1
|
Gao F, Sun K, Wang S, Zhang X, Bai X. Lactate metabolism reprogramming in PDAC: Potential for tumor therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189373. [PMID: 40513632 DOI: 10.1016/j.bbcan.2025.189373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 06/07/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. During tumor progression, metabolic reprogramming plays a crucial role in both tumor proliferation and immune evasion. In PDAC, genetic mutations and environment limitations lead to resulting in increased lactate production through enhanced glycolysis. Elevated glycolysis is a significant metabolic feature in pancreatic cancer, leading to lactate accumulation within both the tumor cells and tumor immune microenvironment. Lactate not only promotes tumor growth and sustains its survival but also has a profound impact on the immune-suppressive phenotype switch of immune cells. Lactate promotes tumor progression through various biological processes. Pharmacological agents targeting lactate generation, accumulation and lactate-related molecular pathways show potential clinical translation value in cancer treatment.
Collapse
Affiliation(s)
- Fan Gao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China; Shangyu People's Hospital of Shaoxing, Shaoxing University, Shaoxing 312300, Zhejiang, China.
| | - Kang Sun
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Sicheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China.
| |
Collapse
|
2
|
Pan X, Munan S, Zuckerman AL, Pon A, Violante S, Cross JR, Shah H, Cracan V. A genetically encoded bifunctional enzyme mitigates redox imbalance and lipotoxicity via engineered Gro3P-Glycerol shunt. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.06.02.657195. [PMID: 40501877 PMCID: PMC12157500 DOI: 10.1101/2025.06.02.657195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/22/2025]
Abstract
Dihydroxyacetone phosphate (DHAP), glycerol-3-phosphate (Gro3P) and reduced/oxidized nicotinamide adenine dinucleotide (NADH/NAD + ) are key metabolites of the Gro3P shuttle system that forms a redox circuit, allowing transfer of reducing equivalents between cytosol and mitochondria. Targeted activation of Gro3P biosynthesis was recently identified as a promising strategy to alleviate reductive stress by promoting NAD + recycling, including in cells with an impaired mitochondrial complex I. However, because Gro3P constitutes the backbone of triglycerides under some circumstances, its accumulation can lead to excessive fat deposition. Here, we present the development of a novel genetically encoded tool based on a di-domain glycerol-3-phosphate dehydrogenase from algae Chlamydomonas reinhardtii ( Cr GPDH), which is a bifunctional enzyme that can recycle NAD + while converting DHAP to Gro3P. In addition, this enzyme possesses an N-terminal domain which cleaves Gro3P into glycerol and inorganic phosphate (Pi) (in humans and other organisms, this reaction is catalyzed by a separate glycerol-3-phosphate phosphatase, a reaction also known as "glycerol shunt"). When expressed in mammalian cells, Cr GPDH diminished Gro3P levels and boosted the TCA cycle and fatty acid β-oxidation in mitochondria. Cr GPDH expression alone supported proliferation of HeLa cells under conditions of either inhibited activity of the mitochondrial electron transport chain or hypoxia. Moreover, human kidney cancer cells, which exhibit abnormal lipid accumulation, had decreased triglycerides levels when expressing Cr GPDH. Our findings suggest that the coordinated boosting of both Gro3P biosynthesis and glycerol shunt may be a viable strategy to alleviate consequences of redox imbalance and associated impaired lipogenesis in a wide repertoire of conditions, ranging from primary mitochondrial diseases to obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Xingxiu Pan
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA 92121, USA
| | - Subrata Munan
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA 92121, USA
| | - Austin L. Zuckerman
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA 92121, USA
- Program in Mathematics and Science Education, University of California San Diego and San Diego State University, San Diego, CA 92120, USA
| | - Andrew Pon
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA 92121, USA
| | - Sara Violante
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Justin R. Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Hardik Shah
- Metabolomics Platform, University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL 60637, USA
| | - Valentin Cracan
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA 92121, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Chen L, Wu Z, Yuan W, Chen N, Lin P, Liao S, Xie G. Nuclear-localized metabolic enzymes: emerging key players in tumor epigenetic regulation. Mol Cell Biochem 2025:10.1007/s11010-025-05316-w. [PMID: 40434518 DOI: 10.1007/s11010-025-05316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Advancements in tumor research have highlighted the potential of epigenetic therapies as a targeted approach to cancer treatment. However, the application of these therapies has faced challenges due to the issue of substrate availability since the discovery of epigenetic modifications. Interestingly, metabolic changes are closely associated with epigenetic changes, and notably, certain metabolic enzymes exhibit nuclear localization within epigenetically active cellular contexts. This suggests that nuclear localization of metabolic enzymes may provide a mechanistic foundation for addressing substrate availability issues in epigenetic regulation. To date, there has been limited progress in synthesizing this information systematically. In this study, we provide an overview of the interplay between metabolic enzymes and epigenetic mechanisms, highlighting their critical roles. Subsequently, we summarize recent advances regarding the nuclear localization of metabolic enzymes, shedding light on their emerging roles in epigenetic regulation and oncogenesis.
Collapse
Affiliation(s)
- Limei Chen
- The Third Affiliated Hospital of Sun Yat-Sen University, Yuedong Hospital, Meizhou, 514700, Guangdong, China.
| | - Zhihui Wu
- The Third Affiliated Hospital of Sun Yat-Sen University, Yuedong Hospital, Meizhou, 514700, Guangdong, China
| | - Weixi Yuan
- Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Nan Chen
- The Third Affiliated Hospital of Sun Yat-Sen University, Yuedong Hospital, Meizhou, 514700, Guangdong, China
| | - Peina Lin
- The Third Affiliated Hospital of Sun Yat-Sen University, Yuedong Hospital, Meizhou, 514700, Guangdong, China
| | - Senyi Liao
- Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Guopeng Xie
- The Third Affiliated Hospital of Sun Yat-Sen University, Yuedong Hospital, Meizhou, 514700, Guangdong, China.
| |
Collapse
|
4
|
Cox JH, Boily MO, Caron A, Sheng T, Wu J, Ding J, Gaudreault S, Chong O, Surendradoss J, Gomez R, Lester J, Dumais V, Li X, Gumpena R, Hall MD, Waterson AG, Stott G, Flint AJ, Moore WJ, Lowther WT, Knight J, Percival MD, Tong V, Oballa R, Powell DA, King AJ. Characterization of CHK-336, A First-in-Class, Liver-Targeted, Small-Molecule Lactate Dehydrogenase Inhibitor for Hyperoxaluria Treatment. J Am Soc Nephrol 2025:00001751-990000000-00612. [PMID: 40193200 DOI: 10.1681/asn.0000000690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/28/2025] [Indexed: 05/17/2025] Open
Abstract
Key Points
Primary hyperoxalurias are genetic diseases defined by elevated hepatic oxalate production and higher incidence of kidney stones.Lactate dehydrogenase A catalyzes the final and committed step in hepatic oxalate synthesis and represents a potential therapeutic target for primary hyperoxalurias.CHK-336 is a liver-targeted, small-molecule lactate dehydrogenase A inhibitor with potential to treat diseases associated with elevated oxalate production.
Background
Primary hyperoxalurias (PH) 1–3 are genetic diseases defined by elevated hepatic oxalate production and higher incidence of calcium oxalate kidney stones and potentially kidney failure. There are two approved agents available for PH1, and there are no approved therapies for PH2 or PH3. Lactate dehydrogenase A catalyzes the final step in hepatic oxalate synthesis and represents a potential therapeutic target for PH and other forms of hyperoxaluria associated with increased oxalate production.
Methods
Potent and selective lactate dehydrogenase (LDH) inhibitors with liver-targeted tissue distribution were identified and characterized in enzymatic, cellular, and in vivo models.
Results
We identified CHK-336, a novel oral small-molecule that demonstrates potent and selective inhibition of the human LDH enzyme and its activity in hepatocyte assays across multiple species, including hepatocytes isolated from PH1 mice. CHK-336 demonstrated a favorable liver distribution profile in mice, rats, and monkeys that was dependent on hepatic uptake by organic anion-transporting polypeptide transporters and target-mediated drug binding. In a rat pharmacodynamic model, CHK-336 inhibited conversion of 13C2-glycolate to 13C2-oxalate in a dose-dependent manner. In a PH1 mouse model, once-daily oral dosing of CHK-336 produced robust and dose-dependent reductions in urinary oxalate to the normal range. Seven days of treatment with CHK-336 also resulted in a significant reduction in urinary oxalate in a PH2 mouse model.
Conclusions
In conclusion, CHK-336 is a potent, liver-targeted, small-molecule LDH inhibitor that suppressed urinary oxalate production in a rat pharmacodynamic model and mouse models of PH1 and PH2.
Collapse
Affiliation(s)
| | | | | | - Tao Sheng
- Chinook Therapeutics, Inc., Seattle, Washington
| | - Joyce Wu
- Chinook Therapeutics, Inc., Seattle, Washington
| | - Jinyue Ding
- Chinook Therapeutics, Inc., Seattle, Washington
| | | | | | | | | | | | | | - Xingsheng Li
- Department of Urology, University of Alabama Birmingham School of Medicine, Birmingham, Alabama
| | - Rajesh Gumpena
- Department of Biochemistry, Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Alex G Waterson
- Departments of Pharmacology and Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Gordon Stott
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland
| | - Andrew J Flint
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland
| | - William J Moore
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - W Todd Lowther
- Department of Biochemistry, Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - John Knight
- Department of Urology, University of Alabama Birmingham School of Medicine, Birmingham, Alabama
| | | | | | | | | | | |
Collapse
|
5
|
Yuan W, Lu G, Zhao Y, He X, Liao S, Wang Z, Lei X, Xie Z, Yang X, Tang S, Tang G, Deng X. Intranuclear TCA and mitochondrial overload: The nascent sprout of tumors metabolism. Cancer Lett 2025; 613:217527. [PMID: 39909232 DOI: 10.1016/j.canlet.2025.217527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Abnormal glucose metabolism in tumors is a well-known form of metabolic reprogramming in tumor cells, the most representative of which, the Warburg effect, has been widely studied and discussed since its discovery. However, contradictions in a large number of studies and suboptimal efficacy of drugs targeting glycolysis have prompted us to further deepen our understanding of glucose metabolism in tumors. Here, we review recent studies on mitochondrial overload, nuclear localization of metabolizing enzymes, and intranuclear TCA (nTCA) in the context of the anomalies produced by inhibition of the Warburg effect. We provide plausible explanations for many of the contradictory points in the existing studies, including the causes of the Warburg effect. Furthermore, we provide a detailed prospective discussion of these studies in the context of these new findings, providing new ideas for the use of nTCA and mitochondrial overload in tumor therapy.
