1
|
Süssmuth RD, Kulike‐Koczula M, Gao P, Kosol S. Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research. Angew Chem Int Ed Engl 2025; 64:e202414325. [PMID: 39611429 PMCID: PMC11878372 DOI: 10.1002/anie.202414325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/30/2024]
Abstract
In the fight against bacterial infections, particularly those caused by multi-resistant pathogens known as "superbugs", the need for new antibacterials is undoubted in scientific communities and is by now also widely perceived by the general population. However, the antibacterial research landscape has changed considerably over the past years. With few exceptions, the majority of big pharma companies has left the field and thus, the decline in R&D on antibacterials severely impacts the drug pipeline. In recent years, antibacterial research has increasingly relied on smaller companies or academic research institutions, which mostly have only limited financial resources, to carry a drug discovery and development process from the beginning and through to the beginning of clinical phases. This review formulates the requirements for an antibacterial in regard of targeted pathogens, resistance mechanisms and drug discovery. Strategies are shown for the discovery of new antibacterial structures originating from natural sources, by chemical synthesis and more recently from artificial intelligence approaches. This is complemented by principles for the computer-aided design of antibacterials and the refinement of a lead structure. The second part of the article comprises a compilation of antibacterial molecules classified according to bacterial target structures, e.g. cell wall synthesis, protein synthesis, as well as more recently emerging target classes, e.g. fatty acid synthesis, proteases and membrane proteins. Aspects of the origin, the antibacterial spectrum, resistance and the current development status of the presented drug molecules are highlighted.
Collapse
Affiliation(s)
- Roderich D. Süssmuth
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Marcel Kulike‐Koczula
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Peng Gao
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Simone Kosol
- Medical School BerlinDepartment Human MedicineRüdesheimer Strasse 5014195BerlinGermany
| |
Collapse
|
2
|
Rachwalski K, Madden SJ, Ritchie N, French S, Bhando T, Girgis-Gabardo A, Tu M, Gordzevich R, Ives R, Guo AB, Johnson JW, Xu Y, Kapadia SB, Magolan J, Brown ED. A screen for cell envelope stress uncovers an inhibitor of prolipoprotein diacylglyceryl transferase, Lgt, in Escherichia coli. iScience 2024; 27:110894. [PMID: 39376497 PMCID: PMC11456916 DOI: 10.1016/j.isci.2024.110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The increasing prevalence of antibiotic resistance demands the discovery of antibacterial chemical scaffolds with unique mechanisms of action. Phenotypic screening approaches, such as the use of reporters for bacterial cell stress, offer promise to identify compounds while providing strong hypotheses for follow-on mechanism of action studies. From a collection of ∼1,800 Escherichia coli GFP transcriptional reporter strains, we identified a reporter that is highly induced by cell envelope stress-pProm rcsA -GFP. After characterizing pProm rcsA -GFP induction, we assessed a collection of bioactive small molecules for reporter induction, identifying 24 compounds of interest. Spontaneous suppressors to one compound in particular, MAC-0452936, mapped to the gene encoding the essential prolipoprotein diacylglyceryl transferase, lgt. Lgt inhibition by MAC-0452936 inhibition was confirmed through genetic, phenotypic, and biochemical approaches. The oxime ester, MAC-0452936, represents a useful small molecule inhibitor of Lgt and highlights the potential of using pProm rcsA -GFP as a phenotypic screening tool.
Collapse
Affiliation(s)
- Kenneth Rachwalski
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sean J. Madden
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Nicole Ritchie
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shawn French
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Timsy Bhando
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Adele Girgis-Gabardo
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Megan Tu
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Rodion Gordzevich
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Rowan Ives
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Amelia B.Y. Guo
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jarrod W. Johnson
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Yiming Xu
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | | | - Jakob Magolan
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Eric D. Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
3
|
Bisht R, Charlesworth PD, Sperandeo P, Polissi A. Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria. Pathogens 2024; 13:889. [PMID: 39452760 PMCID: PMC11510100 DOI: 10.3390/pathogens13100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health threat, necessitating immediate actions to develop novel antimicrobial strategies and enforce strong stewardship of existing antibiotics to manage the emergence of drug-resistant strains. This issue is particularly concerning when it comes to Gram-negative bacteria, which possess an almost impenetrable outer membrane (OM) that acts as a formidable barrier to existing antimicrobial compounds. This OM is an asymmetric structure, composed of various components that confer stability, fluidity, and integrity to the bacterial cell. The maintenance and restoration of membrane integrity are regulated by envelope stress response systems (ESRs), which monitor its assembly and detect damages caused by external insults. Bacterial communities encounter a wide range of environmental niches to which they must respond and adapt for survival, sustenance, and virulence. ESRs play crucial roles in coordinating the expression of virulence factors, adaptive physiological behaviors, and antibiotic resistance determinants. Given their role in regulating bacterial cell physiology and maintaining membrane homeostasis, ESRs present promising targets for drug development. Considering numerous studies highlighting the involvement of ESRs in virulence, antibiotic resistance, and alternative resistance mechanisms in pathogens, this review aims to present these systems as potential drug targets, thereby encouraging further research in this direction.
Collapse
Affiliation(s)
| | | | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (R.B.); (P.D.C.); (A.P.)
| | | |
Collapse
|
4
|
Muñoz KA, Ulrich RJ, Vasan AK, Sinclair M, Wen PC, Holmes JR, Lee HY, Hung CC, Fields CJ, Tajkhorshid E, Lau GW, Hergenrother PJ. A Gram-negative-selective antibiotic that spares the gut microbiome. Nature 2024; 630:429-436. [PMID: 38811738 DOI: 10.1038/s41586-024-07502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
Infections caused by Gram-negative pathogens are increasingly prevalent and are typically treated with broad-spectrum antibiotics, resulting in disruption of the gut microbiome and susceptibility to secondary infections1-3. There is a critical need for antibiotics that are selective both for Gram-negative bacteria over Gram-positive bacteria, as well as for pathogenic bacteria over commensal bacteria. Here we report the design and discovery of lolamicin, a Gram-negative-specific antibiotic targeting the lipoprotein transport system. Lolamicin has activity against a panel of more than 130 multidrug-resistant clinical isolates, shows efficacy in multiple mouse models of acute pneumonia and septicaemia infection, and spares the gut microbiome in mice, preventing secondary infection with Clostridioides difficile. The selective killing of pathogenic Gram-negative bacteria by lolamicin is a consequence of low sequence homology for the target in pathogenic bacteria versus commensals; this doubly selective strategy can be a blueprint for the development of other microbiome-sparing antibiotics.
Collapse
Affiliation(s)
- Kristen A Muñoz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca J Ulrich
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Archit K Vasan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matt Sinclair
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Po-Chao Wen
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jessica R Holmes
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyang Yeon Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chien-Che Hung
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher J Fields
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emad Tajkhorshid
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Saxena D, Maitra R, Bormon R, Czekanska M, Meiers J, Titz A, Verma S, Chopra S. Tackling the outer membrane: facilitating compound entry into Gram-negative bacterial pathogens. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:17. [PMID: 39843585 PMCID: PMC11721184 DOI: 10.1038/s44259-023-00016-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/23/2023] [Indexed: 01/17/2025]
Abstract
Emerging resistance to all available antibiotics highlights the need to develop new antibiotics with novel mechanisms of action. Most of the currently used antibiotics target Gram-positive bacteria while Gram-negative bacteria easily bypass the action of most drug molecules because of their unique outer membrane. This additional layer acts as a potent barrier restricting the entry of compounds into the cell. In this scenario, several approaches have been elucidated to increase the accumulation of compounds into Gram-negative bacteria. This review includes a brief description of the physicochemical properties that can aid compounds to enter and accumulate in Gram-negative bacteria and covers different strategies to target or bypass the outer membrane-mediated barrier in Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Deepanshi Saxena
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| | - Rahul Maitra
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| | - Rakhi Bormon
- Department of Chemistry, IIT Kanpur, Kanpur, 208016, UP, India
| | - Marta Czekanska
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany
| | - Joscha Meiers
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany.
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany.
| | - Sandeep Verma
- Department of Chemistry, IIT Kanpur, Kanpur, 208016, UP, India.
