1
|
Venugopalan A, Schmidt EW. Animal-Encoded Nonribosomal Pathway to Bursatellin Analogs. J Am Chem Soc 2025; 147:6623-6632. [PMID: 39933076 PMCID: PMC11869996 DOI: 10.1021/jacs.4c15714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
The bursatellin-oxazinin family is a series of tyrosine-derived, nitrile-containing marine natural products from gastropod and bivalve molluscs. Although the first analogs were identified and associated with toxicity 40 years ago, their biosynthetic origins were unknown. During an investigation of published mollusc genomes and transcriptomes, we serendipitously identified a putative bursatellin biosynthetic gene cluster (referred hereafter as the bur-ox pathway). Through biochemical characterization of some bur-ox genes, we provide evidence suggesting that bursatellin-type metabolites are produced by molluscs themselves rather than by their microbial symbionts. We show that the reductive domain from a monomodular nonribosomal peptide synthetase (NRPS) protein FmtATR performs a four-electron reduction to produce tyrosinols from tyrosine derivatives. Moreover, an aminocarboxypropyltransferase enzyme, ACT, uses S-adenosylmethionine (SAM) to transform tyrosinols into their phenolic homoserine ethers, which in bursatellin is further modified to the nitrile. Widespread occurrence of bur-ox in molluscs suggests a common biosynthetic origin for bursatellins and oxazinins as well as an important but currently unidentified physiological role for this metabolite family in molluscs inhabiting diverse ecological niches. The presence of bur-ox pathway homologues in culinary bivalves, such as mussels and geoducks, calls into question the potential of oxazinins as toxins. As one of the few NRPS pathways of animal origin to be characterized, bur-ox sheds light on underappreciated chemical and biochemical diversity in animals.
Collapse
Affiliation(s)
- Aarthi Venugopalan
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
François RMM, Massicard JM, Weissman KJ. The chemical ecology and physiological functions of type I polyketide natural products: the emerging picture. Nat Prod Rep 2025; 42:324-358. [PMID: 39555733 DOI: 10.1039/d4np00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: up to 2024.For many years, the value of complex polyketides lay in their medical properties, including their antibiotic and antifungal activities, with little consideration paid to their native functions. However, more recent evidence gathered from the study of inter-organismal interactions has revealed the influence of these metabolites upon the ecological adaptation and distribution of their hosts, as well as their modes of communication. The increasing number of sequenced genomes and associated transcriptomes has also unveiled the widespread occurrence of the underlying biosynthetic enzymes across all kingdoms of life, and the important contributions they make to physiological events specific to each organism. This review depicts the diversity of roles fulfilled by type I polyketides, particularly in light of studies carried out during the last decade, providing an initial overall picture of their diverse functions.
Collapse
|
3
|
Elbanna AH, Kou X, Prajapati DV, Rakshit S, Butcher RA. Discovery of a parallel family of euglenatide analogs in Euglena gracilis. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:10. [PMID: 39760919 PMCID: PMC11703798 DOI: 10.1007/s13659-024-00490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
The euglenatides are a family of hybrid polyketide-nonribosomal peptides produced by the unicellular algae Euglena gracilis. These compounds have antiproliferative activity against fungal pathogens and mammalian cancer cell lines. Analysis of E. gracilis extracts revealed that the algae produce not only the euglenatides, but also a corresponding family of analogs that have the same molecular weights as the euglenatides, but are lacking the characteristic triene chromophore. In comparison to the euglenatides, the activity of these analogs is greatly reduced in a mammalian cytotoxicity assay, indicating that the triene is critical to the biological activity of the euglenatides.
Collapse
Affiliation(s)
- Ahmed H Elbanna
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Xinhui Kou
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Dilip V Prajapati
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Surasree Rakshit
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
4
|
Venugopalan A, Schmidt EW. Animal-encoded nonribosomal pathway to bursatellin analogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.622736. [PMID: 39605576 PMCID: PMC11601421 DOI: 10.1101/2024.11.12.622736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The bursatellin-oxazinin family is a series of tyrosine-derived, nitrile-containing marine natural products from gastro-pod and bivalve molluscs. Although the first analogs were identified and associated with toxicity forty years ago, their biosynthetic origins were unknown. During an investigation of published mollusc genomes and transcriptomes, we serendipitously identified a putative bursatellin biosynthetic gene cluster (referred hereafter as the bur-ox pathway). Through biochemical characterization of some bur-ox genes, we provide evidence suggesting that bursatellin-type metabolites are produced by molluscs themselves rather than by their microbial symbionts. We show that the reductive domain from a monomodular nonribosomal peptide synthetase (NRPS) protein FmtATR performs a four-electron reduction to produce tyrosinols from tyrosine derivatives. Moreover, an aminocarboxypro-pyltransferase enzyme, ACT, uses S -adenosylmethionine (SAM) to transform tyrosinols into their phenolic homoserine ethers, which in bursatellin is further modified to the nitrile. Widespread occurrence of bur-ox in molluscs suggests a common biosynthetic origin for bursatellins and oxazinins as well as an important but currently unidentified physiological role for this metabolite family in molluscs inhabiting diverse ecological niches. Further, the presence of bur-ox pathway homologs in many culinary bivalves such as mussels and geoducks suggests that possible impacts on human consumers should be investigated. As one of the few NRPS pathways of animal origin to be characterized, bur-ox sheds light on underappreciated chemical and biochemical diversity in animals.
Collapse
|
5
|
Männer L, Schell T, Spies J, Galià-Camps C, Baranski D, Ben Hamadou A, Gerheim C, Neveling K, Helfrich EJN, Greve C. Chromosome-level genome assembly of the sacoglossan sea slug Elysia timida (Risso, 1818). BMC Genomics 2024; 25:941. [PMID: 39375624 PMCID: PMC11460185 DOI: 10.1186/s12864-024-10829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Sequencing and annotating genomes of non-model organisms helps to understand genome architecture, the genetic processes underlying species traits, and how these genes have evolved in closely-related taxa, among many other biological processes. However, many metazoan groups, such as the extremely diverse molluscs, are still underrepresented in the number of sequenced and annotated genomes. Although sequencing techniques have recently improved in quality and quantity, molluscs are still neglected due to difficulties in applying standardized protocols for obtaining genomic data. RESULTS In this study, we present the chromosome-level genome assembly and annotation of the sacoglossan sea slug species Elysia timida, known for its ability to store the chloroplasts of its food algae. In particular, by optimizing the long-read and chromosome conformation capture library preparations, the genome assembly was performed using PacBio HiFi and Arima HiC data. The scaffold and contig N50s, at 41.8 Mb and 1.92 Mb, respectively, are approximately 30-fold and fourfold higher compared to other published sacoglossan genome assemblies. Structural annotation resulted in 19,904 protein-coding genes, which are more contiguous and complete compared to publicly available annotations of Sacoglossa with respect to metazoan BUSCOs. We found no evidence for horizontal gene transfer (HGT), i.e. no photosynthetic genes encoded in the sacoglossan nucleus genome. However, we detected genes encoding polyketide synthases in E. timida, indicating that polypropionates are produced. HPLC-MS/MS analysis confirmed the presence of a large number of polypropionates, including known and yet uncharacterised compounds. CONCLUSIONS We can show that our methodological approach helps to obtain a high-quality genome assembly even for a "difficult-to-sequence" organism, which may facilitate genome sequencing in molluscs. This will enable a better understanding of complex biological processes in molluscs, such as functional kleptoplasty in Sacoglossa, by significantly improving the quality of genome assemblies and annotations.
Collapse
Affiliation(s)
- Lisa Männer
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany.
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany.
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Julia Spies
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-Von-Laue Straße 9, Frankfurt am Main, 60438, Germany
| | - Carles Galià-Camps
- Centre d'Estudis Avançats de Blanes (CEAB, CSIC), Accés Cala St. Francesc 14, Blanes, Girona, 17300, Spain
- Institut de Recerca de La Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Damian Baranski
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Alexander Ben Hamadou
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Charlotte Gerheim
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Eric J N Helfrich
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-Von-Laue Straße 9, Frankfurt am Main, 60438, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany.
