1
|
Hess SS, Burns DA, Boudinot FG, Brown-Lima C, Corwin J, Foppert JD, Robinson GR, Rose KC, Schlesinger MD, Shuford RL, Bradshaw D, Stevens A. New York State Climate Impacts Assessment Chapter 05: Ecosystems. Ann N Y Acad Sci 2024; 1542:253-340. [PMID: 39652386 DOI: 10.1111/nyas.15203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The people of New York have long benefited from the state's diversity of ecosystems, which range from coastal shorelines and wetlands to extensive forests and mountaintop alpine habitat, and from lakes and rivers to greenspaces in heavily populated urban areas. These ecosystems provide key services such as food, water, forest products, flood prevention, carbon storage, climate moderation, recreational opportunities, and other cultural services. This chapter examines how changes in climatic conditions across the state are affecting different types of ecosystems and the services they provide, and considers likely future impacts of projected climate change. The chapter emphasizes how climate change is increasing the vulnerability of ecosystems to existing stressors, such as habitat fragmentation and invasive species, and highlights opportunities for New Yorkers to adapt and build resilience.
Collapse
Affiliation(s)
| | - Douglas A Burns
- New York Water Science Center, United States Geological Survey, Troy, New York, USA
| | - F Garrett Boudinot
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Carrie Brown-Lima
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA
| | - Jason Corwin
- Department of Indigenous Studies, University at Buffalo, Buffalo, New York, USA
| | - John D Foppert
- Department of Forestry, Paul Smith's College, Paul Smiths, New York, USA
| | - George R Robinson
- Department of Biological Sciences, State University of New York at Albany, Albany, New York, USA
| | - Kevin C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Matthew D Schlesinger
- New York Natural Heritage Program, State University of New York College of Environmental Science and Forestry, Albany, New York, USA
| | | | - Drake Bradshaw
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Amanda Stevens
- New York State Energy Research and Development Authority, Albany, New York, USA
| |
Collapse
|
2
|
Fusco EJ, Falk BG, Heimowitz PJ, Lieurance D, Parsons EW, Rottler CM, Thurman LL, Evans AE. The emerging invasive species and climate-change lexicon. Trends Ecol Evol 2024; 39:1119-1129. [PMID: 39353820 DOI: 10.1016/j.tree.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 10/04/2024]
Abstract
The rapid diversification of terminology associated with invasion ecology is a known barrier to effective communication and management. These challenges are magnified by the addition of terms and concepts related to climate-induced range-shifting taxa and/or changes to impacts. Further, institutional policies and terminologies for invasive species introduce new ambiguities when considering climate change. To alleviate communication and application challenges, we introduce a conceptual framework that organizes climate-related invasion terms, revealing ambiguities and gaps. Additionally, we illustrate how these ambiguities can affect management with four case studies and consider situations where resolution can improve policy and management outcomes. The framework can help users avoid inconsistent use of terminology, and prioritize when to address management and policy consequences related to associated terminological ambiguity.
Collapse
Affiliation(s)
- Emily J Fusco
- Climate Impacts Group, University of Washington, Seattle, WA 98195, USA; Northeast Climate Adaptation Science Center, University of Massachusetts, Amherst, MA 01003, USA.
| | - Bryan G Falk
- National Invasive Species Council, Washington, DC 20240, USA
| | - Paul J Heimowitz
- US Geological Survey, Biological Threats and Invasive Species Research Program, Portland, OR 97221, USA
| | - Deah Lieurance
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elliott W Parsons
- Pacific RISCC, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Cait M Rottler
- South Central Climate Adaptation Science Center, University of Oklahoma, Norman, OK 73019, USA
| | - Lindsey L Thurman
- US Geological Survey, Northwest Climate Adaptation Science Center, Corvallis, OR 97331, USA
| | - Annette E Evans
- Northeast Climate Adaptation Science Center, University of Massachusetts, Amherst, MA 01003, USA; Department of Biology, University of Saint Joseph, West Hartford, CT 06117, USA
| |
Collapse
|
3
|
Copeland M, Landa S, Owoyemi AO, Jonika MM, Alfieri JM, Johnston JS, Sylvester TP, Kyre BR, Hoover Z, Hjelmen CE, Rieske LK, Blackmon H, Casola C. Genome assembly of the southern pine beetle ( Dendroctonus frontalis Zimmerman) reveals the origins of gene content reduction in Dendroctonus. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240755. [PMID: 39665097 PMCID: PMC11631454 DOI: 10.1098/rsos.240755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/09/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Dendroctonus frontalis also known as southern pine beetle (SPB), is the most damaging insect forest pest in the southeastern United States. Genomic data are important to provide information on pest biology and to identify molecular targets to develop improved pest management approaches. Here, we produced a chromosome-level genome assembly of SPB using long-read sequencing data. Synteny analyses confirmed the conservation of the core Coleopteran Stevens elements and validated the bona fide SPB X chromosome. Transcriptomic data were used to obtain 39 588 transcripts corresponding to 13 354 putative protein-coding loci. Comparative analyses of gene content across 14 beetles and three other insects revealed several losses of conserved genes in the Dendroctonus clade and gene gains in SPB and Dendroctonus that were enriched for loci encoding membrane proteins and extracellular matrix proteins. While lineage-specific gene losses contributed to the gene content reduction observed in Dendroctonus, we also showed that widespread misannotation of transposable elements represents an important cause of the apparent gene expansion in several non-Dendroctonus species. Our findings uncovered distinctive features of the SPB gene complement and disentangled the role of biological and annotation-related factors contributing to gene content variation across beetles.
Collapse
Affiliation(s)
- Megan Copeland
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Shelby Landa
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | | | | | - James M. Alfieri
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | | | | | - Bethany R. Kyre
- USDA Forest Service, Forest Health Protection, San Bernardino, CA, USA
| | - Zachary Hoover
- Department of Biochemistry, Texas A&M University, College Station, TX, USA
| | - Carl E. Hjelmen
- Department of Biology, Utah Valley University, Orem, UT, USA
| | - Lynne K. Rieske
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, USA
- Interdisciplinary Doctoral Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Claudio Casola
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
- Interdisciplinary Doctoral Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Wang Z, Liu C, Song X, Tie Y, Wang H, Liu H, Lu Q. Ophiostomatalean fungi associated with Polygraphus bark beetles in the Qinghai-Tibet Plateau, China. MycoKeys 2024; 110:93-115. [PMID: 39524405 PMCID: PMC11549554 DOI: 10.3897/mycokeys.110.135538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Climate change has exacerbated outbreaks of forest pests worldwide. In recent years, bark beetles have caused significant damage to coniferous forests of the Northern Hemisphere. Polygraphus bark beetles are widely distributed secondary pests. Recently, tree mortality caused by these beetles on the Qinghai-Tibet Plateau has been increasing; however, few studies have focused on their fungal associations. In the present study, we explored the diversity of ophiostomatalean fungi associated with these beetles on the north-eastern and southern Qinghai-Tibet Plateau. We isolated 442 ophiostomatalean strains from adult beetles and their fresh galleries, specifically targeting Polygraphuspoligraphus and Polygraphusrudis infesting Piceacrassifolia and/or Pinusgriffithii. Based on phylogenetic and morphological features, we assigned the 442 strains to 16 species belonging to Grosmannia spp., Leptographium spp. and Ophiostoma spp. Amongst these, Ophiostomamaixiuense and Ophiostomabicolor were the most frequently isolated species, accounting for 20.8% and 18.1% of the total number of ophiostomatalean assemblages, respectively. By comparing their fungal communities, we found that the different patterns of fungal assemblages of bark beetles from the north-eastern and southern Qinghai-Tibet Plateau may be influenced by biogeographic barriers and host tree species. The results of this study enhance our understanding of bark beetle fungal assemblages, especially Polygraphus, on the Qinghai-Tibet Plateau, with implications for forest management under changing climate.
Collapse
Affiliation(s)
- Zheng Wang
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, ChinaShandong Agricultural UniversityTai'anChina
| | - Caixia Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Xiuyue Song
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, ChinaShandong Agricultural UniversityTai'anChina
| | - Yingjie Tie
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, ChinaShandong Agricultural UniversityTai'anChina
| | - Huimin Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, ChinaShandong Agricultural UniversityTai'anChina
| | - Quan Lu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| |
Collapse
|
5
|
Starko S, van der Mheen M, Pessarrodona A, Wood GV, Filbee-Dexter K, Neufeld CJ, Montie S, Coleman MA, Wernberg T. Impacts of marine heatwaves in coastal ecosystems depend on local environmental conditions. GLOBAL CHANGE BIOLOGY 2024; 30:e17469. [PMID: 39155748 DOI: 10.1111/gcb.17469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Marine heatwaves (MHWs), increasing in duration and intensity because of climate change, are now a major threat to marine life and can have lasting effects on the structure and function of ecosystems. However, the responses of marine taxa and ecosystems to MHWs can be highly variable, making predicting and interpreting biological outcomes a challenge. Here, we review how biological responses to MHWs, from individuals to ecosystems, are mediated by fine-scale spatial variability in the coastal marine environment (hereafter, local gradients). Viewing observed responses through a lens of ecological theory, we present a simple framework of three 'resilience processes' (RPs) by which local gradients can influence the responses of marine taxa to MHWs. Local gradients (1) influence the amount of stress directly experienced by individuals, (2) facilitate local adaptation and acclimatization of individuals and populations, and (3) shape community composition which then influences responses to MHWs. We then synthesize known examples of fine-scale gradients that have affected responses of benthic foundation species to MHWs, including kelp forests, coral reefs, and seagrass meadows and link these varying responses to the RPs. We present a series of case studies from various marine ecosystems to illustrate the differential impacts of MHWs mediated by gradients in both temperature and other co-occurring drivers. In many cases, these gradients had large effect sizes with several examples of local gradients causing a 10-fold difference in impacts or more (e.g., survival, coverage). This review highlights the need for high-resolution environmental data to accurately predict and manage the consequences of MHWs in the context of ongoing climate change. While current tools may capture some of these gradients already, we advocate for enhanced monitoring and finer scale integration of local environmental heterogeneity into climate models. This will be essential for developing effective conservation strategies and mitigating future marine biodiversity loss.