- Center for Nanoscience, IIT Kanpur, Kanpur, 208016, UP, India.
| | - Sidharth Chopra
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Jung MS, Piazuelo MB, Brackman LC, McClain MS, Algood HMS. Essential role of Helicobacter pylori apolipoprotein N-acyltransferase (Lnt) in stomach colonization. Infect Immun 2023; 91:e0036923. [PMID: 37937999 PMCID: PMC10715074 DOI: 10.1128/iai.00369-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
Bacterial lipoproteins are post-translationally modified with acyl chains, anchoring these proteins to bacterial membranes. In Gram-negative bacteria, three enzymes complete the modifications. Lgt (which adds two acyl chains) and LspA (which removes the signal peptide) are essential. Lnt (which adds a third acyl chain) is not essential in certain bacteria including Francisella tularensis, Neisseria gonorrhoeae, and Acinetobacter baumannii. Deleting lnt results in mild to severe physiologic changes. We previously showed lnt is not essential for Helicobacter pylori growth in vitro. Here, the physiologic consequences of deleting lnt in H. pylori and the role of Lnt in the host response to H. pylori were examined using in vitro and in vivo models. Comparing wild-type, Δlnt, and complemented mutant H. pylori, no changes in growth rates or sensitivity to acid or antibiotics were observed. Since deleting lnt changes the number of acyl chains on lipoproteins and the number of acyl chains on lipoproteins impacts the innate immune response through Toll-like receptor 2 (TLR2) signaling, primary human gastric epithelial cells were treated with a purified lipoprotein from wild-type or lnt mutant H. pylori. Differential gene expression analysis indicated that lipoprotein from the lnt mutant induced a more robust TLR2 response. In a complementary approach, we infected wild-type and Tlr2-/- mice and found that both the wild-type and complemented mutant strains successfully colonized the animals. However, the lnt mutant strain was unable to colonize either mouse strain. These results show that lnt is essential for H. pylori colonization and identifies lipoprotein synthesis as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew S. Jung
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lee C. Brackman
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Holly M. Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Center for Immunobiology, Vanderbilt Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Gupta R, Singh M, Pathania R. Chemical genetic approaches for the discovery of bacterial cell wall inhibitors. RSC Med Chem 2023; 14:2125-2154. [PMID: 37974958 PMCID: PMC10650376 DOI: 10.1039/d3md00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Antimicrobial resistance (AMR) in bacterial pathogens is a worldwide health issue. The innovation gap in discovering new antibiotics has remained a significant hurdle in combating the AMR problem. Currently, antibiotics target various vital components of the bacterial cell envelope, nucleic acid and protein biosynthesis machinery and metabolic pathways essential for bacterial survival. The critical role of the bacterial cell envelope in cell morphogenesis and integrity makes it an attractive drug target. While a significant number of in-clinic antibiotics target peptidoglycan biosynthesis, several components of the bacterial cell envelope have been overlooked. This review focuses on various antibacterial targets in the bacterial cell wall and the strategies employed to find their novel inhibitors. This review will further elaborate on combining forward and reverse chemical genetic approaches to discover antibacterials that target the bacterial cell envelope.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| |
Collapse
|
8
|
Liu G, Catacutan DB, Rathod K, Swanson K, Jin W, Mohammed JC, Chiappino-Pepe A, Syed SA, Fragis M, Rachwalski K, Magolan J, Surette MG, Coombes BK, Jaakkola T, Barzilay R, Collins JJ, Stokes JM. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat Chem Biol 2023; 19:1342-1350. [PMID: 37231267 DOI: 10.1038/s41589-023-01349-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Acinetobacter baumannii is a nosocomial Gram-negative pathogen that often displays multidrug resistance. Discovering new antibiotics against A. baumannii has proven challenging through conventional screening approaches. Fortunately, machine learning methods allow for the rapid exploration of chemical space, increasing the probability of discovering new antibacterial molecules. Here we screened ~7,500 molecules for those that inhibited the growth of A. baumannii in vitro. We trained a neural network with this growth inhibition dataset and performed in silico predictions for structurally new molecules with activity against A. baumannii. Through this approach, we discovered abaucin, an antibacterial compound with narrow-spectrum activity against A. baumannii. Further investigations revealed that abaucin perturbs lipoprotein trafficking through a mechanism involving LolE. Moreover, abaucin could control an A. baumannii infection in a mouse wound model. This work highlights the utility of machine learning in antibiotic discovery and describes a promising lead with targeted activity against a challenging Gram-negative pathogen.
Collapse
Affiliation(s)
- Gary Liu
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Denise B Catacutan
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Khushi Rathod
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Kyle Swanson
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wengong Jin
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jody C Mohammed
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Anush Chiappino-Pepe
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Saad A Syed
- Department of Medicine, Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Meghan Fragis
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth Rachwalski
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Surette
- Department of Medicine, Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Tommi Jaakkola
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Regina Barzilay
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Abdul Latif Jameel Clinic for Machine Learning in Health, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Abdul Latif Jameel Clinic for Machine Learning in Health, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Jonathan M Stokes
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
9
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
10
|
Jaiman D, Nagampalli R, Persson K. A comparative analysis of lipoprotein transport proteins: LolA and LolB from Vibrio cholerae and LolA from Porphyromonas gingivalis. Sci Rep 2023; 13:6605. [PMID: 37095149 PMCID: PMC10126205 DOI: 10.1038/s41598-023-33705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023] Open
Abstract
In Gram-negative bacteria, N-terminal lipidation is a signal for protein trafficking from the inner membrane (IM) to the outer membrane (OM). The IM complex LolCDE extracts lipoproteins from the membrane and moves them to the chaperone LolA. The LolA-lipoprotein complex crosses the periplasm after which the lipoprotein is anchored to the OM. In γ-proteobacteria anchoring is assisted by the receptor LolB, while a corresponding protein has not been identified in other phyla. In light of the low sequence similarity between Lol-systems from different phyla and that they may use different Lol components, it is crucial to compare representative proteins from several species. Here we present a structure-function study of LolA and LolB from two phyla: LolA from Porphyromonas gingivalis (phylum bacteroidota), and LolA and LolB from Vibrio cholerae (phylum proteobacteria). Despite large sequence differences, the LolA structures are very similar, hence structure and function have been conserved throughout evolution. However, an Arg-Pro motif crucial for function in γ-proteobacteria has no counterpart in bacteroidota. We also show that LolA from both phyla bind the antibiotic polymyxin B whereas LolB does not. Collectively, these studies will facilitate the development of antibiotics as they provide awareness of both differences and similarities across phyla.
Collapse
Affiliation(s)
- Deepika Jaiman
- Umeå Centre for Microbial Research (UCMR), Umeå, Sweden
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Raghavendra Nagampalli
- Umeå Centre for Microbial Research (UCMR), Umeå, Sweden
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Karina Persson
- Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
11
|
Vercruysse M, Dylus D. Special issue of BBA reviews — Molecular Cell Research: The Gram-negative envelope and potential targets for novel antibiotics. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR CELL RESEARCH 2023; 1870:119472. [PMID: 37011731 DOI: 10.1016/j.bbamcr.2023.119472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 04/03/2023]
|
12
|
Ye J, Chen X. Current Promising Strategies against Antibiotic-Resistant Bacterial Infections. Antibiotics (Basel) 2022; 12:antibiotics12010067. [PMID: 36671268 PMCID: PMC9854991 DOI: 10.3390/antibiotics12010067] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Infections caused by antibiotic-resistant bacteria (ARB) are one of the major global health challenges of our time. In addition to developing new antibiotics to combat ARB, sensitizing ARB, or pursuing alternatives to existing antibiotics are promising options to counter antibiotic resistance. This review compiles the most promising anti-ARB strategies currently under development. These strategies include the following: (i) discovery of novel antibiotics by modification of existing antibiotics, screening of small-molecule libraries, or exploration of peculiar places; (ii) improvement in the efficacy of existing antibiotics through metabolic stimulation or by loading a novel, more efficient delivery systems; (iii) development of alternatives to conventional antibiotics such as bacteriophages and their encoded endolysins, anti-biofilm drugs, probiotics, nanomaterials, vaccines, and antibody therapies. Clinical or preclinical studies show that these treatments possess great potential against ARB. Some anti-ARB products are expected to become commercially available in the near future.
Collapse
|
13
|
Natural Inhibitors Targeting the Localization of Lipoprotein System in Vibrio parahaemolyticus. Int J Mol Sci 2022; 23:ijms232214352. [PMID: 36430829 PMCID: PMC9696335 DOI: 10.3390/ijms232214352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The localization of lipoprotein (Lol) system is responsible for the transport of lipoproteins in the outer membrane (OM) of Vibrio parahaemolyticus. LolB catalyzes the last step in the Lol system, where lipoproteins are inserted into the OM. If the function of LolB is impeded, growth of V. parahaemolyticus is inhibited, due to lack of an intact OM barrier for protection against the external environment. Additionally, it becomes progressively harder to generate antimicrobial resistance (AMR). In this study, LolB was employed as the receptor for a high-throughput virtual screening from a natural compounds database. Compounds with higher glide score were selected for an inhibition assay against V. parahaemolyticus. It was found that procyanidin, stevioside, troxerutin and rutin had both exciting binding affinity with LolB in the micromolar range and preferable antibacterial activity in a concentration-dependent manner. The inhibition rates of 100 ppm were 87.89%, 86.2%, 91.39% and 83.71%, respectively. The bacteriostatic mechanisms of the four active compounds were explored further via fluorescence spectroscopy and molecular docking, illustrating that each molecule formed a stable complex with LolB via hydrogen bonds and pi-pi stacking interactions. Additionally, the critical sites for interaction with V. parahaemolyticus LolB, Tyr108 and Gln68, were also illustrated. This paper demonstrates the inhibition of LolB, thus, leading to antibacterial activity, and identifies LolB as a promising drug target for the first time. These compounds could be the basis for potential antibacterial agents against V. parahaemolyticus.
Collapse
|
14
|
Past, Present, and Future of Genome Modification in Escherichia coli. Microorganisms 2022; 10:microorganisms10091835. [PMID: 36144436 PMCID: PMC9504249 DOI: 10.3390/microorganisms10091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
Escherichia coli K-12 is one of the most well-studied species of bacteria. This species, however, is much more difficult to modify by homologous recombination (HR) than other model microorganisms. Research on HR in E. coli has led to a better understanding of the molecular mechanisms of HR, resulting in technical improvements and rapid progress in genome research, and allowing whole-genome mutagenesis and large-scale genome modifications. Developments using λ Red (exo, bet, and gam) and CRISPR-Cas have made E. coli as amenable to genome modification as other model microorganisms, such as Saccharomyces cerevisiae and Bacillus subtilis. This review describes the history of recombination research in E. coli, as well as improvements in techniques for genome modification by HR. This review also describes the results of large-scale genome modification of E. coli using these technologies, including DNA synthesis and assembly. In addition, this article reviews recent advances in genome modification, considers future directions, and describes problems associated with the creation of cells by design.
