1
|
Sarangi S, Mahapatra RK. Identification of therapeutics against PfPK6 protein of Plasmodium falciparum: Structure and Deep Learning approach. Exp Parasitol 2025; 273:108947. [PMID: 40288672 DOI: 10.1016/j.exppara.2025.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/05/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
The Plasmodium falciparum Protein Kinase 6 (PfPK6) is a serine/threonine protein kinase categorized under the CMGC group, displaying both cyclin-dependent kinases (CDKs) and mitogen-activated protein kinases (MAPKs) activity. Previous research has indicated that PfPK6 is expressed during the trophozoite and schizont stages of the Plasmodium falciparum asexual blood stage. Unlike typical cyclin-dependent kinases, PfPK6 demonstrates kinase activity independent of cyclin, making it a promising target for drug identification. In this study, we utilized a computational approach to identify a novel PfPK6 inhibitor through virtual screening of small inhibitor compounds from diverse datasets, employing a structure-based approach and a Deep Learning (DL) model. The most promising inhibitor molecule, TCMDC-132409 from the Tres Cantos Antimalarial Set, exhibited a binding affinity of -13.553 kcal/mol against PfPK6. Additionally, a 200ns molecular dynamics simulation study confirmed the stability of the binding mode, indicating the potential of TCMDC-132409 as an antiplasmodial inhibitor for further investigation.
Collapse
Affiliation(s)
- Sibasish Sarangi
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | | |
Collapse
|
2
|
Chen H, Zhi W, Bai B, Anjum FR, Jia Z, Kong R, Liu Q, Wang B, Ma C, Ma D. Impact of sodium alginate hydrogel containing bacteriophage peptides that specifically bind to the EtCab protein on the inhibition of Eimeria tenella infection. Vet Res 2025; 56:18. [PMID: 39838456 PMCID: PMC11752993 DOI: 10.1186/s13567-024-01425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/19/2024] [Indexed: 01/23/2025] Open
Abstract
Avian coccidiosis, caused by the protozoan Eimeria, leads to significant economic losses for the poultry industry. In this study, bacteriophages that specifically bind to the calcium-binding protein (EtCab) of Eimeria tenella were selected using a biopanning process with a pIII phage display library. The recombinant EtCab protein served as the ligand in this selection process. The binding ability of target phages to the EtCab protein or E. tenella sporozoites was evaluated. The role of peptides corresponding to target phages in inhibiting the invasion of E. tenella sporozoites into cells was analysed using flow cytometry. Subsequently, the phages were encapsulated in sodium alginate to protect them from degradation in gastric fluid, which has a low pH value. Chickens were orally administered both microencapsulated and non-microencapsulated phages, and the protective effects against E. tenella infection were assessed. The binding mechanism of these peptides to the EtCab protein was investigated through in silico analysis. The results indicated that three specific phages (Y, G, and V) could bind effectively to recombinant EtCab protein as well as to sporozoite proteins. All three peptides, particularly Y and G, demonstrated significant inhibition of sporozoite invasion into cells in vitro. Additionally, oral administration of the encapsulated phages Y and G provided a higher level of protection against Eimeria infection compared to encapsulated phage V and the unencapsulated phages. Molecular docking studies revealed that three peptides, particularly Y and G, efficiently bind to the EtCab protein through hydrogen bonds. This study provides a reference for developing small molecular drugs targeting coccidiosis.
Collapse
Affiliation(s)
- Hang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenjing Zhi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bingrong Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Faisal R Anjum
- Bristol Veterinary School, University of Bristol, Langford, Bristol, UK
| | - Zhipeng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Kong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qiuju Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Biao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin, China.
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
3
|
Irfan I, Uddin A, Jain R, Gupta A, Gupta S, Napoleon JV, Hussain A, Alajmi MF, Joshi MC, Hasan P, Kumar P, Abid M, Singh S. Biological evaluation of novel side chain containing CQTrICh-analogs as antimalarials and their development as PfCDPK1 kinase inhibitors. Heliyon 2024; 10:e25077. [PMID: 38327451 PMCID: PMC10847618 DOI: 10.1016/j.heliyon.2024.e25077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
The rapid emergence of resistance to existing frontline antimalarial drugs emphasizes a need for the development of target-oriented molecules with novel modes of action. Given the importance of a plant-like Calcium-Dependent Protein Kinase 1 (PfCDPK1) as a stand-alone multistage signalling regulator of P. falciparum, we designed and synthesized 7-chloroquinoline-indole-chalcones tethered with a triazole (CQTrICh-analogs 7 (a-s) and 9) directed towards PfCDPK1. This was accomplished by reacting substituted 1-phenyl-3-(1-(prop-2-yn-1-yl)-1H-indol-3-yl) prop-2-en-1-one and 1-(prop-2-yn-1-yl)-1H-indole-3-carbaldehyde with 4-azido-7-chloroquinoline, respectively via a 'click' reaction. The selected CQTrICh-analogs: 7l and 7r inhibited the growth of chloroquine-sensitive 3D7 strain and -resistant RKL-9 isolate of Plasmodium falciparum, with IC50 values of 2.4 μM & 1.8 μM (7l), and 3.5 μM & 2.7 μM (7r), respectively, and showed no apparent hemolytic activity and cytotoxicity in mammalian cells. Intra-erythrocytic progression studies revealed that the active hybrids: 7l and 7r are effective against the mature stages of the parasite. 7l and 7r were found to stably interact with the catalytically active ATP-binding pocket of PfCDPK1 via energetically favourable H-bonds. The interaction was confirmed in vitro by microscale thermophoresis and kinase assays, which demonstrated that the active hybrids interact with PfCDPK1 and inhibit its kinase activity which is presumably responsible for the parasite growth inhibition. Interestingly, 7l and 7r showed no inhibitory effect on the human kinases, indicating their selectivity for the parasite kinase. We report the antiplasmodial potential of novel kinase-targeting bio-conjugates, a step towards developing pan-kinase inhibitors which is a prerequisite for multistage anti-malarial protection.
Collapse
Affiliation(s)
- Iram Irfan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Aashima Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mukesh C. Joshi
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Phool Hasan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Purnendu Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
4
|
Adelusi TI, Ojo TO, Bolaji OQ, Oyewole MP, Olaoba OT, Oladipo EK. Predicting Plasmodium falciparum kinase inhibitors from antimalarial medicinal herbs using computational modeling approach. In Silico Pharmacol 2023; 12:4. [PMID: 38130691 PMCID: PMC10730500 DOI: 10.1007/s40203-023-00175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Malaria remains a significant public health challenge, with resistance to available drugs necessitating the development of novel therapies targeting invasion-dependent proteins. Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK-1) is essential for host erythrocyte invasion and parasite asexual development. This study screened a library of 490 compounds using computational methods to identify potential PfCDPK-1 inhibitors. Three compounds; 17-hydroxyazadiradione, Picracin, and Epicatechin-gallate derived from known antimalarial botanicals, showed potent inhibitory effects on PfCDPK-1. These compounds exhibited better binding affinities (-8.8, -9.1, -9.3 kCal/mol respectively), pharmacokinetics, and physicochemical properties than the purported inhibitory standard of PfCDPK-1, Purfalcamine. Molecular dynamics simulations (50 ns) and molecular mechanics analyses confirmed the stability and binding rigidity of these compounds at the active pocket of PfCDPK-1. The results suggest that these compounds are promising pharmacological targets with potential therapeutic effects for malaria treatment/management without undesirable side effects. Therefore, this study provides new insights into the development of effective antimalarial agents targeting invasion-dependent proteins, which could help combat the global malaria burden. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00175-z.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
| | - Taiwo Ooreoluwa Ojo
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
- Genomics unit, Helix Biogen Institute, P.M.B 212102, Ogbomoso, Oyo State Nigeria
| | - Olawale Quadri Bolaji
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
| | - Moyosoluwa Precious Oyewole
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
| | - Olamide Tosin Olaoba
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211 USA
| | - Elijah Kolawole Oladipo
- Genomics unit, Helix Biogen Institute, P.M.B 212102, Ogbomoso, Oyo State Nigeria
- Laboratory of Molecular Biology, Bioinformatics and Immunology, Department of Microbiology, Adeleke University, Ede, Osun State Nigeria
| |
Collapse
|
5
|
Bailey BL, Nguyen W, Cowman AF, Sleebs BE. Chemo-proteomics in antimalarial target identification and engagement. Med Res Rev 2023; 43:2303-2351. [PMID: 37232495 PMCID: PMC10947479 DOI: 10.1002/med.21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.
Collapse
Affiliation(s)
- Brodie L. Bailey
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Nakayama K, Okada Y. Arene C-H Amination with N-Heteroarenes by Catalytic DDQ Photocatalysis. J Org Chem 2023; 88:5913-5922. [PMID: 37097131 DOI: 10.1021/acs.joc.3c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Arene C-H aminations using catalytic amounts of a 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) photocatalyst are described. Benzene, which has an oxidation potential of 2.48 V (vs SCE), was functionalized by pyrazoles, triazoles, tetrazoles, purines, and tert-butoxycarbonyl amine. Arenes underwent amination via a combination of ultraviolet (UV) light and a DDQ photocatalyst without a typical co-oxidant. Although the mechanism remains an open question, DDQH2, which is generated from DDQ after oxidation, is reactivated to DDQ under UV light irradiation conditions, possibly with the assistance of adventitious O2 and/or a solvent as the terminal oxidant(s) in this system.
Collapse
Affiliation(s)
- Kaii Nakayama
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
7
|
Cao H, Histand G, Lin D. Selectfluor-Induced Oxidative Amination of N-Heteroaromatics with Purine. J Org Chem 2023; 88:5687-5695. [PMID: 37120834 DOI: 10.1021/acs.joc.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
An oxidative coupling reaction between purines and aromatic N-heterocycles was developed to synthesize a series of N-heteroaryl purine derivatives using Selectfluor as an oxidant at room temperature. This process uses a commercial oxidant, uses no base, metal, or other additives, is simple to carry out, and has a broad range of substrates.