Collapse
Affiliation(s)
- Samuel Starko
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Mirjam van der Mheen
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Albert Pessarrodona
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Georgina V Wood
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Karen Filbee-Dexter
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute of Marine Research, Flødevigen Research Station, His, Norway
| | | | - Shinae Montie
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Melinda A Coleman
- Department of Primary Industries New South Wales, National Marine Sciences Centre, Coffs Harbour, New South Wales, Australia
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute of Marine Research, Flødevigen Research Station, His, Norway
| |
Collapse
|
6
|
Copeland M, Landa S, Owoyemi A, Jonika MM, Alfieri J, Sylvester T, Hoover Z, Hjelmen CE, Spencer Johnston J, Kyre BR, Rieske LK, Blackmon H, Casola C. Genome assembly of the southern pine beetle ( Dendroctonus frontalis Zimmerman) reveals the origins of gene content reduction in Dendroctonus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.592785. [PMID: 38766115 PMCID: PMC11100688 DOI: 10.1101/2024.05.08.592785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dendroctonus frontalis, also known as southern pine beetle (SPB), represents the most damaging forest pest in the southeastern United States. Strategies to predict, monitor and suppress SPB outbreaks have had limited success. Genomic data are critical to inform on pest biology and to identify molecular targets to develop improved management approaches. Here, we produced a chromosome-level genome assembly of SPB using long-read sequencing data. Synteny analyses confirmed the conservation of the core coleopteran Stevens elements and validated the bona fide SPB X chromosome. Transcriptomic data were used to obtain 39,588 transcripts corresponding to 13,354 putative protein-coding loci. Comparative analyses of gene content across 14 beetle and 3 other insects revealed several losses of conserved genes in the Dendroctonus clade and gene gains in SPB and Dendroctonus that were enriched for loci encoding membrane proteins and extracellular matrix proteins. While lineage-specific gene losses contributed to the gene content reduction observed in Dendroctonus, we also showed that widespread misannotation of transposable elements represents a major cause of the apparent gene expansion in several non-Dendroctonus species. Our findings uncovered distinctive features of the SPB gene complement and disentangled the role of biological and annotation-related factors contributing to gene content variation across beetles.
Collapse
Affiliation(s)
- Megan Copeland
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Shelby Landa
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | - Adekola Owoyemi
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | | | - Jamie Alfieri
- Department of Molecular Biosciences, University of Texas Austin, Austin, TX, USA
| | - Terrence Sylvester
- Department of Biological Sciences, The University of Memphis, Memphis, TN, USA
| | - Zachary Hoover
- Department of Biochemistry, Texas A&M University, College Station, TX, USA
| | - Carl E. Hjelmen
- Department of Biology, Utah Valley University, Orem, UT, USA
| | | | - Bethany R. Kyre
- USDA Forest Service, Forest Health Protection, San Bernardino, CA, USA
| | - Lynne K. Rieske
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, USA
- Interdisciplinary Doctoral Degree Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, USA
- Interdisciplinary Doctoral Degree Program in Genetics and Genomics, Texas A&M University, College Station, USA
| | - Claudio Casola
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
- Interdisciplinary Doctoral Degree Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, USA
- Interdisciplinary Doctoral Degree Program in Genetics and Genomics, Texas A&M University, College Station, USA
| |
Collapse
|
7
|
MacQuarrie CJK, Derry V, Gray M, Mielewczyk N, Crossland D, Ogden JB, Boulanger Y, Fidgen JG. Effect of a severe cold spell on overwintering survival of an invasive forest insect pest. CURRENT RESEARCH IN INSECT SCIENCE 2024; 5:100077. [PMID: 39027355 PMCID: PMC11256554 DOI: 10.1016/j.cris.2024.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 07/20/2024]
Abstract
Cold temperatures can play a significant role in the range and impact of pest insects. Severe cold events can reduce the size of insect outbreaks and perhaps even cause outbreaks to end. Measuring the precise impact of cold events, however, can be difficult because estimates of insect mortality are often made at the end of the winter season. In late January 2023 long-term climate models predicted a significant cold event to occur over eastern North America. We used this event to evaluate the immediate impact on hemlock woolly adelgid (Adelges tsugae Annand) overwintering mortality at four sites on the northern edge of the insects invaded range in eastern North America. We observed complete mortality, partial mortality and no effects on hemlock woolly adelgid mortality that correlated with the location of populations and strength of the cold event. Our data showed support for preconditioning of overwintering adelgids having an impact on their overwintering survival following this severe cold event. Finally, we compared the climatic conditions at our sites to historical weather data and previous observations of mortality in Nova Scotia. The cold event observed in February 2023 resulted in the coldest temperatures observed at these sites, including the period within which hemlock woolly adelgid invaded, suggesting cold conditions, especially under anthropogenic climate forcing, may not be a limiting factor in determining the ultimate northern range of hemlock woolly adelgid in eastern North America.
Collapse
Affiliation(s)
- Chris J K MacQuarrie
- Natural Resources Canada Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E. Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Victoria Derry
- Natural Resources Canada Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E. Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Meghan Gray
- Natural Resources Canada Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E. Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Nicole Mielewczyk
- Canadian Food Inspection Agency, 709 Main St. W. Hamilton, Ontario L8S 1A2, Canada
| | - Donna Crossland
- Medway Community Forest Coop, 9793 Trunk 8, Caledonia, Nova Scotia B0T 1B0, Canada
| | - Jeffrey B Ogden
- Nova Scotia Department of Natural Resources and Renewables, 23 Creighton Rd., Shubenacadie, Nova Scotia B0N 2H0, Canada
| | - Yan Boulanger
- Natural Resources Canada Canadian Forest Service, Laurentian Forestry Centre. 1055 rue du PEPS, Québec, Québec, G1V 4C7, Canada
| | - Jeffrey G Fidgen
- Natural Resources Canada Canadian Forest Service, Atlantic Forestry Centre. 1350 Regent St. South, Fredericton, New Brunswick E3B 5P7, Canada
| |
Collapse
|
8
|
Jones FAM, Bogdanoff C, Wolkovich EM. The role of genotypic and climatic variation at the range edge: A case study in winegrapes. AMERICAN JOURNAL OF BOTANY 2024; 111:e16270. [PMID: 38156528 DOI: 10.1002/ajb2.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 12/30/2023]
Abstract
PREMISE Changes in habitat suitability due to climate change are causing range shifts, with new habitat potentially available at cold range edges. We must predict these range shifts, but forecasters have limited knowledge of how genetic differences in plant physiological tolerances influence range shifts. Here, we focus on a major determinant of species ranges-physiological tolerance to extreme cold-to ask how warming over recent decades and genetic variation shape expansion across complex landscapes. METHODS We examined how genotypes vary in maximum cold tolerance from 9 years of cold hardiness data across 18 genotypes from 13 sites, using winegrapes (Vitis vinifera subsp. vinifera) as a case study. Combining a Bayesian hierarchical dose-response model with gridded climate data, we then project changes in climatic suitability near winegrapes' current cold range-edge between 1949 and 2016. RESULTS Plants increased maximum cold hardiness non-linearly with decreasing air temperature (maximum cold hardiness: -23.6°C), but with substantial (by 2°C) variation across genotypes. Our results suggest, since the 1980s, decreasing freeze injury risk has made conditions more favorable for all genotypes at the cold range-edge, but conditions remained more favorable for more cold hardy genotypes and in warmer areas. There was substantial spatial variation in habitat suitability, with the majority of suitably warm habitat located in a narrow north-south oriented strip. CONCLUSIONS We highlight the importance of genotypic differences in physiological tolerances when assessing range shift potential with climate change. Habitat improvements were unevenly distributed over the spatially complex landscape, though, emphasizing the importance of dispersal in range expansion.
Collapse
Affiliation(s)
- Faith A M Jones
- Department of Forest and Conservation, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Colombia, V6T 1Z4, Canada
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Carl Bogdanoff
- Agriculture and Agri-Food, Summerland, British Columbia, V0H 1Z0, Canada
| | - E M Wolkovich
- Department of Forest and Conservation, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Colombia, V6T 1Z4, Canada
| |
Collapse
|
9
|
Forzieri G, Dutrieux LP, Elia A, Eckhardt B, Caudullo G, Taboada FÁ, Andriolo A, Bălăcenoiu F, Bastos A, Buzatu A, Dorado FC, Dobrovolný L, Duduman ML, Fernandez-Carrillo A, Hernández-Clemente R, Hornero A, Ionuț S, Lombardero MJ, Junttila S, Lukeš P, Marianelli L, Mas H, Mlčoušek M, Mugnai F, Nețoiu C, Nikolov C, Olenici N, Olsson PO, Paoli F, Paraschiv M, Patočka Z, Pérez-Laorga E, Quero JL, Rüetschi M, Stroheker S, Nardi D, Ferenčík J, Battisti A, Hartmann H, Nistor C, Cescatti A, Beck PSA. The Database of European Forest Insect and Disease Disturbances: DEFID2. GLOBAL CHANGE BIOLOGY 2023; 29:6040-6065. [PMID: 37605971 DOI: 10.1111/gcb.16912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023]
Abstract
Insect and disease outbreaks in forests are biotic disturbances that can profoundly alter ecosystem dynamics. In many parts of the world, these disturbance regimes are intensifying as the climate changes and shifts the distribution of species and biomes. As a result, key forest ecosystem services, such as carbon sequestration, regulation of water flows, wood production, protection of soils, and the conservation of biodiversity, could be increasingly compromised. Despite the relevance of these detrimental effects, there are currently no spatially detailed databases that record insect and disease disturbances on forests at the pan-European scale. Here, we present the new Database of European Forest Insect and Disease Disturbances (DEFID2). It comprises over 650,000 harmonized georeferenced records, mapped as polygons or points, of insects and disease disturbances that occurred between 1963 and 2021 in European forests. The records currently span eight different countries and were acquired through diverse methods (e.g., ground surveys, remote sensing techniques). The records in DEFID2 are described by a set of qualitative attributes, including severity and patterns of damage symptoms, agents, host tree species, climate-driven trigger factors, silvicultural practices, and eventual sanitary interventions. They are further complemented with a satellite-based quantitative characterization of the affected forest areas based on Landsat Normalized Burn Ratio time series, and damage metrics derived from them using the LandTrendr spectral-temporal segmentation algorithm (including onset, duration, magnitude, and rate of the disturbance), and possible interactions with windthrow and wildfire events. The DEFID2 database is a novel resource for many large-scale applications dealing with biotic disturbances. It offers a unique contribution to design networks of experiments, improve our understanding of ecological processes underlying biotic forest disturbances, monitor their dynamics, and enhance their representation in land-climate models. Further data sharing is encouraged to extend and improve the DEFID2 database continuously. The database is freely available at https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/FOREST/DISTURBANCES/DEFID2/.