Collapse
|
15
|
Structural basis of lipoprotein recognition by the bacterial Lol trafficking chaperone LolA. Proc Natl Acad Sci U S A 2022; 119:e2208662119. [PMID: 36037338 PMCID: PMC9457489 DOI: 10.1073/pnas.2208662119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipoproteins in gram-negative bacteria underpin the formation and maintenance of the outer membrane that constitutes a vital protective barrier against antibiotics and other noxious molecules. An essential transport system comprising the LolABCDE proteins is required to traffic lipoproteins to the outer membrane. Following maturation on the inner membrane and extraction by the LolCDE transporter, lipoproteins are passed to the chaperone LolA that carries them across the periplasm prior to insertion into the outer membrane by the LolB receptor. Here, we report the molecular details of lipoprotein interaction with the chaperone LolA, a key intermediate located at the heart of the Lol pathway. The structure provides valuable insights into this important system and could be exploited to develop new antimicrobials. In gram-negative bacteria, lipoproteins are vital structural components of the outer membrane (OM) and crucial elements of machineries central to the physiology of the cell envelope. A dedicated apparatus, the Lol system, is required for the correct localization of OM lipoproteins and is essential for viability. The periplasmic chaperone LolA is central to this trafficking pathway, accepting triacylated lipoproteins from the inner membrane transporter LolCDE, before carrying them across the periplasm to the OM receptor LolB. Here, we report a crystal structure of liganded LolA, generated in vivo, revealing the molecular details of lipoprotein association. The structure highlights how LolA, initially primed to receive lipoprotein by interaction with LolC, further opens to accommodate the three ligand acyl chains in a precise conformation within its cavity. LolA forms extensive interactions with the acyl chains but not with any residue of the cargo, explaining the chaperone’s ability to transport structurally diverse lipoproteins. Structural characterization of a ligandedLolA variant incapable of lipoprotein release reveals aberrant association, demonstrating the importance of the LolCDE-coordinated, sequential opening of LolA for inserting lipoprotein in a manner productive for subsequent trafficking. Comparison with existing structures of LolA in complex with LolC or LolCDE reveals substantial overlap of the lipoprotein and LolC binding sites within the LolA cavity, demonstrating that insertion of lipoprotein acyl chains physically disengages the chaperone protein from the transporter by perturbing interaction with LolC. Taken together, our data provide a key step toward a complete understanding of a fundamentally important trafficking pathway.
Collapse
|
16
|
Abstract
The outer membrane (OM) of Gram-negative bacteria is an essential organelle that acts as a formidable barrier to antibiotics. Increasingly prevalent resistance to existing drugs has exacerbated the need for antibiotic discovery efforts targeting the OM. Acylated proteins, known as lipoproteins, are essential in every pathway needed to build the OM. The central role of OM lipoproteins makes their biogenesis a uniquely attractive therapeutic target, but it also complicates in vivo identification of on-pathway inhibitors, as inhibition of OM lipoprotein biogenesis broadly disrupts OM assembly. Here, we use genetics to probe the eight essential proteins involved in OM lipoprotein maturation and trafficking. We define a biological signature consisting of three simple assays that can characteristically identify OM lipoprotein biogenesis defects in vivo. We find that several known chemical inhibitors of OM lipoprotein biogenesis conform to the biological signature. We also examine MAC13243, a proposed inhibitor of OM lipoprotein biogenesis, and find that it fails to conform to the biological signature. Indeed, we demonstrate that MAC13243 activity relies entirely on a target outside of the OM lipoprotein biogenesis pathway. Hence, our signature offers simple tools to easily assess whether antibiotic lead compounds target an essential pathway that is the hub of OM assembly.
Collapse
|
17
|
Impact of the Gram-Negative-Selective Inhibitor MAC13243 on In Vitro Simulated Gut Microbiota. Pharmaceuticals (Basel) 2022; 15:ph15060731. [PMID: 35745650 PMCID: PMC9229071 DOI: 10.3390/ph15060731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
New Gram-negative-selective antimicrobials are desirable to avoid perturbations in the gut microbiota leading to antibiotic-induced dysbiosis. We investigated the impact of a prototype drug (MAC13243) interfering with the Gram-negative outer membrane protein LolA on the faecal microbiota. Faecal suspensions from two healthy human donors were exposed to MAC13243 (16, 32, or 64 mg/L) using an in vitro gut model (CoMiniGut). Samples collected 0, 4, and 8 h after exposure were subjected to viable cell counts, 16S rRNA gene quantification and V3-V4 sequencing using the Illumina MiSeq platform. MAC13243 exhibited concentration-dependent killing of coliforms in both donors after 8 h. Concentrations of ≤32 mg/L reduced the growth of aerobic bacteria without influencing the microbiota composition and diversity. An expansion of Firmicutes at the expense of Bacteroidetes and Actinobacteria was observed in the faecal microbiota from one donor following exposure to 64 mg/L of MAC13242. At all concentrations tested, MAC13243 did not lead to the proliferation of Escherichia coli nor a reduced abundance of beneficial bacteria, which are typical changes observed in antibiotic-induced dysbiosis. These results support our hypothesis that a drug interfering with a specific target in Gram-negative bacteria has a low impact on the commensal gut microbiota and, therefore, a low risk of inducing dysbiosis.
Collapse
|
18
|
Warrier T, Romano KP, Clatworthy AE, Hung DT. Integrated genomics and chemical biology herald an era of sophisticated antibacterial discovery, from defining essential genes to target elucidation. Cell Chem Biol 2022; 29:716-729. [PMID: 35523184 PMCID: PMC9893512 DOI: 10.1016/j.chembiol.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023]
Abstract
The golden age of antibiotic discovery in the 1940s-1960s saw the development and deployment of many different classes of antibiotics, revolutionizing the field of medicine. Since that time, our ability to discover antibiotics of novel structural classes or mechanisms has not kept pace with the ever-growing threat of antibiotic resistance. Recently, advances at the intersection of genomics and chemical biology have enabled efforts to better define the vulnerabilities of essential gene targets, to develop sophisticated whole-cell chemical screening methods that reveal target biology early, and to elucidate small molecule targets and modes of action more effectively. These new technologies have the potential to expand the chemical diversity of antibiotic candidates, as well as the breadth of targets. We illustrate how the latest tools of genomics and chemical biology are being integrated to better understand pathogen vulnerabilities and antibiotic mechanisms in order to inform a new era of antibiotic discovery.
Collapse
Affiliation(s)
- Thulasi Warrier
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Keith P Romano
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Anne E Clatworthy
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Deborah T Hung
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Hogan AM, Cardona ST. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol Rev 2022; 46:fuac005. [PMID: 35104846 PMCID: PMC9075587 DOI: 10.1093/femsre/fuac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543 - 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
20
|
Abstract
Despite the ever-growing antibiotic resistance crisis, the rate at which new antimicrobials are being discovered and approved for human use has rapidly declined over the past 75 years. A barrier for advancing newly identified antibiotics beyond discovery is elucidating their mechanism(s) of action.
Collapse
|
21
|
Dhyani R, Srivastava SK, Shankar K, Ghosh T, Beniwal A, Navani NK. A chemical genetic approach using genetically encoded reporters to detect and assess the toxicity of plant secondary metabolites against bacterial pathogens. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126399. [PMID: 34329040 DOI: 10.1016/j.jhazmat.2021.126399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Plant secondary metabolites are emerging as attractive alternatives in the development of therapeutics against infectious and chronic diseases. Due to the present pandemic, therapeutics showing toxicity against bacterial pathogens and viruses are gaining interest. Plant metabolites of terpenoid and phenylpropanoid categories have known antibacterial and antiviral properties. These metabolites have also been associated with toxicity to eukaryotic cells in terms of carcinogenicity, hepatotoxicity, and neurotoxicity. Sensing methods that can report the exact antibacterial dosage, formation, and accumulation of these antibacterial compounds are needed. The whole-cell reporters for such antibacterial metabolites are cost-effective and easy to maintain. In the present study, battery of toxicity sensors containing fluorescent transcriptional bioreporters was constructed, followed by fine-tuning the response using gene-debilitated E. coli mutants. This study shows that by combining regulatory switches with chemical genetics strategy, it may be possible to detect and elucidate the mode of action of effective antibacterial plant secondary metabolites - thymol, cinnamaldehyde, eugenol, and carvacrol in both pure and complex formats. Apart from the detection of adulteration of pure compounds present in complex mixture of essential oils, this approach will be useful to detect authenticity of essential oils and thus reduce unintended harmful effects on human and animal health.