Collapse
Affiliation(s)
- Haiyan Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Gary Histand
- The International School of Advanced Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Dongen Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| |
Collapse
|
8
|
Ong HW, Adderley J, Tobin AB, Drewry DH, Doerig C. Parasite and host kinases as targets for antimalarials. Expert Opin Ther Targets 2023; 27:151-169. [PMID: 36942408 DOI: 10.1080/14728222.2023.2185511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The deployment of Artemisinin-based combination therapies and transmission control measures led to a decrease in the global malaria burden over the recent decades. Unfortunately, this trend is now reversing, in part due to resistance against available treatments, calling for the development of new drugs against untapped targets to prevent cross-resistance. AREAS COVERED In view of their demonstrated druggability in noninfectious diseases, protein kinases represent attractive targets. Kinase-focussed antimalarial drug discovery is facilitated by the availability of kinase-targeting scaffolds and large libraries of inhibitors, as well as high-throughput phenotypic and biochemical assays. We present an overview of validated Plasmodium kinase targets and their inhibitors, and briefly discuss the potential of host cell kinases as targets for host-directed therapy. EXPERT OPINION We propose priority research areas, including (i) diversification of Plasmodium kinase targets (at present most efforts focus on a very small number of targets); (ii) polypharmacology as an avenue to limit resistance (kinase inhibitors are highly suitable in this respect); and (iii) preemptive limitation of resistance through host-directed therapy (targeting host cell kinases that are required for parasite survival) and transmission-blocking through targeting sexual stage-specific kinases as a strategy to protect curative drugs from the spread of resistance.
Collapse
Affiliation(s)
- Han Wee Ong
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Jack Adderley
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| | - Andrew B Tobin
- Advanced Research Centre, University of Glasgow, Glasgow, UK
| | - David H Drewry
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Christian Doerig
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| |
Collapse
|
9
|
Seanego TD, Chavalala HE, Henning HH, de Koning CB, Hoppe HC, Ojo KK, Rousseau AL. 7H-Pyrrolo[2,3-d]pyrimidine-4-amines as Potential Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinases. ChemMedChem 2022; 17:e202200421. [PMID: 36106757 DOI: 10.1002/cmdc.202200421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/12/2022] [Indexed: 01/14/2023]
Abstract
A series of pyrrolo[2,3-d]pyrimidines were designed in silico as potential bumped kinase inhibitors targeting P. falciparum calcium dependent protein kinase 4 (PfCDPK4), with the potential to inhibit PfCDPK1 based on earlier studies of the two kinases. A small series of these compounds were prepared and assessed for inhibitory activity against PfCDPK4 and PfCDPK1 in vitro. Four of the compounds displayed promising inhibitory activity against either PfCDPK4 (IC50 =0.210-0.530 μM), or PfCDPK1 (IC50 =0.589 μM). These data will enable optimisation of the molecular model to better predict inhibitory activity against PfCDPK4.
Collapse
Affiliation(s)
- Tswene D Seanego
- Molecular Sciences Institute School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, South Africa.,WITS Research Institute for Malaria (WRIM), University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| | - Hlamulo E Chavalala
- Molecular Sciences Institute School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, South Africa.,WITS Research Institute for Malaria (WRIM), University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| | - Hendrik H Henning
- Molecular Sciences Institute School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, South Africa
| | - Charles B de Koning
- Molecular Sciences Institute School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, South Africa
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6140, South Africa
| | - Kayode K Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID) Division of Allergy and Infectious Diseases Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Amanda L Rousseau
- Molecular Sciences Institute School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, South Africa.,WITS Research Institute for Malaria (WRIM), University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
10
|
Galal KA, Truong A, Kwarcinski F, de Silva C, Avalani K, Havener TM, Chirgwin ME, Merten E, Ong HW, Willis C, Abdelwaly A, Helal MA, Derbyshire ER, Zutshi R, Drewry DH. Identification of Novel 2,4,5-Trisubstituted Pyrimidines as Potent Dual Inhibitors of Plasmodial PfGSK3/ PfPK6 with Activity against Blood Stage Parasites In Vitro. J Med Chem 2022; 65:13172-13197. [PMID: 36166733 PMCID: PMC9574854 DOI: 10.1021/acs.jmedchem.2c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Essential plasmodial kinases PfGSK3
and PfPK6 are considered novel drug targets to combat
rising
resistance to traditional antimalarial therapy. Herein, we report
the discovery of IKK16 as a dual PfGSK3/PfPK6 inhibitor active against blood stage Pf3D7 parasites. To establish structure–activity relationships
for PfPK6 and PfGSK3, 52 analogues
were synthesized and assessed for the inhibition of PfGSK3 and PfPK6, with potent inhibitors further assessed
for activity against blood and liver stage parasites. This culminated
in the discovery of dual PfGSK3/PfPK6 inhibitors 23d (PfGSK3/PfPK6 IC50 = 172/11 nM) and 23e (PfGSK3/PfPK6 IC50 = 97/8 nM)
with antiplasmodial activity (23dPf3D7 EC50 = 552 ± 37 nM and 23ePf3D7 EC50 = 1400 ± 13 nM). However, both
compounds exhibited significant promiscuity when tested in a panel
of human kinase targets. Our results demonstrate that dual PfPK6/PfGSK3 inhibitors with antiplasmodial
activity can be identified and can set the stage for further optimization
efforts.
Collapse
Affiliation(s)
- Kareem A Galal
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anna Truong
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Frank Kwarcinski
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, Arizona 85719, United States
| | - Chandi de Silva
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, Arizona 85719, United States
| | - Krisha Avalani
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, Arizona 85719, United States
| | - Tammy M Havener
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michael E Chirgwin
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Eric Merten
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Han Wee Ong
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Caleb Willis
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, Arizona 85719, United States
| | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12587, Egypt
| | - Mohamed A Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12587, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, North Carolina 27710, United States
| | - Reena Zutshi
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, Arizona 85719, United States
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Abstract
Human malaria, caused by infection with Plasmodium parasites, remains one of the most important global public health problems, with the World Health Organization reporting more than 240 million cases and 600,000 deaths annually as of 2020 (World malaria report 2021). Our understanding of the biology of these parasites is critical for development of effective therapeutics and prophylactics, including both antimalarials and vaccines. Plasmodium is a protozoan organism that is intracellular for most of its life cycle. However, to complete its complex life cycle and to allow for both amplification and transmission, the parasite must egress out of the host cell in a highly regulated manner. This review discusses the major pathways and proteins involved in the egress events during the Plasmodium life cycle-merozoite and gametocyte egress out of red blood cells, sporozoite egress out of the oocyst, and merozoite egress out of the hepatocyte. The similarities, as well as the differences, between the various egress pathways of the parasite highlight both novel cell biology and potential therapeutic targets to arrest its life cycle.
Collapse
Affiliation(s)
- Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine; and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
12
|
Luo Z, Lu C, Histand G, Lin D. One-Step Visible Light Photoredox-Catalyzed Purine C8 Alkoxylation with Alcohol. J Org Chem 2022; 87:11558-11564. [PMID: 35984935 DOI: 10.1021/acs.joc.2c01146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cross-dehydrogenation coupling reaction between purines and alcohols, induced by visible light, using an acridinium photocatalyst and air as the sole oxidant, to synthesize a series of C8-alkoxy purine derivatives was developed. This protocol is a green and novel method to construct the C8-O bond on a purine ring with high step and atom economy.
Collapse
Affiliation(s)
- Zhe Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Changtong Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Gary Histand
- The International School of Advanced Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongen Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
13
|
Smith TA, Lopez-Perez GS, Herneisen AL, Shortt E, Lourido S. Screening the Toxoplasma kinome with high-throughput tagging identifies a regulator of invasion and egress. Nat Microbiol 2022; 7:868-881. [PMID: 35484233 PMCID: PMC9167752 DOI: 10.1038/s41564-022-01104-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Protein kinases regulate fundamental aspects of eukaryotic cell biology, making them attractive chemotherapeutic targets in parasites like Plasmodium spp. and Toxoplasma gondii. To systematically examine the parasite kinome, we developed a high-throughput tagging (HiT) strategy to endogenously label protein kinases with an auxin-inducible degron and fluorophore. Hundreds of tagging vectors were assembled from synthetic sequences in a single reaction and used to generate pools of mutants to determine localization and function. Examining 1,160 arrayed clones, we assigned 40 protein localizations and associated 15 kinases with distinct defects. The fitness of tagged alleles was also measured by pooled screening, distinguishing delayed from acute phenotypes. A previously unstudied kinase, associated with a delayed phenotype, was shown to be a regulator of invasion and egress. We named the kinase Store Potentiating/Activating Regulatory Kinase (SPARK), based on its impact on intracellular Ca2+ stores. Despite homology to mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1), SPARK lacks a lipid-binding domain, suggesting a rewiring of the pathway in parasites. HiT screening extends genome-wide approaches into complex cellular phenotypes, providing a scalable and versatile platform to dissect parasite biology.
Collapse
Affiliation(s)
- Tyler A Smith
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
14
|
Liao L, Lin D, Histand G. Visible light induced oxidative coupling of purines with arenes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Hai Y, Cai ZM, Li PJ, Wei MY, Wang CY, Gu YC, Shao CL. Trends of antimalarial marine natural products: progresses, challenges and opportunities. Nat Prod Rep 2022; 39:969-990. [DOI: 10.1039/d1np00075f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides an overview of the antimalarial marine natural products, focusing on their chemistry, malaria-related targets and mechanisms, and highlighting their potential for drug development.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zi-Mu Cai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Peng-Jie Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| |
Collapse
|
16
|
Mader L, Hayward JJ, Porter LA, Trant JF. A revised synthesis of 6-alkoxy-2-aminopurines with late-stage convergence allowing for increased molecular complexity. NEW J CHEM 2022. [DOI: 10.1039/d2nj02204d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This streamlined synthesis allows the alcohol at the 6-position of 6-alkoxy-2-arylaminopurines to be used only in moderate excess, rather than as solvent, opening up the possibility of accessing more complicated molecules.
