1
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2025; 26:245-267. [PMID: 39587307 PMCID: PMC11928286 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Paraiso KD, Blitz IL, Cho KWY. Maternal and zygotic contributions to H3K4me1 chromatin marking during germ layer formation. Dev Biol 2025; 518:8-19. [PMID: 39550025 PMCID: PMC11796633 DOI: 10.1016/j.ydbio.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
An early step in triploblastic embryo differentiation is the formation of the three germ layers. Maternal pioneer transcription factors (TFs) bind to embryonic enhancers before zygotic genome activation, initiating germ layer specification. While maternal TFs' role in establishing epigenetic marks is known, how early pluripotent cells gain spatially restricted epigenetic identities remains unclear. We show that by the early gastrula stage, H3K4me1-marked regions become distinct in each germ layer, with certain chromatin regions forming high density H3K4me1 marked regions (HDRs). Genes associated with these HDRs are more robustly expressed compared to those associated with low density H3K4me1 marked regions (LDRs) in the genome. This process is driven by the sequential actions of maternal and zygotic factors. Knockdown of key maternal endodermal TFs (Otx1, Vegt and Foxh1) leads to a loss of endodermal H3K4me1 marks in endoderm, with a concurrent emergence of ectodermal and mesodermal marks, indicating a shift in chromatin state. This work highlights the importance of coordinated activities of maternal and zygotic TFs in defining the regionally-resolved and dynamic process of chromatin modification conferred by H3K4me1 in the early Xenopus embryo.
Collapse
Affiliation(s)
- Kitt D Paraiso
- Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Ira L Blitz
- Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Ken W Y Cho
- Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| |
Collapse
|
3
|
Hendrickson CL, Blitz IL, Hussein A, Paraiso KD, Cho J, Klymkowsky MW, Kofron MJ, Cho KWY. Foxi2 and Sox3 are master regulators controlling ectoderm germ layer specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632114. [PMID: 39829826 PMCID: PMC11741269 DOI: 10.1101/2025.01.09.632114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In vertebrates, germ layer specification represents a critical transition where pluripotent cells acquire lineage-specific identities. We identify the maternal transcription factors Foxi2 and Sox3 to be pivotal master regulators of ectodermal germ layer specification in Xenopus. Ectopic co-expression of Foxi2 and Sox3 in prospective endodermal tissue induces the expression of ectodermal markers while suppressing mesendodermal markers. Transcriptomics analyses reveal that Foxi2 and Sox3 jointly and independently regulate hundreds of ectodermal target genes. During early cleavage stages, Foxi2 and Sox3 pre-bind to key cis-regulatory modules (CRMs), marking sites that later recruit Ep300 and facilitate H3K27ac deposition, thereby shaping the epigenetic landscape of the ectodermal genome. These CRMs are highly enriched within ectoderm-specific super-enhancers (SEs). Our findings highlight the pivotal role of ectodermal SE-associated CRMs in precise and robust ectodermal gene activation, establishing Foxi2 and Sox3 as central architects of ectodermal lineage specification.
Collapse
Affiliation(s)
| | - Ira L Blitz
- Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Amina Hussein
- Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Kitt D Paraiso
- Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Jin Cho
- Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Michael W Klymkowsky
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Matthew J Kofron
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ken W Y Cho
- Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| |
Collapse
|
4
|
Kravchenko P, Tachibana K. Rise and SINE: roles of transcription factors and retrotransposons in zygotic genome activation. Nat Rev Mol Cell Biol 2025; 26:68-79. [PMID: 39358607 DOI: 10.1038/s41580-024-00772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
In sexually reproducing organisms, life begins with the fusion of transcriptionally silent gametes, the oocyte and sperm. Although initiation of transcription in the embryo, known as zygotic genome activation (ZGA), is universally required for development, the transcription factors regulating this process are poorly conserved. In this Perspective, we discuss recent insights into the mechanisms of ZGA in totipotent mammalian embryos, namely ZGA regulation by several transcription factors, including by orphan nuclear receptors (OrphNRs) such as the pioneer transcription factor NR5A2, and by factors of the DUX, TPRX and OBOX families. We performed a meta-analysis and compiled a list of pan-ZGA genes, and found that most of these genes are indeed targets of the above transcription factors. Remarkably, more than a third of these ZGA genes appear to be regulated both by OrphNRs such as NR5A2 and by OBOX proteins, whose motifs co-occur in SINE B1 retrotransposable elements, which are enriched near ZGA genes. We propose that ZGA in mice is activated by recruitment of multiple transcription factors to SINE B1 elements that function as enhancers, and discuss a potential relevance of this mechanism to Alu retrotransposable elements in human ZGA.