Collapse
Affiliation(s)
- Rajat Dhyani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | | | - Krishna Shankar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Tamoghna Ghosh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Arun Beniwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Naveen Kumar Navani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
22
|
Ribeiro da Cunha B, Aleixo SM, Fonseca LP, Calado CRC. Fast identification of off-target liabilities in early antibiotic discovery with Fourier-transform infrared spectroscopy. Biotechnol Bioeng 2021; 118:4465-4476. [PMID: 34396508 DOI: 10.1002/bit.27915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/23/2022]
Abstract
Structural modifications of known antibiotic scaffolds have kept the upper hand on resistance, but we are on the verge of not having antibiotics for many common infections. Mechanism-based discovery assays reveal novelty, exclude off-target liabilities, and guide lead optimization. For that, we developed a fast and automatable protocol using high-throughput Fourier-transform infrared spectroscopy (FTIRS). Metabolic fingerprints of Staphylococcus aureus and Escherichia coli exposed to 35 compounds, dissolved in dimethyl sulfoxide (DMSO) or water, were acquired. Our data analysis pipeline identified biomarkers of off-target effects, optimized spectral preprocessing, and identified the top-performing machine learning algorithms for off-target liabilities and mechanism of action (MOA) identification. Spectral bands with known biochemical associations more often yielded more significant biomarkers of off-target liabilities when bacteria were exposed to compounds dissolved in water than DMSO. Highly discriminative models distinguished compounds with predominant off-target effects from antibiotics with well-defined MOA (AUROC > 0.87, AUPR > 0.79, F1 > 0.81), and from the latter predicted their MOA (AUROC > 0.88, AUPR > 0.70, F1 > 0.70). The compound solvent did not affect predictive models. FTIRS is fast, simple, inexpensive, automatable, and highly effective at predicting MOA and off-target liabilities. As such, FTIRS mechanism-based screening assays can be applied for hit discovery and to guide lead optimization during the early stages of antibiotic discovery.
Collapse
Affiliation(s)
- Bernardo Ribeiro da Cunha
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Lisboa, Portugal.,Área Departamental de Engenharia Química (ADEQ), ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Sandra M Aleixo
- Área Departamental de Matemática (ADM), ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal.,Centro de Estatística e Aplicações da Universidade de Lisboa (CEAUL), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Luís P Fonseca
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Lisboa, Portugal
| | - Cecília R C Calado
- Área Departamental de Engenharia Química (ADEQ), ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal.,CIMOSM, ISEL-Centro de Investigação em Modelação e Otimização de Sistemas Multifuncionais, Instituto Superior de Engenharia de Lisboa, Lisboa, Portugal
| |
Collapse
|
23
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
24
|
Bhando T, Bhattacharyya T, Gaurav A, Akhter J, Saini M, Gupta VK, Srivastava SK, Sen H, Navani NK, Gupta V, Biswas D, Chaudhry R, Pathania R. Antibacterial properties and in vivo efficacy of a novel nitrofuran, IITR06144, against MDR pathogens. J Antimicrob Chemother 2021; 75:418-428. [PMID: 31665357 DOI: 10.1093/jac/dkz428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The emergence of MDR Gram-negative pathogens and increasing prevalence of chronic infections presents an unmet need for the discovery of novel antibacterial agents. The aim of this study was to evaluate the biological properties of a small molecule, IITR06144, identified in a phenotypic screen against the Gram-negative model organism Escherichia coli. METHODS A small-molecule library of 10956 compounds was screened for growth inhibition against E. coli ATCC 25922 at concentration 50 μM. MICs of lead compounds were determined by the broth microdilution method. Time-kill kinetics, anti-persister activity, spontaneous frequency of resistance, biofilm inhibition and disruption were assessed by standard protocols. Resistant mutants were generated by serial passaging followed by WGS. In vitro toxicity studies were carried out via the MTT assay. In vivo toxicity and efficacy in a mouse model were also evaluated. RESULTS IITR06144 was identified as the most promising candidate amongst 29 other potential antibacterial leads, exhibiting the lowest MIC, 0.5 mg/L. IITR06144 belongs to the nitrofuran class and exhibited broad-spectrum bactericidal activity against most MDR bacteria, including the 'priority pathogen', carbapenem-resistant Acinetobacter baumannii. IITR06144 retained its potency against nitrofurantoin-resistant clinical isolates. It displayed anti-persister, anti-biofilm activity and lack of spontaneous resistance development. IITR06144 demonstrated a large therapeutic index with no associated in vitro and in vivo toxicity. CONCLUSIONS In the light of excellent in vitro properties displayed by IITR06144 coupled with its considerable in vivo efficacy, further evaluation of IITR06144 as a therapeutic lead against antibiotic-resistant infections is warranted.
Collapse
Affiliation(s)
- Timsy Bhando
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Tapas Bhattacharyya
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Amit Gaurav
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Jawed Akhter
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Mahak Saini
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Vivek Kumar Gupta
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | | | - Himanshu Sen
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Naveen K Navani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Varsha Gupta
- Department of Microbiology, Government Medical College & Hospital, Chandigarh, India
| | - Debasis Biswas
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjana Pathania
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
25
|
In Silico Prediction and Prioritization of Novel Selective Antimicrobial Drug Targets in Escherichia coli. Antibiotics (Basel) 2021; 10:antibiotics10060632. [PMID: 34070637 PMCID: PMC8229198 DOI: 10.3390/antibiotics10060632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
Novel antimicrobials interfering with pathogen-specific targets can minimize the risk of perturbations of the gut microbiota (dysbiosis) during therapy. We employed an in silico approach to identify essential proteins in Escherichia coli that are either absent or have low sequence identity in seven beneficial taxa of the gut microbiota: Faecalibacterium, Prevotella, Ruminococcus, Bacteroides, Lactobacillus, Lachnospiraceae and Bifidobacterium. We identified 36 essential proteins that are present in hyper-virulent E. coli ST131 and have low similarity (bitscore < 50 or identity < 30% and alignment length < 25%) to proteins in mammalian hosts and beneficial taxa. Of these, 35 are also present in Klebsiella pneumoniae. None of the proteins are targets of clinically used antibiotics, and 3D structure is available for 23 of them. Four proteins (LptD, LptE, LolB and BamD) are easily accessible as drug targets due to their location in the outer membrane, especially LptD, which contains extracellular domains. Our results indicate that it may be possible to selectively interfere with essential biological processes in Enterobacteriaceae that are absent or mediated by unrelated proteins in beneficial taxa residing in the gut. The identified targets can be used to discover antimicrobial drugs effective against these opportunistic pathogens with a decreased risk of causing dysbiosis.
Collapse
|
26
|
da Cunha BR, Zoio P, Fonseca LP, Calado CRC. Technologies for High-Throughput Identification of Antibiotic Mechanism of Action. Antibiotics (Basel) 2021; 10:565. [PMID: 34065815 PMCID: PMC8151116 DOI: 10.3390/antibiotics10050565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/23/2023] Open
Abstract
There are two main strategies for antibiotic discovery: target-based and phenotypic screening. The latter has been much more successful in delivering first-in-class antibiotics, despite the major bottleneck of delayed Mechanism-of-Action (MOA) identification. Although finding new antimicrobial compounds is a very challenging task, identifying their MOA has proven equally challenging. MOA identification is important because it is a great facilitator of lead optimization and improves the chances of commercialization. Moreover, the ability to rapidly detect MOA could enable a shift from an activity-based discovery paradigm towards a mechanism-based approach. This would allow to probe the grey chemical matter, an underexplored source of structural novelty. In this study we review techniques with throughput suitable to screen large libraries and sufficient sensitivity to distinguish MOA. In particular, the techniques used in chemical genetics (e.g., based on overexpression and knockout/knockdown collections), promoter-reporter libraries, transcriptomics (e.g., using microarrays and RNA sequencing), proteomics (e.g., either gel-based or gel-free techniques), metabolomics (e.g., resourcing to nuclear magnetic resonance or mass spectrometry techniques), bacterial cytological profiling, and vibrational spectroscopy (e.g., Fourier-transform infrared or Raman scattering spectroscopy) were discussed. Ultimately, new and reinvigorated phenotypic assays bring renewed hope in the discovery of a new generation of antibiotics.
Collapse
Affiliation(s)
- Bernardo Ribeiro da Cunha
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (B.R.d.C.); (P.Z.); (L.P.F.)
| | - Paulo Zoio
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (B.R.d.C.); (P.Z.); (L.P.F.)
- CIMOSM—Centro de Investigação em Modelação e Optimização de Sistemas Multifuncionais, ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| | - Luís P. Fonseca
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (B.R.d.C.); (P.Z.); (L.P.F.)
| | - Cecília R. C. Calado
- CIMOSM—Centro de Investigação em Modelação e Optimização de Sistemas Multifuncionais, ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| |
Collapse
|
27
|
Farha MA, French S, Brown ED. Systems-Level Chemical Biology to Accelerate Antibiotic Drug Discovery. Acc Chem Res 2021; 54:1909-1920. [PMID: 33787225 DOI: 10.1021/acs.accounts.1c00011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-resistant bacterial infections pose an imminent and growing threat to public health. The discovery and development of new antibiotics of novel chemical class and mode of action that are unsusceptible to existing resistance mechanisms is imperative for tackling this threat. Modern industrial drug discovery, however, has failed to provide new drugs of this description, as it is dependent largely on a reductionist genes-to-drugs research paradigm. We posit that the lack of success in new antibiotic drug discovery is due in part to a lack of understanding of the bacterial cell system as whole. A fundamental understanding of the architecture and function of bacterial systems has been elusive but is of critical importance to design strategies to tackle drug-resistant bacterial pathogens.Increasingly, systems-level approaches are rewriting our understanding of the cell, defining a dense network of redundant and interacting components that resist perturbations of all kinds, including by antibiotics. Understanding the network properties of bacterial cells requires integrative, systematic, and genome-scale approaches. These methods strive to understand how the phenotypic behavior of bacteria emerges from the many interactions of individual molecular components that constitute the system. With the ability to examine genomic, transcriptomic, proteomic, and metabolomic consequences of, for example, genetic or chemical perturbations, researchers are increasingly moving away from one-gene-at-a-time studies to consider the system-wide response of the cell. Such measurements are demonstrating promise as quantitative tools, powerful discovery engines, and robust hypothesis generators with great value to antibiotic drug discovery.In this Account, we describe our thinking and findings using systems-level studies aimed at understanding bacterial physiology broadly and in uncovering new antibacterial chemical matter of novel mechanism. We share our systems-level toolkit and detail recent technological developments that have enabled unprecedented acquisition of genome-wide interaction data. We focus on three types of interactions: gene-gene, chemical-gene, and chemical-chemical. We provide examples of their use in understanding cell networks and how these insights might be harnessed for new antibiotic discovery. By example, we show the application of these principles in mapping genetic networks that underpin phenotypes of interest, characterizing genes of unknown function, validating small-molecule screening platforms, uncovering novel chemical probes and antibacterial leads, and delineating the mode of action of antibacterial chemicals. We also discuss the importance of computation to these approaches and its probable dominance as a tool for systems approaches in the future. In all, we advocate for the use of systems-based approaches as discovery engines in antibacterial research, both as powerful tools and to stimulate innovation.