Collapse
Affiliation(s)
- Lavleen Mader
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - John J. Hayward
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Lisa A. Porter
- Department of Biomedical Sciences, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - John F. Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
17
|
Sharma M, Choudhury H, Roy R, Michaels SA, Ojo KK, Bansal A. CDPKs: The critical decoders of calcium signal at various stages of malaria parasite development. Comput Struct Biotechnol J 2021; 19:5092-5107. [PMID: 34589185 PMCID: PMC8453137 DOI: 10.1016/j.csbj.2021.08.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Calcium ions are used as important signals during various physiological processes. In malaria parasites, Plasmodium spp., calcium dependent protein kinases (CDPKs) have acquired the unique ability to sense and transduce calcium signals at various critical steps during the lifecycle, either through phosphorylation of downstream substrates or mediating formation of high molecular weight protein complexes. Calcium signaling cascades establish important crosstalk events with signaling pathways mediated by other secondary messengers such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). CDPKs play critical roles at various important physiological steps during parasite development in vertebrates and mosquitoes. They are also important for transmission of the parasite between the two hosts. Combined with the fact that CDPKs are not present in humans, they continue to be pursued as important targets for development of anti-malarial drugs.
Collapse
Affiliation(s)
- Manish Sharma
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Himashree Choudhury
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajarshi Roy
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Samantha A. Michaels
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109 USA
| | - Kayode K. Ojo
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109 USA
| | - Abhisheka Bansal
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
18
|
Rangel GW, Llinás M. Re-Envisioning Anti-Apicomplexan Parasite Drug Discovery Approaches. Front Cell Infect Microbiol 2021; 11:691121. [PMID: 34178727 PMCID: PMC8226314 DOI: 10.3389/fcimb.2021.691121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Parasites of the phylum Apicomplexa impact humans in nearly all parts of the world, causing diseases including to toxoplasmosis, cryptosporidiosis, babesiosis, and malaria. Apicomplexan parasites have complex life cycles comprised of one or more stages characterized by rapid replication and biomass amplification, which enables accelerated evolutionary adaptation to environmental changes, including to drug pressure. The emergence of drug resistant pathogens is a major looming and/or active threat for current frontline chemotherapies, especially for widely used antimalarial drugs. In fact, resistant parasites have been reported against all modern antimalarial drugs within 15 years of clinical introduction, including the current frontline artemisinin-based combination therapies. Chemotherapeutics are a major tool in the public health arsenal for combatting the onset and spread of apicomplexan diseases. All currently approved antimalarial drugs have been discovered either through chemical modification of natural products or through large-scale screening of chemical libraries for parasite death phenotypes, and so far, none have been developed through a gene-to-drug pipeline. However, the limited duration of efficacy of these drugs in the field underscores the need for new and innovative approaches to discover drugs that can counter rapid resistance evolution. This review details both historical and current antimalarial drug discovery approaches. We also highlight new strategies that may be employed to discover resistance-resistant drug targets and chemotherapies in order to circumvent the rapid evolution of resistance in apicomplexan parasites.
Collapse
Affiliation(s)
- Gabriel W. Rangel
- Department of Biochemistry and Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, United States
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
19
|
Arendse LB, Wyllie S, Chibale K, Gilbert IH. Plasmodium Kinases as Potential Drug Targets for Malaria: Challenges and Opportunities. ACS Infect Dis 2021; 7:518-534. [PMID: 33590753 PMCID: PMC7961706 DOI: 10.1021/acsinfecdis.0c00724] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Protein and phosphoinositide kinases have been successfully exploited as drug targets in various disease areas, principally in oncology. In malaria, several protein kinases are under investigation as potential drug targets, and an inhibitor of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4KIIIβ) is currently in phase 2 clinical studies. In this Perspective, we review the potential of kinases as drug targets for the treatment of malaria. Kinases are known to be readily druggable, and many are essential for parasite survival. A key challenge in the design of Plasmodium kinase inhibitors is obtaining selectivity over the corresponding human orthologue(s) and other human kinases due to the highly conserved nature of the shared ATP binding site. Notwithstanding this, there are some notable differences between the Plasmodium and human kinome that may be exploitable. There is also the potential for designed polypharmacology, where several Plasmodium kinases are inhibited by the same drug. Prior to starting the drug discovery process, it is important to carefully assess potential kinase targets to ensure that the inhibition of the desired kinase will kill the parasites in the required life-cycle stages with a sufficiently fast rate of kill. Here, we highlight key target attributes and experimental approaches to consider and summarize the progress that has been made targeting Plasmodium PI4KIIIβ, cGMP-dependent protein kinase, and cyclin-dependent-like kinase 3.
Collapse
Affiliation(s)
- Lauren B. Arendse
- Drug
Discovery and Development Centre (H3D), South African Medical Research
Council Drug Discovery and Development Research Unit, Department of
Chemistry, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, Western Cape 7701, South Africa
| | - Susan Wyllie
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kelly Chibale
- Drug
Discovery and Development Centre (H3D), South African Medical Research
Council Drug Discovery and Development Research Unit, Department of
Chemistry, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, Western Cape 7701, South Africa
| | - Ian H. Gilbert
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
20
|
Ghartey-Kwansah G, Yin Q, Li Z, Gumpper K, Sun Y, Yang R, Wang D, Jones O, Zhou X, Wang L, Bryant J, Ma J, Boampong JN, Xu X. Calcium-dependent Protein Kinases in Malaria Parasite Development and Infection. Cell Transplant 2021; 29:963689719884888. [PMID: 32180432 PMCID: PMC7444236 DOI: 10.1177/0963689719884888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Apicomplexan parasites have challenged researchers for nearly a century. A major challenge to developing efficient treatments and vaccines is the parasite's ability to change its cellular and molecular makeup to develop intracellular and extracellular niches in its hosts. Ca2+ signaling is an important messenger for the egress of the malaria parasite from the infected erythrocyte, gametogenesis, ookinete motility in the mosquito, and sporozoite invasion of mammalian hepatocytes. Calcium-dependent protein kinases (CDPKs) have crucial functions in calcium signaling at various stages of the parasite's life cycle; this therefore makes them attractive drug targets against malaria. Here, we summarize the functions of the various CDPK isoforms in relation to the malaria life cycle by emphasizing the molecular mechanism of developmental progression within host tissues. We also discuss the current development of anti-malarial drugs, such as how specific bumped kinase inhibitors (BKIs) for parasite CDPKs have been shown to reduce infection in Toxoplasma gondii, Cryptosporidium parvum, and Plasmodium falciparum. Our suggested combinations of BKIs, artemisinin derivatives with peroxide bridge, and inhibitors on the Ca(2+)-ATPase PfATP6 as a potential target should be inspected further as a treatment against malaria.
Collapse
Affiliation(s)
- George Ghartey-Kwansah
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China.,Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.,Authors contributed equally to this article
| | - Qinan Yin
- Clinical Center of National Institutes of Health, Bethesda, MD, USA.,Authors contributed equally to this article
| | - Zhongguang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China.,Ohio State University School of Medicine, Columbus, OH, USA.,Authors contributed equally to this article
| | - Kristyn Gumpper
- Ohio State University School of Medicine, Columbus, OH, USA.,Authors contributed equally to this article
| | - Yuting Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Rong Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Dan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Odell Jones
- University of Pennsylvania School of Medicine, Animal Center, Philadelphia, PA, USA
| | - Xin Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China.,Ohio State University School of Medicine, Columbus, OH, USA
| | - Liyang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China.,Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joseph Bryant
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jianjie Ma
- Ohio State University School of Medicine, Columbus, OH, USA
| | - Johnson Nyarko Boampong
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Xuehong Xu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China
| |
Collapse
|
21
|
Liang S, Dong H, Zhu S, Zhao Q, Huang B, Yu Y, Wang Q, Wang H, Yu S, Han H. Eimeria tenella Translation Initiation Factor eIF-5A That Interacts With Calcium-Dependent Protein Kinase 4 Is Involved in Host Cell Invasion. Front Cell Infect Microbiol 2021; 10:602049. [PMID: 33553005 PMCID: PMC7862772 DOI: 10.3389/fcimb.2020.602049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022] Open
Abstract
Eimeria tenella is an apicomplexan, parasitic protozoan known to infect poultry worldwide. An important calcium-dependent protein kinase (CDPK) has been identified in plants, green algae, ciliates and apicomplexan, such as E. tenella. CDPKs are effector molecules involved in calcium signaling pathways, which control important physiological processes such as gliding motility, reproduction, and host cell invasion. Given that CDPKs are not found in the host, studying the functions of CDPKs in E. tenella may serve as a basis for developing new therapeutic drugs and vaccines. To assess the function of CDPK4 in E. tenella (EtCDPK4), a putative interactor, translation initiation factor eIF-5A (EteIF-5A), was screened by both co-immunoprecipitation (co-IP) and His pull-down assays followed by mass spectrometry. The interaction between EteIF-5A and EtCDPK4 was determined by bimolecular fluorescence complementation (BiFC), GST pull-down, and co-IP. The molecular characteristics of EteIF-5A were then analyzed. Quantitative real-time polymerase chain reaction and western blotting were used to determine the transcription and protein levels of EteIF-5A in the different developmental stages of E. tenella. The results showed that the transcription level of EteIF-5A mRNA was highest in second-generation merozoites, and the protein expression level was highest in unsporulated oocysts. Indirect immunofluorescence showed that the EteIF-5A protein was found throughout the cytoplasm of sporozoites, but not in the refractile body. As the invasion of DF-1 cells progressed, EteIF-5A fluorescence intensity increased in trophozoites, decreased in immature schizonts, and increased in mature schizonts. The secretion assay results, analyzed by western blotting, indicated that EteIF-5A was a secreted protein but not from micronemes. The results of invasion inhibition assays showed that rabbit anti-rEteIF-5A polyclonal antibodies effectively inhibited cell invasion by sporozoites, with an inhibition rate of 48%.