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany.
| |
Collapse
|
6
|
Dissanayake GC, Martinez JB, Garg G, Ndi C, Markley JL, Hanson PR. Synthesis of Simplified 2-Desmethyl Sanctolide A Analogs. J Org Chem 2024; 89:9783-9788. [PMID: 38989836 PMCID: PMC11414416 DOI: 10.1021/acs.joc.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A one-pot, sequential phosphate tether-mediated method for the synthesis of simplified 2-desmethyl sanctolide A analogs is reported. Western side-chain diversification was achieved using a pot-efficient, sequential cross metathesis (CM)/ring-closing metathesis (RCM)/H2/dephosphorylation procedure. Further diversification was achieved by Me3Al-mediated amide formation, Yamaguchi esterification, and RCM macrocyclization to access five C11/C12 Z-configured, 2-des-methyl sanctolide A analogs with improved stability.
Collapse
Affiliation(s)
- Gihan C Dissanayake
- Department of Chemistry, University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James B Martinez
- Department of Chemistry, University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Gaurav Garg
- Department of Chemistry, University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Cornelius Ndi
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
| | - Jana L Markley
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
| | - Paul R Hanson
- Department of Chemistry, University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
7
|
Nowell RW, Rodriguez F, Hecox-Lea BJ, Mark Welch DB, Arkhipova IR, Barraclough TG, Wilson CG. Bdelloid rotifers deploy horizontally acquired biosynthetic genes against a fungal pathogen. Nat Commun 2024; 15:5787. [PMID: 39025839 PMCID: PMC11258130 DOI: 10.1038/s41467-024-49919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Coevolutionary antagonism generates relentless selection that can favour genetic exchange, including transfer of antibiotic synthesis and resistance genes among bacteria, and sexual recombination of disease resistance alleles in eukaryotes. We report an unusual link between biological conflict and DNA transfer in bdelloid rotifers, microscopic animals whose genomes show elevated levels of horizontal gene transfer from non-metazoan taxa. When rotifers were challenged with a fungal pathogen, horizontally acquired genes were over twice as likely to be upregulated as other genes - a stronger enrichment than observed for abiotic stressors. Among hundreds of upregulated genes, the most markedly overrepresented were clusters resembling bacterial polyketide and nonribosomal peptide synthetases that produce antibiotics. Upregulation of these clusters in a pathogen-resistant rotifer species was nearly ten times stronger than in a susceptible species. By acquiring, domesticating, and expressing non-metazoan biosynthetic pathways, bdelloids may have evolved to resist natural enemies using antimicrobial mechanisms absent from other animals.
Collapse
Affiliation(s)
- Reuben W Nowell
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Department of Life Sciences, Imperial College London; Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
- Institute of Ecology and Evolution, University of Edinburgh; Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Bette J Hecox-Lea
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Timothy G Barraclough
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Department of Life Sciences, Imperial College London; Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Christopher G Wilson
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- Department of Life Sciences, Imperial College London; Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK.
| |
Collapse
|
8
|
Issigonis M, Browder KL, Chen R, Collins JJ, Newmark PA. A niche-derived nonribosomal peptide triggers planarian sexual development. Proc Natl Acad Sci U S A 2024; 121:e2321349121. [PMID: 38889152 PMCID: PMC11214079 DOI: 10.1073/pnas.2321349121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Germ cells are regulated by local microenvironments (niches), which secrete instructive cues. Conserved developmental signaling molecules act as niche-derived regulatory factors, yet other types of niche signals remain to be identified. Single-cell RNA-sequencing of sexual planarians revealed niche cells expressing a nonribosomal peptide synthetase (nrps). Inhibiting nrps led to loss of female reproductive organs and testis hyperplasia. Mass spectrometry detected the dipeptide β-alanyl-tryptamine (BATT), which is associated with reproductive system development and requires nrps and a monoamine-transmitter-synthetic enzyme Aromatic L-amino acid decarboxylase (AADC) for its production. Exogenous BATT rescued the reproductive defects after nrps or aadc inhibition, restoring fertility. Thus, a nonribosomal, monoamine-derived peptide provided by niche cells acts as a critical signal to trigger planarian reproductive development. These findings reveal an unexpected function for monoamines in niche-germ cell signaling. Furthermore, given the recently reported role for BATT as a male-derived factor required for reproductive maturation of female schistosomes, these results have important implications for the evolution of parasitic flatworms and suggest a potential role for nonribosomal peptides as signaling molecules in other organisms.
Collapse
Affiliation(s)
- Melanie Issigonis
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI53715
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI53715
| | - Katherine L. Browder
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI53715
- HMI, University of Wisconsin-Madison, Madison, WI53715
| | - Rui Chen
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - James J. Collins
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Phillip A. Newmark
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI53715
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI53715
- HMI, University of Wisconsin-Madison, Madison, WI53715
| |
Collapse
|
9
|
Haroon M, Ahmad S, Fawad Zahoor A, Javed S, Nadeem Ahmad M, Gul Khan S, Al-Mutairi AA, Irfan A, Al-Hussain SA, Zaki ME. Grignard Reaction: An ‘Old-Yet-Gold’ synthetic gadget toward the synthesis of natural Products: A review. ARAB J CHEM 2024; 17:105715. [DOI: 10.1016/j.arabjc.2024.105715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
|
10
|
Zhang H, Li Y, Ling J, Zhao J, Li Y, Mao Z, Cheng X, Xie B. NRPS-like ATRR in Plant-Parasitic Nematodes Involved in Glycine Betaine Metabolism to Promote Parasitism. Int J Mol Sci 2024; 25:4275. [PMID: 38673861 PMCID: PMC11050029 DOI: 10.3390/ijms25084275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Plant-parasitic nematodes (PPNs) are among the most serious phytopathogens and cause widespread and serious damage in major crops. In this study, using a genome mining method, we identified nonribosomal peptide synthetase (NRPS)-like enzymes in genomes of plant-parasitic nematodes, which are conserved with two consecutive reducing domains at the N-terminus (A-T-R1-R2) and homologous to fungal NRPS-like ATRR. We experimentally investigated the roles of the NRPS-like enzyme (MiATRR) in nematode (Meloidogyne incognita) parasitism. Heterologous expression of Miatrr in Saccharomyces cerevisiae can overcome the growth inhibition caused by high concentrations of glycine betaine. RT-qPCR detection shows that Miatrr is significantly upregulated at the early parasitic life stage (J2s in plants) of M. incognita. Host-derived Miatrr RNA interference (RNAi) in Arabidopsis thaliana can significantly decrease the number of galls and egg masses of M. incognita, as well as retard development and reduce the body size of the nematode. Although exogenous glycine betaine and choline have no obvious impact on the survival of free-living M. incognita J2s (pre-parasitic J2s), they impact the performance of the nematode in planta, especially in Miatrr-RNAi plants. Following application of exogenous glycine betaine and choline in the rhizosphere soil of A. thaliana, the numbers of galls and egg masses were obviously reduced by glycine betaine but increased by choline. Based on the knowledge about the function of fungal NRPS-like ATRR and the roles of glycine betaine in host plants and nematodes, we suggest that MiATRR is involved in nematode-plant interaction by acting as a glycine betaine reductase, converting glycine betaine to choline. This may be a universal strategy in plant-parasitic nematodes utilizing NRPS-like ATRR to promote their parasitism on host plants.
Collapse
Affiliation(s)
- Hongxia Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanlin Li
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyue Cheng
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Lin Z, Li F, Krug PJ, Schmidt EW. The polyketide to fatty acid transition in the evolution of animal lipid metabolism. Nat Commun 2024; 15:236. [PMID: 38172109 PMCID: PMC10764717 DOI: 10.1038/s41467-023-44497-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Animals synthesize simple lipids using a distinct fatty acid synthase (FAS) related to the type I polyketide synthase (PKS) enzymes that produce complex specialized metabolites. The evolutionary origin of the animal FAS and its relationship to the diversity of PKSs remain unclear despite the critical role of lipid synthesis in cellular metabolism. Recently, an animal FAS-like PKS (AFPK) was identified in sacoglossan molluscs. Here, we explore the phylogenetic distribution of AFPKs and other PKS and FAS enzymes across the tree of life. We found AFPKs widely distributed in arthropods and molluscs (>6300 newly described AFPK sequences). The AFPKs form a clade with the animal FAS, providing an evolutionary link bridging the type I PKSs and the animal FAS. We found molluscan AFPK diversification correlated with shell loss, suggesting AFPKs provide a chemical defense. Arthropods have few or no PKSs, but our results indicate AFPKs contributed to their ecological and evolutionary success by facilitating branched hydrocarbon and pheromone biosynthesis. Although animal metabolism is well studied, surprising new metabolic enzyme classes such as AFPKs await discovery.