Collapse
Affiliation(s)
- Weixi Yuan
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guozhong Lu
- 922nd Hospital of Hengyang, 421001, Hunan, China
| | - Yin Zhao
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiang He
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Senyi Liao
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyong Lei
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Department of Pharmacy, Xiangnan University, Chenzhou, 423000, China
| | - Zhizhong Xie
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyan Yang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Department of Pharmacy, Xiangnan University, Chenzhou, 423000, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery Systems (2018TP1044), Hunan, 410007, China.
| | - Guotao Tang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
6
|
Chen J, Huang Z, Chen Y, Tian H, Chai P, Shen Y, Yao Y, Xu S, Ge S, Jia R. Lactate and lactylation in cancer. Signal Transduct Target Ther 2025; 10:38. [PMID: 39934144 PMCID: PMC11814237 DOI: 10.1038/s41392-024-02082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 02/13/2025] Open
Abstract
Accumulated evidence has implicated the diverse and substantial influence of lactate on cellular differentiation and fate regulation in physiological and pathological settings, particularly in intricate conditions such as cancer. Specifically, lactate has been demonstrated to be pivotal in molding the tumor microenvironment (TME) through its effects on different cell populations. Within tumor cells, lactate impacts cell signaling pathways, augments the lactate shuttle process, boosts resistance to oxidative stress, and contributes to lactylation. In various cellular populations, the interplay between lactate and immune cells governs processes such as cell differentiation, immune response, immune surveillance, and treatment effectiveness. Furthermore, communication between lactate and stromal/endothelial cells supports basal membrane (BM) remodeling, epithelial-mesenchymal transitions (EMT), metabolic reprogramming, angiogenesis, and drug resistance. Focusing on lactate production and transport, specifically through lactate dehydrogenase (LDH) and monocarboxylate transporters (MCT), has shown promise in the treatment of cancer. Inhibitors targeting LDH and MCT act as both tumor suppressors and enhancers of immunotherapy, leading to a synergistic therapeutic effect when combined with immunotherapy. The review underscores the importance of lactate in tumor progression and provides valuable perspectives on potential therapeutic approaches that target the vulnerability of lactate metabolism, highlighting the Heel of Achilles for cancer treatment.
Collapse
Affiliation(s)
- Jie Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ziyue Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ya Chen
- Department of Radiology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Yongning Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| |
Collapse
|
7
|
Pyrczak-Felczykowska A, Herman-Antosiewicz A. Modification in Structures of Active Compounds in Anticancer Mitochondria-Targeted Therapy. Int J Mol Sci 2025; 26:1376. [PMID: 39941144 PMCID: PMC11818413 DOI: 10.3390/ijms26031376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer is a multifaceted disease characterised by uncontrolled cellular proliferation and metastasis, resulting in significant global mortality. Current therapeutic strategies, including surgery, chemotherapy, and radiation therapy, face challenges such as systemic toxicity and tumour resistance. Recent advancements have shifted towards targeted therapies that act selectively on molecular structures within cancer cells, reducing off-target effects. Mitochondria have emerged as pivotal targets in this approach, given their roles in metabolic reprogramming, retrograde signalling, and oxidative stress, all of which drive the malignant phenotype. Targeting mitochondria offers a promising strategy to address these mechanisms at their origin. Synthetic derivatives of natural compounds hold particular promise in mitochondrial-targeted therapies. Innovations in drug design, including the use of conjugates and nanotechnology, focus on optimizing these compounds for mitochondrial specificity. Such advancements enhance therapeutic efficacy while minimizing systemic toxicity, presenting a significant step forward in modern anticancer strategies.
Collapse
Affiliation(s)
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland;
| |
Collapse
|
8
|
Kim J, Li J, Wei J, Lim SA. Regulatory T Cell Metabolism: A Promising Therapeutic Target for Cancer Treatment? Immune Netw 2025; 25:e13. [PMID: 40078783 PMCID: PMC11896657 DOI: 10.4110/in.2025.25.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Regulatory T (Treg) cells are essential for maintaining immune homeostasis by suppressing excessive immune responses. In the context of cancer, however, Tregs promote immune evasion and tumor progression, particularly through their unique adaptations within the tumor microenvironment (TME). Recent research has emphasized how metabolic characteristics shape Treg activation, migration, and immunosuppressive function, revealing the impact of metabolic pathways on Treg fitness in homeostasis and within the TME. In this review, we first provide an overview of Tregs in cancer immunology, discussing their immunosuppressive roles and properties specific to the TME. We then examine the metabolic requirements for Treg activation and migration under normal conditions, followed by a discussion of how hypoxia, lactate accumulation, nutrient limitation, oxidative stress, and other TME-specific factors alter Treg metabolism and contribute to cancer immune evasion. Finally, we explore therapeutic strategies that target Treg metabolism within the TME, including pharmacological modulation of specific metabolic pathways to diminish Treg-mediated immunosuppression. Thus, we could suggest future directions and clinical implications for Treg-targeted metabolic modulation as a complementary approach in cancer treatment, setting the stage for novel strategies in immunotherapy.
Collapse
Affiliation(s)
- Jihyoun Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Jiaoran Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jun Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Seon Ah Lim
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
9
|
Liu J, Zhang B, Huang B, Zhang K, Guo F, Wang Z, Shang D. A stumbling block in pancreatic cancer treatment: drug resistance signaling networks. Front Cell Dev Biol 2025; 12:1462808. [PMID: 39872846 PMCID: PMC11770040 DOI: 10.3389/fcell.2024.1462808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
The primary node molecules in the cell signaling network in cancer tissues are maladjusted and mutated in comparison to normal tissues, which promotes the occurrence and progression of cancer. Pancreatic cancer (PC) is a highly fatal cancer with increasing incidence and low five-year survival rates. Currently, there are several therapies that target cell signaling networks in PC. However, PC is a "cold tumor" with a unique immunosuppressive tumor microenvironment (poor effector T cell infiltration, low antigen specificity), and targeting a single gene or pathway is basically ineffective in clinical practice. Targeted matrix therapy, targeted metabolic therapy, targeted mutant gene therapy, immunosuppressive therapy, cancer vaccines, and other emerging therapies have shown great therapeutic potential, but results have been disappointing. Therefore, we summarize the identified and potential drug-resistant cell signaling networks aimed at overcoming barriers to existing PC therapies.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Westlake University, Hangzhou, China
| | - Kexin Zhang
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fujia Guo
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhizhou Wang
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Zhang D, Gao J, Zhu Z, Mao Q, Xu Z, Singh PK, Rimayi CC, Moreno-Yruela C, Xu S, Li G, Sin YC, Chen Y, Olsen CA, Snyder NW, Dai L, Li L, Zhao Y. Lysine L-lactylation is the dominant lactylation isomer induced by glycolysis. Nat Chem Biol 2025; 21:91-99. [PMID: 39030363 PMCID: PMC11666458 DOI: 10.1038/s41589-024-01680-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/13/2024] [Indexed: 07/21/2024]
Abstract
Lysine L-lactylation (Kl-la) is a novel protein posttranslational modification (PTM) driven by L-lactate. This PTM has three isomers: Kl-la, N-ε-(carboxyethyl)-lysine (Kce) and D-lactyl-lysine (Kd-la), which are often confused in the context of the Warburg effect and nuclear presence. Here we introduce two methods to differentiate these isomers: a chemical derivatization and high-performance liquid chromatography analysis for efficient separation, and isomer-specific antibodies for high-selectivity identification. We demonstrated that Kl-la is the primary lactylation isomer on histones and dynamically regulated by glycolysis, not Kd-la or Kce, which are observed when the glyoxalase system was incomplete. The study also reveals that lactyl-coenzyme A, a precursor in L-lactylation, correlates positively with Kl-la levels. This work not only provides a methodology for distinguishing other PTM isomers, but also highlights Kl-la as the primary responder to glycolysis and the Warburg effect.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Jinjun Gao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhijun Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Qianying Mao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhiqiang Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Pankaj K Singh
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Philadelphia, PA, USA
| | - Cornelius C Rimayi
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Philadelphia, PA, USA
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Gongyu Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China
| | - Yi-Cheng Sin
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN, USA
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nathaniel W Snyder
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Philadelphia, PA, USA
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Liu X, Zheng Y, Li H, Ma Y, Cao R, Zheng Z, Tian Y, Du L, Zhang J, Zhang C, Gao J. The role of metabolites in the progression of osteoarthritis: Mechanisms and advances in therapy. J Orthop Translat 2025; 50:56-70. [PMID: 39868350 PMCID: PMC11762942 DOI: 10.1016/j.jot.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 01/28/2025] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease affected by many factors, and there is currently no effective treatment. In recent years, the latest progress in metabolomics in OA research has revealed several metabolic pathways and new specific metabolites involved in OA. Metabolites play significant roles in the identification and management of OA. This review looks back on the development history of metabolomics and the progress of this technology in OA as well as its potential clinical applications. It summarizes the applications of metabolites in the field of OA and future research directions. This understanding will advance the identification of metabolic treatment goals for OA. The translational potential of this article The development of metabolomics offers possibilities for the treatment of OA. This article reviews the relationship between metabolites associated with chondrocytes and OA. Selectively altering these three metabolic pathways and their associated metabolites may hold great potential as new focal points for OA treatment.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Yongqiang Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ruomu Cao
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuchen Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College
| | - Jinshan Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| |
Collapse
|
12
|
Tang X, Li K, Wang Y, Rocchi S, Shen S, Cerezo M. Metabolism and mRNA translation: a nexus of cancer plasticity. Trends Cell Biol 2024:S0962-8924(24)00225-3. [PMID: 39603916 DOI: 10.1016/j.tcb.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Tumors often face energy deprivation due to mutations, hypoxia, and nutritional deficiencies within the harsh tumor microenvironment (TME), and as an effect of anticancer treatments. This metabolic stress triggers adaptive reprogramming of mRNA translation, which in turn adjusts metabolic plasticity and associated signaling pathways to ensure tumor cell survival. Emerging evidence is beginning to reveal the complex interplay between metabolism and mRNA translation, shedding light on the mechanisms that synchronize ribosome assembly and reconfigure translation programs under metabolic stress. This review explores recent advances in our understanding of the coordination between metabolism and mRNA translation, offering insights that could inform therapeutic strategies targeting both cancer metabolism and translation, with the aim of disrupting cancer cell plasticity and survival.