Collapse
Affiliation(s)
- Shanshan Liang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qingjie Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haixia Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shuilan Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
22
|
Mustière R, Vanelle P, Primas N. Plasmodial Kinase Inhibitors Targeting Malaria: Recent Developments. Molecules 2020; 25:E5949. [PMID: 33334080 PMCID: PMC7765515 DOI: 10.3390/molecules25245949] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
Recent progress in reducing malaria cases and ensuing deaths is threatened by factors like mutations that induce resistance to artemisinin derivatives. Multiple drugs are currently in clinical trials for malaria treatment, including some with novel mechanisms of action. One of these, MMV390048, is a plasmodial kinase inhibitor. This review lists the recently developed molecules which target plasmodial kinases. A systematic review of the literature was performed using CAPLUS and MEDLINE databases from 2005 to 2020. It covers a total of 60 articles and describes about one hundred compounds targeting 22 plasmodial kinases. This work highlights the strong potential of compounds targeting plasmodial kinases for future drug therapies. However, the majority of the Plasmodium kinome remains to be explored.
Collapse
Affiliation(s)
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385 Marseille CEDEX 05, France;
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13385 Marseille CEDEX 05, France;
| |
Collapse
|
23
|
Development of novel anti-malarial from structurally diverse library of molecules, targeting plant-like CDPK1, a multistage growth regulator of P. falciparum. Biochem J 2020; 477:1951-1970. [PMID: 32401306 DOI: 10.1042/bcj20200045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/06/2023]
Abstract
Upon Plasmodium falciparum merozoites exposure to low [K+] environment in blood plasma, there is escalation of cytosolic [Ca2+] which activates Ca2+-Dependent Protein Kinase 1 (CDPK1), a signaling hub of intra-erythrocytic proliferative stages of parasite. Given its high abundance and multidimensional attributes in parasite life-cycle, this is a lucrative target for designing antimalarials. Towards this, we have virtually screened MyriaScreenII diversity collection of 10,000 drug-like molecules, which resulted in 18 compounds complementing ATP-binding pocket of CDPK1. In vitro screening for toxicity in mammalian cells revealed that these compounds are non-toxic in nature. Furthermore, SPR analysis demonstrated differential binding affinity of these compounds towards recombinantly purified CDPK1 protein. Selection of lead compound 1 was performed by evaluating their inhibitory effects on phosphorylation and ATP binding activities of CDPK1. Furthermore, in vitro biophysical evaluations by ITC and FS revealed that binding of compound 1 is driven by formation of energetically favorable non-covalent interactions, with different binding constants in presence and absence of Ca2+, and TSA authenticated stability of compound 1 bound CDPK1 complex. Finally, compound 1 strongly inhibited intra-erythrocytic growth of P. falciparum in vitro. Conceivably, we propose a novel CDPK1-selective inhibitor, step towards developing pan-CDPK kinase inhibitors, prerequisite for cross-stage anti-malarial protection.
Collapse
|
24
|
Moolman C, van der Sluis R, Beteck RM, Legoabe LJ. An Update on Development of Small-Molecule Plasmodial Kinase Inhibitors. Molecules 2020; 25:E5182. [PMID: 33171706 PMCID: PMC7664427 DOI: 10.3390/molecules25215182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.
Collapse
Affiliation(s)
- Chantalle Moolman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Rencia van der Sluis
- Focus Area for Human Metabolomics, Biochemistry, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa;
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| |
Collapse
|
25
|
de Araújo RV, Santos SS, Sanches LM, Giarolla J, El Seoud O, Ferreira EI. Malaria and tuberculosis as diseases of neglected populations: state of the art in chemotherapy and advances in the search for new drugs. Mem Inst Oswaldo Cruz 2020; 115:e200229. [PMID: 33053077 PMCID: PMC7534959 DOI: 10.1590/0074-02760200229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/04/2020] [Indexed: 11/22/2022] Open
Abstract
Malaria and tuberculosis are no longer considered to be neglected diseases by the World Health Organization. However, both are huge challenges and public health problems in the world, which affect poor people, today referred to as neglected populations. In addition, malaria and tuberculosis present the same difficulties regarding the treatment, such as toxicity and the microbial resistance. The increase of Plasmodium resistance to the available drugs along with the insurgence of multidrug- and particularly tuberculosis drug-resistant strains are enough to justify efforts towards the development of novel medicines for both diseases. This literature review provides an overview of the state of the art of antimalarial and antituberculosis chemotherapies, emphasising novel drugs introduced in the pharmaceutical market and the advances in research of new candidates for these diseases, and including some aspects of their mechanism/sites of action.
Collapse
Affiliation(s)
- Renan Vinicius de Araújo
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Soraya Silva Santos
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Luccas Missfeldt Sanches
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Jeanine Giarolla
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Omar El Seoud
- Universidade de São Paulo, Instituto de Química, Departamento de
Química Fundamental, São Paulo, SP, Brasil
| | - Elizabeth Igne Ferreira
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| |
Collapse
|
26
|
Zhang Q, Guo Y, Li N, Li Y, Su J, Xu R, Zhang Z, Feng Y, Xiao L. Characterization of Calcium-Dependent Protein Kinases 3, a Protein Involved in Growth of Cryptosporidium parvum. Front Microbiol 2020; 11:907. [PMID: 32457733 PMCID: PMC7225609 DOI: 10.3389/fmicb.2020.00907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are considered promising targets for pharmaceutical intervention of cryptosporidiosis. Whole-genome sequencing has revealed the presence of several CDPKs (CpCDPKs) in Cryptosporidium parvum. In this study, we expressed recombinant CpCDPK3 encoded by the cgd5_820 gene in Escherichia coli. The biologic characteristics and functions of CpCDPK3 were examined using qRT-PCR, immunofluorescence microscopy, and in vitro neutralization assay. The expression of the cgd5_820 gene peaked in merozoites during in vitro culture while the CpCDPK3 protein was expressed in both sporozoites and merozoites. Polyclonal antibodies against CpCDPK3 showed no significant inhibitory effects on host invasion by the parasites. We assessed the inhibitory effects of 46 candidate compounds from molecular docking of CpCDPK3 on both C. parvum development and CpCDPK3 enzyme activities. One compound was identified to be effective. Results of these analyses suggest that CpCDPK3 might play an important role in the growth of C. parvum.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China
| | - Yaqiong Guo
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Na Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiayuan Su
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China
| | - Rui Xu
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, China.,Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Siddiqui MA, Singh S, Malhotra P, Chitnis CE. Protein S-Palmitoylation Is Responsive to External Signals and Plays a Regulatory Role in Microneme Secretion in Plasmodium falciparum Merozoites. ACS Infect Dis 2020; 6:379-392. [PMID: 32003970 DOI: 10.1021/acsinfecdis.9b00321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein S-palmitoylation is an important post-translational modification (PTM) in blood stages of the malaria parasite, Plasmodium falciparum. S-palmitoylation refers to reversible covalent modification of cysteine residues of proteins by saturated fatty acids. In vivo, palmitoylation is regulated by concerted activities of DHHC palmitoyl acyl transferases (DHHC PATs) and acyl protein thioesterases (APTs), which are enzymes responsible for protein palmitoylation and depalmitoylation, respectively. Here, we investigate the role of protein palmitoylation in red blood cell (RBC) invasion by P. falciparum merozoites. We demonstrate for the first time that free merozoites require PAT activity for microneme secretion in response to exposure to the physiologically relevant low [K+] environment, characteristic of blood plasma. We have adapted copper catalyzed alkyne azide chemistry (CuAAC) to image palmitoylation in merozoites and found that exposure to low [K+] activates PAT activity in merozoites. Moreover, using acyl biotin exchange chemistry (ABE) and confocal imaging, we demonstrate that a calcium dependent protein kinase, PfCDPK1, an essential regulator of key invasion processes such as motility and microneme secretion, undergoes dynamic palmitoylation and localizes to the merozoite membrane. Treatment of merozoites with the PAT inhibitor, 2-bromopalmitate (2-BP), effectively inhibits microneme secretion and RBC invasion by the parasite, thus opening the possibility of targeting P. falciparum PATs for antimalarial drug discovery to inhibit blood stage growth of malaria parasites.
Collapse
Affiliation(s)
- Mansoor A. Siddiqui
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailja Singh
- Institut Pasteur, 25-28 Rue du Dr. Roux, Paris 75016, France
- Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Chetan E. Chitnis
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
- Institut Pasteur, 25-28 Rue du Dr. Roux, Paris 75016, France
| |
Collapse
|
28
|
Helton LG, Kennedy EJ. Targeting Plasmodium with constrained peptides and peptidomimetics. IUBMB Life 2020; 72:1103-1114. [PMID: 32037730 DOI: 10.1002/iub.2244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/24/2020] [Indexed: 01/04/2023]
Abstract
Malaria remains a worldwide health concern with an estimated quarter of a billion people infected and nearly half a million deaths annually. Malaria is caused by a parasite infection from Plasmodium strains which are transmitted from mosquitoes into the human host. Although several small molecule inhibitors have been found to target the early stages of transmission and prevent parasite proliferation, multiple drug resistant parasite strains have emerged and drug resistance remains a major hurdle. As an alternative to small molecule inhibition, several peptide-based therapeutics have been explored for their potential as antimalarial compounds. Chemically constrained peptides or peptidomimetics were developed to target large binding interfaces of parasite-based proteins that have historically been difficult to selectively inhibit using small molecules. Here, we review ongoing research aimed at developing constrained peptides targeting protein-protein interactions pertinent to malaria pathogenesis. These targets include Falcipain-2, the J domain of CDPK1, myosin A tail domain interacting protein, the PKA signaling pathway, and an unclear signaling pathway involving angiotensin-derived peptides. Diverse synthetic methods were also used for each target. Merging parasite biology with synthetic strategies may provide new opportunities to develop alternative methods for uncovering novel antimalarials and may offer an alternate source for targeting drug-resistant parasite strains.