Collapse
Affiliation(s)
- Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Feng Li
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Patrick J Krug
- Department of Biological Sciences, California State University, Los Angeles, CA, 90032, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
12
|
Issigonis M, Browder KL, Chen R, Collins JJ, Newmark PA. A niche-derived non-ribosomal peptide triggers planarian sexual development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570471. [PMID: 38106172 PMCID: PMC10723454 DOI: 10.1101/2023.12.06.570471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Germ cells are regulated by local microenvironments (niches), which secrete instructive cues. Conserved developmental signaling molecules act as niche-derived regulatory factors, yet other types of niche signals remain to be identified. Single-cell RNA-sequencing of sexual planarians revealed niche cells expressing a non-ribosomal peptide synthetase (nrps). Inhibiting nrps led to loss of female reproductive organs and testis hyperplasia. Mass spectrometry detected the dipeptide β-alanyl-tryptamine (BATT), which is associated with reproductive system development and requires nrps and a monoamine-transmitter-synthetic enzyme (AADC) for its production. Exogenous BATT rescued the reproductive defects after nrps or aadc inhibition, restoring fertility. Thus, a non-ribosomal, monoamine-derived peptide provided by niche cells acts as a critical signal to trigger planarian reproductive development. These findings reveal an unexpected function for monoamines in niche-germ cell signaling. Furthermore, given the recently reported role for BATT as a male-derived factor required for reproductive maturation of female schistosomes, these results have important implications for the evolution of parasitic flatworms and suggest a potential role for non-ribosomal peptides as signaling molecules in other organisms.
Collapse
Affiliation(s)
- Melanie Issigonis
- Morgridge Institute for Research, University of Wisconsin-Madison; Madison, WI 53715
- Department of Integrative Biology, University of Wisconsin-Madison; Madison, WI 53715
| | - Katherine L. Browder
- Department of Integrative Biology, University of Wisconsin-Madison; Madison, WI 53715
- Howard Hughes Medical Institute, University of Wisconsin-Madison; Madison, WI 53715
| | - Rui Chen
- Department of Pharmacology, UT Southwestern Medical Center; Dallas, TX 75390
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center; Dallas, TX 75390
| | - Phillip A. Newmark
- Morgridge Institute for Research, University of Wisconsin-Madison; Madison, WI 53715
- Department of Integrative Biology, University of Wisconsin-Madison; Madison, WI 53715
- Howard Hughes Medical Institute, University of Wisconsin-Madison; Madison, WI 53715
| |
Collapse
|
13
|
Suring W, Hoogduin D, Le Ngoc G, Brouwer A, van Straalen NM, Roelofs D. Nonribosomal Peptide Synthetases in Animals. Genes (Basel) 2023; 14:1741. [PMID: 37761881 PMCID: PMC10531068 DOI: 10.3390/genes14091741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are a class of cytosolic enzymes that synthesize a range of bio-active secondary metabolites including antibiotics and siderophores. They are widespread among both prokaryotes and eukaryotes but are considered rare among animals. Recently, several novel NRPS genes have been described in nematodes, schistosomes, and arthropods, which led us to investigate how prevalent NRPS genes are in the animal kingdom. We screened 1059 sequenced animal genomes and showed that NRPSs were present in 7 out of the 19 phyla analyzed. A phylogenetic analysis showed that the identified NRPSs form clades distinct from other adenylate-forming enzymes that contain similar domains such as fatty acid synthases. NRPSs show a remarkably scattered distribution over the animal kingdom. They are especially abundant in rotifers and nematodes. In rotifers, we found a large variety of domain architectures and predicted substrates. In the nematode Plectus sambesii, we identified the beta-lactam biosynthesis genes L-δ-(α-aminoadipoyl)-L-cysteinyl-D-valine synthetase, isopenicillin N synthase, and deacetoxycephalosporin C synthase that catalyze the formation of beta-lactam antibiotics in fungi and bacteria. These genes are also present in several species of Collembola, but not in other hexapods analyzed so far. In conclusion, our survey showed that NRPS genes are more abundant and widespread in animals than previously known.
Collapse
Affiliation(s)
- Wouter Suring
- A-LIFE Ecology and Evolution, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
- Department of Academy Technology & Innovation, NHL Stenden University of Applied Sciences, Rengerslaan 8-10, 8917 DD Leeuwarden, The Netherlands
| | - Dylan Hoogduin
- A-LIFE Ecology and Evolution, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Giang Le Ngoc
- A-LIFE Ecology and Evolution, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
- Biomedical Primate Research Centre, Lange Kleiweg 161, 2282 GJ Rijswijk, The Netherlands
| | - Abraham Brouwer
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, The Netherlands
| | - Nico M. van Straalen
- A-LIFE Ecology and Evolution, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Dick Roelofs
- A-LIFE Ecology and Evolution, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
- Keygene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands
| |
Collapse
|
14
|
Wrobel CJJ, Schroeder FC. Repurposing degradation pathways for modular metabolite biosynthesis in nematodes. Nat Chem Biol 2023; 19:676-686. [PMID: 37024728 PMCID: PMC10559835 DOI: 10.1038/s41589-023-01301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/24/2023] [Indexed: 04/08/2023]
Abstract
Recent studies have revealed that Caenorhabditis elegans and other nematodes repurpose products from biochemical degradation pathways for the combinatorial assembly of complex modular structures that serve diverse signaling functions. Building blocks from neurotransmitter, amino acid, nucleoside and fatty acid metabolism are attached to scaffolds based on the dideoxyhexose ascarylose or glucose, resulting in hundreds of modular ascarosides and glucosides. Genome-wide association studies have identified carboxylesterases as the key enzymes mediating modular assembly, enabling rapid compound discovery via untargeted metabolomics and suggesting that modular metabolite biosynthesis originates from the 'hijacking' of conserved detoxification mechanisms. Modular metabolites thus represent a distinct biosynthetic strategy for generating structural and functional diversity in nematodes, complementing the primarily polyketide synthase- and nonribosomal peptide synthetase-derived universe of microbial natural products. Although many aspects of modular metabolite biosynthesis and function remain to be elucidated, their identification demonstrates how phenotype-driven compound discovery, untargeted metabolomics and genomic approaches can synergize to facilitate the annotation of metabolic dark matter.
Collapse
Affiliation(s)
- Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
15
|
Dissanayake GC, Ndi CN, Markley JL, Martinez JB, Hanson PR. Total Synthesis of Sanctolide A and Formal Synthesis of (2 S)-Sanctolide A. J Org Chem 2023; 88:805-817. [PMID: 36602547 DOI: 10.1021/acs.joc.2c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Two synthetic strategies employing phosphate tether-mediated one-pot sequential protocols for the total synthesis of the polyketide nonribosomal peptide macrolide, sanctolide A, and the formal synthesis of the (2S)-epimer of sanctolide A are reported. In this work, a phosphate tether-mediated one-pot sequential ring-closing metathesis/cross metathesis/substrate-controlled "H2"/tether removal approach was developed to accomplish the total synthesis of the natural product sanctolide A.
Collapse
Affiliation(s)
- Gihan C Dissanayake
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
| | - Cornelius N Ndi
- Department of Chemistry, University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Jana L Markley
- Department of Chemistry, University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James B Martinez
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
| | - Paul R Hanson
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
| |
Collapse
|
16
|
Burkhardt RN, Artyukhin AB, Aprison EZ, Curtis BJ, Fox BW, Ludewig AH, Palomino DF, Luo J, Chaturbedi A, Panda O, Wrobel CJJ, Baumann V, Portman DS, Lee SS, Ruvinsky I, Schroeder FC. Sex-specificity of the C. elegans metabolome. Nat Commun 2023; 14:320. [PMID: 36658169 PMCID: PMC9852247 DOI: 10.1038/s41467-023-36040-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Recent studies of animal metabolism have revealed large numbers of novel metabolites that are involved in all aspects of organismal biology, but it is unclear to what extent metabolomes differ between sexes. Here, using untargeted comparative metabolomics for the analysis of wildtype animals and sex determination mutants, we show that C. elegans hermaphrodites and males exhibit pervasive metabolomic differences. Several hundred small molecules are produced exclusively or in much larger amounts in one sex, including a host of previously unreported metabolites that incorporate building blocks from nucleoside, carbohydrate, lipid, and amino acid metabolism. A subset of male-enriched metabolites is specifically associated with the presence of a male germline, whereas enrichment of other compounds requires a male soma. Further, we show that one of the male germline-dependent metabolites, an unusual dipeptide incorporating N,N-dimethyltryptophan, increases food consumption, reduces lifespan, and accelerates the last stage of larval development in hermaphrodites. Our results serve as a foundation for mechanistic studies of how the genetic sex of soma and germline shape the C. elegans metabolome and provide a blueprint for the discovery of sex-dependent metabolites in other animals.