Collapse
Affiliation(s)
- Xinpu Tang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kaixiu Li
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Wang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Stéphane Rocchi
- INSERM, U1065, Equipe 12, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 route de saint Antoine de Ginestière, 06204, Nice cedex 3, France; Université Côte d'Azur, Nice, France
| | - Shensi Shen
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Michael Cerezo
- INSERM, U1065, Equipe 12, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 route de saint Antoine de Ginestière, 06204, Nice cedex 3, France; Université Côte d'Azur, Nice, France.
| |
Collapse
|
13
|
Liu H, Pan M, Liu M, Zeng L, Li Y, Huang Z, Guo C, Wang H. Lactate: a rising star in tumors and inflammation. Front Immunol 2024; 15:1496390. [PMID: 39660139 PMCID: PMC11628389 DOI: 10.3389/fimmu.2024.1496390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Lactate has been traditionally regarded as a mere byproduct of glycolysis or metabolic waste. However, an increasing body of literature suggests its critical role in regulating various physiological and pathological processes. Lactate is generally associated with hypoxia, inflammation, viral infections, and tumors. It performs complex physiological roles by activating monocarboxylate transporter (MCT) or the G protein-coupled receptor GPR81 across the cell membrane. Lactate exerts immunosuppressive effects by regulating the functions of various immune cells (such as natural killer cells, T cells, dendritic cells, and monocytes) and its role in macrophage polarization and myeloid-derived suppressor cell (MDSC) differentiation in the tumor microenvironment. Lactic acid has also recently been found to increase the density of CD8+ T cells, thereby enhancing the antitumor immune response. Acute or chronic inflammatory diseases have opposite immune states in the inflammatory disease microenvironment. Factors such as cell types, transcriptional regulators, ionic mediators, and the microenvironment all contribute to the diverse functions lactate exhibits. Herein, we reviewed the pleiotropic effects of lactate on the regulation of various functions of immune cells in the tumor microenvironment and under inflammatory conditions, which may help to provide new insights and potential targets for the diagnosis and treatment of inflammatory diseases and malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
14
|
Liu H, Jiang S, Li M, Lei S, Wu J, He T, Wang D, Lin J, Huang P. Dual Enzyme-Driven Cascade Reactions Modulate Immunosuppressive Tumor Microenvironment for Catalytic Therapy and Immune Activation. ACS NANO 2024; 18:30345-30359. [PMID: 39432819 DOI: 10.1021/acsnano.4c07374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Lactate-enriched tumor microenvironment (TME) fosters an immunosuppressive milieu to hamper the functionality of tumor-associated macrophages (TAMs). However, tackling the immunosuppressive effects wrought by lactate accumulation is still a big challenge. Herein, we construct a dual enzyme-driven cascade reaction platform (ILH) with immunosuppressive TME modulation for photoacoustic (PA) imaging-guided catalytic therapy and immune activation. The ILH is composed of iridium (Ir) metallene nanozyme, lactate oxidase (LOx), and hyaluronic acid (HA). The combination of Ir nanozyme and LOx can not only efficiently consume lactate to reverse the immunosuppressive TME into an immunoreactive one by promoting the polarization of TAMs from the M2 to M1 phenotype, thus enhancing antitumor defense, but also alleviate tumor hypoxia as well as induce strong oxidative stress, thus triggering immunogenic cell death (ICD) and activating antitumor immunity. Furthermore, the photothermal performance of Ir nanozyme can strengthen the cascade catalytic ability and endow ILH with a PA response. Based on the changes in PA signals from endogenous molecules, three-dimensional multispectral PA imaging was utilized to track the process of cascade catalytic therapy in vivo. This work provides a nanoplatform for dual enzyme-driven cascade catalytic therapy and immune activation by regulating the immunosuppressive TME.
Collapse
Affiliation(s)
- Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Meng Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Ting He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
15
|
Bononi G, Di Bussolo V, Tuccinardi T, Minutolo F, Granchi C. A patent review of lactate dehydrogenase inhibitors (2014-present). Expert Opin Ther Pat 2024; 34:1121-1135. [PMID: 39358962 DOI: 10.1080/13543776.2024.2412575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
INTRODUCTION Lactate dehydrogenase (LDH) is a key enzyme in glycolysis responsible for the conversion of pyruvate into lactate and vice versa. Lactate plays a crucial role in tumor progression and metastasis; therefore, reducing lactate production by inhibiting LDH is considered an optimal strategy to tackle cancer. Additionally, dysregulation of LDH activity is correlated with other pathologies, such as cardiovascular and neurodegenerative diseases as well as primary hyperoxaluria, fibrosis and cryptosporidiosis. Hence, LDH inhibitors could serve as potential therapeutics for treating these pathological conditions. AREAS COVERED This review covers patents published since 2014 up to the present in the Espacenet database, concerning LDH inhibitors and their potential therapeutic applications. EXPERT OPINION Over the past 10 years, different compounds have been identified as LDH inhibitors. Some of them are derived from the chemical optimization of already known LDH inhibitors (e.g. pyrazolyl derivatives, quinoline 3-sulfonamides), while others belong to newly identified chemical classes of LDH inhibitors. LDH inhibition has proven to be a promising therapeutic strategy not only for preventing human pathologies, but also for treating animal diseases. The published patents from both academia and the pharmaceutical industry highlight the persistent high interest of the scientific community in developing efficient LDH inhibitors.
Collapse
Affiliation(s)
- Giulia Bononi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | | |
Collapse
|
16
|
Li G, Ma X, Sui S, Chen Y, Li H, Liu L, Zhang X, Zhang L, Hao Y, Yang Z, Yang S, He X, Wang Q, Tao W, Xu S. NAT10/ac4C/JunB facilitates TNBC malignant progression and immunosuppression by driving glycolysis addiction. J Exp Clin Cancer Res 2024; 43:278. [PMID: 39363363 PMCID: PMC11451012 DOI: 10.1186/s13046-024-03200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND N4-Acetylcytidine (ac4C), a highly conserved post-transcriptional mechanism, plays a pivotal role in RNA modification and tumor progression. However, the molecular mechanism by which ac4C modification mediates tumor immunosuppression remains elusive in triple-negative breast cancer (TNBC). METHODS NAT10 expression was analyzed in TNBC samples in the level of mRNA and protein, and compared with the corresponding normal tissues. ac4C modification levels also measured in the TNBC samples. The effects of NAT10 on immune microenvironment and tumor metabolism were investigated. NAT10-mediated ac4C and its downstream regulatory mechanisms were determined in vitro and in vivo. The combination therapy of targeting NAT10 in TNBC was further explored. RESULTS The results revealed that the loss of NAT10 inhibited TNBC development and promoted T cell activation. Mechanistically, NAT10 upregulated JunB expression by increasing ac4C modification levels on its mRNA. Moreover, JunB further up-regulated LDHA expression and facilitated glycolysis. By deeply digging, remodelin, a NAT10 inhibitor, elevated the surface expression of CTLA-4 on T cells. The combination of remodelin and CTLA-4 mAb can further activate T cells and inhibite tumor progression. CONCLUSION Taken together, our study demonstrated that the NAT10-ac4C-JunB-LDHA pathway increases glycolysis levels and creates an immunosuppressive tumor microenvironment (TME). Consequently, targeting this pathway may assist in the identification of novel therapeutic strategies to improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yihai Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xin Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Lei Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yi Hao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zihan Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Shuai Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xu He
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
- Weihan Yu Academy, Harbin Medical University, Harbin, 150086, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
- Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Weiyang Tao
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
- Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
17
|
Sharma H, Mondal S, Urquiza U, Esparza C, Bartlett S, Santa-Pinter L, Hill H, White M, Sharma P, Luckett-Chastain L, Cooper A, Rasel M, Gao P, Battaile KP, Shukla SK, Lovell S, Ihnat MA. Synthesis and biological characterization of an orally bioavailable lactate dehydrogenase-A inhibitor against pancreatic cancer. Eur J Med Chem 2024; 275:116598. [PMID: 38925013 DOI: 10.1016/j.ejmech.2024.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Lactate dehydrogenase-A (LDHA) is the major isoform of lactate dehydrogenases (LDH) that is overexpressed and linked to poor survival in pancreatic ductal adenocarcinoma (PDAC). Despite some progress, current LDH inhibitors have poor structural and physicochemical properties or exhibit unfavorable pharmacokinetics that have hampered their development. The present study reports the synthesis and biological evaluation of a novel class of LDHA inhibitors comprising a succinic acid monoamide motif. Compounds 6 and 21 are structurally related analogs that demonstrated potent inhibition of LDHA with IC50s of 46 nM and 72 nM, respectively. We solved cocrystal structures of compound 21-bound to LDHA that showed that the compound binds to a distinct allosteric site between the two subunits of the LDHA tetramer. Inhibition of LDHA correlated with reduced lactate production and reduction of glycolysis in MIA PaCa-2 pancreatic cancer cells. The lead compounds inhibit the proliferation of human pancreatic cancer cell lines and patient-derived 3D organoids and exhibit a synergistic cytotoxic effect with the OXPHOS inhibitor phenformin. Unlike current LDHA inhibitors, 6 and 21 have appropriate pharmacokinetics and ligand efficiency metrics, exhibit up to 73% oral bioavailability, and a cumulative half-life greater than 4 h in mice.
Collapse
Affiliation(s)
- Horrick Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK, USA.
| | - Somrita Mondal
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Uzziah Urquiza
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Colter Esparza
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Seth Bartlett
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Landon Santa-Pinter
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Hanna Hill
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Madalyn White
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Pragya Sharma
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Lerin Luckett-Chastain
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Anne Cooper
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, KS, USA
| | - Mohammad Rasel
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, KS, USA
| | - Philip Gao
- Protein Production Group, The University of Kansas, Lawrence, KS, USA
| | | | - Surendra K Shukla
- Department of Oncology Science, OU College of Medicine, Oklahoma City, USA
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, KS, USA
| | - Michael A Ihnat
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| |
Collapse
|
18
|
Verma S, Budhu S, Serganova I, Dong L, Mangarin LM, Khan JF, Bah MA, Assouvie A, Marouf Y, Schulze I, Zappasodi R, Wolchok JD, Merghoub T. Pharmacologic LDH inhibition redirects intratumoral glucose uptake and improves antitumor immunity in solid tumor models. J Clin Invest 2024; 134:e177606. [PMID: 39225102 PMCID: PMC11364391 DOI: 10.1172/jci177606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Tumor reliance on glycolysis is a hallmark of cancer. Immunotherapy is more effective in controlling glycolysis-low tumors lacking lactate dehydrogenase (LDH) due to reduced tumor lactate efflux and enhanced glucose availability within the tumor microenvironment (TME). LDH inhibitors (LDHi) reduce glucose uptake and tumor growth in preclinical models, but their impact on tumor-infiltrating T cells is not fully elucidated. Tumor cells have higher basal LDH expression and glycolysis levels compared with infiltrating T cells, creating a therapeutic opportunity for tumor-specific targeting of glycolysis. We demonstrate that LDHi treatment (a) decreases tumor cell glucose uptake, expression of the glucose transporter GLUT1, and tumor cell proliferation while (b) increasing glucose uptake, GLUT1 expression, and proliferation of tumor-infiltrating T cells. Accordingly, increasing glucose availability in the microenvironment via LDH inhibition leads to improved tumor-killing T cell function and impaired Treg immunosuppressive activity in vitro. Moreover, combining LDH inhibition with immune checkpoint blockade therapy effectively controls murine melanoma and colon cancer progression by promoting effector T cell infiltration and activation while destabilizing Tregs. Our results establish LDH inhibition as an effective strategy for rebalancing glucose availability for T cells within the TME, which can enhance T cell function and antitumor immunity.