Collapse
Affiliation(s)
- Leah G Helton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia
| |
Collapse
|
29
|
Matralis AN, Malik A, Penzo M, Moreno I, Almela MJ, Camino I, Crespo B, Saadeddin A, Ghidelli-Disse S, Rueda L, Calderon F, Osborne SA, Drewes G, Böesche M, Fernández-Álvaro E, Martin Hernando JI, Baker DA. Development of Chemical Entities Endowed with Potent Fast-Killing Properties against Plasmodium falciparum Malaria Parasites. J Med Chem 2019; 62:9217-9235. [PMID: 31566384 PMCID: PMC6816013 DOI: 10.1021/acs.jmedchem.9b01099] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the attractive properties of artemisinins is their extremely fast-killing capability, quickly relieving malaria symptoms. Nevertheless, the unique benefits of these medicines are now compromised by the prolonged parasite clearance times and the increasing frequency of treatment failures, attributed to the increased tolerance of Plasmodium falciparum to artemisinin. This emerging artemisinin resistance threatens to undermine the effectiveness of antimalarial combination therapies. Herein, we describe the medicinal chemistry efforts focused on a cGMP-dependent protein kinase (PKG) inhibitor scaffold, leading to the identification of novel chemical entities with very potent, similar to artemisinins, fast-killing potency against asexual blood stages that cause disease, and activity against gametocyte activation that is required for transmission. Furthermore, we confirm that selective PKG inhibitors have a slow speed of kill, while chemoproteomic analysis suggests for the first time serine/arginine protein kinase 2 (SRPK2) targeting as a novel strategy for developing antimalarial compounds with extremely fast-killing properties.
Collapse
Affiliation(s)
- Alexios N Matralis
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain.,Biomedical Sciences Research Center "Alexander Fleming" , Fleming 34 Street , 16672 Vari , Greece
| | - Adnan Malik
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Maria Penzo
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain.,Faculty of Infectious and Tropical Diseases , London School of Hygiene & Tropical Medicine , London WC1E 7HT , U.K
| | - Inmaculada Moreno
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Maria J Almela
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Isabel Camino
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Benigno Crespo
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Anas Saadeddin
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Sonja Ghidelli-Disse
- Cellzome GmbH, a GlaxoSmithKline Company , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | - Lourdes Rueda
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Felix Calderon
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Simon A Osborne
- LifeArc, Accelerator Building, Open Innovation Campus , Stevenage SG1 2FX , U.K
| | - Gerard Drewes
- Cellzome GmbH, a GlaxoSmithKline Company , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | - Markus Böesche
- Cellzome GmbH, a GlaxoSmithKline Company , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | - Elena Fernández-Álvaro
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Jose Ignacio Martin Hernando
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - David A Baker
- Faculty of Infectious and Tropical Diseases , London School of Hygiene & Tropical Medicine , London WC1E 7HT , U.K
| |
Collapse
|
30
|
Burns AL, Dans MG, Balbin JM, de Koning-Ward TF, Gilson PR, Beeson JG, Boyle MJ, Wilson DW. Targeting malaria parasite invasion of red blood cells as an antimalarial strategy. FEMS Microbiol Rev 2019; 43:223-238. [PMID: 30753425 PMCID: PMC6524681 DOI: 10.1093/femsre/fuz005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Plasmodium spp. parasites that cause malaria disease remain a significant global-health burden. With the spread of parasites resistant to artemisinin combination therapies in Southeast Asia, there is a growing need to develop new antimalarials with novel targets. Invasion of the red blood cell by Plasmodium merozoites is essential for parasite survival and proliferation, thus representing an attractive target for therapeutic development. Red blood cell invasion requires a co-ordinated series of protein/protein interactions, protease cleavage events, intracellular signals, organelle release and engagement of an actin-myosin motor, which provide many potential targets for drug development. As these steps occur in the bloodstream, they are directly susceptible and exposed to drugs. A number of invasion inhibitors against a diverse range of parasite proteins involved in these different processes of invasion have been identified, with several showing potential to be optimised for improved drug-like properties. In this review, we discuss red blood cell invasion as a drug target and highlight a number of approaches for developing antimalarials with invasion inhibitory activity to use in future combination therapies.
Collapse
Affiliation(s)
- Amy L Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | - Madeline G Dans
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Deakin University, School of Medicine, Waurn Ponds, Victoria, Australia 3216
| | - Juan M Balbin
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | | | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria, Australia 3004
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Central Clinical School and Department of Microbiology, Monash University 3004.,Department of Medicine, University of Melbourne, Australia 3052
| | - Michelle J Boyle
- Burnet Institute, Melbourne, Victoria, Australia 3004.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia 4006
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005.,Burnet Institute, Melbourne, Victoria, Australia 3004
| |
Collapse
|
31
|
Krasnov VP, Musiyak VV, Vozdvizhenskaya OA, Galegov GA, Andronova VL, Gruzdev DA, Chulakov EN, Vigorov AY, Ezhikova MA, Kodess MI, Levit GL, Charushin VN. N-[ω-(Purin-6-yl)aminoalkanoyl] Derivatives of Chiral Heterocyclic Amines as Promising Anti-Herpesvirus Agents. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Victor P. Krasnov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Vera V. Musiyak
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Olga A. Vozdvizhenskaya
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Georgiy A. Galegov
- Gamaleya Federal Research Centre for Epidemiology and Microbiology; Ministry of Healthcare of the Russian Federation; Ivanovsky Institute of Virology; 123098 Moscow Russia
| | - Valeria L. Andronova
- Gamaleya Federal Research Centre for Epidemiology and Microbiology; Ministry of Healthcare of the Russian Federation; Ivanovsky Institute of Virology; 123098 Moscow Russia
| | - Dmitry A. Gruzdev
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
- Institute of Chemical Engineering; Ministry of Healthcare of the Russian Federation; Ural Federal University; 620002 Ekaterinburg Russia
| | - Evgeny N. Chulakov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Alexey Yu. Vigorov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Marina A. Ezhikova
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Mikhail I. Kodess
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
- Institute of Chemical Engineering; Ministry of Healthcare of the Russian Federation; Ural Federal University; 620002 Ekaterinburg Russia
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
- Institute of Chemical Engineering; Ministry of Healthcare of the Russian Federation; Ural Federal University; 620002 Ekaterinburg Russia
| | - Valery N. Charushin
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
- Institute of Chemical Engineering; Ministry of Healthcare of the Russian Federation; Ural Federal University; 620002 Ekaterinburg Russia
| |
Collapse
|
32
|
Choudhary HH, Gupta R, Mishra S. PKAc is not required for the preerythrocytic stages of Plasmodium berghei. Life Sci Alliance 2019; 2:2/3/e201900352. [PMID: 31142638 PMCID: PMC6545604 DOI: 10.26508/lsa.201900352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
The mutant salivary gland sporozoites lacking PKAc are able to glide, invade hepatocytes, and mature into hepatic merozoites, which release successfully from the merosome, however, fail to initiate blood stage infection when inoculated into mice. Plasmodium sporozoites invade hepatocytes to initiate infection in the mammalian host. In the infected hepatocytes, sporozoites undergo rapid expansion and differentiation, resulting in the formation and release of thousands of invasive merozoites into the bloodstream. Both sporozoites and merozoites invade their host cells by activation of a signaling cascade followed by discharge of micronemal content. cAMP-dependent protein kinase catalytic subunit (PKAc)–mediated signaling plays an important role in merozoite invasion of erythrocytes, but its role during other stages of the parasite remains unknown. Becaused of the essentiality of PKAc in blood stages, we generated conditional mutants of PKAc by disrupting the gene in Plasmodium berghei sporozoites. The mutant salivary gland sporozoites were able to glide, invaded hepatocytes, and matured into hepatic merozoites which were released successfully from merosome, however failed to initiate blood stage infection when inoculated into mice. Our results demonstrate that malaria parasite complete preerythrocytic stages development without PKAc, raising the possibility that the PKAc independent signaling operates in preerythrocytic stages of P. berghei.
Collapse
Affiliation(s)
| | - Roshni Gupta
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Satish Mishra
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India .,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
33
|
Flaherty BR, Ho TG, Schmidt SH, Herberg FW, Peterson DS, Kennedy EJ. Targeted Inhibition of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 with a Constrained J Domain-Derived Disruptor Peptide. ACS Infect Dis 2019; 5:506-514. [PMID: 30746930 DOI: 10.1021/acsinfecdis.8b00347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To explore the possibility of constrained peptides to target Plasmodium-infected cells, we designed a J domain mimetic derived from Plasmodium falciparum calcium-dependent protein kinase 1 ( PfCDPK1) as a strategy to disrupt J domain binding and inhibit PfCDPK1 activity. The J domain disruptor (JDD) peptide was conformationally constrained using a hydrocarbon staple and was found to selectively permeate segmented schizonts and colocalize with intracellular merozoites in late-stage parasites. In vitro analyses demonstrated that JDD could effectively inhibit the catalytic activity of recombinant PfCDPK1 in the low micromolar range. Treatment of late-stage parasites with JDD resulted in a significant decrease in parasite viability mediated by a blockage of merozoite invasion, consistent with a primary effect of PfCDPK1 inhibition. To the best of our knowledge, this marks the first use of stapled peptides designed to specifically target a Plasmodium falciparum protein and demonstrates that stapled peptides may serve as useful tools for exploring potential antimalarial agents.
Collapse
Affiliation(s)
- Briana R. Flaherty
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 345 Coverdell Center, Athens, Georgia 30602, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, 345 Coverdell Center, Athens, Georgia 30602, United States
| | - Tienhuei G. Ho
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 240 W. Green Street, Athens, Georgia 30602, United States
| | - Sven H. Schmidt
- Department of Biochemistry, University of Kassel, Heinrich-Plett Strasse 40, Kassel 34132, Germany
| | - Friedrich W. Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett Strasse 40, Kassel 34132, Germany
| | - David S. Peterson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 345 Coverdell Center, Athens, Georgia 30602, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, 345 Coverdell Center, Athens, Georgia 30602, United States
| | - Eileen J. Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 240 W. Green Street, Athens, Georgia 30602, United States
| |
Collapse
|
34
|
Cabrera DG, Horatscheck A, Wilson CR, Basarab G, Eyermann CJ, Chibale K. Plasmodial Kinase Inhibitors: License to Cure? J Med Chem 2018; 61:8061-8077. [PMID: 29771541 PMCID: PMC6166223 DOI: 10.1021/acs.jmedchem.8b00329] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Advances
in the genetics, function, and stage-specificity of Plasmodium kinases has driven robust efforts to identify
targets for the design of antimalarial therapies. Reverse genomics
following phenotypic screening against Plasmodia or
related parasites has uncovered vulnerable kinase targets including
PI4K, PKG, and GSK-3, an approach bolstered by access to human disease-directed
kinase libraries. Alternatively, screening compound libraries against Plasmodium kinases has successfully led to inhibitors with
antiplasmodial activity. As with other therapeutic areas, optimizing
compound ADMET and PK properties in parallel with target inhibitory
potency and whole cell activity becomes paramount toward advancing
compounds as clinical candidates. These and other considerations will
be discussed in the context of progress achieved toward deriving important,
novel mode-of-action kinase-inhibiting antimalarial medicines.