Collapse
Affiliation(s)
- Russell N Burkhardt
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander B Artyukhin
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Andreas H Ludewig
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jintao Luo
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, 14642, USA
- School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Oishika Panda
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Victor Baumann
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, 14642, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
17
|
Noriler S, Navarro-Muñoz JC, Glienke C, Collemare J. Evolutionary relationships of adenylation domains in fungi. Genomics 2022; 114:110525. [PMID: 36423773 DOI: 10.1016/j.ygeno.2022.110525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Non-ribosomal peptide synthetases (NRPSs) and NRPS-like enzymes are abundant in microbes as they are involved in the production of primary and secondary metabolites. In contrast to the well-studied NRPSs, known to produce non-ribosomal peptides, NRPS-like enzymes exhibit more diverse activities and their evolutionary relationships are unclear. Here, we present the first in-depth phylogenetic analysis of fungal NRPS-like A domains from functionally characterized pathways, and their relationships to characterized A domains found in fungal NRPSs. This study clearly differentiated amino acid reductases, including NRPSs, from CoA/AMP ligases, which could be divided into 10 distinct phylogenetic clades that reflect their conserved domain organization, substrate specificity and enzymatic activity. In particular, evolutionary relationships of adenylate forming reductases could be refined and explained the substrate specificity difference. Consistent with their phylogeny, the deduced amino acid code of A domains differentiated amino acid reductases from other enzymes. However, a diagnostic code was found for α-keto acid reductases and clade 7 CoA/AMP ligases only. Comparative genomics of loci containing these enzymes revealed that they can be independently recruited as tailoring genes in diverse secondary metabolite pathways. Based on these results, we propose a refined and clear phylogeny-based classification of A domain-containing enzymes, which will provide a robust framework for future functional analyses and engineering of these enzymes to produce new bioactive molecules.
Collapse
Affiliation(s)
- Sandriele Noriler
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210, CEP: 81531-970, Curitiba, PR, Brazil
| | - Jorge C Navarro-Muñoz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands
| | - Chirlei Glienke
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210, CEP: 81531-970, Curitiba, PR, Brazil; Postgraduate Program of Genetics, Department of Genetics, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210, CEP: 81531-970, Curitiba, PR, Brazil
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands.
| |
Collapse
|
18
|
Chai CM, Park H, Sternberg PW. Brain-wide bidirectional neuropeptide modulation of individual neuron classes regulates a developmental decision. Curr Biol 2022; 32:3365-3373.e6. [PMID: 35679871 PMCID: PMC10588560 DOI: 10.1016/j.cub.2022.05.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Secreted neuromodulators, like biogenic amines and neuropeptides, can reconfigure circuit functions both locally and at a distance and establish global brain states that alter circuit outputs over prolonged timescales.1-3 Despite their diversity and ubiquitous presence, many studies on neuromodulation tend to focus on dissecting the function and site of action of individual neuropeptides. Here, we take a different approach by conducting a systems-level investigation of neuropeptide receptor signaling function and cell-type-specific distribution in the context of the Caenorhabditis elegans diapause entry developmental decision. C. elegans diapause entry is controlled by sensory perception of external factors and is regulated by neuropeptide signaling.4-8 We performed a comprehensive functional screen of neuropeptide receptor mutants for pheromone-induced diapause entry phenotypes and integrated these results with published C. elegans single-cell RNA-seq data to reveal that almost all neuron classes expressed at least one receptor with a role in diapause entry.9 Our receptor expression analysis also identified four highly modulated neural hubs with no previously reported roles in diapause entry that are distributed throughout the animal's body, possibly as a means of synchronizing the whole-organism transition into the appropriate larval morph. Furthermore, most neuron classes expressed unique neuropeptide receptor repertoires that have opposing effects on the diapause entry decision. We propose that brain-wide antagonistic neuropeptide modulation of individual neuron classes by distinct neuropeptide receptor subsets could serve as a strategy against overmodulation and that this motif might generalize to other decision-making paradigms in other organisms.
Collapse
Affiliation(s)
- Cynthia M Chai
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| | - Heenam Park
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
19
|
D’Ambrosio HK, Ganley JG, Keeler AM, Derbyshire ER. A single amino acid residue controls acyltransferase activity in a polyketide synthase from Toxoplasma gondii. iScience 2022; 25:104443. [PMID: 35874921 PMCID: PMC9301873 DOI: 10.1016/j.isci.2022.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Type I polyketide synthases (PKSs) are multidomain, multimodule enzymes capable of producing complex polyketide metabolites. These modules contain an acyltransferase (AT) domain, which selects acyl-CoA substrates to be incorporated into the metabolite scaffold. Herein, we reveal the sequences of three AT domains from a polyketide synthase (TgPKS2) from the apicomplexan parasite Toxoplasma gondii. Phylogenic analysis indicates these ATs (AT1, AT2, and AT3) are distinct from domains in well-characterized microbial biosynthetic gene clusters. Biochemical investigations revealed that AT1 and AT2 hydrolyze malonyl-CoA but the terminal AT3 domain is non-functional. We further identify an "on-off switch" residue that controls activity such that a single amino acid change in AT3 confers hydrolysis activity while the analogous mutation in AT2 eliminates activity. This biochemical analysis of AT domains from an apicomplexan PKS lays the foundation for further molecular and structural studies on PKSs from T. gondii and other protists.
Collapse
Affiliation(s)
- Hannah K. D’Ambrosio
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Jack G. Ganley
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Aaron M. Keeler
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Emily R. Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
20
|
Aldholmi M, Ahmad R, Carretero‐Molina D, Pérez‐Victoria I, Martín J, Reyes F, Genilloud O, Gourbeyre L, Gefflaut T, Carlsson H, Maklakov A, O'Neill E, Field RA, Wilkinson B, O'Connell M, Ganesan A. Euglenatides, Potent Antiproliferative Cyclic Peptides Isolated from the Freshwater Photosynthetic Microalga Euglena gracilis. Angew Chem Int Ed Engl 2022; 61:e202203175. [PMID: 35325497 PMCID: PMC9321709 DOI: 10.1002/anie.202203175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 11/27/2022]
Abstract
By limiting the nitrogen source to glutamic acid, we isolated cyclic peptides from Euglena gracilis containing asparagine and non-proteinogenic amino acids. Structure elucidation was accomplished through spectroscopic methods, mass spectrometry and chemical degradation. The euglenatides potently inhibit pathogenic fungi and cancer cell lines e.g., euglenatide B exhibiting IC50 values of 4.3 μM in Aspergillus fumigatus and 0.29 μM in MCF-7 breast cancer cells. In an unprecedented convergence of non-ribosomal peptide synthetase and polyketide synthase assembly-line biosynthesis between unicellular species and the metazoan kingdom, euglenatides bear resemblance to nemamides from Caenorhabditis elegans and inhibited both producing organisms E. gracilis and C. elegans. By molecular network analysis, we detected over forty euglenatide-like metabolites in E. gracilis, E. sanguinea and E. mutabilis, suggesting an important biological role for these natural products.