Collapse
Affiliation(s)
- Giovanni Forzieri
- Department of Civil and Environmental Engineering, University of Florence, Florence, Italy
- European Commission, Joint Research Centre, Ispra, Italy
| | | | | | - Bernd Eckhardt
- European Commission, Joint Research Centre, Ispra, Italy
| | | | - Flor Álvarez Taboada
- DRACONES Research Group, Universidad de León, León, Spain
- Sustainable Forestry and Environmental Management Unit, University of Santiago de Compostela, Lugo, Spain
| | - Alessandro Andriolo
- Ufficio Pianificazione Forestale, Amministrazione Provincia Bolzano, Bolzano, Italy
| | - Flavius Bălăcenoiu
- National Institute for Research and Development in Forestry "Marin Drăcea" (INCDS), Voluntari, Romania
| | - Ana Bastos
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
| | - Andrei Buzatu
- National Institute for Research and Development in Forestry "Marin Drăcea" (INCDS), Craiova, Romania
| | - Fernando Castedo Dorado
- DRACONES Research Group, Universidad de León, León, Spain
- Sustainable Forestry and Environmental Management Unit, University of Santiago de Compostela, Lugo, Spain
| | - Lumír Dobrovolný
- University Forest Enterprise Masaryk Forest Křtiny, Mendel University in Brno, Brno, Czech Republic
| | - Mihai-Leonard Duduman
- Applied Ecology Laboratory, Forestry Faculty, "Ștefan cel Mare" University of Suceava, Suceava, Romania
| | | | | | - Alberto Hornero
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- Faculty of Engineering and Information Technology (FEIT), The University of Melbourne, Melbourne, Victoria, Australia
| | - Săvulescu Ionuț
- Department of Geomorphology-Pedology-Geomatics, Faculty of Geography, University of Bucharest, Bucharest, Romania
| | - María J Lombardero
- Sustainable Forestry and Environmental Management Unit, University of Santiago de Compostela, Lugo, Spain
| | - Samuli Junttila
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - Petr Lukeš
- Czechglobe-Global Change Research Institute, CAS, Brno, Czech Republic
- Ústav pro hospodářskou úpravu lesů-Forest Management Institute (FMI), Brno-Žabovřesky, Czech Republic
| | - Leonardo Marianelli
- CREA Research Centre for Plant Protection and Certification, Florence, Italy
| | - Hugo Mas
- Laboratori de Sanitat Forestal, Servei d'Ordenació i Gestió Forestal, Conselleria d'Agricultura, Desenvolupament Rural, Emergència Climàtica i Transició Ecològica, Generalitat Valenciana, Valencia, Spain
| | - Marek Mlčoušek
- Czechglobe-Global Change Research Institute, CAS, Brno, Czech Republic
- Ústav pro hospodářskou úpravu lesů-Forest Management Institute (FMI), Brno-Žabovřesky, Czech Republic
| | - Francesco Mugnai
- Department of Civil and Environmental Engineering, University of Florence, Florence, Italy
| | - Constantin Nețoiu
- National Institute for Research and Development in Forestry "Marin Drăcea" (INCDS), Craiova, Romania
| | - Christo Nikolov
- National Forest Centre, Forest Research Institute, Zvolen, Slovakia
| | - Nicolai Olenici
- National Institute for Research and Development in Forestry "Marin Drăcea" (INCDS), Voluntari, Romania
| | - Per-Ola Olsson
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Francesco Paoli
- CREA Research Centre for Plant Protection and Certification, Florence, Italy
| | - Marius Paraschiv
- National Institute for Research and Development in Forestry "Marin Drăcea" (INCDS), Brașov, Romania
| | - Zdeněk Patočka
- Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Eduardo Pérez-Laorga
- Laboratori de Sanitat Forestal, Servei d'Ordenació i Gestió Forestal, Conselleria d'Agricultura, Desenvolupament Rural, Emergència Climàtica i Transició Ecològica, Generalitat Valenciana, Valencia, Spain
| | - Jose Luis Quero
- Department of Forest Engineering, University of Córdoba, Córdoba, Spain
| | - Marius Rüetschi
- Department of Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Sophie Stroheker
- Swiss Forest Protection, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Davide Nardi
- DAFNAE-Entomology, University of Padova, Padova, Italy
| | - Ján Ferenčík
- Research Station Tatra National Park, Tatranská Lomnica, Slovakia
| | | | - Henrik Hartmann
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
- Insitute for Forest Protection, Julius Kühn-Institute, Federal Research Federal Research Center for Cultivated Plants, Quedlinburg, Germany
| | - Constantin Nistor
- Department of Geomorphology-Pedology-Geomatics, Faculty of Geography, University of Bucharest, Bucharest, Romania
| | | | | |
Collapse
|
10
|
Yang Y, Zhao N. Vulnerability assessment of urban agglomerations to the risk of heat waves in China since the 21st century. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122443. [PMID: 37643676 DOI: 10.1016/j.envpol.2023.122443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/06/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
In the context of global warming, frequent heat wave disasters have seriously threatened the safety of human life and property. The urban agglomeration, as the main region with a high concentration of population and economy, is susceptible to heat weaves due to the existing urban heat island effect. In this study, we investigated the temporal and spatial characteristics of heat waves (heat index, HI) in China from 2000 to 2020 and assess the vulnerability of 19 urban agglomerations to heat waves from the perspective of exposure, sensitivity and adaptability. The results show that: (1) In the past 20 years, the frequency and intensity of HI (greater than 26.67 °C) both showed an upward trend. (2) Shandong Peninsula, Central Henan, Yangtze River Delta, Middle Reaches of Yangtze River, and Mid-southern Liaoning urban agglomerations always maintain a high vulnerability. (3) From 2000 to 2020, the vulnerability of Beijing-Tianjin-Hebei, Yangtze River Delta, Chengdu-Chongqing, Middle reaches of Yangtze River, Guangdong-Fujian-Zhejiang, Harbin-Changchun and Mid-southern Liaoning urban agglomerations were always dominated by exposure. The vulnerability of Shandong Peninsula, Beibu Gulf and Central Henan urban agglomeration has always been dominated by sensitivity. The vulnerability of North Tianshan Mountain, Lanzhou-Xining, Guanzhong and Hu-Bao-E-Yu urban agglomeration has always been dominated by inadequate adaptability. (4) Recently, the factors that contributed most to exposure, sensitivity and adaptability were population density, the proportion of outdoor workers and water supply, with contribution rates of 38%, 55% and 26%, respectively. This study can provide a scientific basis for the rational allocation of resources among urban agglomerations, effectively formulating policies and guiding population migration from high temperature disasters.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Zhao
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and Application, Nanjing, 210023, China.
| |
Collapse
|
11
|
MacDonald P, Myers JH, Cory JS. Warmer temperatures reduce the transmission of a virus in a gregarious forest insect. Ecology 2023; 104:e4159. [PMID: 37632353 DOI: 10.1002/ecy.4159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/28/2023]
Abstract
Understanding how climate warming will influence species interactions is a key question in ecology and predicting changes in the prevalence of disease outbreaks is particularly challenging. Ectotherms are likely to be more influenced by climatic changes as temperature governs their growth, feeding, development, and behavior. We test the hypothesis that pathogen transmission and host mortality will increase at warmer temperatures using a cyclic forest insect, the western tent caterpillar (WTC), Malacosoma californicum pluviale, and its baculovirus. The virus causes population declines at peak host density. WTC are gregarious and clustering is predicted to increase the risk of within family infection; however, how temperature influences this has not been examined. We investigated the impact of temperature on different components of the transmission process in order to pinpoint the possible mechanisms involved. In the laboratory, leaf consumption increased linearly with rising temperature between 15 and 30°C. Insects died more rapidly from virus infection as temperature increased, but this did not translate into differences in the production of viral transmission stages. To examine the influence of temperature on virus transmission, we created a temperature difference between two greenhouses containing potted red alder trees, Alnus rubra. The cooler greenhouse (mean 19.5°C) was roughly similar to ambient temperatures in the field, while the warmer greenhouse was 10°C higher (mean 29°C). As predicted, both larval movement and feeding were higher at the warmer temperature, while the likelihood of the preinfected, inoculum larvae dying on the tents was twice as high in the cooler greenhouse. This resulted in increased virus mortality and a higher transmission parameter under cooler conditions. Therefore, we suggest that, contrary to our prediction, the reduced movement of infected larvae at colder temperatures increased the risk of infection in these gregarious insects and had a greater impact on virus transmission than the increased activity of the susceptible larvae in warmer conditions. Long-term population data from the field, however, show no relationship between temperature and infection levels, suggesting that local changes in virus transmission might not scale up to population infection levels.