Collapse
|
35
|
Iyer GR, Singh S, Kaur I, Agarwal S, Siddiqui MA, Bansal A, Kumar G, Saini E, Paul G, Mohmmed A, Chitnis CE, Malhotra P. Calcium-dependent phosphorylation of Plasmodium falciparum serine repeat antigen 5 triggers merozoite egress. J Biol Chem 2018; 293:9736-9746. [PMID: 29716996 DOI: 10.1074/jbc.ra117.001540] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/13/2018] [Indexed: 01/13/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum proliferates in red blood cells following repeated cycles of invasion, multiplication, and egress. P. falciparum serine repeat antigen 5 (PfSERA5), a putative serine protease, plays an important role in merozoite egress. However, regulation of its activity leading to merozoite egress is poorly understood. In this study, we show that PfSERA5 undergoes phosphorylation prior to merozoite egress. Immunoprecipitation of parasite lysates using anti-PfSERA5 serum followed by MS analysis identified calcium-dependent protein kinase 1 (PfCDPK1) as an interacting kinase. Association of PfSERA5 with PfCDPK1 was corroborated by co-sedimentation, co-immunoprecipitation, and co-immunolocalization analyses. Interestingly, PfCDPK1 phosphorylated PfSERA5 in vitro in the presence of Ca2+ and enhanced its proteolytic activity. A PfCDPK1 inhibitor, purfalcamine, blocked the phosphorylation and activation of PfSERA5 both in vitroas well as in schizonts, which, in turn, blocked merozoite egress. Together, these results suggest that phosphorylation of PfSERA5 by PfCDPK1 following a rise in cytosolic Ca2+ levels activates its proteolytic activity to trigger merozoite egress.
Collapse
Affiliation(s)
- Gayatri R Iyer
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Shailja Singh
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and.,the Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 rue du Doctor Roux, 75015 Paris, France
| | - Inderjeet Kaur
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Shalini Agarwal
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Mansoor A Siddiqui
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Abhisheka Bansal
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Gautam Kumar
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Ekta Saini
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Gourab Paul
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Asif Mohmmed
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Chetan E Chitnis
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and .,the Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 rue du Doctor Roux, 75015 Paris, France
| | - Pawan Malhotra
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| |
Collapse
|
36
|
Abstract
Plasmodium species cause malaria by proliferating in human erythrocytes. Invasion of immunologically privileged erythrocytes provides a relatively protective niche as well as access to a rich source of nutrients. Plasmodium spp. target erythrocytes of different ages, but share a common mechanism of invasion. Specific engagement of erythrocyte receptors defines target cell tropism, activating downstream events and resulting in the physical penetration of the erythrocyte, powered by the parasite's actinomyosin-based motor. Here we review the latest in our understanding of the molecular composition of this highly complex and fascinating biological process.
Collapse
|
37
|
Calcium-Dependent Protein Kinase 5 Is Required for Release of Egress-Specific Organelles in Plasmodium falciparum. mBio 2018; 9:mBio.00130-18. [PMID: 29487234 PMCID: PMC5829822 DOI: 10.1128/mbio.00130-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human malaria parasite Plasmodium falciparum requires efficient egress out of an infected red blood cell for pathogenesis. This egress event is highly coordinated and is mediated by several signaling proteins, including the plant-like Pfalciparum calcium-dependent protein kinase 5 (PfCDPK5). Knockdown of PfCDPK5 results in an egress block where parasites are trapped inside their host cells. The mechanism of this PfCDPK5-dependent block, however, remains unknown. Here, we show that PfCDPK5 colocalizes with a specialized set of parasite organelles known as micronemes and is required for their discharge, implicating failure of this step as the cause of the egress defect in PfCDPK5-deficient parasites. Furthermore, we show that PfCDPK5 cooperates with the Pfalciparum cGMP-dependent kinase (PfPKG) to fully activate the protease cascade critical for parasite egress. The PfCDPK5-dependent arrest can be overcome by hyperactivation of PfPKG or by physical disruption of the arrested parasite, and we show that both treatments facilitate the release of the micronemes required for egress. Our results define the molecular mechanism of PfCDPK5 function and elucidate the complex signaling pathway of parasite egress.IMPORTANCE The signs and symptoms of clinical malaria result from the replication of parasites in human blood. Efficient egress of the malaria parasite Plasmodium falciparum out of an infected red blood cell is critical for pathogenesis. The Pfalciparum calcium-dependent protein kinase 5 (PfCDPK5) is essential for parasite egress. Following PfCDPK5 knockdown, parasites remain trapped inside their host cell and do not egress, but the mechanism for this block remains unknown. We show that PfCDPK5 colocalizes with parasite organelles known as micronemes. We demonstrate that PfCDPK5 is critical for the discharge of these micronemes and that failure of this step is the molecular mechanism of the parasite egress arrest. We also show that hyperactivation of the cGMP-dependent kinase PKG can overcome this arrest. Our data suggest that small molecules that inhibit the egress signaling pathway could be effective antimalarial therapeutics.
Collapse
|
38
|
Abstract
Efforts to knock out Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) from asexual erythrocytic stage have not been successful, indicating an indispensable role of the enzyme in asexual growth. We recently reported generation of a transgenic parasite with mutant CDPK1 [Bansal A, et al. (2016) MBio 7:e02011-16]. The mutant CDPK1 (T145M) had reduced activity of transphosphorylation. We reasoned that CDPK1 could be disrupted in the mutant parasites. Consistent with this assumption, CDPK1 was successfully disrupted in the mutant parasites using CRISPR/Cas9. We and others could not disrupt PfCDPK1 in the WT parasites. The CDPK1 KO parasites show a slow growth rate compared with the WT and the CDPK1 T145M parasites. Additionally, the CDPK1 KO parasites show a defect in both male and female gametogenesis and could not establish an infection in mosquitoes. Complementation of the KO parasite with full-length PfCDPK1 partially rescued the asexual growth defect and mosquito infection. Comparative global transcriptomics of WT and the CDPK1 KO schizonts using RNA-seq show significantly high transcript expression of gametocyte-specific genes in the CDPK1 KO parasites. This study conclusively demonstrates that CDPK1 is a good target for developing transmission-blocking drugs.
Collapse
|
39
|
Mondal M, Begum T, Bharali P. Regioselective C–H and N–H functionalization of purine derivatives and analogues: a synthetic and mechanistic perspective. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01860j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This perspective provides a systematic and concise overview of the recent development in C–H/N–H bond functionalization in purine derivatives and analogues.
Collapse
Affiliation(s)
- Manoj Mondal
- Department of Chemical Sciences
- Tezpur University
- Tezpur-784028
- India
| | - Tahshina Begum
- Chemical Sciences & Technology Division
- CSIR-NEIST
- AcSIR
- Jorhat-785006
- India
| | - Pankaj Bharali
- Department of Chemical Sciences
- Tezpur University
- Tezpur-784028
- India
| |
Collapse
|
40
|
Miliu A, Lebrun M, Braun-Breton C, Lamarque MH. Shelph2, a bacterial-like phosphatase of the malaria parasite Plasmodium falciparum, is dispensable during asexual blood stage. PLoS One 2017; 12:e0187073. [PMID: 29073264 PMCID: PMC5658161 DOI: 10.1371/journal.pone.0187073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/03/2022] Open
Abstract
During the erythrocytic cycle of the malaria parasite Plasmodium falciparum, egress and invasion are essential steps finely controlled by reversible phosphorylation. In contrast to the growing number of kinases identified as key regulators, phosphatases have been poorly studied, and calcineurin is the only one identified so far to play a role in invasion. PfShelph2, a bacterial-like phosphatase, is a promising candidate to participate in the invasion process, as it was reported to be expressed late during the asexual blood stage and to reside within an apical compartment, yet distinct from rhoptry bulb, micronemes, or dense granules. It was also proposed to play a role in the control of the red blood cell membrane deformability at the end of the invasion process. However, genetic studies are still lacking to support this hypothesis. Here, we take advantage of the CRISPR-Cas9 technology to tag shelph2 genomic locus while retaining its endogenous regulatory regions. This new strain allows us to follow the endogenous PfShelph2 protein expression and location during asexual blood stages. We show that PfShelph2 apical location is also distinct from the rhoptry neck or exonemes. We further demonstrate PfShelph2 dispensability during the asexual blood stage by generating PfShelph2-KO parasites using CRISPR-Cas9 machinery. Analyses of the mutant during the course of the erythrocytic development indicate that there are no detectable phenotypic consequences of Pfshelph2 genomic deletion. As this lack of phenotype might be due to functional redundancy, we also explore the likelihood of PfShelph1 (PfShelph2 paralog) being a compensatory phosphatase. We conclude that despite its cyclic expression profile, PfShelph2 is a dispensable phosphatase during the Plasmodium falciparum asexual blood stage, whose function is unlikely substituted by PfShelph1.