Collapse
Affiliation(s)
- Mohammed Aldholmi
- Natural Products and Alternative MedicineCollege of Clinical PharmacyImam Abdulrahman Bin Faisal UniversityDammam31441Saudi Arabia
| | - Rizwan Ahmad
- Natural Products and Alternative MedicineCollege of Clinical PharmacyImam Abdulrahman Bin Faisal UniversityDammam31441Saudi Arabia
| | - Daniel Carretero‐Molina
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Ignacio Pérez‐Victoria
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Jesús Martín
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Fernando Reyes
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Olga Genilloud
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Léa Gourbeyre
- Université Clermont AuvergneClermont Auvergne INP, CNRS, Institut Pascal63000Clermont-FerrandFrance
| | - Thierry Gefflaut
- Université Clermont AuvergneClermont Auvergne INP, CNRS, Institut Pascal63000Clermont-FerrandFrance
| | - Hanne Carlsson
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Alexei Maklakov
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Ellis O'Neill
- School of ChemistryUniversity of NottinghamNottinghamNG7 2RDUK
| | - Robert A. Field
- Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| | | | - Maria O'Connell
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - A. Ganesan
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| |
Collapse
|
21
|
Li F, Lin Z, Torres JP, Hill EA, Li D, Townsend CA, Schmidt EW. Sea Urchin Polyketide Synthase SpPks1 Produces the Naphthalene Precursor to Echinoderm Pigments. J Am Chem Soc 2022; 144:9363-9371. [PMID: 35588530 DOI: 10.1021/jacs.2c01416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nearly every animal species on Earth contains a unique polyketide synthase (PKS) encoded in its genome, yet no animal-clade PKS has been biochemically characterized, and even the chemical products of these ubiquitous enzymes are known in only a few cases. The earliest animal genome-encoded PKS gene to be identified was SpPks1 from sea urchins. Previous genetic knockdown experiments implicated SpPks1 in synthesis of the sea urchin pigment echinochrome. Here, we express and purify SpPks1, performing biochemical experiments to demonstrate that the sea urchin protein is responsible for the synthesis of 2-acetyl-1,3,6,8-tetrahydroxynaphthalene (ATHN). Since ATHN is a plausible precursor of echinochromes, this result defines a biosynthetic pathway to the ubiquitous echinoderm pigments and rewrites the previous hypothesis for echinochrome biosynthesis. Truncation experiments showed that, unlike other type I iterative PKSs so far characterized, SpPks1 produces the naphthalene core using solely ketoacylsynthase (KS), acyltransferase, and acyl carrier protein domains, delineating a unique class of animal nonreducing aromatic PKSs (aPKSs). A series of amino acids in the KS domain define the family and are likely crucial in cyclization activity. Phylogenetic analyses indicate that SpPks1 and its homologs are widespread in echinoderms and their closest relatives, the acorn worms, reinforcing their fundamental importance to echinoderm biology. While the animal microbiome is known to produce aromatic polyketides, this work provides biochemical evidence that animals themselves also harbor ancient, convergent, dedicated pathways to carbocyclic aromatic polyketides. More fundamentally, biochemical analysis of SpPks1 begins to define the vast and unexplored biosynthetic space of the ubiquitous animal PKS family.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Joshua P Torres
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric A Hill
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Craig A Townsend
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
22
|
Chen R, Wang J, Gradinaru I, Vu HS, Geboers S, Naidoo J, Ready JM, Williams NS, DeBerardinis RJ, Ross EM, Collins JJ. A male-derived nonribosomal peptide pheromone controls female schistosome development. Cell 2022; 185:1506-1520.e17. [PMID: 35385687 PMCID: PMC9058237 DOI: 10.1016/j.cell.2022.03.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/18/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022]
Abstract
Schistosomes cause morbidity and death throughout the developing world due to the massive numbers of eggs female worms deposit into the blood of their host. Studies dating back to the 1920s show that female schistosomes rely on constant physical contact with a male worm both to become and remain sexually mature; however, the molecular details governing this process remain elusive. Here, we uncover a nonribosomal peptide synthetase that is induced in male worms upon pairing with a female and find that it is essential for the ability of male worms to stimulate female development. We demonstrate that this enzyme generates β-alanyl-tryptamine that is released by paired male worms. Furthermore, synthetic β-alanyl-tryptamine can replace male worms to stimulate female sexual development and egg laying. These data reveal that peptide-based pheromone signaling controls female schistosome sexual maturation, suggesting avenues for therapeutic intervention and uncovering a role for nonribosomal peptides as metazoan signaling molecules.
Collapse
Affiliation(s)
- Rui Chen
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jipeng Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Irina Gradinaru
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sophie Geboers
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jacinth Naidoo
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph M Ready
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elliott M Ross
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - James J Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
23
|
Aldholmi M, Ahmad R, Carretero‐Molina D, Pérez‐Victoria I, Martín J, Reyes F, Genilloud O, Gourbeyre L, Gefflaut T, Carlsson H, Maklakov A, O'Neill E, Field RA, Wilkinson B, O'Connell M, Ganesan A. Euglenatides, Potent Antiproliferative Cyclic Peptides Isolated from the Freshwater Photosynthetic Microalga
Euglena gracilis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohammed Aldholmi
- Natural Products and Alternative Medicine College of Clinical Pharmacy Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Rizwan Ahmad
- Natural Products and Alternative Medicine College of Clinical Pharmacy Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Daniel Carretero‐Molina
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Ignacio Pérez‐Victoria
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Jesús Martín
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Fernando Reyes
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Olga Genilloud
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Léa Gourbeyre
- Université Clermont Auvergne Clermont Auvergne INP, CNRS, Institut Pascal 63000 Clermont-Ferrand France
| | - Thierry Gefflaut
- Université Clermont Auvergne Clermont Auvergne INP, CNRS, Institut Pascal 63000 Clermont-Ferrand France
| | - Hanne Carlsson
- School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Alexei Maklakov
- School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Ellis O'Neill
- School of Chemistry University of Nottingham Nottingham NG7 2RD UK
| | - Robert A. Field
- Manchester Institute of Biotechnology University of Manchester Manchester M1 7DN UK
| | | | - Maria O'Connell
- School of Pharmacy University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - A. Ganesan
- School of Pharmacy University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
24
|
Konanov DN, Krivonos DV, Ilina EN, Babenko VV. BioCAT: search for biosynthetic gene clusters producing nonribosomal peptides with known structure. Comput Struct Biotechnol J 2022; 20:1218-1226. [PMID: 35317229 PMCID: PMC8914306 DOI: 10.1016/j.csbj.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Dmitry N. Konanov
- Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical and Biological Agency of Russia, ul. Malaya Pirogovskaya., 1s3, Moscow 119435, Russian Federation
- Corresponding author.
| | - Danil V. Krivonos
- Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical and Biological Agency of Russia, ul. Malaya Pirogovskaya., 1s3, Moscow 119435, Russian Federation
| | - Elena N. Ilina
- Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical and Biological Agency of Russia, ul. Malaya Pirogovskaya., 1s3, Moscow 119435, Russian Federation
| | - Vladislav V. Babenko
- Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical and Biological Agency of Russia, ul. Malaya Pirogovskaya., 1s3, Moscow 119435, Russian Federation
| |
Collapse
|
25
|
Li JH, Cho W, Hamchand R, Oh J, Crawford JM. A Conserved Nonribosomal Peptide Synthetase in Xenorhabdus bovienii Produces Citrulline-Functionalized Lipopeptides. JOURNAL OF NATURAL PRODUCTS 2021; 84:2692-2699. [PMID: 34581573 PMCID: PMC9970011 DOI: 10.1021/acs.jnatprod.1c00573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The entomopathogenic bacterium Xenorhabdus bovienii exists in a mutualistic relationship with nematodes of the genus Steinernema. Free-living infective juveniles of Steinernema prey on insect larvae and regurgitate X. bovienii within the hemocoel of a host larva. X. bovienii subsequently produces a complex array of specialized metabolites and effector proteins that kill the insect and regulate various aspects of the trilateral symbiosis. While Xenorhabdus species are rich producers of secondary metabolites, many of their biosynthetic gene clusters remain uncharacterized. Here, we describe a nonribosomal peptide synthetase (NRPS) identified through comparative genomics analysis that is widely conserved in Xenorhabdus species. Heterologous expression of this NRPS gene from X. bovienii in E. coli led to the discovery of a family of lipo-tripeptides that chromatographically appear as pairs, containing either a C-terminal carboxylic acid or carboxamide. Coexpression of the NRPS with the leupeptin protease inhibitor pathway enhanced production, facilitating isolation and characterization efforts. The new lipo-tripeptides were also detected in wild-type X. bovienii cultures. These metabolites, termed bovienimides, share an uncommon C-terminal d-citrulline residue. The NRPS lacked a dedicated chain termination domain, resulting in product diversification and release from the assembly line through reactions with ammonia, water, or exogenous alcohols.