Collapse
Affiliation(s)
- Svena Verma
- Pharmacology Program
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Sadna Budhu
- Pharmacology Program
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Inna Serganova
- Sandra and Edward Meyer Cancer Center
- Department of Medicine
| | - Lauren Dong
- Pharmacology Program
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Levi M. Mangarin
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Jonathan F. Khan
- Pharmacology Program
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Mamadou A. Bah
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
- Immunology and Microbial Pathogenesis Program
| | - Anais Assouvie
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Yacine Marouf
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Isabell Schulze
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
| | - Roberta Zappasodi
- Sandra and Edward Meyer Cancer Center
- Department of Medicine
- Immunology and Microbial Pathogenesis Program
| | - Jedd D. Wolchok
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
- Department of Medicine
- Immunology and Microbial Pathogenesis Program
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York, USA
| | - Taha Merghoub
- Pharmacology Program
- Swim Across America, and Ludwig Collaborative Laboratory, Department of Pharmacology
- Sandra and Edward Meyer Cancer Center
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
19
|
Shu Y, Yue J, Li Y, Yin Y, Wang J, Li T, He X, Liang S, Zhang G, Liu Z, Wang Y. Development of human lactate dehydrogenase a inhibitors: high-throughput screening, molecular dynamics simulation and enzyme activity assay. J Comput Aided Mol Des 2024; 38:28. [PMID: 39123063 DOI: 10.1007/s10822-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Lactate dehydrogenase A (LDHA) is highly expressed in many tumor cells and promotes the conversion of pyruvate to lactic acid in the glucose pathway, providing energy and synthetic precursors for rapid proliferation of tumor cells. Therefore, inhibition of LDHA has become a widely concerned tumor treatment strategy. However, the research and development of highly efficient and low toxic LDHA small molecule inhibitors still faces challenges. To discover potential inhibitors against LDHA, virtual screening based on molecular docking techniques was performed from Specs database of more than 260,000 compounds and Chemdiv-smart database of more than 1,000 compounds. Through molecular dynamics (MD) simulation studies, we identified 12 potential LDHA inhibitors, all of which can stably bind to human LDHA protein and form multiple interactions with its active central residues. In order to verify the inhibitory activities of these compounds, we established an enzyme activity assay system and measured their inhibitory effects on recombinant human LDHA. The results showed that Compound 6 could inhibit the catalytic effect of LDHA on pyruvate in a dose-dependent manner with an EC50 value of 14.54 ± 0.83 µM. Further in vitro experiments showed that Compound 6 could significantly inhibit the proliferation of various tumor cell lines such as pancreatic cancer cells and lung cancer cells, reduce intracellular lactic acid content and increase intracellular reactive oxygen species (ROS) level. In summary, through virtual screening and in vitro validation, we found that Compound 6 is a small molecule inhibitor for LDHA, providing a good lead compound for the research and development of LDHA related targeted anti-tumor drugs.
Collapse
Affiliation(s)
- Yuanyuan Shu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jianda Yue
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yekui Yin
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiaxu Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Tingting Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- New York University, East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Gaihua Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
20
|
Gan X, Hu J, Pang Q, Yan R, Bao Y, Liu Y, Song J, Wang Z, Sun W, Huang F, Cai C, Wang L. LDHA-mediated M2-type macrophage polarization via tumor-derived exosomal EPHA2 promotes renal cell carcinoma progression. Mol Carcinog 2024; 63:1486-1499. [PMID: 38780182 DOI: 10.1002/mc.23737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Lactate dehydrogenase A (LDHA) is known to promote the growth and invasion of various types of tumors, affects tumor resistance, and is associated with tumor immune escape. But how LDHA reshapes the tumor microenvironment and promotes the progression of renal cell carcinoma (RCC) remains unclear. In this study, we found that LDHA was highly expressed in clear cell RCC (ccRCC), and this high expression was associated with macrophage infiltration, while macrophages were highly infiltrated in ccRCC, affecting patient prognosis via M2-type polarization. Our in vivo and in vitro experiments demonstrated that LDHA and M2-type macrophages could enhance the proliferation, invasion, and migration abilities of ccRCC cells. Mechanistically, high expression of LDHA in ccRCC cells upregulated the expression of EPHA2 in exosomes derived from renal cancer. Exosomal EPHA2 promoted M2-type polarization of macrophages by promoting activation of the PI3K/AKT/mTOR pathway in macrophages, thereby promoting the progression of ccRCC. All these findings suggest that EPHA2 may prove to be a potential therapeutic target for advanced RCC.
Collapse
Affiliation(s)
- Xinxin Gan
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiatao Hu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qingyang Pang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rui Yan
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi Bao
- Department of Urology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ying Liu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiaao Song
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zheng Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weihao Sun
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fuzhao Huang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen Cai
- Department of Special Clinic, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
21
|
Ni X, Lu CP, Xu GQ, Ma JJ. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Acta Pharmacol Sin 2024; 45:1533-1555. [PMID: 38622288 PMCID: PMC11272797 DOI: 10.1038/s41401-024-01264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Cancer cells largely rely on aerobic glycolysis or the Warburg effect to generate essential biomolecules and energy for their rapid growth. The key modulators in glycolysis including glucose transporters and enzymes, e.g. hexokinase 2, enolase 1, pyruvate kinase M2, lactate dehydrogenase A, play indispensable roles in glucose uptake, glucose consumption, ATP generation, lactate production, etc. Transcriptional regulation and post-translational modifications (PTMs) of these critical modulators are important for signal transduction and metabolic reprogramming in the glycolytic pathway, which can provide energy advantages to cancer cell growth. In this review we recapitulate the recent advances in research on glycolytic modulators of cancer cells and analyze the strategies targeting these vital modulators including small-molecule inhibitors and microRNAs (miRNAs) for targeted cancer therapy. We focus on the regulation of the glycolytic pathway at the transcription level (e.g., hypoxia-inducible factor 1, c-MYC, p53, sine oculis homeobox homolog 1, N6-methyladenosine modification) and PTMs (including phosphorylation, methylation, acetylation, ubiquitination, etc.) of the key regulators in these processes. This review will provide a comprehensive understanding of the regulation of the key modulators in the glycolytic pathway and might shed light on the targeted cancer therapy at different molecular levels.
Collapse
Affiliation(s)
- Xuan Ni
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Cheng-Piao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Guo-Qiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
22
|
Köse SG, Güleç Taşkıran AE. Mechanisms of drug resistance in nutrient-depleted colorectal cancer cells: insights into lysosomal and mitochondrial drug sequestration. Biol Open 2024; 13:bio060448. [PMID: 39445740 PMCID: PMC11554266 DOI: 10.1242/bio.060448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
This Review delves into the mechanisms behind drug resistance in colorectal cancer (CRC), particularly examining the role of nutrient depletion and its contribution to multidrug resistance (MDR). The study highlights metabolic adaptations of cancer cells as well as metabolic adaptations of cancer cells under low nutrient availability, including shifts in glycolysis and lipid metabolism. It emphasizes the significance of MDR1 and its encoded efflux transporter, P-glycoprotein (P-gp/B1), in mediating drug resistance and how pathways such as HIF1α, AKT, and mTOR influence the expression of P-gp/B1 under limited nutrient availability. Additionally, the Review explores the dual roles of autophagy in drug sensitivity and resistance under nutrient limited conditions. It further investigates the involvement of lysosomes and mitochondria, focusing on their roles in drug sequestration and the challenges posed by lysosomal entrapment facilitated by non-enzymatic processes and ABC transporters like P-gp/B1. Finally, the Review underscores the importance of understanding the interplay between drug sequestration, lysosomal functions, nutrient depletion, and MDR1 gene modulation. It suggests innovative strategies, including structural modifications and nanotechnology, as promising approaches to overcoming drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Serra Gülse Köse
- Molecular Biology and Genetics Department, Baskent University, Ankara 06790, Turkey
| | | |
Collapse
|
23
|
Chen J, Zhou Q, Li S, Ling R, Zhao Y, Chen D, Wang A, Cao Y. Metabolic reprogramming driven by METTL1-mediated tRNA m7G modification promotes acquired anlotinib resistance in oral squamous cell carcinoma. Transl Res 2024; 268:28-39. [PMID: 38280546 DOI: 10.1016/j.trsl.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) are frequently utilized in the management of malignant tumors. Studies have indicated that anlotinib has a significant inhibitory effect on oral squamous cell carcinoma (OSCC). However, the mechanisms underlying the development of resistance with long-term anlotinib treatment remain obscure. Our research found that METTL1 expression was heightened in anlotinib-resistant OSCC cells. We observed that METTL1 played a role in fostering resistance to anlotinib in both transgenic mouse models and in vitro. Mechanistically, the elevated METTL1 levels in anlotinib-resistant OSCC cells contributed to enhanced global mRNA translation and stimulated oxidative phosphorylation (OXPHOS) through m7G tRNA modification. Bioenergetic profiling demonstrated that METTL1 drived a metabolic shift from glycolysis to OXPHOS in anlotinib-resistant OSCC cells. Additionally, inhibition of OXPHOS biochemically negated METTL1's impact on anlotinib resistance. Overall, this study underscores the pivotal role of METTL1-mediated m7G tRNA modification in anlotinib resistance and lays the groundwork for novel therapeutic interventions to counteract resistance in OSCC.
Collapse
Affiliation(s)
- Jie Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shuai Li
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yiwei Zhao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Demeng Chen
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Cao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.
| |
Collapse
|
24
|
Su MC, Lee AM, Zhang W, Maeser D, Gruener RF, Deng Y, Huang RS. Computational Modeling to Identify Drugs Targeting Metastatic Castration-Resistant Prostate Cancer Characterized by Heightened Glycolysis. Pharmaceuticals (Basel) 2024; 17:569. [PMID: 38794139 PMCID: PMC11124089 DOI: 10.3390/ph17050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) remains a deadly disease due to a lack of efficacious treatments. The reprogramming of cancer metabolism toward elevated glycolysis is a hallmark of mCRPC. Our goal is to identify therapeutics specifically associated with high glycolysis. Here, we established a computational framework to identify new pharmacological agents for mCRPC with heightened glycolysis activity under a tumor microenvironment, followed by in vitro validation. First, using our established computational tool, OncoPredict, we imputed the likelihood of drug responses to approximately 1900 agents in each mCRPC tumor from two large clinical patient cohorts. We selected drugs with predicted sensitivity highly correlated with glycolysis scores. In total, 77 drugs predicted to be more sensitive in high glycolysis mCRPC tumors were identified. These drugs represent diverse mechanisms of action. Three of the candidates, ivermectin, CNF2024, and P276-00, were selected for subsequent vitro validation based on the highest measured drug responses associated with glycolysis/OXPHOS in pan-cancer cell lines. By decreasing the input glucose level in culture media to mimic the mCRPC tumor microenvironments, we induced a high-glycolysis condition in PC3 cells and validated the projected higher sensitivity of all three drugs under this condition (p < 0.0001 for all drugs). For biomarker discovery, ivermectin and P276-00 were predicted to be more sensitive to mCRPC tumors with low androgen receptor activities and high glycolysis activities (AR(low)Gly(high)). In addition, we integrated a protein-protein interaction network and topological methods to identify biomarkers for these drug candidates. EEF1B2 and CCNA2 were identified as key biomarkers for ivermectin and CNF2024, respectively, through multiple independent biomarker nomination pipelines. In conclusion, this study offers new efficacious therapeutics beyond traditional androgen-deprivation therapies by precisely targeting mCRPC with high glycolysis.