Collapse
Affiliation(s)
| | - Maryse Lebrun
- DIMNP, CNRS, Université de Montpellier, Montpellier, France
| | | | - Mauld H. Lamarque
- DIMNP, CNRS, Université de Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
41
|
Plasmodium falciparum Calcium-Dependent Protein Kinase 2 Is Critical for Male Gametocyte Exflagellation but Not Essential for Asexual Proliferation. mBio 2017; 8:mBio.01656-17. [PMID: 29042501 PMCID: PMC5646254 DOI: 10.1128/mbio.01656-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Drug development efforts have focused mostly on the asexual blood stages of the malaria parasite Plasmodium falciparum. Except for primaquine, which has its own limitations, there are no available drugs that target the transmission of the parasite to mosquitoes. Therefore, there is a need to validate new parasite proteins that can be targeted for blocking transmission. P. falciparum calcium-dependent protein kinases (PfCDPKs) play critical roles at various stages of the parasite life cycle and, importantly, are absent in the human host. These features mark them as attractive drug targets. In this study, using CRISPR/Cas9 we successfully knocked out PfCDPK2 from blood-stage parasites, which was previously thought to be an indispensable protein. The growth rate of the PfCDPK2 knockout (KO) parasites was similar to that of wild-type parasites, confirming that PfCDPK2 function is not essential for the asexual proliferation of the parasite in vitro. The mature male and female gametocytes of PfCDPK2 KO parasites become round after induction. However, they fail to infect female Anopheles stephensi mosquitoes due to a defect(s) in male gametocyte exflagellation and possibly in female gametes. Despite reductions in the number of deaths it causes, malaria continues to be a leading infectious disease of the developing world. For effective control and elimination of malaria, multiple stages of the parasite need to be targeted. One such stage includes the transmission of the parasite to mosquitoes. Here, we demonstrate the successful knockout of PfCDPK2, which was previously thought to be indispensable for parasite growth in red blood cells. The PfCDPK2 KO parasites are incapable of establishing an infection in mosquitoes. Therefore, our study suggests that targeting PfCDPK2 may be a good strategy to control malaria transmission in countries with high transmission. Moreover, molecular understanding of the signaling pathway of PfCDPK2 may provide additional targets for malaria control.
Collapse
|
42
|
Tripathi M, Khan SI, Ponnan P, Kholiya R, Rawat DS. Aminoquinoline-Pyrimidine-Modified Anilines: Synthesis, In Vitro Antiplasmodial Activity, Cytotoxicity, Mechanistic Studies and ADME Predictions. ChemistrySelect 2017. [DOI: 10.1002/slct.201701558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohit Tripathi
- Department of Chemistry; University of Delhi; Delhi- 110007 India
| | - Shabana I. Khan
- National Centre for Natural Products Research; University of Mississippi; MS-38677 USA
| | - Prija Ponnan
- Department of Chemistry; University of Delhi; Delhi- 110007 India
| | - Rohit Kholiya
- Department of Chemistry; University of Delhi; Delhi- 110007 India
| | - Diwan S. Rawat
- Department of Chemistry; University of Delhi; Delhi- 110007 India
| |
Collapse
|
43
|
Singh S, Chitnis CE. Molecular Signaling Involved in Entry and Exit of Malaria Parasites from Host Erythrocytes. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026815. [PMID: 28507195 DOI: 10.1101/cshperspect.a026815] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During the blood stage, Plasmodium spp. merozoites invade host red blood cells (RBCs), multiply, exit, and reinvade uninfected RBCs in a continuing cycle that is responsible for all the clinical symptoms associated with malaria. Entry into (invasion) and exit from (egress) RBCs are highly regulated processes that are mediated by an array of parasite proteins with specific functional roles. Many of these parasite proteins are stored in specialized apical secretory vesicles, and their timely release is critical for successful invasion and egress. For example, the discharge of parasite protein ligands to the apical surface of merozoites is required for interaction with host receptors to mediate invasion, and the timely discharge of proteases and pore-forming proteins helps in permeabilization and dismantling of limiting membranes during egress. This review focuses on our understanding of the signaling mechanisms that regulate apical organelle secretion during host cell invasion and egress by malaria parasites. The review also explores how understanding key signaling mechanisms in the parasite can open opportunities to develop novel strategies to target Plasmodium parasites and eliminate malaria.
Collapse
Affiliation(s)
- Shailja Singh
- Department of Parasites and Insect Vectors, Institut Pasteur, 75015 Paris, France.,Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Chetan E Chitnis
- Department of Parasites and Insect Vectors, Institut Pasteur, 75015 Paris, France.,Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| |
Collapse
|
44
|
Suárez-Cortés P, Gambara G, Favia A, Palombi F, Alano P, Filippini A. Ned-19 inhibition of parasite growth and multiplication suggests a role for NAADP mediated signalling in the asexual development of Plasmodium falciparum. Malar J 2017; 16:366. [PMID: 28899381 PMCID: PMC5596470 DOI: 10.1186/s12936-017-2013-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/04/2017] [Indexed: 11/26/2022] Open
Abstract
Background Although malaria is a preventable and curable human disease, millions of people risk to be infected by the Plasmodium parasites and to develop this illness. Therefore, there is an urgent need to identify new anti-malarial drugs. Ca2+ signalling regulates different processes in the life cycle of Plasmodium falciparum, representing a suitable target for the development of new drugs. Results This study investigated for the first time the effect of a highly specific inhibitor of nicotinic acid adenine dinucleotide phosphate (NAADP)-induced Ca2+ release (Ned-19) on P. falciparum, revealing the inhibitory effect of this compound on the blood stage development of this parasite. Ned-19 inhibits both the transition of the parasite from the early to the late trophozoite stage and the ability of the late trophozoite to develop to the multinucleated schizont stage. In addition, Ned-19 affects spontaneous intracellular Ca2+ oscillations in ring and trophozoite stage parasites, suggesting that the observed inhibitory effects may be associated to regulation of intracellular Ca2+ levels. Conclusions This study highlights the inhibitory effect of Ned-19 on progression of the asexual life cycle of P. falciparum. The observation that Ned-19 inhibits spontaneous Ca2+ oscillations suggests a potential role of NAADP in regulating Ca2+ signalling of P. falciparum. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2013-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pablo Suárez-Cortés
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena n. 299, 00161, Rome, Italy.,Department of Vector Biology, Max-Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Guido Gambara
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Annarita Favia
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.,Nucleic Acids Laboratory, Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), Department of Biology and Biotechnologies, Sapienza University, Rome, Italy
| | - Fioretta Palombi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena n. 299, 00161, Rome, Italy.
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
45
|
PfCDPK1 mediated signaling in erythrocytic stages of Plasmodium falciparum. Nat Commun 2017; 8:63. [PMID: 28680058 PMCID: PMC5498596 DOI: 10.1038/s41467-017-00053-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/26/2017] [Indexed: 01/11/2023] Open
Abstract
Calcium Dependent Protein Kinases are key effectors of calcium signaling in malaria parasite. PfCDPK1 is critical for asexual development of Plasmodium falciparum, but its precise function and substrates remain largely unknown. Using a conditional knockdown strategy, we here establish that this kinase is critical for the invasion of host erythrocytes. Furthermore, using a multidisciplinary approach involving comparative phosphoproteomics we gain insights into the underlying molecular mechanisms. We identify substrates of PfCDPK1, which includes proteins of Inner Membrane Complex and glideosome-actomyosin motor assembly. Interestingly, PfCDPK1 phosphorylates PfPKA regulatory subunit (PfPKA-R) and regulates PfPKA activity in the parasite, which may be relevant for the process of invasion. This study delineates the signaling network of PfCDPK1 and sheds light on mechanisms via which it regulates invasion.Calcium dependent protein kinase 1 (CDPK1) plays an important role in asexual development of Plasmodium falciparum. Using phosphoproteomics and conditional knockdown of CDPK1, the authors here identify CDPK1 substrates and a cross-talk between CDPK1 and PKA, and show the role of CDPK1 in parasite invasion.
Collapse
|
46
|
Yang C, Arrizabalaga G. The serine/threonine phosphatases of apicomplexan parasites. Mol Microbiol 2017; 106:1-21. [PMID: 28556455 DOI: 10.1111/mmi.13715] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 12/21/2022]
Abstract
The balance between phosphorylation and de-phosphorylation, which is delicately regulated by protein kinases and phosphatases, is critical for nearly all biological processes. The Apicomplexa are a large phylum which contains various parasitic protists, including human pathogens, such as Plasmodium, Toxoplasma, Cryptosporidium and Babesia species. The diverse life cycles of these parasites are highly complex and, not surprisingly, many of their key steps are exquisitely regulated by phosphorylation. Interestingly, many of the kinases and phosphatases, as well as the substrates involved in these events are unique to the parasites and therefore phosphorylation constitutes a viable target for antiparasitic intervention. Most progress on this realm has come from studies in Toxoplasma and Plasmodium of their respective kinomes and phosphoproteomes. Nonetheless, given their likely importance, phosphatases have recently become the focus of research within the apicomplexan parasites. In this review, we concentrate on serine/threonine phosphatases in apicomplexan parasites, with the focus on comprehensively identifying and naming protein phosphatases in available apicomplexan genomes, and summarizing the progress of their functional analyses in recent years.
Collapse
Affiliation(s)
- Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
47
|
Coxon C, Anscombe E, Harnor SJ, Martin MP, Carbain B, Golding BT, Hardcastle IR, Harlow LK, Korolchuk S, Matheson CJ, Newell DR, Noble MEM, Sivaprakasam M, Tudhope SJ, Turner DM, Wang LZ, Wedge SR, Wong C, Griffin RJ, Endicott JA, Cano C. Cyclin-Dependent Kinase (CDK) Inhibitors: Structure-Activity Relationships and Insights into the CDK-2 Selectivity of 6-Substituted 2-Arylaminopurines. J Med Chem 2017; 60:1746-1767. [PMID: 28005359 PMCID: PMC6111440 DOI: 10.1021/acs.jmedchem.6b01254] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Indexed: 02/08/2023]
Abstract
Purines and related heterocycles substituted at C-2 with 4'-sulfamoylanilino and at C-6 with a variety of groups have been synthesized with the aim of achieving selectivity of binding to CDK2 over CDK1. 6-Substituents that favor competitive inhibition at the ATP binding site of CDK2 were identified and typically exhibited 10-80-fold greater inhibition of CDK2 compared to CDK1. Most impressive was 4-((6-([1,1'-biphenyl]-3-yl)-9H-purin-2-yl)amino) benzenesulfonamide (73) that exhibited high potency toward CDK2 (IC50 0.044 μM) but was ∼2000-fold less active toward CDK1 (IC50 86 μM). This compound is therefore a useful tool for studies of cell cycle regulation. Crystal structures of inhibitor-kinase complexes showed that the inhibitor stabilizes a glycine-rich loop conformation that shapes the ATP ribose binding pocket and that is preferred in CDK2 but has not been observed in CDK1. This aspect of the active site may be exploited for the design of inhibitors that distinguish between CDK1 and CDK2.