Collapse
Affiliation(s)
- Paul MacDonald
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Judith H Myers
- Biodiversity Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenny S Cory
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
12
|
Singewar K, Fladung M. Double-stranded RNA (dsRNA) technology to control forest insect pests and fungal pathogens: challenges and opportunities. Funct Integr Genomics 2023; 23:185. [PMID: 37243792 PMCID: PMC10220346 DOI: 10.1007/s10142-023-01107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Climate change alters the seasonal synchronization between plants and respective pests plus pathogens. The geographical infiltration helps to shift their hosts, resulting in novel outbreaks that damage forests and ecology. Traditional management schemes are unable to control such outbreaks, therefore unconventional and competitive governance is needed to manage forest pests and pathogens. RNA interference (RNAi) mediated double-stranded RNA (dsRNA) treatment method can be implemented to protect forest trees. Exogenous dsRNA triggers the RNAi-mediated gene silencing of a vital gene, and suspends protein production, resulting in the death of targeted pathogens and pests. The dsRNA treatment method is successful for many crop insects and fungi, however, studies of dsRNA against forest pests and pathogens are depleting. Pesticides and fungicides based on dsRNA could be used to combat pathogens that caused outbreaks in different parts of the world. Although the dsRNA has proved its potential, the crucial dilemma and risks including species-specific gene selection, and dsRNA delivery methods cannot be overlooked. Here, we summarized the major fungi pathogens and insect pests that have caused outbreaks, their genomic information, and studies on dsRNA fungi-and pesticides. Current challenges and opportunities in dsRNA target decision, delivery using nanoparticles, direct applications, and a new method using mycorrhiza for forest tree protection are discussed. The importance of affordable next-generation sequencing to minimize the impact on non-target species is discussed. We suggest that collaborative research among forest genomics and pathology institutes could develop necessary dsRNA strategies to protect forest tree species.
Collapse
Affiliation(s)
- Kiran Singewar
- Thünen Institute of Forest Genetics, 22927, Großhansdorf, Germany.
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, 22927, Großhansdorf, Germany.
| |
Collapse
|
13
|
Scalable Semiparametric Spatio-temporal Regression for Large Data Analysis. JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS 2022. [DOI: 10.1007/s13253-022-00525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Cassidy VA, Asaro C, McCarty EP. Management Implications for the Nantucket Pine Tip Moth From Temperature-Induced Shifts in Phenology and Voltinism Attributed to Climate Change. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1331-1341. [PMID: 35552738 DOI: 10.1093/jee/toac071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 06/15/2023]
Abstract
Forest insect pest phenology and infestation pressure may shift as temperatures continue to warm due to climate change, resulting in greater challenges for sustainable forest management . The Nantucket pine tip moth (NPTM) (Rhyacionia frustrana Comstock) (Lepidoptera: Tortricidae) is a native forest regeneration pest in the southeastern U.S. with multiple generations per year. Changes in NPTM voltinism may result from temperature-induced shifts in NPTM phenology. Degree-day models have been used to develop optimal spray dates (OSDs) for NPTM. The 2000 Spray Timing Model (STM), based on temperature data from 1960 to 2000, provided generation-specific 5-d OSDs to effectively time applications of contact insecticides. An updated degree-day model, the 2019 STM, is based on temperature data from 2000 to 2019 and was used to detect changes in voltinism as well as shifts in phenology and OSDs. Based on the model, increased voltinism occurred at 6 of the 28 study locations (21%). Changes in voltinism occurred in the Piedmont and Coastal Plain of Georgia, U.S., with shifts from three to four or four to five generations a year, depending on location. The OSDs from the 2019 STM were compared to the 2000 STM OSDs. Over half (57%) of the OSDs differed by 5-15 d, with the majority (66%) resulting in earlier spray dates. The 2019 STM will help growers adapt NPTM control tactics to temperature-induced phenology shifts. NPTM serves as an example of temperature-induced changes attributed to climate change in a forest insect pest with important implications to forest management.
Collapse
Affiliation(s)
- V A Cassidy
- Warnell School of Forestry and Natural Resources, University of Georgia, 2360, Rainwater Road, Tifton, GA, 31793, USA
| | - C Asaro
- Forest Health Protection, USDA Forest Service, 1720, Peachtree Road, NW, Suite 700, Atlanta, GA, 30309, USA
| | - E P McCarty
- Warnell School of Forestry and Natural Resources, University of Georgia, 2360, Rainwater Road, Tifton, GA, 31793, USA
| |
Collapse
|
15
|
Mina M, Messier C, Duveneck MJ, Fortin M, Aquilué N. Managing for the unexpected: Building resilient forest landscapes to cope with global change. GLOBAL CHANGE BIOLOGY 2022; 28:4323-4341. [PMID: 35429213 PMCID: PMC9541346 DOI: 10.1111/gcb.16197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/21/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Natural disturbances exacerbated by novel climate regimes are increasing worldwide, threatening the ability of forest ecosystems to mitigate global warming through carbon sequestration and to provide other key ecosystem services. One way to cope with unknown disturbance events is to promote the ecological resilience of the forest by increasing both functional trait and structural diversity and by fostering functional connectivity of the landscape to ensure a rapid and efficient self-reorganization of the system. We investigated how expected and unexpected variations in climate and biotic disturbances affect ecological resilience and carbon storage in a forested region in southeastern Canada. Using a process-based forest landscape model (LANDIS-II), we simulated ecosystem responses to climate change and insect outbreaks under different forest policy scenarios-including a novel approach based on functional diversification and network analysis-and tested how the potentially most damaging insect pests interact with changes in forest composition and structure due to changing climate and management. We found that climate warming, lengthening the vegetation season, will increase forest productivity and carbon storage, but unexpected impacts of drought and insect outbreaks will drastically reduce such variables. Generalist, non-native insects feeding on hardwood are the most damaging biotic agents for our region, and their monitoring and early detection should be a priority for forest authorities. Higher forest diversity driven by climate-smart management and fostered by climate change that promotes warm-adapted species, might increase disturbance severity. However, alternative forest policy scenarios led to a higher functional and structural diversity as well as functional connectivity-and thus to higher ecological resilience-than conventional management. Our results demonstrate that adopting a landscape-scale perspective by planning interventions strategically in space and adopting a functional trait approach to diversify forests is promising for enhancing ecological resilience under unexpected global change stressors.
Collapse
Affiliation(s)
- Marco Mina
- Centre for Forest ResearchUniversité du Québec à MontréalMontréalQCCanada
- Institute for Alpine EnvironmentEurac ResearchBozen/BolzanoItaly
| | - Christian Messier
- Centre for Forest ResearchUniversité du Québec à MontréalMontréalQCCanada
- Institut des Sciences de la Forêt TempéréeUniversité du Québec en OutaouaisRiponQCCanada
| | - Matthew J. Duveneck
- Harvard ForestHarvard UniversityPetershamMassachusettsUSA
- Liberal Arts DepartmentNew England ConservatoryBostonMassachusettsUSA
| | - Marie‐Josée Fortin
- Department of Ecology and EvolutionUniversity of TorontoTorontoOntarioCanada
| | - Núria Aquilué
- Centre for Forest ResearchUniversité du Québec à MontréalMontréalQCCanada
- Forest Sciences and Technology Centre of Catalonia CTFCSolsonaSpain
| |
Collapse
|
16
|
Forgione L, Bacher S, Vimercati G. Are species more harmful in their native, neonative or alien range? Insights from a global analysis of bark beetles. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Laura Forgione
- Department of Biology University of Fribourg Fribourg Switzerland
| | - Sven Bacher
- Department of Biology University of Fribourg Fribourg Switzerland
| | | |
Collapse
|
17
|
Connor T, Tripp E, Tripp B, Saxon BJ, Camarena J, Donahue A, Sarna‐Wojcicki D, Macaulay L, Bean T, Hanbury‐Brown A, Brashares J. Karuk ecological fire management practices promote elk habitat in northern California. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Thomas Connor
- Department of Environmental Science, Policy, and Management University of California, Berkeley Berkeley CA USA
| | - Emilio Tripp
- Wildlife Division Karuk Department of Natural Resources Orleans CA USA
| | - Bill Tripp
- Karuk Department of Natural Resources University of California, Berkeley Berkeley CA USA
| | - B. J. Saxon
- Wildlife Division Karuk Department of Natural Resources Orleans CA USA
| | - Jessica Camarena
- Wildlife Division Karuk Department of Natural Resources Orleans CA USA
| | - Asa Donahue
- Wildlife Division Karuk Department of Natural Resources Orleans CA USA
| | - Daniel Sarna‐Wojcicki
- Department of Environmental Science, Policy, and Management University of California, Berkeley Berkeley CA USA
| | - Luke Macaulay
- Department of Environmental Science, Policy, and Management University of California, Berkeley Berkeley CA USA
| | - Tim Bean
- Department of Biological Sciences California Polytechnic State University San Luis Obispo CA USA
| | - Adam Hanbury‐Brown
- Energy and Resources Group Department of Environmental Science, Policy, and Management University of California, Berkeley Berkeley CA USA
| | - Justin Brashares
- Department of Environmental Science, Policy, and Management University of California, Berkeley Berkeley CA USA
| |
Collapse
|
18
|
Akresh ME, Meeker ED, King DI. Observations of Snakes and Game Birds in a Managed Pine Barren in Massachusetts. Northeast Nat (Steuben) 2022. [DOI: 10.1656/045.029.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Michael E. Akresh
- Department of Environmental Studies, Antioch University New England, Keene, NH 03431
| | - Evan D. Meeker
- Department of Environmental Studies, Antioch University New England, Keene, NH 03431
| | - David I. King
- US Forest Service Northern Research Station, Amherst, MA 01003
| |
Collapse
|
19
|
Burakowski EA, Contosta AR, Grogan D, Nelson SJ, Garlick S, Casson N. Future of Winter in Northeastern North America: Climate Indicators Portray Warming and Snow Loss That Will Impact Ecosystems and Communities. Northeast Nat (Steuben) 2022. [DOI: 10.1656/045.028.s1112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Elizabeth A. Burakowski
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824
| | - Alexandra R. Contosta
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824
| | - Danielle Grogan
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824
| | | | - Sarah Garlick
- Hubbard Brook Research Foundation, North Woodstock, NH 03262
| | - Nora Casson
- University of Winnipeg, Department of Geography, Winnipeg, MB R3B2E9, Canada
| |
Collapse
|
20
|
Abstract
In this review, we highlight sources of alcohols in nature, as well as the behavioral and ecological roles that these fermentation cues play in the short lifespan of Drosophila melanogaster. With a focus on neuroethology, we describe the olfactory detection of alcohol as well as ensuing neural signaling within the brain of the fly. We proceed to explain the plethora of behaviors related to alcohol, including attraction, feeding, and oviposition, as well as general effects on aggression and courtship. All of these behaviors are shaped by physiological state and social contexts. In a comparative perspective, we also discuss inter- and intraspecies differences related to alcohol tolerance and metabolism. Lastly, we provide corollaries with other dipteran and coleopteran insect species that also have olfactory systems attuned to ethanol detection and describe ecological and evolutionary directions for further studies of the natural history of alcohol and the fly.