Collapse
Affiliation(s)
- Mei-Chi Su
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (M.-C.S.); (A.M.L.); (R.F.G.)
| | - Adam M. Lee
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (M.-C.S.); (A.M.L.); (R.F.G.)
| | - Weijie Zhang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA; (W.Z.); (D.M.)
| | - Danielle Maeser
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA; (W.Z.); (D.M.)
| | - Robert F. Gruener
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (M.-C.S.); (A.M.L.); (R.F.G.)
| | - Yibin Deng
- Department of Urology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - R. Stephanie Huang
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (M.-C.S.); (A.M.L.); (R.F.G.)
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA; (W.Z.); (D.M.)
| |
Collapse
|
25
|
Chen L, Xing X, Zhu Y, Chen Y, Pei H, Song Q, Li J, Zhang P. Palmitoylation alters LDHA activity and pancreatic cancer response to chemotherapy. Cancer Lett 2024; 587:216696. [PMID: 38331089 DOI: 10.1016/j.canlet.2024.216696] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Lactate dehydrogenase A (LDHA) serves as a key regulator of the Warburg Effect by catalyzing the conversion of pyruvate to lactate in the final step of glycolysis. Both the expression level and enzyme activity of LDHA are upregulated in cancers, however, the underlying mechanism remains incompletely understood. Here, we show that LDHA is post-translationally palmitoylated by ZDHHC9 at cysteine 163, which promotes its enzyme activity, lactate production, and reduces reactive oxygen species (ROS) generation. Replacement of endogenous LDHA with a palmitoylation-deficient mutant leads to reduced pancreatic cancer cell proliferation, increased T-cell infiltration, and limited tumor growth; it also affects pancreatic cancer cell response to chemotherapy. Moreover, LDHA palmitoylation is upregulated in gemcitabine resistant pancreatic cancer cells. Clinically, ZDHHC9 is upregulated in pancreatic cancer and correlated with poor prognoses for patients. Overall, our findings identify ZDHHC9-mediated palmitoylation as a positive regulator of LDHA, with potentially significant implications for cancer etiology and targeted therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Luojun Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430062, Hubei, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430062, Hubei, China
| | - Yue Zhu
- Department of Radiotherapy, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yali Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, 20057, DC, USA.
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430062, Hubei, China.
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430062, Hubei, China.
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430062, Hubei, China.
| |
Collapse
|
26
|
Grimm F, Asuaje A, Jain A, Silva Dos Santos M, Kleinjung J, Nunes PM, Gehrig S, Fets L, Darici S, MacRae JI, Anastasiou D. Metabolic priming by multiple enzyme systems supports glycolysis, HIF1α stabilisation, and human cancer cell survival in early hypoxia. EMBO J 2024; 43:1545-1569. [PMID: 38485816 PMCID: PMC11021510 DOI: 10.1038/s44318-024-00065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 04/18/2024] Open
Abstract
Adaptation to chronic hypoxia occurs through changes in protein expression, which are controlled by hypoxia-inducible factor 1α (HIF1α) and are necessary for cancer cell survival. However, the mechanisms that enable cancer cells to adapt in early hypoxia, before the HIF1α-mediated transcription programme is fully established, remain poorly understood. Here we show in human breast cancer cells, that within 3 h of hypoxia exposure, glycolytic flux increases in a HIF1α-independent manner but is limited by NAD+ availability. Glycolytic ATP maintenance and cell survival in early hypoxia rely on reserve lactate dehydrogenase A capacity as well as the activity of glutamate-oxoglutarate transaminase 1 (GOT1), an enzyme that fuels malate dehydrogenase 1 (MDH1)-derived NAD+. In addition, GOT1 maintains low α-ketoglutarate levels, thereby limiting prolyl hydroxylase activity to promote HIF1α stabilisation in early hypoxia and enable robust HIF1α target gene expression in later hypoxia. Our findings reveal that, in normoxia, multiple enzyme systems maintain cells in a primed state ready to support increased glycolysis and HIF1α stabilisation upon oxygen limitation, until other adaptive processes that require more time are fully established.
Collapse
Affiliation(s)
- Fiona Grimm
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Agustín Asuaje
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Aakriti Jain
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Mariana Silva Dos Santos
- Metabolomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Jens Kleinjung
- Computational Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Patrícia M Nunes
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Stefanie Gehrig
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Louise Fets
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Salihanur Darici
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - James I MacRae
- Metabolomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Dimitrios Anastasiou
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.
| |
Collapse
|
27
|
Ajam-Hosseini M, Heydari R, Rasouli M, Akhoondi F, Asadi Hanjani N, Bekeschus S, Doroudian M. Lactic acid in macrophage polarization: A factor in carcinogenesis and a promising target for cancer therapy. Biochem Pharmacol 2024; 222:116098. [PMID: 38431231 DOI: 10.1016/j.bcp.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Cancer remains a formidable challenge, continually revealing its intricate nature and demanding novel treatment approaches. Within this intricate landscape, the tumor microenvironment and its dynamic components have gained prominence, particularly macrophages that can adopt diverse polarization states, exerting a profound influence on cancer progression. Recent revelations have spotlighted lactic acid as a pivotal player in this complex interplay. This review systematically explores lactic acid's multifaceted role in macrophage polarization, focusing on its implications in carcinogenesis. We commence by cultivating a comprehensive understanding of the tumor microenvironment and the pivotal roles played by macrophages. The dynamic landscape of macrophage polarization, typified by M1 and M2 phenotypes, is dissected to reveal its substantial impact on tumor progression. Lactic acid, a metabolic byproduct, emerges as a key protagonist, and we meticulously unravel the mechanisms underpinning its generation within cancer cells, shedding light on its intimate association with glycolysis and its transformative effects on the tumor microenvironment. Furthermore, we decipher the intricate molecular framework that underlies lactic acid's pivotal role in facilitating macrophage polarization. Our review underscores lactic acid's dual role in carcinogenesis, orchestrating tumor growth and immune modulation within the tumor microenvironment, thereby profoundly influencing the balance between pro-tumor and anti-tumor immune responses. This duality highlights the therapeutic potential of selectively manipulating lactic acid metabolism for cancer treatment. Exploring strategies to inhibit lactic acid production by tumor cells, novel approaches to impede lactic acid transport in the tumor microenvironment, and the burgeoning field of immunotherapeutic cancer therapies utilizing lactic acid-induced macrophage polarization form the core of our investigation.
Collapse
Affiliation(s)
- Mobarakeh Ajam-Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Romina Heydari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Milad Rasouli
- Department of Physics, Kharazmi University, Tehran, Iran; Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Akhoondi
- Department of Molecular Biology of the Cell, Faculty of Bioscience, University of Milan, Milan, Italy
| | - Niloofar Asadi Hanjani
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str 2, 17489 Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
28
|
Frank AR, Vandiver F, McFadden DG. Forward Genetic Screens Identify Mechanisms of Resistance to Small-Molecule Lactate Dehydrogenase Inhibitors. ACS Chem Biol 2024; 19:471-482. [PMID: 38270591 PMCID: PMC11110909 DOI: 10.1021/acschembio.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Altered metabolism is a hallmark of cancer; however, it has been difficult to specifically target metabolism in cancer for therapeutic benefit. Cancers with genetically defined defects in metabolic enzymes constitute a subset of cancers where targeting metabolism is potentially accessible. Hürthle cell carcinoma of the thyroid (HTC) tumors frequently harbor deleterious mitochondrial DNA (mtDNA) mutations in subunits of complex I of the mitochondrial electron transport chain (ETC). Previous work has shown that HTC models with deleterious mtDNA mutations exhibit mitochondrial ETC defects that expose lactate dehydrogenase (LDH) as a therapeutic vulnerability. Here, we performed forward genetic screens to identify mechanisms of resistance to small-molecule LDH inhibitors. We identified two distinct mechanisms of resistance: upregulation of an LDH isoform and a compound-specific resistance mutation. Using these tools, we demonstrate that the anticancer activity of LDH inhibitors in cell line and xenograft models of complex I mutant HTC is through on-target LDH inhibition.
Collapse
Affiliation(s)
- Anderson R. Frank
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Florentina Vandiver
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David G. McFadden
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Lead contact
| |
Collapse
|
29
|
Stanley S, Wang X, Liu Q, Kwon YY, Frey AM, Hicks ND, Vickers AJ, Hui S, Fortune SM. Ongoing evolution of the Mycobacterium tuberculosis lactate dehydrogenase reveals the pleiotropic effects of bacterial adaption to host pressure. PLoS Pathog 2024; 20:e1012050. [PMID: 38422159 DOI: 10.1371/journal.ppat.1012050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2, which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulate Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage-defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2, label preferentially accumulates in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accrued lactate toxicity via the deleterious buildup of sugar phosphates. The evolved lldD2 variants increase lactate incorporation to pyruvate while altering triose phosphate flux, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX- 1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provides context for the selective advantage of lldD2 mutations in adapting to host stress.
Collapse
Affiliation(s)
- Sydney Stanley
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Xin Wang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Young Yon Kwon
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Abigail M Frey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Nathan D Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Andrew J Vickers
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
30
|
Wang T, Zhang M, Khan M, Li J, Wu X, Ma T, Li Y. Cryptotanshinone suppresses ovarian cancer via simultaneous inhibition of glycolysis and oxidative phosphorylation. Biomed Pharmacother 2024; 170:115956. [PMID: 38039759 DOI: 10.1016/j.biopha.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Ovarian cancer is one of the most lethal cancers in female reproductive system due to heterogeneity and lack of effective treatment. Targeting aerobic glycolysis, a predominant energy metabolism of cancer cells has been recognized a novel strategy to overcome cancer cell growth. However, the capability of cancer cells to undergo metabolic reprogramming guarantees their survival even when glycolysis is inhibited. Here in this study, we have shown that Cryptotanshinone (CT), a lipid-soluble bioactive anticancer molecule of Salvia miltiorrhiza, inhibits both glycolysis and oxidative phosphorylation (OXPHOS) in ovarian cancer cells leading to growth suppression and apoptosis induction. Our mechanistic study revealed that CT decreased glucose uptake and lactate production, and inhibited the kinase activity of LDHA and HK2. The molecular docking study showed that CT could directly bind with GLUT1, LDHA, HK2, PKM2 and complex-1. The immunoblotting data showed that CT decreased the expression of aberrantly activated glycolytic proteins includingGLUT1, LDHA, HK2, and PKM2. Besides, we found that CT inhibited mitochondrial ComplexⅠ activity, decreased the ratio of NAD+/NADH, and suppressed the generation of ATP and induced activation of AMPK, which controls energy-reducing processes. These in vitro findings were further validated using xenograft model. The findings of in vivo studies were in line with in vitro studies. Taken together, CT effectively suppressed glycolysis and OXPHOS, inhibited growth and induced apoptosis in ovarian cancer cells both in vitro and in vivo study models.