Collapse
Affiliation(s)
- Maya A. Farha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Shawn French
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Eric D. Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
28
|
Yuan T, Werman JM, Sampson NS. The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC Chem Biol 2021; 2:423-440. [PMID: 33928253 PMCID: PMC8081351 DOI: 10.1039/d0cb00226g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Whole cell-based phenotypic screens have become the primary mode of hit generation in tuberculosis (TB) drug discovery during the last two decades. Different drug screening models have been developed to mirror the complexity of TB disease in the laboratory. As these culture conditions are becoming more and more sophisticated, unraveling the drug target and the identification of the mechanism of action (MOA) of compounds of interest have additionally become more challenging. A good understanding of MOA is essential for the successful delivery of drug candidates for TB treatment due to the high level of complexity in the interactions between Mycobacterium tuberculosis (Mtb) and the TB drug used to treat the disease. There is no single "standard" protocol to follow and no single approach that is sufficient to fully investigate how a drug restrains Mtb. However, with the recent advancements in -omics technologies, there are multiple strategies that have been developed generally in the field of drug discovery that have been adapted to comprehensively characterize the MOAs of TB drugs in the laboratory. These approaches have led to the successful development of preclinical TB drug candidates, and to a better understanding of the pathogenesis of Mtb infection. In this review, we describe a plethora of efforts based upon genetic, metabolomic, biochemical, and computational approaches to investigate TB drug MOAs. We assess these different platforms for their strengths and limitations in TB drug MOA elucidation in the context of Mtb pathogenesis. With an emphasis on the essentiality of MOA identification, we outline the unmet needs in delivering TB drug candidates and provide direction for further TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| |
Collapse
|
29
|
Effective Small Molecule Antibacterials from a Novel Anti-Protein Secretion Screen. Microorganisms 2021; 9:microorganisms9030592. [PMID: 33805695 PMCID: PMC8000395 DOI: 10.3390/microorganisms9030592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/03/2022] Open
Abstract
The increasing problem of bacterial resistance to antibiotics underscores the urgent need for new antibacterials. Protein export pathways are attractive potential targets. The Sec pathway is essential for bacterial viability and includes components that are absent from eukaryotes. Here, we used a new high-throughput in vivo screen based on the secretion and activity of alkaline phosphatase (PhoA), a Sec-dependent secreted enzyme that becomes active in the periplasm. The assay was optimized for a luminescence-based substrate and was used to screen a ~240K small molecule compound library. After hit confirmation and analoging, 14 HTS secretion inhibitors (HSI), belonging to eight structural classes, were identified with IC50 < 60 µM. The inhibitors were evaluated as antibacterials against 19 Gram-negative and Gram-positive bacterial species (including those from the WHO’s top pathogens list). Seven of them—HSI#6, 9; HSI#1, 5, 10; and HSI#12, 14—representing three structural families, were bacteriocidal. HSI#6 was the most potent hit against 13 species of both Gram-negative and Gram-positive bacteria with IC50 of 0.4 to 8.7 μM. HSI#1, 5, 9 and 10 inhibited the viability of Gram-positive bacteria with IC50 ~6.9–77.8 μM. HSI#9, 12, and 14 inhibited the viability of E. coli strains with IC50 < 65 μM. Moreover, HSI#1, 5 and 10 inhibited the viability of an E. coli strain missing TolC to improve permeability with IC50 4 to 14 μM, indicating their inability to penetrate the outer membrane. The antimicrobial activity was not related to the inhibition of the SecA component of the translocase in vitro, and hence, HSI molecules may target new unknown components that directly or indirectly affect protein secretion. The results provided proof of the principle that the new broad HTS approach can yield attractive nanomolar inhibitors that have potential as new starting compounds for optimization to derive potential antibiotics.
Collapse
|
30
|
Legood S, Boneca IG, Buddelmeijer N. Mode of action of lipoprotein modification enzymes-Novel antibacterial targets. Mol Microbiol 2021; 115:356-365. [PMID: 32979868 PMCID: PMC8048626 DOI: 10.1111/mmi.14610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Indexed: 01/04/2023]
Abstract
Lipoproteins are characterized by a fatty acid moiety at their amino-terminus through which they are anchored into membranes. They fulfill a variety of essential functions in bacterial cells, such as cell wall maintenance, virulence, efflux of toxic elements including antibiotics, and uptake of nutrients. The posttranslational modification process of lipoproteins involves the sequential action of integral membrane enzymes and phospholipids as acyl donors. In recent years, the structures of the lipoprotein modification enzymes have been solved by X-ray crystallography leading to a greater insight into their function and the molecular mechanism of the reactions. The catalytic domains of the enzymes are exposed to the periplasm or external milieu and are readily accessible to small molecules. Since the lipoprotein modification pathway is essential in proteobacteria, it is a potential target for the development of novel antibiotics. In this review, we discuss recent literature on the structural characterization of the enzymes, and the in vitro activity assays compatible with high-throughput screening for inhibitors, with perspectives on the development of new antimicrobial agents.
Collapse
Affiliation(s)
- Simon Legood
- Institut PasteurUnité Biologie et Génétique de la Paroi BactérienneParisFrance
- CNRS, UMR 2001 « Microbiologie intégrative et Moléculaire »ParisFrance
- INSERM Groupe AvenirParisFrance
- Université de ParisSorbonne Paris CitéParisFrance
| | - Ivo G. Boneca
- Institut PasteurUnité Biologie et Génétique de la Paroi BactérienneParisFrance
- CNRS, UMR 2001 « Microbiologie intégrative et Moléculaire »ParisFrance
- INSERM Groupe AvenirParisFrance
| | - Nienke Buddelmeijer
- Institut PasteurUnité Biologie et Génétique de la Paroi BactérienneParisFrance
- CNRS, UMR 2001 « Microbiologie intégrative et Moléculaire »ParisFrance
- INSERM Groupe AvenirParisFrance
| |
Collapse
|
31
|
Pedebos C, Smith IPS, Boags A, Khalid S. The hitchhiker's guide to the periplasm: Unexpected molecular interactions of polymyxin B1 in E. coli. Structure 2021; 29:444-456.e2. [PMID: 33577754 DOI: 10.1016/j.str.2021.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/11/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
The periplasm of Gram-negative bacteria is a complex, highly crowded molecular environment. Little is known about how antibiotics move across the periplasm and the interactions they experience. Here, atomistic molecular dynamics simulations are used to study the antibiotic polymyxin B1 within models of the periplasm, which are crowded to different extents. We show that PMB1 is likely to be able to "hitchhike" within the periplasm by binding to lipoprotein carriers-a previously unreported passive transport route. The simulations reveal that PMB1 forms both transient and long-lived interactions with proteins, osmolytes, lipids of the outer membrane, and the cell wall, and is rarely uncomplexed when in the periplasm. Furthermore, it can interfere in the conformational dynamics of native proteins. These are important considerations for interpreting its mechanism of action and are likely to also hold for other antibiotics that rely on diffusion to cross the periplasm.
Collapse
Affiliation(s)
- Conrado Pedebos
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Iain Peter Shand Smith
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Alister Boags
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| |
Collapse
|
32
|
Peraman R, Sure SK, Dusthackeer VNA, Chilamakuru NB, Yiragamreddy PR, Pokuri C, Kutagulla VK, Chinni S. Insights on recent approaches in drug discovery strategies and untapped drug targets against drug resistance. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:56. [PMID: 33686369 PMCID: PMC7928709 DOI: 10.1186/s43094-021-00196-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite the various strategies undertaken in the clinical practice, the mortality rate due to antibiotic-resistant microbes has been markedly increasing worldwide. In addition to multidrug-resistant (MDR) microbes, the "ESKAPE" bacteria are also emerging. Of course, the infection caused by ESKAPE cannot be treated even with lethal doses of antibiotics. Now, the drug resistance is also more prevalent in antiviral, anticancer, antimalarial and antifungal chemotherapies. MAIN BODY To date, in the literature, the quantum of research reported on the discovery strategies for new antibiotics is remarkable but the milestone is still far away. Considering the need of the updated strategies and drug discovery approaches in the area of drug resistance among researchers, in this communication, we consolidated the insights pertaining to new drug development against drug-resistant microbes. It includes drug discovery void, gene paradox, transposon mutagenesis, vitamin biosynthesis inhibition, use of non-conventional media, host model, target through quorum sensing, genomic-chemical network, synthetic viability to targets, chemical versus biological space, combinational approach, photosensitization, antimicrobial peptides and transcriptome profiling. Furthermore, we optimally briefed about antievolution drugs, nanotheranostics and antimicrobial adjuvants and then followed by twelve selected new feasible drug targets for new drug design against drug resistance. Finally, we have also tabulated the chemical structures of potent molecules against antimicrobial resistance. CONCLUSION It is highly recommended to execute the anti-drug resistance research as integrated approach where both molecular and genetic research needs to be as integrative objective of drug discovery. This is time to accelerate new drug discovery research with advanced genetic approaches instead of conventional blind screening.