Collapse
Affiliation(s)
- Christopher
R. Coxon
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Bedson Building, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Elizabeth Anscombe
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Suzannah J. Harnor
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Bedson Building, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Mathew P. Martin
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, Newcastle University Medical School, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K.
| | - Benoit Carbain
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Bedson Building, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Bernard T. Golding
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Bedson Building, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Ian R. Hardcastle
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Bedson Building, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Lisa K. Harlow
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Bedson Building, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Svitlana Korolchuk
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, Newcastle University Medical School, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K.
| | - Christopher J. Matheson
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Bedson Building, Newcastle
upon Tyne NE1 7RU, U.K.
| | - David R. Newell
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, Newcastle University Medical School, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K.
| | - Martin E. M. Noble
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Mangaleswaran Sivaprakasam
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Bedson Building, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Susan J. Tudhope
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, Newcastle University Medical School, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K.
| | - David M. Turner
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Bedson Building, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Lan Z. Wang
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, Newcastle University Medical School, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K.
| | - Stephen R. Wedge
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, Newcastle University Medical School, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K.
| | - Christopher Wong
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Bedson Building, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Roger J. Griffin
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Bedson Building, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Jane A. Endicott
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Céline Cano
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Bedson Building, Newcastle
upon Tyne NE1 7RU, U.K.
| |
Collapse
|
48
|
McCoy JM, Stewart RJ, Uboldi AD, Li D, Schröder J, Scott NE, Papenfuss AT, Lehane AM, Foster LJ, Tonkin CJ. A forward genetic screen identifies a negative regulator of rapid Ca 2+-dependent cell egress (MS1) in the intracellular parasite Toxoplasma gondii. J Biol Chem 2017; 292:7662-7674. [PMID: 28258212 DOI: 10.1074/jbc.m117.775114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/27/2017] [Indexed: 12/20/2022] Open
Abstract
Toxoplasma gondii, like all apicomplexan parasites, uses Ca2+ signaling pathways to activate gliding motility to power tissue dissemination and host cell invasion and egress. A group of "plant-like" Ca2+-dependent protein kinases (CDPKs) transduces cytosolic Ca2+ flux into enzymatic activity, but how they function is poorly understood. To investigate how Ca2+ signaling activates egress through CDPKs, we performed a forward genetic screen to isolate gain-of-function mutants from an egress-deficient cdpk3 knockout strain. We recovered mutants that regained the ability to egress from host cells that harbored mutations in the gene Suppressor of Ca2+-dependent Egress 1 (SCE1). Global phosphoproteomic analysis showed that SCE1 deletion restored many Δcdpk3-dependent phosphorylation events to near wild-type levels. We also show that CDPK3-dependent SCE1 phosphorylation is required to relieve its suppressive activity to potentiate egress. In summary, our work has uncovered a novel component and suppressor of Ca2+-dependent cell egress during Toxoplasma lytic growth.
Collapse
Affiliation(s)
- James M McCoy
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,the Departments of Medical Biology.,Computing and Information Systems,University of Melbourne, Victoria 3010, Australia
| | - Rebecca J Stewart
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,the Departments of Medical Biology.,Computing and Information Systems,University of Melbourne, Victoria 3010, Australia
| | - Alessandro D Uboldi
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,the Departments of Medical Biology.,Computing and Information Systems,University of Melbourne, Victoria 3010, Australia
| | - Dongdi Li
- the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jan Schröder
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,the Departments of Medical Biology.,the Peter MacCallum Cancer Institute, Victoria 3000, Australia, and
| | - Nicollas E Scott
- the University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Anthony T Papenfuss
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,the Departments of Medical Biology.,the Peter MacCallum Cancer Institute, Victoria 3000, Australia, and
| | - Adele M Lehane
- the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Leonard J Foster
- the University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Christopher J Tonkin
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia, .,the Departments of Medical Biology
| |
Collapse
|
49
|
Love MS, Beasley FC, Jumani RS, Wright TM, Chatterjee AK, Huston CD, Schultz PG, McNamara CW. A high-throughput phenotypic screen identifies clofazimine as a potential treatment for cryptosporidiosis. PLoS Negl Trop Dis 2017; 11:e0005373. [PMID: 28158186 PMCID: PMC5310922 DOI: 10.1371/journal.pntd.0005373] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/15/2017] [Accepted: 01/30/2017] [Indexed: 11/19/2022] Open
Abstract
Cryptosporidiosis has emerged as a leading cause of non-viral diarrhea in children under five years of age in the developing world, yet the current standard of care to treat Cryptosporidium infections, nitazoxanide, demonstrates limited and immune-dependent efficacy. Given the lack of treatments with universal efficacy, drug discovery efforts against cryptosporidiosis are necessary to find therapeutics more efficacious than the standard of care. To date, cryptosporidiosis drug discovery efforts have been limited to a few targeted mechanisms in the parasite and whole cell phenotypic screens against small, focused collections of compounds. Using a previous screen as a basis, we initiated the largest known drug discovery effort to identify novel anticryptosporidial agents. A high-content imaging assay for inhibitors of Cryptosporidium parvum proliferation within a human intestinal epithelial cell line was miniaturized and automated to enable high-throughput phenotypic screening against a large, diverse library of small molecules. A screen of 78,942 compounds identified 12 anticryptosporidial hits with sub-micromolar activity, including clofazimine, an FDA-approved drug for the treatment of leprosy, which demonstrated potent and selective in vitro activity (EC50 = 15 nM) against C. parvum. Clofazimine also displayed activity against C. hominis-the other most clinically-relevant species of Cryptosporidium. Importantly, clofazimine is known to accumulate within epithelial cells of the small intestine, the primary site of Cryptosporidium infection. In a mouse model of acute cryptosporidiosis, a once daily dosage regimen for three consecutive days or a single high dose resulted in reduction of oocyst shedding below the limit detectable by flow cytometry. Recently, a target product profile (TPP) for an anticryptosporidial compound was proposed by Huston et al. and highlights the need for a short dosing regimen (< 7 days) and formulations for children < 2 years. Clofazimine has a long history of use and has demonstrated a good safety profile for a disease that requires chronic dosing for a period of time ranging 3-36 months. These results, taken with clofazimine's status as an FDA-approved drug with over four decades of use for the treatment of leprosy, support the continued investigation of clofazimine both as a new chemical tool for understanding cryptosporidium biology and a potential new treatment of cryptosporidiosis.
Collapse
Affiliation(s)
- Melissa S. Love
- California Institute for Biomedical Research, La Jolla, California, United States of America
| | - Federico C. Beasley
- California Institute for Biomedical Research, La Jolla, California, United States of America
| | - Rajiv S. Jumani
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Timothy M. Wright
- California Institute for Biomedical Research, La Jolla, California, United States of America
| | - Arnab K. Chatterjee
- California Institute for Biomedical Research, La Jolla, California, United States of America
| | - Christopher D. Huston
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Peter G. Schultz
- California Institute for Biomedical Research, La Jolla, California, United States of America
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Case W. McNamara
- California Institute for Biomedical Research, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Reduced Activity of Mutant Calcium-Dependent Protein Kinase 1 Is Compensated in Plasmodium falciparum through the Action of Protein Kinase G. mBio 2016; 7:mBio.02011-16. [PMID: 27923926 PMCID: PMC5142624 DOI: 10.1128/mbio.02011-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We used a sensitization approach that involves replacement of the gatekeeper residue in a protein kinase with one with a different side chain. The activity of the enzyme with a bulky gatekeeper residue, such as methionine, cannot be inhibited using bumped kinase inhibitors (BKIs). Here, we have used this approach to study Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1). The methionine gatekeeper substitution, T145M, although it led to a 47% reduction in transphosphorylation, was successfully introduced into the CDPK1 locus using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9. As methionine is a bulky residue, BKI 1294 had a 10-fold-greater effect in vitro on the wild-type enzyme than on the methionine mutant. However, in contrast to in vitro data with recombinant enzymes, BKI 1294 had a slightly greater inhibition of the growth of CDPK1 T145M parasites than the wild type. Moreover, the CDPK1 T145M parasites were more sensitive to the action of compound 2 (C2), a specific inhibitor of protein kinase G (PKG). These results suggest that a reduction in the activity of CDPK1 due to methionine substitution at the gatekeeper position is compensated through the direct action of PKG or of another kinase under the regulation of PKG. The transcript levels of CDPK5 and CDPK6 were significantly upregulated in the CDPK1 T145M parasites. The increase in CDPK6 or some other kinase may compensate for decrease in CDPK1 activity during invasion. This study suggests that targeting two kinases may be more effective in chemotherapy to treat malaria so as not to select for mutations in one of the enzymes. Protein kinases of Plasmodium falciparum are being actively pursued as drug targets to treat malaria. However, compensatory mechanisms may reverse the drug activity against a kinase. In this study, we show that replacement of the wild-type threonine gatekeeper residue with methionine reduces the transphosphorylation activity of CDPK1. Mutant parasites with methionine gatekeeper residue compensate the reduced activity of CDPK1 through the action of PKG possibly by upregulation of CDPK6 or some other kinase. This study highlights that targeting one enzyme may lead to changes in transcript expression of other kinases that compensate for its function and may select for mutants that are less dependent on the target enzyme activity. Thus, inhibiting two kinases is a better strategy to protect the antimalarial activity of each, similar to artemisinin combination therapy or malarone (atovaquone and proguanil).
Collapse
|