Collapse
Affiliation(s)
- Tong Wang
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengmeng Zhang
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Muhammad Khan
- Cancer Research Lab, Institute of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan.
| | - Jingjing Li
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao Wu
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tonghui Ma
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yongming Li
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
31
|
Nishioku T, Anzai R, Hiramatsu S, Terazono A, Nakao M, Moriyama M. Lactate dehydrogenase A inhibition prevents RANKL-induced osteoclastogenesis by reducing enhanced glycolysis. J Pharmacol Sci 2023; 153:197-207. [PMID: 37973217 DOI: 10.1016/j.jphs.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
Osteoclasts are multinucleated, specializes bone-resorbing cells that are derived from the monocyte/macrophage lineage. Excessive resorbing activities of osteoclasts are involved in destructive bone diseases. The detailed mechanism of acidification at the bone adhesion surface during the bone resorption process of osteoclasts remains to be defined. During glycolysis, pyruvate proceeds to the tricarboxylic cycle under aerobic conditions and pyruvate is converted to lactate via lactate dehydrogenase A (LDHA) under anaerobic conditions. However, tumor cells produce ATP during aerobic glycolysis and large amounts of pyruvate are converted to lactate and H+ by LDHA. Lactate and H+ are excreted outside the cell, whereby they are involved in invasion of tumor cells due to the pH drop around the cell. In this study, we focused on aerobic glycolysis and investigated the production of lactate by LDHA in osteoclasts. Expression of LDHA and monocarboxylate transporter 4 (MCT4) was upregulated during osteoclast differentiation. Intracellular and extracellular lactate levels increased with upregulation of LDHA and MCT4, respectively. FX11 (an LDHA inhibitor) inhibited osteoclast differentiation and suppressed the bone-resorbing activity of osteoclasts. We propose that inhibition of LDHA may represent a novel therapeutic strategy for controlling excessive bone resorption in osteoporosis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Tsuyoshi Nishioku
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Rumi Anzai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Sami Hiramatsu
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Ayaka Terazono
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Mamiko Nakao
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Miyu Moriyama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| |
Collapse
|
32
|
Shen X, Niu N, Xue J. Oncogenic KRAS triggers metabolic reprogramming in pancreatic ductal adenocarcinoma. J Transl Int Med 2023; 11:322-329. [PMID: 38130635 PMCID: PMC10732496 DOI: 10.2478/jtim-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with an extremely high lethality rate. Oncogenic KRAS activation has been proven to be a key driver of PDAC initiation and progression. There is increasing evidence that PDAC cells undergo extensive metabolic reprogramming to adapt to their extreme energy and biomass demands. Cell-intrinsic factors, such as KRAS mutations, are able to trigger metabolic rewriting. Here, we update recent advances in KRAS-driven metabolic reprogramming and the associated metabolic therapeutic potential in PDAC.
Collapse
Affiliation(s)
- Xuqing Shen
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| |
Collapse
|
33
|
Contenti J, Guo Y, Mazzu A, Irondelle M, Rouleau M, Lago C, Leva G, Tiberi L, Ben-Sahra I, Bost F, Mazure NM. The mitochondrial NADH shuttle system is a targetable vulnerability for Group 3 medulloblastoma in a hypoxic microenvironment. Cell Death Dis 2023; 14:784. [PMID: 38036520 PMCID: PMC10689432 DOI: 10.1038/s41419-023-06275-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Medulloblastoma is a cancerous brain tumor that affects mostly children. Among the four groups defined by molecular characteristics, Group 3, the least well characterized, is also the least favorable, with a survival rate of 50%. Current treatments, based on surgery, radiotherapy, and chemotherapy, are not adequate and the lack of understanding of the different molecular features of Group 3 tumor cells makes the development of effective therapies challenging. In this study, the problem of medulloblastoma is approached from a metabolic standpoint in a low oxygen microenvironment. We establish that Group 3 cells use both the mitochondrial glycerol-3 phosphate (G3PS) and malate-aspartate shuttles (MAS) to produce NADH. Small molecules that target G3PS and MAS show a greater ability to decrease cell proliferation and induce apoptosis specifically of Group 3 cells. In addition, as Group 3 cells show improved respiration in hypoxia, the use of Phenformin, a mitochondrial complex 1 inhibitor, alone or in combination, induced significant cell death. Furthermore, inhibition of the cytosolic NAD+ recycling enzyme lactate dehydrogenase A (LDHA), enhanced the effects of the NADH shuttle inhibitors. In a 3D model using Group 3 human cerebellar organoids, tumor cells also underwent apoptosis upon treatment with NADH shuttle inhibitors. Our study demonstrates metabolic heterogeneity depending on oxygen concentrations and provides potential therapeutic solutions for patients in Group 3 whose tumors are the most aggressive.
Collapse
Affiliation(s)
- J Contenti
- Université Côte d'Azur, INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, CEDEX 03, 06204, Nice, France.
- Pasteur II Hospital, Department of Emergency Medicine, University Hospital Center, 30 voie Romaine, 06000, Nice, France.
| | - Y Guo
- Université Côte d'Azur, INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, CEDEX 03, 06204, Nice, France
| | - A Mazzu
- Université Côte d'Azur, INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, CEDEX 03, 06204, Nice, France
| | - M Irondelle
- Université Côte d'Azur, INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, CEDEX 03, 06204, Nice, France
| | - M Rouleau
- Université Côte d'Azur, Laboratoire de PhysioMédecine Moléculaire - LP2M, CNRS-UMR 7370, Faculty of Medicine, 28 ave de Valombrose, 06107, Nice Cedex 02, France
| | - C Lago
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biollogy - CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - G Leva
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biollogy - CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - L Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biollogy - CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - I Ben-Sahra
- Northwestern University Feinberg School of Medicine, Robert H. Lurie Cancer Center, 303 East Superior Street, Chicago, IL, 60611, USA
| | - F Bost
- Université Côte d'Azur, INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, CEDEX 03, 06204, Nice, France
| | - N M Mazure
- Université Côte d'Azur, INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, CEDEX 03, 06204, Nice, France.
| |
Collapse
|
34
|
Duan SL, Wu M, Zhang ZJ, Chang S. The potential role of reprogrammed glucose metabolism: an emerging actionable codependent target in thyroid cancer. J Transl Med 2023; 21:735. [PMID: 37853445 PMCID: PMC10585934 DOI: 10.1186/s12967-023-04617-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Although the incidence of thyroid cancer is increasing year by year, most patients, especially those with differentiated thyroid cancer, can usually be cured with surgery, radioactive iodine, and thyroid-stimulating hormone suppression. However, treatment options for patients with poorly differentiated thyroid cancers or radioiodine-refractory thyroid cancer have historically been limited. Altered energy metabolism is one of the hallmarks of cancer and a well-documented feature in thyroid cancer. In a hypoxic environment with extreme nutrient deficiencies resulting from uncontrolled growth, thyroid cancer cells utilize "metabolic reprogramming" to satisfy their energy demand and support malignant behaviors such as metastasis. This review summarizes past and recent advances in our understanding of the reprogramming of glucose metabolism in thyroid cancer cells, which we expect will yield new therapeutic approaches for patients with special pathological types of thyroid cancer by targeting reprogrammed glucose metabolism.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Min Wu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhe-Jia Zhang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Xiangya Hospital, National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, 410008, Hunan, People's Republic of China.
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
35
|
Stanley S, Wang X, Liu Q, Kwon YY, Frey AM, Hicks ND, Vickers AJ, Hui S, Fortune SM. Ongoing evolution of the Mycobacterium tuberculosis lactate dehydrogenase reveals the pleiotropic effects of bacterial adaption to host pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561592. [PMID: 37873410 PMCID: PMC10592758 DOI: 10.1101/2023.10.09.561592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2 , which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulates Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13 C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2 , label preferentially accumulates in methylglyoxal precursors dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accumulated lactate toxicity via a methylglyoxal pathway that has been proposed previously. The evolved lldD2 variants increase lactate incorporation to pyruvate but also alter flux in the methylglyoxal pathway, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX-1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provide context for the selective advantage of lldD2 mutations in adapting to host stress.
Collapse
|
36
|
Guo Y, Luo C, Sun Y, Guo W, Zhang R, Zhang X, Ke X, Wei L. Inhibition of mitochondrial fusion via SIRT1/PDK2/PARL axis breaks mitochondrial metabolic plasticity and sensitizes cancer cells to glucose restriction therapy. Biomed Pharmacother 2023; 166:115342. [PMID: 37633053 DOI: 10.1016/j.biopha.2023.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/06/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
Mitochondria dynamically change their morphology via fusion and fission, a process called mitochondrial dynamics. Dysregulated mitochondrial dynamics respond rapidly to metabolic cues, and are linked to the initiation and progression of diverse human cancers. Metabolic adaptations significantly contribute to tumor development and escape from tissue homeostatic defenses. In this work, we identified oroxylin A (OA), a dual GLUT1/mitochondrial fusion inhibitor, which restricted glucose catabolism of hepatocellular carcinoma cells and simultaneously inhibited mitochondrial fusion by disturbing SIRT1/PDK2/PARL axis. Based the dual action of OA in metabolic regulation and mitochondrial dynamics, further results revealed that mitochondrial functional status and spare respiratory capacity (SRC) of cancer cells had a close correlation with mitochondrial metabolic plasticity, and played important roles in the susceptibility to cancer therapy aiming at glucose restriction. Cancer cells with healthy mitochondria and high SRC exhibit greater metabolic flexibility and higher resistance to GLUT1 inhibitors. This phenomenon is attributed to the fact that high SRC cells fuse mitochondria in response to glucose restriction, enhancing tolerance to energy deficiency, but undergo less mitochondrial oxidative stress compared to low SRC cells. Thus, inhibiting mitochondrial fusion breaks mitochondrial metabolic plasticity and increases cancer cell susceptibility to glucose restriction therapy. Collectively, these finding indicate that combining a GLUT1 inhibitor with a mitochondrial fusion inhibitor can work synergistically in cancer therapy and, more broadly, suggest that the incorporations of mitochondrial dynamics and metabolic regulation may become the targetable vulnerabilities bypassing the genotypic heterogeneity of multiple malignancies.