Collapse
Affiliation(s)
- Jhe-Hao Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, United States
| | - Wooyoung Cho
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, United States
| | - Randy Hamchand
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, United States
| | - Joonseok Oh
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| |
Collapse
|
26
|
Xiang B, Hao X, Xie Q, Shen G, Liu Y, Zhu X. Deletion of a Rare Fungal PKS CgPKS11 Promotes Chaetoglobosin A Biosynthesis, Yet Defers the Growth and Development of Chaetomium globosum. J Fungi (Basel) 2021; 7:jof7090750. [PMID: 34575788 PMCID: PMC8471558 DOI: 10.3390/jof7090750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
We previously reported that chaetoglobosin A (ChA) exhibits a great potential in the biocontrol of nematodes and pathogenic fungi. To improve the production of ChA, a CRISPR-Cas9 system was created and applied for eliminating potential competitive polyketide products. One of the polyketide synthase encoding genes, Cgpks11, which is putatively involved in the biosynthesis of chaetoglocin A, was disrupted. Cgpks11 deletion led to the overexpression of the CgcheA gene cluster, which is responsible for ChA biosynthesis, and a 1.6-fold increase of ChA. Transcription of pks-1, a melanin PKS, was simultaneously upregulated. Conversely, the transcription of genes for chaetoglocin A biosynthesis, e.g., CHGG_10646 and CHGG_10649, were significantly downregulated. The deletion also led to growth retardation and seriously impaired ascospore development. This study found a novel regulatory means on the biosynthesis of ChA by CgPKS11. CgPKS11 affects chaetoglobosin A biosynthesis, growth, and development in Chaetomium globosum.
Collapse
Affiliation(s)
- Biyun Xiang
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (B.X.); (Q.X.); (G.S.); (Y.L.)
| | - Xiaoran Hao
- National Experimental Teaching Demonstrating Center, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Correspondence: (X.H.); (X.Z.)
| | - Qiaohong Xie
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (B.X.); (Q.X.); (G.S.); (Y.L.)
- Xiamen No.1 High School of Fujian, Xiamen 361000, China
| | - Guangya Shen
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (B.X.); (Q.X.); (G.S.); (Y.L.)
| | - Yanjie Liu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (B.X.); (Q.X.); (G.S.); (Y.L.)
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (B.X.); (Q.X.); (G.S.); (Y.L.)
- Correspondence: (X.H.); (X.Z.)
| |
Collapse
|
27
|
Medema MH, de Rond T, Moore BS. Mining genomes to illuminate the specialized chemistry of life. Nat Rev Genet 2021; 22:553-571. [PMID: 34083778 PMCID: PMC8364890 DOI: 10.1038/s41576-021-00363-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
All organisms produce specialized organic molecules, ranging from small volatile chemicals to large gene-encoded peptides, that have evolved to provide them with diverse cellular and ecological functions. As natural products, they are broadly applied in medicine, agriculture and nutrition. The rapid accumulation of genomic information has revealed that the metabolic capacity of virtually all organisms is vastly underappreciated. Pioneered mainly in bacteria and fungi, genome mining technologies are accelerating metabolite discovery. Recent efforts are now being expanded to all life forms, including protists, plants and animals, and new integrative omics technologies are enabling the increasingly effective mining of this molecular diversity.
Collapse
Affiliation(s)
- Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Tristan de Rond
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
28
|
Mapping the biosynthetic pathway of a hybrid polyketide-nonribosomal peptide in a metazoan. Nat Commun 2021; 12:4912. [PMID: 34389721 PMCID: PMC8363725 DOI: 10.1038/s41467-021-24682-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/30/2021] [Indexed: 11/10/2022] Open
Abstract
Polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) hybrid systems typically use complex protein-protein interactions to facilitate direct transfer of intermediates between these multimodular megaenzymes. In the canal-associated neurons (CANs) of Caenorhabditis elegans, PKS-1 and NRPS-1 produce the nemamides, the only known hybrid polyketide-nonribosomal peptides biosynthesized by animals, through a poorly understood mechanism. Here, we use genome editing and mass spectrometry to map the roles of individual PKS-1 and NRPS-1 enzymatic domains in nemamide biosynthesis. Furthermore, we show that nemamide biosynthesis requires at least five additional enzymes expressed in the CANs that are encoded by genes distributed across the worm genome. We identify the roles of these enzymes and discover a mechanism for trafficking intermediates between a PKS and an NRPS. Specifically, the enzyme PKAL-1 activates an advanced polyketide intermediate as an adenylate and directly loads it onto a carrier protein in NRPS-1. This trafficking mechanism provides a means by which a PKS-NRPS system can expand its biosynthetic potential and is likely important for the regulation of nemamide biosynthesis. The only known animal polyketide-nonribosomal peptides, the nemamides, are biosynthesized by two megasynthetases in the canal-associated neurons (CANs) of C. elegans. Here, the authors map the biosynthetic roles of individual megasynthetase domains and identify additional enzymes in the CANs required for nemamide biosynthesis.
Collapse
|
29
|
Scherlach K, Hertweck C. Mining and unearthing hidden biosynthetic potential. Nat Commun 2021; 12:3864. [PMID: 34162873 PMCID: PMC8222398 DOI: 10.1038/s41467-021-24133-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Genetically encoded small molecules (secondary metabolites) play eminent roles in ecological interactions, as pathogenicity factors and as drug leads. Yet, these chemical mediators often evade detection, and the discovery of novel entities is hampered by low production and high rediscovery rates. These limitations may be addressed by genome mining for biosynthetic gene clusters, thereby unveiling cryptic metabolic potential. The development of sophisticated data mining methods and genetic and analytical tools has enabled the discovery of an impressive array of previously overlooked natural products. This review shows the newest developments in the field, highlighting compound discovery from unconventional sources and microbiomes. Natural products are an important source of bioactive compounds and have versatile applications in different fields, but their discovery is challenging. Here, the authors review the recent developments in genome mining for discovery of natural products, focusing on compounds from unconventional microorganisms and microbiomes.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
30
|
Girija A, Vijayanathan M, Sreekumar S, Basheer J, Menon TG, Krishnankutty RE, Soniya EV. Harnessing the natural pool of polyketide and non-ribosomal peptide family: A route map towards novel drug development. Curr Mol Pharmacol 2021; 15:265-291. [PMID: 33745440 DOI: 10.2174/1874467214666210319145816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
Emergence of communicable and non-communicable diseases possess health challenge to millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of recent pandemic, SARS-CoV-2 caused by lethal severe acute respiratory syndrome coronavirus 2 is one such example. Rapid research and development of drugs for the treatment and management of these diseases has been an incredibly challenging task for the pharmaceutical industry. Although, substantial focus has been made in the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has shown a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a large diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from the multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining the natural and the synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial to the future bioprospecting and drug discovery.
Collapse
Affiliation(s)
- Aiswarya Girija
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Institute of Biological Environmental Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Biology Centre - Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Research Centre, University of Kerala, India
| | - Jasim Basheer
- School of Biosciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, India.,Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Tara G Menon
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | | | - Eppurathu Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
31
|
Pham K, Masoudi N, Leyva-Díaz E, Hobert O. A nervous system-specific subnuclear organelle in Caenorhabditis elegans. Genetics 2021; 217:1-17. [PMID: 33683371 PMCID: PMC8045701 DOI: 10.1093/genetics/iyaa016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022] Open
Abstract
We describe here phase-separated subnuclear organelles in the nematode Caenorhabditis elegans, which we term NUN (NUclear Nervous system-specific) bodies. Unlike other previously described subnuclear organelles, NUN bodies are highly cell type specific. In fully mature animals, 4-10 NUN bodies are observed exclusively in the nucleus of neuronal, glial and neuron-like cells, but not in other somatic cell types. Based on co-localization and genetic loss of function studies, NUN bodies are not related to other previously described subnuclear organelles, such as nucleoli, splicing speckles, paraspeckles, Polycomb bodies, promyelocytic leukemia bodies, gems, stress-induced nuclear bodies, or clastosomes. NUN bodies form immediately after cell cycle exit, before other signs of overt neuronal differentiation and are unaffected by the genetic elimination of transcription factors that control many other aspects of neuronal identity. In one unusual neuron class, the canal-associated neurons, NUN bodies remodel during larval development, and this remodeling depends on the Prd-type homeobox gene ceh-10. In conclusion, we have characterized here a novel subnuclear organelle whose cell type specificity poses the intriguing question of what biochemical process in the nucleus makes all nervous system-associated cells different from cells outside the nervous system.