Collapse
Affiliation(s)
- Ian W Keesey
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA;
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| |
Collapse
|
21
|
Dighton J, Walsh E, Groben G, Zhang N. Influence of southern pine beetle on fungal communities of wood and bark decomposition of coarse woody debris in the New Jersey pine barrens. FORESTRY RESEARCH 2021; 1:17. [PMID: 39524505 PMCID: PMC11524313 DOI: 10.48130/fr-2021-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2024]
Abstract
Dead coarse woody debris (fungal food resources) on the forest floor is an ignition source for forest fires. The rate of decomposition of the debris is largely influenced by fungi, determining its residence time on the forest floor. We asked if southern pine bark beetle (Dendroctonus frontalis) attack of pitch pine (Pinus rigida) alters the decomposition and fungal community of dead woody resources. Wood and bark from beetle infested and non-beetle infested resources were decomposed in litter bags on the forest floor. Decomposition was measured as mass loss and the fungal community by next-generation (PCR and Illumina metabarcoding) sequencing. Bark decomposed slower than wood and resources colonized by beetles decomposed faster than resources with no beetles. The initial differences in fungal communities colonizing the resources continued throughout the 42 months of decomposition. Fungal diversity was higher in wood than bark in initial decay stages, but significantly lower in wood than bark at the end of the 42 month incubation. In contrast, there were no significant differences in fungal communities between beetle infested and uninfested resources. The rate of decomposition of woody resources on the forest floor has great implications for the longevity of fuel sources for forest fires, however, our results indicate that beetle attacked wood poses no greater fire risk than other dead coarse woody debris regarding the residence time.
Collapse
Affiliation(s)
- John Dighton
- Rutgers, The State University of New Jersey, Department of Ecology, Evolution and Natural Resources; Department of Biology, Camden and Pinelands Field Station, 501 Four Mile Road New Lisbon, NJ 08064, USA
| | - Emily Walsh
- Rutgers, The State University of New Jersey, Department of Plant Biology, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Glen Groben
- Rutgers, The State University of New Jersey, Department of Plant Biology, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Ning Zhang
- Rutgers, The State University of New Jersey, Department of Plant Biology, 59 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
22
|
Garrick RC, Arantes ÍC, Stubbs MB, Havill NP. Weak spatial-genetic structure in a native invasive, the southern pine beetle ( Dendroctonus frontalis), across the eastern United States. PeerJ 2021; 9:e11947. [PMID: 34557344 PMCID: PMC8418799 DOI: 10.7717/peerj.11947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
The southern pine beetle, Dendroctonus frontalis, is a native pest of pine trees that has recently expanded its range into the northeastern United States. Understanding its colonization, dispersal, and connectivity will be critical for mitigating negative economic and ecological impacts in the newly invaded areas. Characterization of spatial-genetic structure can contribute to this; however, previous studies have reached different conclusions about regional population genetic structure, with one study reporting a weak east-west pattern, and the most recent reporting an absence of structure. Here we systematically assessed several explanations for the absence of spatial-genetic structure. To do this, we developed nine new microsatellite markers and combined them with an existing 24-locus data matrix for the same individuals. We then reanalyzed this full dataset alongside datasets in which certain loci were omitted with the goal of creating more favorable signal to noise ratios. We also partitioned the data based on the sex of D. frontalis individuals, and then employed a broad suite of genotypic clustering and isolation-by-distance (IBD) analyses. We found that neither inadequate information content in the molecular marker set, nor unfavorable signal-to-noise ratio, nor insensitivity of the analytical approaches could explain the absence of structure. Regardless of dataset composition, there was little evidence for clusters (i.e., distinct geo-genetic groups) or clines (i.e., gradients of increasing allele frequency differences over larger geographic distances), with one exception: significant IBD was repeatedly detected using an individual-based measure of relatedness whenever datasets included males (but not for female-only datasets). This is strongly indicative of broad-scale female-biased dispersal, which has not previously been reported for D. frontalis, in part owing to logistical limitations of direct approaches (e.g., capture-mark-recapture). Weak spatial-genetic structure suggests long-distance connectivity and that gene flow is high, but additional research is needed to understand range expansion and outbreak dynamics in this species using alternate approaches.
Collapse
Affiliation(s)
- Ryan C Garrick
- Department of Biology, University of Mississippi, Oxford, MS, United States of America
| | - Ísis C Arantes
- Department of Biology, University of Mississippi, Oxford, MS, United States of America
| | - Megan B Stubbs
- Department of Biology, University of Mississippi, Oxford, MS, United States of America
| | - Nathan P Havill
- Northern Research Station, USDA Forest Service, Hamden, CT, United States of America
| |
Collapse
|
23
|
Joga MR, Mogilicherla K, Smagghe G, Roy A. RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype? FRONTIERS IN PLANT SCIENCE 2021; 12:733608. [PMID: 34567044 PMCID: PMC8461336 DOI: 10.3389/fpls.2021.733608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 06/01/2023]
Abstract
Forest insects are emerging in large extension in response to ongoing climatic changes, penetrating geographic barriers, utilizing novel hosts, and influencing many hectares of conifer forests worldwide. Current management strategies have been unable to keep pace with forest insect population outbreaks, and therefore novel and aggressive management strategies are urgently required to manage forest insects. RNA interference (RNAi), a Noble Prize-winning discovery, is an emerging approach that can be used for forest protection. The RNAi pathway is triggered by dsRNA molecules, which, in turn, silences genes and disrupts protein function, ultimately causing the death of the targeted insect. RNAi is very effective against pest insects; however, its proficiency varies significantly among insect species, tissues, and genes. The coleopteran forest insects are susceptible to RNAi and can be the initial target, but we lack practical means of delivery, particularly in systems with long-lived, endophagous insects such as the Emerald ash borer, Asian longhorn beetles, and bark beetles. The widespread use of RNAi in forest pest management has major challenges, including its efficiency, target gene selection, dsRNA design, lack of reliable dsRNA delivery methods, non-target and off-target effects, and potential resistance development in wood-boring pest populations. This review focuses on recent innovations in RNAi delivery that can be deployed against forest pests, such as cationic liposome-assisted (lipids), nanoparticle-enabled (polymers or peptides), symbiont-mediated (fungi, bacteria, and viruses), and plant-mediated deliveries (trunk injection, root absorption). Our findings guide future risk analysis of dsRNA-based forest protection products (FPPs) and risk assessment frameworks incorporating sequence complementarity-based analysis for off-target predictions. This review also points out barriers to further developing RNAi for forest pest management and suggests future directions of research that will build the future use of RNAi against wood-boring coleopterans.
Collapse
Affiliation(s)
- Mallikarjuna Reddy Joga
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kanakachari Mogilicherla
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Amit Roy
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
24
|
Ullah A, Klutsch JG, Erbilgin N. Production of complementary defense metabolites reflects a co-evolutionary arms race between a host plant and a mutualistic bark beetle-fungal complex. PLANT, CELL & ENVIRONMENT 2021; 44:3064-3077. [PMID: 34008191 DOI: 10.1111/pce.14100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Intra-specific variation in conifers has been extensively studied with respect to defense against herbivores and pathogens. While studies have shown the ability of individual or specific mixtures of compounds to influence insects and microbes, research testing biologically relevant mixtures of defense compounds reflecting intra-specific variation amongst tree populations to enemy complexes is needed. We characterized the variations in lodgepole pine monoterpenes from a progeny trial in western Canada and grouped trees in four clusters using their monoterpene profiles. We then selected 11 representative families across four clusters and amended their entire monoterpene profiles (with the exception of β-phellandrene) in media to determine how representative families affect the performance of the mountain pine beetle or its fungal symbiont. We placed adult beetles or inoculated fungus on the amended media and measured beetle performance and fungal growth as a proxy to host suitability. We found that different clusters or families differentially influenced beetle or fungal responses. However, monoterpene profiles of trees suitable to the beetle or the fungus were dissimilar. These outcomes reflect a co-evolutionary arms-race between the host and the bark beetle-fungus complex, which has resulted in the production of complementary defense metabolites among different pine populations to enhance tree survival.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Osland MJ, Stevens PW, Lamont MM, Brusca RC, Hart KM, Waddle JH, Langtimm CA, Williams CM, Keim BD, Terando AJ, Reyier EA, Marshall KE, Loik ME, Boucek RE, Lewis AB, Seminoff JA. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. GLOBAL CHANGE BIOLOGY 2021; 27:3009-3034. [PMID: 33605004 DOI: 10.1111/gcb.15563] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Tropicalization is a term used to describe the transformation of temperate ecosystems by poleward-moving tropical organisms in response to warming temperatures. In North America, decreases in the frequency and intensity of extreme winter cold events are expected to allow the poleward range expansion of many cold-sensitive tropical organisms, sometimes at the expense of temperate organisms. Although ecologists have long noted the critical ecological role of winter cold temperature extremes in tropical-temperate transition zones, the ecological effects of extreme cold events have been understudied, and the influence of warming winter temperatures has too often been left out of climate change vulnerability assessments. Here, we examine the influence of extreme cold events on the northward range limits of a diverse group of tropical organisms, including terrestrial plants, coastal wetland plants, coastal fishes, sea turtles, terrestrial reptiles, amphibians, manatees, and insects. For these organisms, extreme cold events can lead to major physiological damage or landscape-scale mass mortality. Conversely, the absence of extreme cold events can foster population growth, range expansion, and ecological regime shifts. We discuss the effects of warming winters on species and ecosystems in tropical-temperate transition zones. In the 21st century, climate change-induced decreases in the frequency and intensity of extreme cold events are expected to facilitate the poleward range expansion of many tropical species. Our review highlights critical knowledge gaps for advancing understanding of the ecological implications of the tropicalization of temperate ecosystems in North America.