Collapse
Affiliation(s)
- Ramalingam Peraman
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Sathish Kumar Sure
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - V. N. Azger Dusthackeer
- grid.417330.20000 0004 1767 6138ICMR-National Institute of Research in Tuberculosis, Chennai, Tamilnadu India
| | - Naresh Babu Chilamakuru
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Padmanabha Reddy Yiragamreddy
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Chiranjeevi Pokuri
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Vinay Kumar Kutagulla
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Santhivardhan Chinni
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| |
Collapse
|
33
|
Pandeya A, Ojo I, Alegun O, Wei Y. Periplasmic Targets for the Development of Effective Antimicrobials against Gram-Negative Bacteria. ACS Infect Dis 2020; 6:2337-2354. [PMID: 32786281 PMCID: PMC8187054 DOI: 10.1021/acsinfecdis.0c00384] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibiotic resistance has emerged as a serious threat to global public health in recent years. Lack of novel antimicrobials, especially new classes of compounds, further aggravates the situation. For Gram-negative bacteria, their double layered cell envelope and an array of efflux pumps act as formidable barriers for antimicrobials to penetrate. While cytoplasmic targets are hard to reach, proteins in the periplasm are clearly more accessible, as the drug only needs to breach the outer membrane. In this review, we summarized recent efforts on the validation and testing of periplasmic proteins as potential antimicrobial targets and the development of related inhibitors that either inhibit the growth of a bacterial pathogen or reduce its virulence during interaction with host cells. We conclude that the periplasm contains a promising pool of novel antimicrobial targets that should be scrutinized more closely for the development of effective treatment against multidrug-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Ankit Pandeya
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Isoiza Ojo
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Olaniyi Alegun
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
34
|
Multiple ways to kill bacteria via inhibiting novel cell wall or membrane targets. Future Med Chem 2020; 12:1253-1279. [PMID: 32538147 DOI: 10.4155/fmc-2020-0046] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The rise of antibiotic-resistant infections has been well documented and the need for novel antibiotics cannot be overemphasized. US FDA approved antibiotics target only a small fraction of bacterial cell wall or membrane components, well-validated antimicrobial targets. In this review, we highlight small molecules that inhibit relatively unexplored cell wall and membrane targets. Some of these targets include teichoic acids-related proteins (DltA, LtaS, TarG and TarO), lipid II, Mur family enzymes, components of LPS assembly (MsbA, LptA, LptB and LptD), penicillin-binding protein 2a in methicillin-resistant Staphylococcus aureus, outer membrane protein transport (such as LepB and BamA) and lipoprotein transport components (LspA, LolC, LolD and LolE). Inhibitors of SecA, cell division protein, FtsZ and compounds that kill persister cells via membrane targeting are also covered.
Collapse
|
35
|
Bai L, Parkin LA, Zhang H, Shum R, Previti ML, Seeliger JC. Dimethylaminophenyl Hydrazides as Inhibitors of the Lipid Transport Protein LprG in Mycobacteria. ACS Infect Dis 2020; 6:637-648. [PMID: 32053347 PMCID: PMC7436943 DOI: 10.1021/acsinfecdis.9b00497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Assembly of the bacterial cell wall requires not only the biosynthesis of cell wall components but also the transport of these metabolites to the cell exterior for assembly into polymers and membranes required for bacterial viability and virulence. LprG is a cell wall protein that is required for the virulence of Mycobacterium tuberculosis and is associated with lipid transport to the outer lipid layer or mycomembrane. Motivated by available cocrystal structures of LprG with lipids, we searched for potential inhibitors of LprG by performing a computational docking screen of ∼250 000 commercially available small molecules. We identified several structurally related dimethylaminophenyl hydrazides that bind to LprG with moderate micromolar affinity and inhibit mycobacterial growth in a LprG-dependent manner. We found that mutation of F123 within the binding cavity of LprG conferred resistance to one of the most potent compounds. These findings provide evidence that the large hydrophobic substrate-binding pocket of LprG can be realistically and specifically targeted by small-molecule inhibitors.
Collapse
Affiliation(s)
- Lu Bai
- Department of Chemistry, Stony Brook University, 100
Nicolls Road, Stony Brook, NY 11794
| | - Lia A. Parkin
- Department of Microbiology and Immunology, Stony Brook
University, 100 Nicolls Road, Stony Brook, NY 11794
| | - Hong Zhang
- Department of Chemistry, Stony Brook University, 100
Nicolls Road, Stony Brook, NY 11794
| | - Rebecca Shum
- Department of Biochemistry and Cell Biology, Stony Brook
University, 100 Nicolls Road, Stony Brook, NY 11794
| | - Mary L. Previti
- Department of Pharmacological Sciences, Stony Brook
University, 100 Nicolls Road, Stony Brook, NY 11794
| | - Jessica C. Seeliger
- Department of Pharmacological Sciences, Stony Brook
University, 100 Nicolls Road, Stony Brook, NY 11794
| |
Collapse
|
36
|
Awuni E. Status of Targeting MreB for the Development of Antibiotics. Front Chem 2020; 7:884. [PMID: 31998684 PMCID: PMC6965359 DOI: 10.3389/fchem.2019.00884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Although many prospective antibiotic targets are known, bacterial infections and resistance to antibiotics remain a threat to public health partly because the druggable potentials of most of these targets have yet to be fully tapped for the development of a new generation of therapeutics. The prokaryotic actin homolog MreB is one of the important antibiotic targets that are yet to be significantly exploited. MreB is a bacterial cytoskeleton protein that has been widely studied and is associated with the determination of rod shape as well as important subcellular processes including cell division, chromosome segregation, cell wall morphogenesis, and cell polarity. Notwithstanding that MreB is vital and conserved in most rod-shaped bacteria, no approved antibiotics targeting it are presently available. Here, the status of targeting MreB for the development of antibiotics is concisely summarized. Expressly, the known therapeutic targets and inhibitors of MreB are presented, and the way forward in the search for a new generation of potent inhibitors of MreB briefly discussed.
Collapse
Affiliation(s)
- Elvis Awuni
- Department of Biochemistry, School of Biological Sciences, CANS, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
37
|
Johnson EO, Hung DT. A Point of Inflection and Reflection on Systems Chemical Biology. ACS Chem Biol 2019; 14:2497-2511. [PMID: 31613592 DOI: 10.1021/acschembio.9b00714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For the past several decades, chemical biologists have been leveraging chemical principles for understanding biology, tackling disease, and biomanufacturing, while systems biologists have holistically applied computation and genome-scale experimental tools to the same problems. About a decade ago, the benefit of combining the philosophies of chemical biology with systems biology into systems chemical biology was advocated, with the potential to systematically understand the way small molecules affect biological systems. Recently, there has been an explosion in new technologies that permit massive expansion in the scale of biological experimentation, increase access to more diverse chemical space, and enable powerful computational interpretation of large datasets. Fueled by these rapidly increasing capabilities, systems chemical biology is now at an inflection point, poised to enter a new era of more holistic and integrated scientific discovery. Systems chemical biology is primed to reveal an integrated understanding of fundamental biology and to discover new chemical probes to comprehensively dissect and systematically understand that biology, thereby providing a path to novel strategies for discovering therapeutics, designing drug combinations, avoiding toxicity, and harnessing beneficial polypharmacology. In this Review, we examine the emergence of new capabilities driving us to this inflection point in systems chemical biology, and highlight holistic approaches and opportunities that are arising from integrating chemical biology with a systems-level understanding of the intersection of biology and chemistry.
Collapse
Affiliation(s)
- Eachan O. Johnson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
38
|
Kintses B, Jangir PK, Fekete G, Számel M, Méhi O, Spohn R, Daruka L, Martins A, Hosseinnia A, Gagarinova A, Kim S, Phanse S, Csörgő B, Györkei Á, Ari E, Lázár V, Nagy I, Babu M, Pál C, Papp B. Chemical-genetic profiling reveals limited cross-resistance between antimicrobial peptides with different modes of action. Nat Commun 2019; 10:5731. [PMID: 31844052 PMCID: PMC6915728 DOI: 10.1038/s41467-019-13618-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/14/2019] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial peptides (AMPs) are key effectors of the innate immune system and promising therapeutic agents. Yet, knowledge on how to design AMPs with minimal cross-resistance to human host-defense peptides remains limited. Here, we systematically assess the resistance determinants of Escherichia coli against 15 different AMPs using chemical-genetics and compare to the cross-resistance spectra of laboratory-evolved AMP-resistant strains. Although generalizations about AMP resistance are common in the literature, we find that AMPs with different physicochemical properties and cellular targets vary considerably in their resistance determinants. As a consequence, cross-resistance is prevalent only between AMPs with similar modes of action. Finally, our screen reveals several genes that shape susceptibility to membrane- and intracellular-targeting AMPs in an antagonistic manner. We anticipate that chemical-genetic approaches could inform future efforts to minimize cross-resistance between therapeutic and human host AMPs.