Collapse
Affiliation(s)
- Kenneth Pham
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Neda Masoudi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
32
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
33
|
Edison AS, Colonna M, Gouveia GJ, Holderman NR, Judge MT, Shen X, Zhang S. NMR: Unique Strengths That Enhance Modern Metabolomics Research. Anal Chem 2020; 93:478-499. [DOI: 10.1021/acs.analchem.0c04414] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Torres JP, Lin Z, Winter JM, Krug PJ, Schmidt EW. Animal biosynthesis of complex polyketides in a photosynthetic partnership. Nat Commun 2020; 11:2882. [PMID: 32513940 PMCID: PMC7280274 DOI: 10.1038/s41467-020-16376-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/29/2020] [Indexed: 11/09/2022] Open
Abstract
Complex polyketides are typically associated with microbial metabolism. Here, we report that animals also make complex, microbe-like polyketides. We show there is a widespread branch of fatty acid synthase- (FAS)-like polyketide synthase (PKS) proteins, which sacoglossan animals use to synthesize complex products. The purified sacogolassan protein EcPKS1 uses only methylmalonyl-CoA as a substrate, otherwise unknown in animal lipid metabolism. Sacoglossans are sea slugs, some of which eat algae, digesting the cells but maintaining functional chloroplasts. Here, we provide evidence that polyketides support this unusual photosynthetic partnership. The FAS-like PKS family represents an uncharacterized branch of polyketide and fatty acid metabolism, encoding a large diversity of biomedically relevant animal enzymes and chemicals awaiting discovery. The biochemical characterization of an intact animal polyketide biosynthetic enzyme opens the door to understanding the immense untapped metabolic potential of metazoans. Complex polyketides are usually produced by microbes, whereas the origin of polyketides found in animals remained unknown. This study shows that sacoglossan animals, such as sea slugs, employ fatty acid synthase-like proteins to produce microbe-like polyketides.
Collapse
Affiliation(s)
- Joshua P Torres
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jaclyn M Winter
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Patrick J Krug
- Department of Biological Sciences, California State University, Los Angeles, CA, 90032, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
35
|
Ganley JG, Derbyshire ER. Linking Genes to Molecules in Eukaryotic Sources: An Endeavor to Expand Our Biosynthetic Repertoire. Molecules 2020; 25:E625. [PMID: 32023950 PMCID: PMC7036892 DOI: 10.3390/molecules25030625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
The discovery of natural products continues to interest chemists and biologists for their utility in medicine as well as facilitating our understanding of signaling, pathogenesis, and evolution. Despite an attenuation in the discovery rate of new molecules, the current genomics and transcriptomics revolution has illuminated the untapped biosynthetic potential of many diverse organisms. Today, natural product discovery can be driven by biosynthetic gene cluster (BGC) analysis, which is capable of predicting enzymes that catalyze novel reactions and organisms that synthesize new chemical structures. This approach has been particularly effective in mining bacterial and fungal genomes where it has facilitated the discovery of new molecules, increased the understanding of metabolite assembly, and in some instances uncovered enzymes with intriguing synthetic utility. While relatively less is known about the biosynthetic potential of non-fungal eukaryotes, there is compelling evidence to suggest many encode biosynthetic enzymes that produce molecules with unique bioactivities. In this review, we highlight how the advances in genomics and transcriptomics have aided natural product discovery in sources from eukaryotic lineages. We summarize work that has successfully connected genes to previously identified molecules and how advancing these techniques can lead to genetics-guided discovery of novel chemical structures and reactions distributed throughout the tree of life. Ultimately, we discuss the advantage of increasing the known biosynthetic space to ease access to complex natural and non-natural small molecules.
Collapse
Affiliation(s)
- Jack G Ganley
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708-0346, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708-0346, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
36
|
Nivina A, Yuet KP, Hsu J, Khosla C. Evolution and Diversity of Assembly-Line Polyketide Synthases. Chem Rev 2019; 119:12524-12547. [PMID: 31838842 PMCID: PMC6935866 DOI: 10.1021/acs.chemrev.9b00525] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Indexed: 12/11/2022]
Abstract
Assembly-line polyketide synthases (PKSs) are among the most complex protein machineries known in nature, responsible for the biosynthesis of numerous compounds used in the clinic. Their present-day diversity is the result of an evolutionary path that has involved the emergence of a multimodular architecture and further diversification of assembly-line PKSs. In this review, we provide an overview of previous studies that investigated PKS evolution and propose a model that challenges the currently prevailing view that gene duplication has played a major role in the emergence of multimodularity. We also analyze the ensemble of orphan PKS clusters sequenced so far to evaluate how large the entire diversity of assembly-line PKS clusters and their chemical products could be. Finally, we examine the existing techniques to access the natural PKS diversity in natural and heterologous hosts and describe approaches to further expand this diversity through engineering.
Collapse
Affiliation(s)
- Aleksandra Nivina
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Kai P. Yuet
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Jake Hsu
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
37
|
Chevrette MG, Gutiérrez-García K, Selem-Mojica N, Aguilar-Martínez C, Yañez-Olvera A, Ramos-Aboites HE, Hoskisson PA, Barona-Gómez F. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat Prod Rep 2019; 37:566-599. [PMID: 31822877 DOI: 10.1039/c9np00048h] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2008 up to 2019The forces of biochemical adaptive evolution operate at the level of genes, manifesting in complex phenotypes and the global biodiversity of proteins and metabolites. While evolutionary histories have been deciphered for some other complex traits, the origins of natural product biosynthesis largely remain a mystery. This fundamental knowledge gap is surprising given the many decades of research probing the genetic, chemical, and biophysical mechanisms of bacterial natural product biosynthesis. Recently, evolutionary thinking has begun to permeate this otherwise mechanistically dominated field. Natural products are now sometimes referred to as 'specialized' rather than 'secondary' metabolites, reinforcing the importance of their biological and ecological functions. Here, we review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial secondary metabolism, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits. We discuss the mechanisms that drive the assembly of natural product biosynthetic gene clusters and propose formal definitions for 'specialized' and 'secondary' metabolism. We further explore how biosynthetic gene clusters evolve to synthesize related molecular species, and in turn how the biological and ecological roles that emerge from metabolic diversity are acted on by selection. Finally, we reconcile chemical, functional, and genetic data into an evolutionary model, the dynamic chemical matrix evolutionary hypothesis, in which the relationships between chemical distance, biomolecular activity, and relative fitness shape adaptive landscapes.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Secondary metabolites are often considered within the remit of bacterial or plant research, but animals also contain a plethora of these molecules with important functional roles. Classical feeding studies demonstrate that, whereas some are derived from diet, many of these compounds are made within the animals. In the past 15 years, the genetic and biochemical origin of several animal natural products has been traced to partnerships with symbiotic bacteria. More recently, a number of animal genome-encoded pathways to microbe-like natural products have come to light. These pathways are sometimes horizontally acquired from bacteria, but more commonly they unveil a new and diverse animal biochemistry. In this review, we highlight recent examples of characterized animal biosynthetic enzymes that reveal an unanticipated breadth and intricacy in animal secondary metabolism. The results so far suggest that there may be an immense diversity of animal small molecules and biosynthetic enzymes awaiting discovery. This biosynthetic dark matter is just beginning to be understood, providing a relatively untapped frontier for discovery.
Collapse
Affiliation(s)
- Joshua P Torres
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
39
|
Butcher RA. Natural products as chemical tools to dissect complex biology in C. elegans. Curr Opin Chem Biol 2019; 50:138-144. [PMID: 31102973 DOI: 10.1016/j.cbpa.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
The search for novel pheromones, hormones, and other types of natural products in the nematode Caenorhabditis elegans has accelerated over the last 10-15 years. Many of these natural products perturb fundamental processes such as developmental progression, metabolism, reproductive and somatic aging, and various behaviors and have thus become essential tools for probing these processes, which are difficult to study in higher organisms. Furthermore, given the similarity between C. elegans and parasitic nematodes, these natural products could potentially be used to manipulate the development and behavior of parasitic nematodes and target the infections caused by them.