Collapse
Affiliation(s)
| | - Philip W Stevens
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, USA
| | | | | | | | | | | | | | - Barry D Keim
- Louisiana State University, Baton Rouge, LA, USA
| | | | - Eric A Reyier
- Herndon Solutions Group, LLC, NASA Environmental and Medical Contract, Mail Code: NEM-022, Kennedy Space Center, FL, USA
| | | | | | | | | | | |
Collapse
|
26
|
Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung DT. Agriculture Development, Pesticide Application and Its Impact on the Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1112. [PMID: 33513796 PMCID: PMC7908628 DOI: 10.3390/ijerph18031112] [Citation(s) in RCA: 731] [Impact Index Per Article: 182.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Pesticides are indispensable in agricultural production. They have been used by farmers to control weeds and insects, and their remarkable increases in agricultural products have been reported. The increase in the world's population in the 20th century could not have been possible without a parallel increase in food production. About one-third of agricultural products are produced depending on the application of pesticides. Without the use of pesticides, there would be a 78% loss of fruit production, a 54% loss of vegetable production, and a 32% loss of cereal production. Therefore, pesticides play a critical role in reducing diseases and increasing crop yields worldwide. Thus, it is essential to discuss the agricultural development process; the historical perspective, types and specific uses of pesticides; and pesticide behavior, its contamination, and adverse effects on the natural environment. The review study indicates that agricultural development has a long history in many places around the world. The history of pesticide use can be divided into three periods of time. Pesticides are classified by different classification terms such as chemical classes, functional groups, modes of action, and toxicity. Pesticides are used to kill pests and control weeds using chemical ingredients; hence, they can also be toxic to other organisms, including birds, fish, beneficial insects, and non-target plants, as well as air, water, soil, and crops. Moreover, pesticide contamination moves away from the target plants, resulting in environmental pollution. Such chemical residues impact human health through environmental and food contamination. In addition, climate change-related factors also impact on pesticide application and result in increased pesticide usage and pesticide pollution. Therefore, this review will provide the scientific information necessary for pesticide application and management in the future.
Collapse
Affiliation(s)
- Muyesaier Tudi
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (J.L.)
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| | - Huada Daniel Ruan
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
- Environmental Science Program, Beijing Normal University-Hong Kong Baptist University United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519080, China
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (J.L.)
- Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jia Lyu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (J.L.)
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing 100050, China
| | - Ross Sadler
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| | - Des Connell
- School of Environment and Science, Griffith University, 170 Kessel Road, Nathan, QLD 4111, Australia;
| | - Cordia Chu
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| | - Dung Tri Phung
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| |
Collapse
|
27
|
McNichol BH, Sullivan BT, Munro HL, Montes CR, Nowak JT, Villari C, Gandhi KJK. Density‐dependent variability in an eruptive bark beetle and its value in predicting outbreaks. Ecosphere 2021. [DOI: 10.1002/ecs2.3336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Bailey H. McNichol
- D.B. Warnell School of Forestry and Natural Resources University of Georgia 180 East Green Street Athens Georgia 30602 USA
| | - Brian T. Sullivan
- Alexandria Forestry Center USDA Forest Service, Southern Research Station 2500 Shreveport Highway Pineville Louisiana 71360 USA
| | - Holly L. Munro
- D.B. Warnell School of Forestry and Natural Resources University of Georgia 180 East Green Street Athens Georgia 30602 USA
| | - Cristián R. Montes
- D.B. Warnell School of Forestry and Natural Resources University of Georgia 180 East Green Street Athens Georgia 30602 USA
| | - John T. Nowak
- Forest Health Protection USDA Forest Service 200 W.T. Weaver Boulevard Asheville North Carolina 28804 USA
| | - Caterina Villari
- D.B. Warnell School of Forestry and Natural Resources University of Georgia 180 East Green Street Athens Georgia 30602 USA
| | - Kamal J. K. Gandhi
- D.B. Warnell School of Forestry and Natural Resources University of Georgia 180 East Green Street Athens Georgia 30602 USA
| |
Collapse
|
28
|
Electrophysiological and behavioral responses Dendroctonus frontalis and D. terebrans (Coleoptera: Curculionidae) to resin odors of host pines (Pinus spp.). CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00311-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Sirén APK, Morelli TL. Interactive range-limit theory (iRLT): An extension for predicting range shifts. J Anim Ecol 2020; 89:940-954. [PMID: 31758805 PMCID: PMC7187220 DOI: 10.1111/1365-2656.13150] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/20/2019] [Indexed: 11/28/2022]
Abstract
A central theme of range-limit theory (RLT) posits that abiotic factors form high-latitude/altitude limits, whereas biotic interactions create lower limits. This hypothesis, often credited to Charles Darwin, is a pattern widely assumed to occur in nature. However, abiotic factors can impose constraints on both limits and there is scant evidence to support the latter prediction. Deviations from these predictions may arise from correlations between abiotic factors and biotic interactions, as a lack of data to evaluate the hypothesis, or be an artifact of scale. Combining two tenets of ecology-niche theory and predator-prey theory-provides an opportunity to understand how biotic interactions influence range limits and how this varies by trophic level. We propose an expansion of RLT, interactive RLT (iRLT), to understand the causes of range limits and predict range shifts. Incorporating the main predictions of Darwin's hypothesis, iRLT hypothesizes that abiotic and biotic factors can interact to impact both limits of a species' range. We summarize current thinking on range limits and perform an integrative review to evaluate support for iRLT and trophic differences along range margins, surveying the mammal community along the boreal-temperate and forest-tundra ecotones of North America. Our review suggests that range-limit dynamics are more nuanced and interactive than classically predicted by RLT. Many (57 of 70) studies indicate that biotic factors can ameliorate harsh climatic conditions along high-latitude/altitude limits. Conversely, abiotic factors can also mediate biotic interactions along low-latitude/altitude limits (44 of 68 studies). Both scenarios facilitate range expansion, contraction or stability depending on the strength and the direction of the abiotic or biotic factors. As predicted, biotic interactions most often occurred along lower limits, yet there were trophic differences. Carnivores were only limited by competitive interactions (n = 25), whereas herbivores were more influenced by predation and parasitism (77%; 55 of 71 studies). We highlight how these differences may create divergent range patterns along lower limits. We conclude by (a) summarizing iRLT; (b) contrasting how our model system and others fit this hypothesis and (c) suggesting future directions for evaluating iRLT.
Collapse
Affiliation(s)
- Alexej P. K. Sirén
- Department of Interior Northeast Climate Adaptation Science CenterU.S. Geological SurveyAmherstMAUSA
- Department of Environmental ConservationUniversity of MassachusettsAmherstMAUSA
| | - Toni Lyn Morelli
- Department of Interior Northeast Climate Adaptation Science CenterU.S. Geological SurveyAmherstMAUSA
- Department of Environmental ConservationUniversity of MassachusettsAmherstMAUSA
| |
Collapse
|
30
|
Frank SD, Just MG. Can Cities Activate Sleeper Species and Predict Future Forest Pests? A Case Study of Scale Insects. INSECTS 2020; 11:E142. [PMID: 32106554 PMCID: PMC7142728 DOI: 10.3390/insects11030142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 11/16/2022]
Abstract
Sleeper species are innocuous native or naturalized species that exhibit invasive characteristics and become pests in response to environmental change. Climate warming is expected to increase arthropod damage in forests, in part, by transforming innocuous herbivores into severe pests: awakening sleeper species. Urban areas are warmer than natural areas due to the urban heat island effect and so the trees and pests in cities already experience temperatures predicted to occur in 50-100 years. We posit that arthropod species that become pests of urban trees are those that benefit from warming and thus should be monitored as potential sleeper species in forests. We illustrate this with two case studies of scale insects that are important pests of urban trees in parts of the US. Melanaspis tenebricosa and Parthenolecanium quercifex are geographically native to the US but take on invasive characteristics such as higher survival and reproduction and become disconnected from natural enemies on urban trees due to the urban heat island effect. This allows them to reach high densities and damage their host trees. Parthenolecanium quercifex density increases up to 12 times on urban willow oaks with just 2 °C of warming due to higher survival and adaptation to warmer temperatures. The urban heat island effect also creates a phenological mismatch between P. quercifex and its parasitoid complex, and so egg production is higher. Melanaspis tenebricosa density can increase 300 times on urban red maples with 2.5 °C of warming. This too is due to direct effects of warmer temperatures on survival and fecundity but M. tenebricosa also benefits from the drought stress incurred by warmer urban trees. These effects combine to increase M. tenebricosa density in forests as well as on urban trees at latitudes higher than its native range. We illustrate how cities provide a unique opportunity to study the complex effects of warming on insect herbivores. Studying pestilent urban species could be a pragmatic approach for identifying and preparing for sleeper species.