Collapse
Affiliation(s)
- Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
- HCEMM-BRC Translational Microbiology Lab, Szeged, Hungary.
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary.
| | - Pramod K Jangir
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ana Martins
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Ali Hosseinnia
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Alla Gagarinova
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sunyoung Kim
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Department of Microbiology and Immunology, University of California, San Francisco, USA
| | - Ádám Györkei
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Eszter Ari
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - István Nagy
- Sequencing Platform, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary.
| |
Collapse
|
39
|
Lehman KM, Grabowicz M. Countering Gram-Negative Antibiotic Resistance: Recent Progress in Disrupting the Outer Membrane with Novel Therapeutics. Antibiotics (Basel) 2019; 8:antibiotics8040163. [PMID: 31554212 PMCID: PMC6963605 DOI: 10.3390/antibiotics8040163] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 10/27/2022] Open
Abstract
Gram-negative bacteria shield themselves from antibiotics by producing an outer membrane (OM) that forms a formidable permeability barrier. Multidrug resistance among these organisms is a particularly acute problem that is exacerbated by the OM. The poor penetrance of many available antibiotics prevents their clinical use, and efforts to discover novel classes of antibiotics against Gram-negative bacteria have been unsuccessful for almost 50 years. Recent insights into how the OM is built offer new hope. Several essential multiprotein molecular machines (Bam, Lpt, and Lol) work in concert to assemble the barrier and offer a swathe of new targets for novel therapeutic development. Murepavadin has been at the vanguard of these efforts, but its recently reported phase III clinical trial toxicity has tempered the anticipation of imminent new clinical options. Nonetheless, the many concerted efforts aimed at breaking down the OM barrier provide a source of ongoing optimism for what may soon come through the development pipeline. We will review the current state of drug development against the OM assembly targets, highlighting insightful new discovery approaches and strategies.
Collapse
Affiliation(s)
- Kelly M Lehman
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA.
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Marcin Grabowicz
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA.
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
40
|
Palmer AC, Chait R, Kishony R. Nonoptimal Gene Expression Creates Latent Potential for Antibiotic Resistance. Mol Biol Evol 2019; 35:2669-2684. [PMID: 30169679 PMCID: PMC6231494 DOI: 10.1093/molbev/msy163] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacteria regulate genes to survive antibiotic stress, but regulation can be far from perfect. When regulation is not optimal, mutations that change gene expression can contribute to antibiotic resistance. It is not systematically understood to what extent natural gene regulation is or is not optimal for distinct antibiotics, and how changes in expression of specific genes quantitatively affect antibiotic resistance. Here we discover a simple quantitative relation between fitness, gene expression, and antibiotic potency, which rationalizes our observation that a multitude of genes and even innate antibiotic defense mechanisms have expression that is critically nonoptimal under antibiotic treatment. First, we developed a pooled-strain drug-diffusion assay and screened Escherichia coli overexpression and knockout libraries, finding that resistance to a range of 31 antibiotics could result from changing expression of a large and functionally diverse set of genes, in a primarily but not exclusively drug-specific manner. Second, by synthetically controlling the expression of single-drug and multidrug resistance genes, we observed that their fitness–expression functions changed dramatically under antibiotic treatment in accordance with a log-sensitivity relation. Thus, because many genes are nonoptimally expressed under antibiotic treatment, many regulatory mutations can contribute to resistance by altering expression and by activating latent defenses.
Collapse
Affiliation(s)
- Adam C Palmer
- Department of Systems Biology, Harvard Medical School, Boston, MA.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA
| | - Remy Chait
- Department of Systems Biology, Harvard Medical School, Boston, MA.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roy Kishony
- Department of Systems Biology, Harvard Medical School, Boston, MA.,Departments of Biology and Computer Science, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
41
|
Details of hydrophobic entanglement between small molecules and Braun's lipoprotein within the cavity of the bacterial chaperone LolA. Sci Rep 2019; 9:3717. [PMID: 30842499 PMCID: PMC6403396 DOI: 10.1038/s41598-019-40170-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/01/2019] [Indexed: 11/08/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is synthesized and maintained via mechanisms that are targets for development of novel antibiotics. Here we focus on the process of moving Braun's lipoprotein (BLP) from the periplasmic space to the outer membrane of E. coli, via the LolA protein. In contrast to current thinking, we show that binding of multiple inhibitor molecules inside the hydrophobic cavity of LolA does not prevent subsequent binding of BLP inside the same cavity. Rather, based on our atomistic simulations we propose the theory that once inhibitors and BLP are bound inside the cavity of LolA, driven by hydrophobic interactions, they become entangled with each other. Our umbrella sampling calculations show that on the basis of energetics, it is more difficult to dislodge BLP from the cavity of LolA when it is uncomplexed compared to complexed with inhibitor. Thus the inhibitor reduces the affinity of BLP for the LolA cavity.
Collapse
|
42
|
Wang T, Liu XH, Guan J, Ge S, Wu MB, Lin JP, Yang LR. Advancement of multi-target drug discoveries and promising applications in the field of Alzheimer's disease. Eur J Med Chem 2019; 169:200-223. [PMID: 30884327 DOI: 10.1016/j.ejmech.2019.02.076] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Abstract
Complex diseases (e.g., Alzheimer's disease) or infectious diseases are usually caused by complicated and varied factors, including environmental and genetic factors. Multi-target (polypharmacology) drugs have been suggested and have emerged as powerful and promising alternative paradigms in modern medicinal chemistry for the development of versatile chemotherapeutic agents to solve these medical challenges. The multifunctional agents capable of modulating multiple biological targets simultaneously display great advantages of higher efficacy, improved safety profile, and simpler administration compared to single-targeted agents. Therefore, multifunctional agents would certainly open novel avenues to rationally design the next generation of more effective but less toxic therapeutic agents. Herein, the authors review the recent progress made in the discovery and design processes of selective multi-targeted agents, especially the successful application of multi-target drugs for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Tao Wang
- School of Biological Science, Jining Medical University, Jining, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xiao-Huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Jing Guan
- School of Biological Science, Jining Medical University, Jining, China
| | - Shun Ge
- School of Biological Science, Jining Medical University, Jining, China.
| | - Mian-Bin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Zhejiang Key Laboratory of Antifungal Drugs, Taizhou, 318000, China
| | - Jian-Ping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Li-Rong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
43
|
Pathway-Directed Screen for Inhibitors of the Bacterial Cell Elongation Machinery. Antimicrob Agents Chemother 2018; 63:AAC.01530-18. [PMID: 30323039 DOI: 10.1128/aac.01530-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
New antibiotics are needed to combat the growing problem of resistant bacterial infections. An attractive avenue toward the discovery of such next-generation therapies is to identify novel inhibitors of clinically validated targets, like cell wall biogenesis. We have therefore developed a pathway-directed whole-cell screen for small molecules that block the activity of the Rod system of Escherichia coli This conserved multiprotein complex is required for cell elongation and the morphogenesis of rod-shaped bacteria. It is composed of cell wall synthases and membrane proteins of unknown function that are organized by filaments of the actin-like MreB protein. Our screen takes advantage of the conditional essentiality of the Rod system and the ability of the beta-lactam mecillinam (also known as amdinocillin) to cause a toxic malfunctioning of the machinery. Rod system inhibitors can therefore be identified as molecules that promote growth in the presence of mecillinam under conditions permissive for the growth of Rod- cells. A screen of ∼690,000 compounds identified 1,300 compounds that were active against E. coli Pathway-directed screening of a majority of this subset of compounds for Rod inhibitors successfully identified eight analogs of the MreB antagonist A22. Further characterization of the A22 analogs identified showed that their antibiotic activity under conditions where the Rod system is essential was strongly correlated with their ability to suppress mecillinam toxicity. This result combined with those from additional biological studies reinforce the notion that A22-like molecules are relatively specific for MreB and suggest that the lipoprotein transport factor LolA is unlikely to be a physiologically relevant target as previously proposed.
Collapse
|
44
|
Affiliation(s)
- Marcin Grabowicz
- Department of Microbiology and Immunology; Emory University School of Medicine; Atlanta GA 30322 USA
- Division of Infectious Disease; Department of Medicine; Emory University School of Medicine; Atlanta GA 30322 USA
| |
Collapse
|
45
|
Muheim C, Götzke H, Eriksson AU, Lindberg S, Lauritsen I, Nørholm MHH, Daley DO. Increasing the permeability of Escherichia coli using MAC13243. Sci Rep 2017; 7:17629. [PMID: 29247166 PMCID: PMC5732295 DOI: 10.1038/s41598-017-17772-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/30/2017] [Indexed: 01/21/2023] Open
Abstract
The outer membrane of gram-negative bacteria is a permeability barrier that prevents the efficient uptake of molecules with large scaffolds. As a consequence, a number of antibiotic classes are ineffective against gram-negative strains. Herein we carried out a high throughput screen for small molecules that make the outer membrane of Escherichia coli more permeable. We identified MAC13243, an inhibitor of the periplasmic chaperone LolA that traffics lipoproteins from the inner to the outer membrane. We observed that cells were (1) more permeable to the fluorescent probe 1-N-phenylnapthylamine, and (2) more susceptible to large-scaffold antibiotics when sub-inhibitory concentrations of MAC13243 were used. To exclude the possibility that the permeability was caused by an off-target effect, we genetically reconstructed the MAC13243-phenotype by depleting LolA levels using the CRISPRi system.