Collapse
Affiliation(s)
- Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
40
|
Zheng Y, Saitou A, Wang CM, Toyoda A, Minakuchi Y, Sekiguchi Y, Ueda K, Takano H, Sakai Y, Abe K, Yokota A, Yabe S. Genome Features and Secondary Metabolites Biosynthetic Potential of the Class Ktedonobacteria. Front Microbiol 2019; 10:893. [PMID: 31080444 PMCID: PMC6497799 DOI: 10.3389/fmicb.2019.00893] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022] Open
Abstract
The prevalence of antibiotic resistance and the decrease in novel antibiotic discovery in recent years necessitates the identification of potentially novel microbial resources to produce natural products. Ktedonobacteria, a class of deeply branched bacterial lineage in the ancient phylum Chloroflexi, are ubiquitous in terrestrial environments and characterized by their large genome size and complex life cycle. These characteristics indicate Ktedonobacteria as a potential active producer of bioactive compounds. In this study, we observed the existence of a putative "megaplasmid," multiple copies of ribosomal RNA operons, and high ratio of hypothetical proteins with unknown functions in the class Ktedonobacteria. Furthermore, a total of 104 antiSMASH-predicted putative biosynthetic gene clusters (BGCs) for secondary metabolites with high novelty and diversity were identified in nine Ktedonobacteria genomes. Our investigation of domain composition and organization of the non-ribosomal peptide synthetase and polyketide synthase BGCs further supports the concept that class Ktedonobacteria may produce compounds structurally different from known natural products. Furthermore, screening of bioactive compounds from representative Ktedonobacteria strains resulted in the identification of broad antimicrobial activities against both Gram-positive and Gram-negative tested bacterial strains. Based on these findings, we propose the ancient, ubiquitous, and spore-forming Ktedonobacteria as a versatile and promising microbial resource for natural product discovery.
Collapse
Affiliation(s)
- Yu Zheng
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ayana Saitou
- Faculty of Agriculture, Tohoku University, Sendai, Japan
| | - Chiung-Mei Wang
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hideaki Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yasuteru Sakai
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Keietsu Abe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Akira Yokota
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shuhei Yabe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Hazaka Plant Research Center, Kennan Eisei Kogyo Co., Ltd., Miyagi, Japan
| |
Collapse
|
41
|
Sabatini M, Comba S, Altabe S, Recio-Balsells AI, Labadie GR, Takano E, Gramajo H, Arabolaza A. Biochemical characterization of the minimal domains of an iterative eukaryotic polyketide synthase. FEBS J 2018; 285:4494-4511. [PMID: 30300504 PMCID: PMC6334511 DOI: 10.1111/febs.14675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/03/2018] [Accepted: 09/25/2018] [Indexed: 01/19/2023]
Abstract
Iterative type I polyketide synthases (PKS) are megaenzymes essential to the biosynthesis of an enormously diverse array of bioactive natural products. Each PKS contains minimally three functional domains, β-ketosynthase (KS), acyltransferase (AT), and acyl carrier protein (ACP), and a subset of reducing domains such as ketoreductase (KR), dehydratase (DH), and enoylreductase (ER). The substrate selection, condensation reactions, and β-keto processing of the polyketide growing chain are highly controlled in a programmed manner. However, the structural features and mechanistic rules that orchestrate the iterative cycles, processing domains functionality, and chain termination in this kind of megaenzymes are often poorly understood. Here, we present a biochemical and functional characterization of the KS and the AT domains of a PKS from the mallard duck Anas platyrhynchos (ApPKS). ApPKS belongs to an animal PKS family phylogenetically more related to bacterial PKS than to metazoan fatty acid synthases. Through the dissection of the ApPKS enzyme into mono- to didomain fragments and its reconstitution in vitro, we determined its substrate specificity toward different starters and extender units. ApPKS AT domain can effectively transfer acetyl-CoA and malonyl-CoA to the ApPKS ACP stand-alone domain. Furthermore, the KS and KR domains, in the presence of Escherichia coli ACP, acetyl-CoA, and malonyl-CoA, showed the ability to catalyze the chain elongation and the β-keto reduction steps necessary to yield a 3-hydroxybutyryl-ACP derivate. These results provide new insights into the catalytic efficiency and specificity of this uncharacterized family of PKSs.
Collapse
Affiliation(s)
- Martin Sabatini
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Santiago Comba
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Silvia Altabe
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Alejandro I Recio-Balsells
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química de Rosario (IQUIR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Guillermo R Labadie
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química de Rosario (IQUIR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Eriko Takano
- Manchester Centre of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology (MIB), University of Manchester, UK
| | - Hugo Gramajo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Ana Arabolaza
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| |
Collapse
|
42
|
Chevrette MG, Aicheler F, Kohlbacher O, Currie CR, Medema MH. SANDPUMA: ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria. Bioinformatics 2017; 33:3202-3210. [PMID: 28633438 PMCID: PMC5860034 DOI: 10.1093/bioinformatics/btx400] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/19/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
SUMMARY Nonribosomally synthesized peptides (NRPs) are natural products with widespread applications in medicine and biotechnology. Many algorithms have been developed to predict the substrate specificities of nonribosomal peptide synthetase adenylation (A) domains from DNA sequences, which enables prioritization and dereplication, and integration with other data types in discovery efforts. However, insufficient training data and a lack of clarity regarding prediction quality have impeded optimal use. Here, we introduce prediCAT, a new phylogenetics-inspired algorithm, which quantitatively estimates the degree of predictability of each A-domain. We then systematically benchmarked all algorithms on a newly gathered, independent test set of 434 A-domain sequences, showing that active-site-motif-based algorithms outperform whole-domain-based methods. Subsequently, we developed SANDPUMA, a powerful ensemble algorithm, based on newly trained versions of all high-performing algorithms, which significantly outperforms individual methods. Finally, we deployed SANDPUMA in a systematic investigation of 7635 Actinobacteria genomes, suggesting that NRP chemical diversity is much higher than previously estimated. SANDPUMA has been integrated into the widely used antiSMASH biosynthetic gene cluster analysis pipeline and is also available as an open-source, standalone tool. AVAILABILITY AND IMPLEMENTATION SANDPUMA is freely available at https://bitbucket.org/chevrm/sandpuma and as a docker image at https://hub.docker.com/r/chevrm/sandpuma/ under the GNU Public License 3 (GPL3). CONTACT chevrette@wisc.edu or marnix.medema@wur.nl. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Marc G Chevrette
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology and J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Fabian Aicheler
- Applied Bioinformatics, Department of Computer Science, Quantitative Biology Center and Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, Quantitative Biology Center and Center for Bioinformatics, University of Tübingen, Tübingen, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Cameron R Currie
- Department of Bacteriology and J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
43
|
Cooke TF, Fischer CR, Wu P, Jiang TX, Xie KT, Kuo J, Doctorov E, Zehnder A, Khosla C, Chuong CM, Bustamante CD. Genetic Mapping and Biochemical Basis of Yellow Feather Pigmentation in Budgerigars. Cell 2017; 171:427-439.e21. [PMID: 28985565 PMCID: PMC5951300 DOI: 10.1016/j.cell.2017.08.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/14/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022]
Abstract
Parrot feathers contain red, orange, and yellow polyene pigments called psittacofulvins. Budgerigars are parrots that have been extensively bred for plumage traits during the last century, but the underlying genes are unknown. Here we use genome-wide association mapping and gene-expression analysis to map the Mendelian blue locus, which abolishes yellow pigmentation in the budgerigar. We find that the blue trait maps to a single amino acid substitution (R644W) in an uncharacterized polyketide synthase (MuPKS). When we expressed MuPKS heterologously in yeast, yellow pigments accumulated. Mass spectrometry confirmed that these yellow pigments match those found in feathers. The R644W substitution abolished MuPKS activity. Furthermore, gene-expression data from feathers of different bird species suggest that parrots acquired their colors through regulatory changes that drive high expression of MuPKS in feather epithelia. Our data also help formulate biochemical models that may explain natural color variation in parrots. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Thomas F Cooke
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Curt R Fischer
- ChEM-H, Stanford University, Stanford, CA 94305, USA; Stanford Genome Technology Center, Stanford University, Stanford, CA 94305, USA
| | - Ping Wu
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | - Ting-Xin Jiang
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | - Kathleen T Xie
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James Kuo
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth Doctorov
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashley Zehnder
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chaitan Khosla
- ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Departments of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA; Integrative Stem Cell Center, China Medical University, Taichung 404, Taiwan; Center for the Integrative and Evolutionary Galliformes Genomics, National Chung Hsing University, Taichung 402, Taiwan
| | - Carlos D Bustamante
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
44
|
Small-molecule pheromones and hormones controlling nematode development. Nat Chem Biol 2017; 13:577-586. [PMID: 28514418 DOI: 10.1038/nchembio.2356] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Abstract
The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.
Collapse
|
45
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 615] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
46
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
47
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2016; 33:1352-1356. [DOI: 10.1039/c6np90047j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as kanamienamide from the marine cyanobacterium Moorea bouillonii.
Collapse
|