Collapse
Affiliation(s)
- Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, People's Republic of China
| | - Chengju Luo
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yuening Sun
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Wenjing Guo
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Ruitian Zhang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Xin Zhang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Xue Ke
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, People's Republic of China.
| | - Libin Wei
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
37
|
Frank AR, Vandiver F, McFadden DG. Forward genetic screens identify mechanisms of resistance to small molecule lactate dehydrogenase inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560315. [PMID: 37808702 PMCID: PMC10557759 DOI: 10.1101/2023.09.30.560315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Altered metabolism is a hallmark of cancer; however, it has been difficult to specifically target metabolism in cancer for therapeutic benefit. Cancers with genetically defined defects in metabolic enzymes constitute a subset of cancers where targeting metabolism is potentially accessible. Hürthle cell carcinoma of the thyroid (HTC) tumors frequently harbor deleterious mitochondrial DNA (mtDNA) mutations in subunits of complex I of the mitochondrial electron transport chain (ETC). Previous work has shown that HTC models with deleterious mtDNA mutations exhibit mitochondrial ETC defects that expose lactate dehydrogenase (LDH) as a therapeutic vulnerability. Here, we performed forward genetic screens to identify mechanisms of resistance to small molecule LDH inhibitors. We identified two distinct mechanisms of resistance: upregulation of an LDH isoform and a compound-specific resistance mutation. Using these tools, we demonstrate that the anti-cancer activity of LDH inhibitors in cell line and xenograft models of complex I-mutant HTC is through on-target LDH inhibition.
Collapse
Affiliation(s)
- Anderson R Frank
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Florentina Vandiver
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David G McFadden
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Lead contact
| |
Collapse
|
38
|
Ensink E, Jordan T, Medeiros HCD, Thurston G, Pardal A, Yu L, Lunt SY. Pyruvate Kinase Activity Regulates Cystine Starvation Induced Ferroptosis through Malic Enzyme 1 in Pancreatic Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557984. [PMID: 37745559 PMCID: PMC10516027 DOI: 10.1101/2023.09.15.557984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with high mortality and limited efficacious therapeutic options. PDAC cells undergo metabolic alterations to survive within a nutrient-depleted tumor microenvironment. One critical metabolic shift in PDAC cells occurs through altered isoform expression of the glycolytic enzyme, pyruvate kinase (PK). Pancreatic cancer cells preferentially upregulate pyruvate kinase muscle isoform 2 isoform (PKM2). PKM2 expression reprograms many metabolic pathways, but little is known about its impact on cystine metabolism. Cystine metabolism is critical for supporting survival through its role in defense against ferroptosis, a non-apoptotic iron-dependent form of cell death characterized by unchecked lipid peroxidation. To improve our understanding of the role of PKM2 in cystine metabolism and ferroptosis in PDAC, we generated PKM2 knockout (KO) human PDAC cells. Fascinatingly, PKM2KO cells demonstrate a remarkable resistance to cystine starvation mediated ferroptosis. This resistance to ferroptosis is caused by decreased PK activity, rather than an isoform-specific effect. We further utilized stable isotope tracing to evaluate the impact of glucose and glutamine reprogramming in PKM2KO cells. PKM2KO cells depend on glutamine metabolism to support antioxidant defenses against lipid peroxidation, primarily by increased glutamine flux through the malate aspartate shuttle and utilization of ME1 to produce NADPH. Ferroptosis can be synergistically induced by the combination of PKM2 activation and inhibition of the cystine/glutamate antiporter in vitro. Proof-of-concept in vivo experiments demonstrate the efficacy of this mechanism as a novel treatment strategy for PDAC.
Collapse
Affiliation(s)
- Elliot Ensink
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Tessa Jordan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Hyllana C D Medeiros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Galloway Thurston
- College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Anmol Pardal
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Lei Yu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
39
|
Bishayee K, Lee SH, Park YS. The Illustration of Altered Glucose Dependency in Drug-Resistant Cancer Cells. Int J Mol Sci 2023; 24:13928. [PMID: 37762231 PMCID: PMC10530558 DOI: 10.3390/ijms241813928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
A chemotherapeutic approach is crucial in malignancy management, which is often challenging due to the development of chemoresistance. Over time, chemo-resistant cancer cells rapidly repopulate and metastasize, increasing the recurrence rate in cancer patients. Targeting these destined cancer cells is more troublesome for clinicians, as they share biology and molecular cross-talks with normal cells. However, the recent insights into the metabolic profiles of chemo-resistant cancer cells surprisingly illustrated the activation of distinct pathways compared with chemo-sensitive or primary cancer cells. These distinct metabolic dynamics are vital and contribute to the shift from chemo-sensitivity to chemo-resistance in cancer. This review will discuss the important metabolic alterations in cancer cells that lead to drug resistance.
Collapse
Affiliation(s)
- Kausik Bishayee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | | | - Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
40
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
41
|
Xing W, Li X, Zhou Y, Li M, Zhu M. Lactate metabolic pathway regulates tumor cell metastasis and its use as a new therapeutic target. EXPLORATION OF MEDICINE 2023:541-559. [DOI: https:/doi.org/10.37349/emed.2023.00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/17/2023] [Indexed: 09/04/2023] Open
Abstract
Abnormal energy metabolism is one of the ten hallmarks of tumors, and tumor cell metabolism provides energy and a suitable microenvironment for tumorigenesis and metastasis. Tumor cells can consume large amounts of glucose and produce large amounts of lactate through glycolysis even in the presence of oxygen, a process called aerobic glycolysis, also known as the Warburg effect. Lactate is the end product of the aerobic glycolysis. Lactate dehydrogenase A (LDHA), which is highly expressed in cancer cells, promotes lactate production and transports lactate to the tumor microenvironment and is taken up by surrounding stromal cells under the action of monocarboxylate transporter 1/4 (MCT1/4), which in turn influences the immune response and enhances the invasion and metastasis of cancer cells. Therapeutic strategies targeting lactate metabolism have been intensively investigated, focusing on its metastasis-promoting properties and various target inhibitors; AZD3965, an MCT1 inhibitor, has entered phase I clinical trials, and the LDHA inhibitor N-hydroxyindole (NHI) has shown cancer therapeutic activity in pre-clinical studies. Interventions targeting lactate metabolism are emerging as a promising option for cancer therapy, with chemotherapy or radiotherapy combined with lactate-metabolism-targeted drugs adding to the effectiveness of cancer treatment. Based on current research, this article outlines the role of lactate metabolism in tumor metastasis and the potential value of inhibitors targeting lactate metabolism in cancer therapy.
Collapse
Affiliation(s)
- Weimei Xing
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou 571199, Hainan, China
| | - Xiaowei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou 571199, Hainan, China
| | - Yuli Zhou
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou 571199, Hainan, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou 571199, Hainan, China; Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou 570311, Hainan, China; Institution of Tumour, First Affiliated Hospital, Hainan Medical University, Haikou 570102, Hainan, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou 571199, Hainan, China
| |
Collapse
|
42
|
Frank AR, Li V, Shelton SD, Kim J, Stott GM, Neckers LM, Xie Y, Williams NS, Mishra P, McFadden DG. Mitochondrial-Encoded Complex I Impairment Induces a Targetable Dependency on Aerobic Fermentation in Hürthle Cell Carcinoma of the Thyroid. Cancer Discov 2023; 13:1884-1903. [PMID: 37262072 PMCID: PMC10524862 DOI: 10.1158/2159-8290.cd-22-0982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/20/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
A metabolic hallmark of cancer identified by Warburg is the increased consumption of glucose and secretion of lactate, even in the presence of oxygen. Although many tumors exhibit increased glycolytic activity, most forms of cancer rely on mitochondrial respiration for tumor growth. We report here that Hürthle cell carcinoma of the thyroid (HTC) models harboring mitochondrial DNA-encoded defects in complex I of the mitochondrial electron transport chain exhibit impaired respiration and alterations in glucose metabolism. CRISPR-Cas9 pooled screening identified glycolytic enzymes as selectively essential in complex I-mutant HTC cells. We demonstrate in cultured cells and a patient-derived xenograft model that small-molecule inhibitors of lactate dehydrogenase selectively induce an ATP crisis and cell death in HTC. This work demonstrates that complex I loss exposes fermentation as a therapeutic target in HTC and has implications for other tumors bearing mutations that irreversibly damage mitochondrial respiration. SIGNIFICANCE HTC is enriched in somatic mtDNA mutations predicted to affect complex I of the electron transport chain (ETC). We demonstrate that these mutations impair respiration and induce a therapeutically tractable reliance on aerobic fermentation for cell survival. This work provides a rationale for targeting fermentation in cancers harboring irreversible genetically encoded ETC defects. See related article by Gopal et al., p. 1904. This article is highlighted in the In This Issue feature, p. 1749.
Collapse
Affiliation(s)
- Anderson R Frank
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vicky Li
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Spencer D Shelton
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gordon M Stott
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 24060, USA
| | - Leonard M Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang Xie
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Mishra
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Deparment of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David G McFadden
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Lead contact
| |
Collapse
|
43
|
Lacher SE, Skon-Hegg C, Ruis BL, Krznarich J, Slattery M. An antioxidant response element regulates the HIF1α axis in breast cancer cells. Free Radic Biol Med 2023; 204:243-251. [PMID: 37179033 PMCID: PMC10321210 DOI: 10.1016/j.freeradbiomed.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
The redox sensitive transcription factor NRF2 is a central regulator of the transcriptional response to reactive oxygen species (ROS). NRF2 is widely recognized for its ROS-responsive upregulation of antioxidant genes that are essential for mitigating the damaging effects of oxidative stress. However, multiple genome-wide approaches have suggested that NRF2's regulatory reach extends well beyond the canonical antioxidant genes, with the potential to regulate many noncanonical target genes. Recent work from our lab and others suggests HIF1A, which encodes the hypoxia-responsive transcription factor HIF1α, is one such noncanonical NRF2 target. These studies found that NRF2 activity is associated with high HIF1A expression in multiple cellular contexts, HIF1A expression is partially dependent on NRF2, and there is a putative NRF2 binding site (antioxidant response element, or ARE) approximately 30 kilobases upstream of HIF1A. These findings all support a model in which HIF1A is a direct target of NRF2, but did not confirm the functional importance of the upstream ARE in HIF1A expression. Here we use CRISPR/Cas9 genome editing to mutate this ARE in its genomic context and test the impact on HIF1A expression. We find that mutation of this ARE in a breast cancer cell line (MDA-MB-231) eliminates NRF2 binding and decreases HIF1A expression at the transcript and protein levels, and disrupts HIF1α target genes as well as phenotypes driven by these HIF1α targets. Taken together, these results indicate that this NRF2 targeted ARE plays an important role in the expression of HIF1A and activity of the HIF1α axis in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Sarah E Lacher
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
| | - Cara Skon-Hegg
- Whiteside Institute for Clinical Research, St. Luke's Hospital, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Brian L Ruis
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Jennifer Krznarich
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
| |
Collapse
|
44
|
Ding Y, Stevanato G, von Bonin F, Kube D, Glöggler S. Real-time cell metabolism assessed repeatedly on the same cells via para-hydrogen induced polarization. Chem Sci 2023; 14:7642-7647. [PMID: 37476713 PMCID: PMC10355108 DOI: 10.1039/d3sc01350b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Signal-enhanced or hyperpolarized nuclear magnetic resonance (NMR) spectroscopy stands out as a unique tool to monitor real-time enzymatic reactions in living cells. The singlet state of para-hydrogen is thereby one source of spin order that can be converted into largely enhanced signals of e.g. metabolites. Here, we have investigated a parahydrogen-induced polarization (PHIP) approach as a biological assay for in vitro cellular metabolic characterization. Here, we demonstrate the possibility to perform consecutive measurements yielding metabolic information on the same sample. We observed a strongly reduced pyruvate-to-lactate conversion rate (flux) of a Hodgkin's lymphoma cancer cell line L1236 treated with FK866, an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT) affecting the amount of NAD+ and thus NADH in cells. In the consecutive measurement the flux was recovered by NADH to the same amount as in the single-measurement-per-sample and provides a promising new analytical tool for continuous real-time studies combinable with bioreactors and lab-on-a-chip devices in the future.