Collapse
Affiliation(s)
- Steven D. Frank
- Department of Entomology and Plant Pathology, Campus Box 7613, North Carolina State University, Raleigh, NC 27695, USA;
| | | |
Collapse
|
31
|
Just MG, Frank SD. Thermal Tolerance of Gloomy Scale (Hemiptera: Diaspididae) in the Eastern United States. ENVIRONMENTAL ENTOMOLOGY 2020; 49:104-114. [PMID: 31904081 DOI: 10.1093/ee/nvz154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 06/10/2023]
Abstract
An insect species' geographic distribution is probably delimited in part by physiological tolerances of environmental temperatures. Gloomy scale (Melanaspis tenebricosa (Comstock)) is a native insect herbivore in eastern U.S. forests. In eastern U.S. cities, where temperatures are warmer than nearby natural areas, M. tenebricosa is a primary pest of red maple (Acer rubrum L.; Sapindales: Sapindaceae) With warming, M. tenebricosa may spread to new cities or become pestilent in forests. To better understand current and future M. tenebricosa distribution boundaries, we examined M. tenebricosa thermal tolerance under laboratory conditions. We selected five hot and five cold experimental temperatures representative of locations in the known M. tenebricosa distribution. We built models to predict scale mortality based on duration of exposure to warm or cold experimental temperatures. We then used these models to estimate upper and lower lethal durations, i.e., temperature exposure durations that result in 50% mortality. We tested the thermal tolerance for M. tenebricosa populations from northern, mid, and southern locations of the species' known distribution. Scales were more heat and cold tolerant of temperatures representative of the midlatitudes of their distribution where their densities are the greatest. Moreover, the scale population from the northern distribution boundary could tolerate cold temperatures from the northern boundary for twice as long as the population collected near the southern boundary. Our results suggest that as the climate warms the M. tenebricosa distribution may expand poleward, but experience a contraction at its southern boundary.
Collapse
Affiliation(s)
- Michael G Just
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Steven D Frank
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| |
Collapse
|
32
|
Porter SS, Bantay R, Friel CA, Garoutte A, Gdanetz K, Ibarreta K, Moore BM, Shetty P, Siler E, Friesen ML. Beneficial microbes ameliorate abiotic and biotic sources of stress on plants. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13499] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Roxanne Bantay
- Department of Plant Biology Michigan State University East Lansing MI USA
| | - Colleen A. Friel
- Department of Plant Biology Michigan State University East Lansing MI USA
| | - Aaron Garoutte
- Department of Plant Biology Michigan State University East Lansing MI USA
- Department of Plant Soil & Microbial Sciences Michigan State University East Lansing MI USA
| | - Kristi Gdanetz
- Department of Plant Biology Michigan State University East Lansing MI USA
| | - Kathleen Ibarreta
- School of Biological Sciences Washington State University Vancouver WA USA
| | - Bethany M. Moore
- Department of Plant Biology Michigan State University East Lansing MI USA
| | - Prateek Shetty
- Department of Plant Biology Michigan State University East Lansing MI USA
| | - Eleanor Siler
- Department of Plant Biology Michigan State University East Lansing MI USA
| | - Maren L. Friesen
- Department of Plant Biology Michigan State University East Lansing MI USA
- Department of Plant Pathology Washington State University Pullman WA USA
- Department of Crop & Soil Sciences Washington State University Pullman WA USA
| |
Collapse
|
33
|
Contosta AR, Casson NJ, Garlick S, Nelson SJ, Ayres MP, Burakowski EA, Campbell J, Creed I, Eimers C, Evans C, Fernandez I, Fuss C, Huntington T, Patel K, Sanders‐DeMott R, Son K, Templer P, Thornbrugh C. Northern forest winters have lost cold, snowy conditions that are important for ecosystems and human communities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01974. [PMID: 31310674 PMCID: PMC6851584 DOI: 10.1002/eap.1974] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/09/2019] [Accepted: 05/29/2019] [Indexed: 06/01/2023]
Abstract
Winter is an understudied but key period for the socioecological systems of northeastern North American forests. A growing awareness of the importance of the winter season to forest ecosystems and surrounding communities has inspired several decades of research, both across the northern forest and at other mid- and high-latitude ecosystems around the globe. Despite these efforts, we lack a synthetic understanding of how winter climate change may impact hydrological and biogeochemical processes and the social and economic activities they support. Here, we take advantage of 100 years of meteorological observations across the northern forest region of the northeastern United States and eastern Canada to develop a suite of indicators that enable a cross-cutting understanding of (1) how winter temperatures and snow cover have been changing and (2) how these shifts may impact both ecosystems and surrounding human communities. We show that cold and snow covered conditions have generally decreased over the past 100 years. These trends suggest positive outcomes for tree health as related to reduced fine root mortality and nutrient loss associated with winter frost but negative outcomes as related to the northward advancement and proliferation of forest insect pests. In addition to effects on vegetation, reductions in cold temperatures and snow cover are likely to have negative impacts on the ecology of the northern forest through impacts on water, soils, and wildlife. The overall loss of coldness and snow cover may also have negative consequences for logging and forest products, vector-borne diseases, and human health, recreation, and tourism, and cultural practices, which together represent important social and economic dimensions for the northern forest region. These findings advance our understanding of how our changing winters may transform the socioecological system of a region that has been defined by the contrasting rhythm of the seasons. Our research also identifies a trajectory of change that informs our expectations for the future as the climate continues to warm.
Collapse
Affiliation(s)
- Alexandra R. Contosta
- Earth Systems Research CenterInstitute for the Study of Earth, Oceans, and SpaceUniversity of New Hampshire8 College RoadDurhamNew Hampshire03824 USA
| | - Nora J. Casson
- Department of GeographyUniversity of Winnipeg515 Portage AvenueWinnipegManitobaR3B 2E9Canada
| | - Sarah Garlick
- Hubbard Brook Research Foundation30 Pleasant StreetWoodstockVermont05091 USA
| | - Sarah J. Nelson
- School of Forest ResourcesUniversity of Maine5755 Nutting HallOronoMaine04469USA
| | - Matthew P. Ayres
- Department of Biological SciencesDartmouth College78 College StreetHanoverNew Hampshire03755USA
| | - Elizabeth A. Burakowski
- Earth Systems Research CenterInstitute for the Study of Earth, Oceans, and SpaceUniversity of New Hampshire8 College RoadDurhamNew Hampshire03824 USA
| | - John Campbell
- USDA Forest Service, Northern Research Station271 Mast RoadDurhamNew Hampshire03824USA
| | - Irena Creed
- School of Environment and SustainabilityUniversity of Saskatchewan117 Science PlaceSaskatoonSaskatchewanS7N 5C8Canada
| | - Catherine Eimers
- School of the EnvironmentTrent University1600 West Bank DrivePeterboroughOntarioK9L 0G2Canada
| | - Celia Evans
- Department of Natural SciencePaul Smith's CollegeFreer Science Building, 7833 New York 30Paul SmithsNew York12970USA
| | - Ivan Fernandez
- Climate Change Institute and School of Forest ResourcesUniversity of MaineDeering HallOronoMaine04469USA
| | - Colin Fuss
- Cary Institute of Ecosystem Studies2801 Sharon TurnpikeMillbrookNew York12545USA
| | - Thomas Huntington
- New England Water Science CenterUnited States Geological Survey196 Whitten RoadAugustaMaine04330USA
| | - Kaizad Patel
- School of Forest ResourcesUniversity of Maine5755 Nutting HallOronoMaine04469USA
- Pacific Northwest National LaboratoryBiological Sciences DivisionP.O. Box 999RichlandWashington99352USA
| | - Rebecca Sanders‐DeMott
- Earth Systems Research CenterInstitute for the Study of Earth, Oceans, and SpaceUniversity of New Hampshire8 College RoadDurhamNew Hampshire03824 USA
| | - Kyongho Son
- Research Foundation of the City University of New York230 West 41st StreetNew YorkNew York10036 USA
| | - Pamela Templer
- Department of BiologyBoston University5 Cummington MallBostonMassachusetts02215 USA
| | - Casey Thornbrugh
- United South and Eastern Tribes, Inc.711 Stewarts Ferry Pike # 100NashvilleTennessee37214USA
- DOI Northeast & Southeast Climate Adaptation Science CentersMorrill Science CenterUniversity of Massachusetts, Amherst611 North Pleasant StreetAmherstMassachusetts01003USA
| |
Collapse
|
34
|
Munro HL, Sullivan BT, Villari C, Gandhi KJK. A Review of the Ecology and Management of Black Turpentine Beetle (Coleoptera: Curculionidae). ENVIRONMENTAL ENTOMOLOGY 2019; 48:765-783. [PMID: 31145799 DOI: 10.1093/ee/nvz050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 06/09/2023]
Abstract
The black turpentine beetle, Dendroctonus terebrans Olivier is the largest pine-infesting bark beetle native to the southern and eastern United States. It generally reproduces in fresh stumps and bases of trees weakened or killed by other biotic or abiotic agents, although it can also infest and sometimes kills apparently healthy trees. Its numbers can build when large amounts of host material become available (typically through a disturbance), and black turpentine beetle-caused mortality at a local scale can become considerable. Here, we provide a complete review of the literature on this species, including its taxonomy, host, life history, chemical ecology, arthropod and microbial associates, and management options. We also provide original data on numbers of instars, acoustic signals, and pheromone chirality in this species. Our survey of the existing literature revealed that key biological characteristics of black turpentine beetles are known, but interactions with closely associated organisms, economic and ecological impacts, and improvements to monitoring and management practices have been only partially investigated.