Collapse
Affiliation(s)
- Claudio Muheim
- Department of Biochemistry and Biophysics Stockholm University, Stockholm, Sweden
| | - Hansjörg Götzke
- Department of Biochemistry and Biophysics Stockholm University, Stockholm, Sweden
| | - Anna U Eriksson
- Chemical Biology Consortium Sweden, Laboratories for Chemical Biology, Umeå University, Umeå, Sweden
| | - Stina Lindberg
- Chemical Biology Consortium Sweden, Laboratories for Chemical Biology, Umeå University, Umeå, Sweden
| | - Ida Lauritsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Morten H H Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Daniel O Daley
- Department of Biochemistry and Biophysics Stockholm University, Stockholm, Sweden.
| |
Collapse
|
46
|
Abstract
Chemical-genetic approaches are based on measuring the cellular outcome of combining genetic and chemical perturbations in large-numbers in tandem. In these approaches the contribution of every gene to the fitness of an organism is measured upon exposure to different chemicals. Current technological advances enable the application of chemical genetics to almost any organism and at an unprecedented throughput. Here we review the underlying concepts behind chemical genetics, present its different vignettes and illustrate how such approaches can propel drug discovery.
Collapse
Affiliation(s)
- Elisabetta Cacace
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - George Kritikos
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
47
|
Peptidoglycan Association of Murein Lipoprotein Is Required for KpsD-Dependent Group 2 Capsular Polysaccharide Expression and Serum Resistance in a Uropathogenic Escherichia coli Isolate. mBio 2017; 8:mBio.00603-17. [PMID: 28536290 PMCID: PMC5442458 DOI: 10.1128/mbio.00603-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Murein lipoprotein (Lpp) and peptidoglycan-associated lipoprotein (Pal) are major outer membrane lipoproteins in Escherichia coli. Their roles in cell-envelope integrity have been documented in E. coli laboratory strains, and while Lpp has been linked to serum resistance in vitro, the underlying mechanism has not been established. Here, lpp and pal mutants of uropathogenic E. coli strain CFT073 showed reduced survival in a mouse bacteremia model, but only the lpp mutant was sensitive to serum killing in vitro. The peptidoglycan-bound Lpp form was specifically required for preventing complement-mediated bacterial lysis in vitro and complement-mediated clearance in vivo. Compared to the wild-type strain, the lpp mutant had impaired K2 capsular polysaccharide production and was unable to respond to exposure to serum by elevating capsular polysaccharide amounts. These properties correlated with altered cellular distribution of KpsD, the predicted outer membrane translocon for “group 2” capsular polysaccharides. We identified a novel Lpp-dependent association between functional KpsD and peptidoglycan, highlighting important interplay between cell envelope components required for resistance to complement-mediated lysis in uropathogenic E. coli isolates. Uropathogenic E. coli (UPEC) isolates represent a significant cause of nosocomial urinary tract and bloodstream infections. Many UPEC isolates are resistant to serum killing. Here, we show that a major cell-envelope lipoprotein (murein lipoprotein) is required for serum resistance in vitro and for complement-mediated bacterial clearance in vivo. This is mediated, in part, through a novel mechanism by which murein lipoprotein affects the proper assembly of a key component of the machinery involved in production of “group 2” capsules. The absence of murein lipoprotein results in impaired production of the capsule layer, a known participant in complement resistance. These results demonstrate an important role for murein lipoprotein in complex interactions between different outer membrane biogenesis pathways and further highlight the importance of lipoprotein assembly and transport in bacterial pathogenesis.
Collapse
|
48
|
Hurley KA, Santos TMA, Fensterwald MR, Rajendran M, Moore JT, Balmond EI, Blahnik BJ, Faulkner KC, Foss MH, Heinrich VA, Lammers MG, Moore LC, Reynolds GD, Shearn-Nance GP, Stearns BA, Yao ZW, Shaw JT, Weibel DB. Targeting quinolone- and aminocoumarin-resistant bacteria with new gyramide analogs that inhibit DNA gyrase. MEDCHEMCOMM 2017; 8:942-951. [PMID: 30034678 PMCID: PMC6051542 DOI: 10.1039/c7md00012j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/21/2017] [Indexed: 11/21/2022]
Abstract
Bacterial DNA gyrase is an essential type II topoisomerase that enables cells to overcome topological barriers encountered during replication, transcription, recombination, and repair. This enzyme is ubiquitous in bacteria and represents an important clinical target for antibacterial therapy. In this paper we report the characterization of three exciting new gyramide analogs-from a library of 183 derivatives-that are potent inhibitors of DNA gyrase and are active against clinical strains of gram-negative bacteria (Escherichia coli, Shigella flexneri, and Salmonella enterica; 3 of 10 wild-type strains tested) and gram-positive bacteria (Bacillus spp., Enterococcus spp., Staphylococcus spp., and Streptococcus spp.; all 9 of the wild-type strains tested). E. coli strains resistant to the DNA gyrase inhibitors ciprofloxacin and novobiocin display very little cross-resistance to these new gyramides. In vitro studies demonstrate that the new analogs are potent inhibitors of the DNA supercoiling activity of DNA gyrase (IC50s of 47-170 nM) but do not alter the enzyme's ATPase activity. Although mutations that confer bacterial cells resistant to these new gyramides map to the genes encoding the subunits of the DNA gyrase (gyrA and gyrB genes), overexpression of GyrA, GyrB, or GyrA and GyrB together does not suppress the inhibitory effect of the gyramides. These observations support the hypothesis that the gyramides inhibit DNA gyrase using a mechanism that is unique from other known inhibitors.
Collapse
Affiliation(s)
- Katherine A. Hurley
- Department of Biochemistry
, University of Wisconsin – Madison
,
Madison
, Wisconsin
, USA
.
| | - Thiago M. A. Santos
- Department of Biochemistry
, University of Wisconsin – Madison
,
Madison
, Wisconsin
, USA
.
| | - Molly R. Fensterwald
- Department of Chemistry
, University of California – Davis
,
Davis
, California
, USA
.
| | - Madhusudan Rajendran
- Department of Biochemistry
, University of Wisconsin – Madison
,
Madison
, Wisconsin
, USA
.
| | - Jared T. Moore
- Department of Chemistry
, University of California – Davis
,
Davis
, California
, USA
.
| | - Edward I. Balmond
- Department of Chemistry
, University of California – Davis
,
Davis
, California
, USA
.
| | - Brice J. Blahnik
- Department of Biochemistry
, University of Wisconsin – Madison
,
Madison
, Wisconsin
, USA
.
| | - Katherine C. Faulkner
- Department of Biochemistry
, University of Wisconsin – Madison
,
Madison
, Wisconsin
, USA
.
| | - Marie H. Foss
- Department of Biochemistry
, University of Wisconsin – Madison
,
Madison
, Wisconsin
, USA
.
| | - Victoria A. Heinrich
- Department of Biochemistry
, University of Wisconsin – Madison
,
Madison
, Wisconsin
, USA
.
| | - Matthew G. Lammers
- Department of Biochemistry
, University of Wisconsin – Madison
,
Madison
, Wisconsin
, USA
.
| | - Lucas C. Moore
- Department of Chemistry
, University of California – Davis
,
Davis
, California
, USA
.
| | - Gregory D. Reynolds
- Department of Biochemistry
, University of Wisconsin – Madison
,
Madison
, Wisconsin
, USA
.
| | - Galen P. Shearn-Nance
- Department of Chemistry
, University of California – Davis
,
Davis
, California
, USA
.
| | | | - Zi W. Yao
- Department of Chemistry
, University of California – Davis
,
Davis
, California
, USA
.
| | - Jared T. Shaw
- Department of Chemistry
, University of California – Davis
,
Davis
, California
, USA
.
| | - Douglas B. Weibel
- Department of Biochemistry
, University of Wisconsin – Madison
,
Madison
, Wisconsin
, USA
.
- Department of Chemistry
, University of Wisconsin – Madison
,
Madison
, Wisconsin
, USA
- Department of Biomedical Engineering
, University of Wisconsin – Madison
,
Madison
, Wisconsin
, USA
| |
Collapse
|
49
|
New antibiotics from Nature’s chemical inventory. Bioorg Med Chem 2016; 24:6227-6252. [DOI: 10.1016/j.bmc.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023]
|
50
|
Narita SI, Tokuda H. Bacterial lipoproteins; biogenesis, sorting and quality control. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1414-1423. [PMID: 27871940 DOI: 10.1016/j.bbalip.2016.11.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022]
Abstract
Bacterial lipoproteins are a subset of membrane proteins localized on either leaflet of the lipid bilayer. These proteins are anchored to membranes through their N-terminal lipid moiety attached to a conserved Cys. Since the protein moiety of most lipoproteins is hydrophilic, they are expected to play various roles in a hydrophilic environment outside the cytoplasmic membrane. Gram-negative bacteria such as Escherichia coli possess an outer membrane, to which most lipoproteins are sorted. The Lol pathway plays a central role in the sorting of lipoproteins to the outer membrane after lipoprotein precursors are processed to mature forms in the cytoplasmic membrane. Most lipoproteins are anchored to the inner leaflet of the outer membrane with their protein moiety in the periplasm. However, recent studies indicated that some lipoproteins further undergo topology change in the outer membrane, and play critical roles in the biogenesis and quality control of the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
| | - Hajime Tokuda
- University of Morioka, Takizawa, Iwate 020-0694, Japan.
| |
Collapse
|