Collapse
Affiliation(s)
- Yonghong Ding
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Gabriele Stevanato
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Frederike von Bonin
- Clinic for Hematology and Medical Oncology University Medical Center Göttingen Robert-Koch-Str. 40 37075 Göttingen Germany
| | - Dieter Kube
- Clinic for Hematology and Medical Oncology University Medical Center Göttingen Robert-Koch-Str. 40 37075 Göttingen Germany
| | - Stefan Glöggler
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| |
Collapse
|
45
|
Takata N, Miska JM, Morgan MA, Patel P, Billingham LK, Joshi N, Schipma MJ, Dumar ZJ, Joshi NR, Misharin AV, Embry RB, Fiore L, Gao P, Diebold LP, McElroy GS, Shilatifard A, Chandel NS, Oliver G. Lactate-dependent transcriptional regulation controls mammalian eye morphogenesis. Nat Commun 2023; 14:4129. [PMID: 37452018 PMCID: PMC10349100 DOI: 10.1038/s41467-023-39672-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Mammalian retinal metabolism favors aerobic glycolysis. However, the role of glycolytic metabolism in retinal morphogenesis remains unknown. We report that aerobic glycolysis is necessary for the early stages of retinal development. Taking advantage of an unbiased approach that combines the use of eye organoids and single-cell RNA sequencing, we identify specific glucose transporters and glycolytic genes in retinal progenitors. Next, we determine that the optic vesicle territory of mouse embryos displays elevated levels of glycolytic activity. At the functional level, we show that removal of Glucose transporter 1 and Lactate dehydrogenase A gene activity from developing retinal progenitors arrests eye morphogenesis. Surprisingly, we uncover that lactate-mediated upregulation of key eye-field transcription factors is controlled by the epigenetic modification of histone H3 acetylation through histone deacetylase activity. Our results identify an unexpected bioenergetic independent role of lactate as a signaling molecule necessary for mammalian eye morphogenesis.
Collapse
Affiliation(s)
- Nozomu Takata
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Jason M Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marc A Morgan
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Priyam Patel
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Leah K Billingham
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Neha Joshi
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Matthew J Schipma
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary J Dumar
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nikita R Joshi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alexander V Misharin
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ryan B Embry
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Luciano Fiore
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Laboratory of Nanomedicine, National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
| | - Peng Gao
- Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lauren P Diebold
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gregory S McElroy
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
46
|
Bai R, Meng Y, Cui J. Therapeutic strategies targeting metabolic characteristics of cancer cells. Crit Rev Oncol Hematol 2023:104037. [PMID: 37236409 DOI: 10.1016/j.critrevonc.2023.104037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023] Open
Abstract
Metabolic reprogramming is one of the important characteristics of cancer and is a key process leading to malignant proliferation, tumor development and treatment resistance. A variety of therapeutic drugs targeting metabolic reaction enzymes, transport receptors, and special metabolic processes have been developed. In this review, we investigate the characteristics of multiple metabolic changes in cancer cells, including glycolytic pathways, lipid metabolism, and glutamine metabolism changes, describe how these changes promote tumor development and tumor resistance, and summarize the progress and challenges of therapeutic strategies targeting various links of tumor metabolism in combination with current study data.
Collapse
Affiliation(s)
- Rilan Bai
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Ying Meng
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
47
|
Borea F, Franczak MA, Garcia M, Perrino M, Cordua N, Smolenski RT, Peters GJ, Dziadziuszko R, Santoro A, Zucali PA, Giovannetti E. Target Therapy in Malignant Pleural Mesothelioma: Hope or Mirage? Int J Mol Sci 2023; 24:9165. [PMID: 37298116 PMCID: PMC10253134 DOI: 10.3390/ijms24119165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is a rare neoplasm that is typically diagnosed in a locally advanced stage, making it not eligible for radical surgery and requiring systemic treatment. Chemotherapy with platinum compounds and pemetrexed has been the only approved standard of care for approximately 20 years, without any relevant therapeutic advance until the introduction of immune checkpoint inhibitors. Nevertheless, the prognosis remains poor, with an average survival of only 18 months. Thanks to a better understanding of the molecular mechanisms underlying tumor biology, targeted therapy has become an essential therapeutic option in several solid malignancies. Unfortunately, most of the clinical trials evaluating potentially targeted drugs for MPM have failed. This review aims to present the main findings of the most promising targeted therapies in MPM, and to explore possible reasons leading to treatments failures. The ultimate goal is to determine whether there is still a place for continued preclinical/clinical research in this area.
Collapse
Affiliation(s)
- Federica Borea
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marika A. Franczak
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Maria Garcia
- Faculty of Experimental Science, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Matteo Perrino
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Nadia Cordua
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | | | - Godefridus J. Peters
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy and Early Phase Clinical Trials Centre, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Paolo A. Zucali
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy
| |
Collapse
|
48
|
Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. Pancreatic cancer: Advances and challenges. Cell 2023; 186:1729-1754. [PMID: 37059070 PMCID: PMC10182830 DOI: 10.1016/j.cell.2023.02.014] [Citation(s) in RCA: 527] [Impact Index Per Article: 263.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers. Significant efforts have largely defined major genetic factors driving PDAC pathogenesis and progression. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this review, we highlight the foundational studies that have driven our understanding of these processes. We further discuss the recent technological advances that continue to expand our understanding of PDAC complexity. We posit that the clinical translation of these research endeavors will enhance the currently dismal survival rate of this recalcitrant disease.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA.
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
49
|
Macharia JM, Kaposztas Z, Varjas T, Budán F, Zand A, Bodnar I, Bence RL. Targeted lactate dehydrogenase genes silencing in probiotic lactic acid bacteria: A possible paradigm shift in colorectal cancer treatment? Biomed Pharmacother 2023; 160:114371. [PMID: 36758316 DOI: 10.1016/j.biopha.2023.114371] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Even though the pathophysiology of colorectal cancer (CRC) is complicated and poorly understood, interactions between risk factors appear to be key in the development and progression of the malignancy. The popularity of using lactic acid bacteria (LAB) prebiotics and probiotics to modulate the tumor microenvironment (TME) has grown widely over the past decade. The objective of this study was therefore to determine the detrimental effects of LAB-derived lactic acid in the colonic mucosa in colorectal cancer management. Six library databases and a web search engine were used to execute a structured systematic search of the existing literature, considering all publications published up until August 2022. A total of 7817 papers were screened, all of which were published between 1995 and August 2022. However, only 118 articles met the inclusion criterion. Lactic acid has been directly linked to the massive proliferation of cancerous cells since the glycolytic pathway provides cancerous cells with not only ATP, but also biosynthetic intermediates for rapid growth and proliferation. Our research suggests that targeting LAB metabolic pathways is capable of suppressing tumor growth and that the LDH gene is critical for tumorigenesis. Silencing of Lactate dehydrogenase, A (LDHA), B (LDHB), (LDHL), and hicD genes should be explored to inhibit fermentative glycolysis yielding lactic acid as the by-product. More studies are necessary for a solid understanding of this topic so that LAB and their corresponding lactic acid by-products do not have more adverse effects than their widely touted positive outcomes in CRC management.
Collapse
Affiliation(s)
- John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, City of Pẻcs, Hungary.
| | | | - Tímea Varjas
- University of Pẻcs, Medical School, Department of Public Health Medicine, City of Pẻcs, Hungary
| | - Ferenc Budán
- University of Pẻcs, Medical School, Institute of Transdisciplinary Discoveries, City of Pẻcs, Hungary; University of Pécs, Medical School, Institute of Physiology, City of Pécs, Hungary
| | - Afshin Zand
- University of Pẻcs, Medical School, Department of Public Health Medicine, City of Pẻcs, Hungary
| | - Imre Bodnar
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, City of Pẻcs, Hungary
| | | |
Collapse
|
50
|
Miholjcic TBS, Halse H, Bonvalet M, Bigorgne A, Rouanne M, Dercle L, Shankar V, Marabelle A. Rationale for LDH-targeted cancer immunotherapy. Eur J Cancer 2023; 181:166-178. [PMID: 36657325 DOI: 10.1016/j.ejca.2022.11.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
Immunotherapies have significantly improved the survival of patients in many cancers over the last decade. However, primary and secondary resistances are encountered in most patients. Unravelling resistance mechanisms to cancer immunotherapies is an area of active investigation. Elevated levels of circulating enzyme lactate dehydrogenase (LDH) have been historically considered in oncology as a marker of bad prognosis, usually attributed to elevated tumour burden and cancer metabolism. Recent evidence suggests that elevated LDH levels could be independent from tumour burden and contain a negative predictive value, which could help in guiding treatment strategies in immuno-oncology. In this review, we decipher the rationale supporting the potential of LDH-targeted therapeutic strategies to tackle the direct immunosuppressive effects of LDH on a wide range of immune cells, and enhance the survival of patients treated with cancer immunotherapies.
Collapse
Affiliation(s)
- Tina B S Miholjcic
- Faculté de Médecine, Université de Genève, Genève, Switzerland; Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France
| | - Heloise Halse
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France; INSERM UMR 1163, Imagine Institute, Université de Paris, F-75015 Paris, France
| | - Mélodie Bonvalet
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France
| | - Amélie Bigorgne
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France; INSERM UMR 1163, Imagine Institute, Université de Paris, F-75015 Paris, France
| | - Mathieu Rouanne
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France; Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Département d'Urologie, Hôpital Foch, UVSQ, Université Paris-Saclay, 92150 Suresnes, France
| | - Laurent Dercle
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY, USA
| | - Vishnu Shankar
- Immunology Program, School of Medicine, Stanford University, CA, USA
| | - Aurélien Marabelle
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015, Gustave Roussy, Villejuif, France; Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, 94805 Villejuif, France; Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France; Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| |
Collapse
|