DOI: 10.1038/s41557-024-01463-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/29/2024] [Indexed: 03/01/2024]
Abstract
Tryptophan (Trp) plays a critical role in the regulation of protein structure, interactions and functions through its π system and indole N-H group. A generalizable method for blocking and rescuing Trp interactions would enable the gain-of-function manipulation of various Trp-containing proteins in vivo, but generating such a platform remains challenging. Here we develop a genetically encoded N1-vinyl-caged Trp capable of rapid and bioorthogonal decaging through an optimized inverse electron-demand Diels-Alder reaction, allowing site-specific activation of Trp on a protein of interest in living cells. This chemical activation of a genetically encoded caged-tryptophan (Trp-CAGE) strategy enables precise activation of the Trp of interest underlying diverse important molecular interactions. We demonstrate the utility of Trp-CAGE across various protein families, such as catalase-peroxidases and kinases, as translation initiators and posttranslational modification readers, allowing the modulation of epigenetic signalling in a temporally controlled manner. Coupled with computer-aided prediction, our strategy paves the way for bioorthogonal Trp activation on more than 28,000 candidate proteins within their native cellular settings.
Collapse
Affiliation(s)
- Yuchao Zhu
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wenlong Ding
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yulin Chen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Ye Shan
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chao Liu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Xinyuan Fan
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Shixian Lin
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China.
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Peng R Chen
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
50
|
Kuzmina NS, Fedotova EA, Jankovic P, Gribova GP, Nyuchev AV, Fedorov AY, Otvagin VF. Enhancing Precision in Photodynamic Therapy: Innovations in Light-Driven and Bioorthogonal Activation. Pharmaceutics 2024; 16:479. [PMID: 38675140 PMCID: PMC11053670 DOI: 10.3390/pharmaceutics16040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Over the past few decades, photodynamic therapy (PDT) has evolved as a minimally invasive treatment modality offering precise control over cancer and various other diseases. To address inherent challenges associated with PDT, researchers have been exploring two promising avenues: the development of intelligent photosensitizers activated through light-induced energy transfers, charges, or electron transfers, and the disruption of photosensitive bonds. Moreover, there is a growing emphasis on the bioorthogonal delivery or activation of photosensitizers within tumors, enabling targeted deployment and activation of these intelligent photosensitive systems in specific tissues, thus achieving highly precise PDT. This concise review highlights advancements made over the last decade in the realm of light-activated or bioorthogonal photosensitizers, comparing their efficacy and shaping future directions in the advancement of photodynamic therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexey Yu. Fedorov
- Department of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia; (N.S.K.); (E.A.F.); (P.J.); (G.P.G.); (A.V.N.)
| | - Vasilii F. Otvagin
- Department of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia; (N.S.K.); (E.A.F.); (P.J.); (G.P.G.); (A.V.N.)
| |
Collapse
|