Collapse
Affiliation(s)
- Holly L Munro
- D.B. Warnell School of Forestry, University of Georgia, Athens, GA
| | | | - Caterina Villari
- D.B. Warnell School of Forestry, University of Georgia, Athens, GA
| | - Kamal J K Gandhi
- D.B. Warnell School of Forestry, University of Georgia, Athens, GA
| |
Collapse
|
35
|
Li T, Holst T, Michelsen A, Rinnan R. Amplification of plant volatile defence against insect herbivory in a warming Arctic tundra. NATURE PLANTS 2019; 5:568-574. [PMID: 31182843 PMCID: PMC6561779 DOI: 10.1038/s41477-019-0439-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/02/2019] [Indexed: 05/06/2023]
Abstract
Plant-emitted volatile organic compounds (VOCs) play fundamental roles in atmospheric chemistry and ecological processes by contributing to aerosol formation1 and mediating species interactions2. Rising temperatures and the associated shifts in vegetation composition have been shown to be the primary drivers of plant VOC emissions in Arctic ecosystems3. Although herbivorous insects also strongly alter plant VOC emissions2, no studies have addressed the impact of herbivory on plant VOC emissions in the Arctic. Here we show that warming dramatically increases the amount, and alters the blend, of VOCs released in response to herbivory. We observed that a tundra ecosystem subjected to warming, by open-top chambers, for 8 or 18 years showed a fourfold increase in leaf area eaten by insect herbivores. Herbivory by autumnal moth (Epirrita autumnata) larvae, and herbivory-mimicking methyl jasmonate application, on the widespread circumpolar dwarf birch (Betula nana) both substantially increased emissions of terpenoids. The long-term warming treatments and mimicked herbivory caused, on average, a two- and fourfold increase in monoterpene emissions, respectively. When combined, emissions increased 11-fold, revealing a strong synergy between warming and herbivory. The synergistic effect was even more pronounced for homoterpene emissions. These findings suggest that, in the rapidly warming Arctic, insect herbivory may be a primary determinant of VOC emissions during periods of active herbivore feeding.
Collapse
Affiliation(s)
- Tao Li
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Holst
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Physical Geography & Ecosystem Science, Lund University, Lund, Sweden
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Gandhi KJK, Campbell F, Abrams J. Current Status of Forest Health Policy in the United States. INSECTS 2019; 10:E106. [PMID: 31013809 PMCID: PMC6523532 DOI: 10.3390/insects10040106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 11/16/2022]
Abstract
ederal policies related to forestry and forest health (specifically, insects and diseases) have the potential to affect management practices, terms of international and interstate trade, and long-term sustainability and conservation. Our objectives were to review existing federal policies, the role of federal agencies in managing forest health, and guidance for future policy efforts. Since the 1940s, various federal policies relevant to forest health have been established, and several US Department of Agriculture (USDA) agencies have been empowered to assist with prevention, quarantine, detection, management, and control of insects and diseases. Overall, our review showed that relatively few national policies directly address forest health as a stand-alone objective, as most of them are embedded within forestry bills. Federal funding for forest health issues and the number of personnel dedicated to such issues have declined dramatically for some agencies. Concomitantly, native species continue to gain pestiferous status while non-native species continue to establish and cause impacts in the US. To enhance our ability and capacity to deal with current and future threats, concerted efforts are needed to advocate for both resources and stand-alone policy tools that take seriously the complexity of emerging sustainability challenges in both private and public forestlands.
Collapse
Affiliation(s)
- Kamal J K Gandhi
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, 180 E Green Street GA 30602, USA.
| | - Faith Campbell
- Center for Invasive Species Protection, 8208 Dabney Avenue, Springfield, VA 22152, USA.
| | - Jesse Abrams
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, 180 E Green Street GA 30602, USA.
- Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802, USA.
| |
Collapse
|
37
|
Kyre BR, Rodrigues TB, Rieske LK. RNA interference and validation of reference genes for gene expression analyses using qPCR in southern pine beetle, Dendroctonus frontalis. Sci Rep 2019; 9:5640. [PMID: 30948805 PMCID: PMC6449504 DOI: 10.1038/s41598-019-42072-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/19/2019] [Indexed: 01/24/2023] Open
Abstract
RNA interference (RNAi) is a highly specific gene-silencing mechanism that can cause rapid insect mortality when essential genes are targeted. RNAi is being developed as a tool for integrated pest management of some crop pests. Here we focus on an aggressive forest pest that kills extensive tracts of pine forests, the southern pine beetle (SPB), Dendroctonus frontalis. We sought to identify reference genes for quantitative real-time PCR (qPCR) and validate RNAi responses in SPB by mortality and gene silencing analysis. Using an adult beetle feeding bioassay for oral ingestion of dsRNA, we measured the expression and demonstrated knockdown of target genes as well as insect mortality after ingestion of target genes. Our study validates reference genes for expression analyses and demonstrates highly effective RNAi responses in SPB, with RNAi response to some target dsRNAs causing 100% beetle mortality after ingestion.
Collapse
Affiliation(s)
- Bethany R Kyre
- Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA
| | - Thais B Rodrigues
- Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA
- Greenlight BioSciences, Medford, MA, 02155, USA
| | - Lynne K Rieske
- Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA.
| |
Collapse
|
38
|
Affiliation(s)
- Camille Parmesan
- Theoretical and Experimental Ecology, CNRS/Université Paul Sabatier, 09200 Moulis, France. .,Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth PL48AA, UK.,Geological Sciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Michael E Hanley
- Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth PL48AA, UK
| | - Michael C Singer
- Theoretical and Experimental Ecology, CNRS/Université Paul Sabatier, 09200 Moulis, France.,Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth PL48AA, UK
| |
Collapse
|
39
|
Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, Naylor RL. Increase in crop losses to insect pests in a warming climate. Science 2018; 361:916-919. [DOI: 10.1126/science.aat3466] [Citation(s) in RCA: 480] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/18/2018] [Indexed: 11/02/2022]
Abstract
Insect pests substantially reduce yields of three staple grains—rice, maize, and wheat—but models assessing the agricultural impacts of global warming rarely consider crop losses to insects. We use established relationships between temperature and the population growth and metabolic rates of insects to estimate how and where climate warming will augment losses of rice, maize, and wheat to insects. Global yield losses of these grains are projected to increase by 10 to 25% per degree of global mean surface warming. Crop losses will be most acute in areas where warming increases both population growth and metabolic rates of insects. These conditions are centered primarily in temperate regions, where most grain is produced.
Collapse
|
40
|
Climate Change, Carbon Dioxide, and Pest Biology, Managing the Future: Coffee as a Case Study. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The challenge of maintaining sufficient food, feed, fiber, and forests, for a projected end of century population of between 9–10 billion in the context of a climate averaging 2–4 °C warmer, is a global imperative. However, climate change is likely to alter the geographic ranges and impacts for a variety of insect pests, plant pathogens, and weeds, and the consequences for managed systems, particularly agriculture, remain uncertain. That uncertainty is related, in part, to whether pest management practices (e.g., biological, chemical, cultural, etc.) can adapt to climate/CO2 induced changes in pest biology to minimize potential loss. The ongoing and projected changes in CO2, environment, managed plant systems, and pest interactions, necessitates an assessment of current management practices and, if warranted, development of viable alternative strategies to counter damage from invasive alien species and evolving native pest populations. We provide an overview of the interactions regarding pest biology and climate/CO2; assess these interactions currently using coffee as a case study; identify the potential vulnerabilities regarding future pest impacts; and discuss possible adaptive strategies, including early detection and rapid response via EDDMapS (Early Detection & Distribution Mapping System), and integrated pest management (IPM), as adaptive means to improve monitoring pest movements and minimizing biotic losses while improving the efficacy of pest control.
Collapse
|
41
|
Goodsman DW, Grosklos G, Aukema BH, Whitehouse C, Bleiker KP, McDowell NG, Middleton RS, Xu C. The effect of warmer winters on the demography of an outbreak insect is hidden by intraspecific competition. GLOBAL CHANGE BIOLOGY 2018; 24:3620-3628. [PMID: 29808947 DOI: 10.1111/gcb.14284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9-year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km2 , that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountain pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources.
Collapse
Affiliation(s)
- Devin W Goodsman
- Earth and Environmental Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Guenchik Grosklos
- Department of Mathematics and Statistics, Utah State University, Logan, Utah
| | - Brian H Aukema
- Department of Entomology, University of Minnesota, St Paul, Minnesota
| | | | - Katherine P Bleiker
- Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia
| | | | - Richard S Middleton
- Earth and Environmental Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Chonggang Xu
- Earth and Environmental Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| |
Collapse
|
42
|
Temperature affects phenological synchrony in a tree-killing bark beetle. Oecologia 2018; 188:117-127. [DOI: 10.1007/s00442-018-4164-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
|
43
|
Coffel ED, Horton RM, de Sherbinin A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21 st century. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2018; 13:014001. [PMID: 32818039 PMCID: PMC7430505 DOI: 10.1088/1748-9326/aaa00e] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
As a result of global increases in both temperature and specific humidity, heat stress is projected to intensify throughout the 21st century. Some of the regions most susceptible to dangerous heat and humidity combinations are also among the most densely populated. Consequently, there is the potential for widespread exposure to wet bulb temperatures that approach and in some cases exceed postulated theoretical limits of human tolerance by mid- to late-century. We project that by 2080 the relative frequency of present-day extreme wet bulb temperature events could rise by a factor of 100 - 250 (approximately double the frequency change projected for temperature alone) in the tropics and parts of the mid-latitudes, areas which are projected to contain approximately half the world's population. In addition, population exposure to wet bulb temperatures that exceed recent deadly heat waves may increase by a factor of five to ten, with 150 - 750 million person-days of exposure to wet bulb temperatures above those seen in today's most severe heat waves by 2070 - 2080. Under RCP 8.5, exposure to wet bulb temperatures above 35°C - the theoretical limit for human tolerance - could exceed a million person-days per year by 2080. Limiting emissions to follow RCP 4.5 entirely eliminates exposure to that extreme threshold. Some of the most affected regions, especially Northeast India and coastal West Africa, currently have scarce cooling infrastructure, relatively low adaptive capacity, and rapidly growing populations. In the coming decades heat stress may prove to be one of the most widely experienced and directly dangerous aspects of climate change, posing a severe threat to human health, energy infrastructure, and outdoor activities ranging from agricultural production to military training.
Collapse
Affiliation(s)
- Ethan D Coffel
- Department of Earth & Environmental Sciences, Columbia University
- NASA Goddard Institute for Space Studies
| | - Radley M Horton
- Center for Climate Systems Research, Columbia University
- NASA Goddard Institute for Space Studies
| | - Alex de Sherbinin
- Center for International Earth Science Information Network, Columbia University
| |
Collapse
|