Collapse
Affiliation(s)
- Pavel Kravchenko
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany.
| |
Collapse
|
5
|
Parasyraki E, Mallick M, Hatch V, Vastolo V, Musheev MU, Karaulanov E, Gopanenko A, Moxon S, Méndez-Lago M, Han D, Schomacher L, Mukherjee D, Niehrs C. 5-Formylcytosine is an activating epigenetic mark for RNA Pol III during zygotic reprogramming. Cell 2024; 187:6088-6103.e18. [PMID: 39214079 DOI: 10.1016/j.cell.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
5-Methylcytosine (5mC) is an established epigenetic mark in vertebrate genomic DNA, but whether its oxidation intermediates formed during TET-mediated DNA demethylation possess an instructive role of their own that is also physiologically relevant remains unresolved. Here, we reveal a 5-formylcytosine (5fC) nuclear chromocenter, which transiently forms during zygotic genome activation (ZGA) in Xenopus and mouse embryos. We identify this chromocenter as the perinucleolar compartment, a structure associated with RNA Pol III transcription. In Xenopus embryos, 5fC is highly enriched on Pol III target genes activated at ZGA, notably at oocyte-type tandem arrayed tRNA genes. By manipulating Tet and Tdg enzymes, we show that 5fC is required as a regulatory mark to promote Pol III recruitment as well as tRNA expression. Concordantly, 5fC modification of a tRNA transgene enhances its expression in vivo. The results establish 5fC as an activating epigenetic mark during zygotic reprogramming of Pol III gene expression.
Collapse
Affiliation(s)
| | | | - Victoria Hatch
- Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | | | | | | | | | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, UK
| | | | - Dandan Han
- Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | | | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz 55128, Germany; Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany.
| |
Collapse
|
6
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
7
|
Guo W, Li X, Qin K, Zhang P, He J, Liu Y, Yang X, Wu S. Nanopore sequencing demonstrates the roles of spermatozoal DNA N6-methyladenine in mediating transgenerational lipid metabolism disorder induced by excessive folate consumpton. Poult Sci 2024; 103:103953. [PMID: 38945000 PMCID: PMC11267017 DOI: 10.1016/j.psj.2024.103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Increased consumption of folic acid is prevalent due to its beneficial effects, but growing evidence emphasizes the side effects pointing to excessive dietary folate intake. The effects of excessive paternal folic acid consumption on offspring and its transgenerational inheritance mechanism have not been elucidated. We hypothesize that excessive folic acid consumption will alter sperm DNA N6-methyladenine (6mA) and 5-methylcytosine (5mC) methylation and heritably influence offspring metabolic homeostasis. Here, we fed roosters either folic acid-control or folic acid-excess diet throughout life. Paternal chronic folic acid excessive supplementation increased hepatic lipogenesis and lipid accumulation but reduced lipolysis both in the roosters and their offspring, which was further confirmed to be induced by one-carbon metabolism inhibition and gene expression alteration associated with the Peroxisome proliferator-activated receptor pathway. Based on the spermatozoal genome-wide DNA methylome identified by Nanopore sequencing, multi-omics association analysis of spermatozoal and hepatic DNA methylome, transcriptome, and metabolome suggested that differential spermatozoal DNA 6mA and 5mC methylation could be involved in regulating lipid metabolism-related gene expression in offspring chickens. This model suggests that sperm DNA N6-methyladenine and 5-methylcytosine methylation were involved in epigenetic transmission and that paternal dietary excess folic acid leads to hepatic lipid accumulation in offspring.
Collapse
Affiliation(s)
- Wei Guo
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, 225125, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Medicine, Karolinska Institutet, Solna, Stockholm, 17165, Sweden
| | - Kailong Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinhui He
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden.
| |
Collapse
|
8
|
Fukushima HS, Ikeda T, Ikeda S, Takeda H. Cell cycle length governs heterochromatin reprogramming during early development in non-mammalian vertebrates. EMBO Rep 2024; 25:3300-3323. [PMID: 38943003 PMCID: PMC11315934 DOI: 10.1038/s44319-024-00188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
Heterochromatin marks such as H3K9me3 undergo global erasure and re-establishment after fertilization, and the proper reprogramming of H3K9me3 is essential for early development. Despite the widely conserved dynamics of heterochromatin reprogramming in invertebrates and non-mammalian vertebrates, previous studies have shown that the underlying mechanisms may differ between species. Here, we investigate the molecular mechanism of H3K9me3 dynamics in medaka (Japanese killifish, Oryzias latipes) as a non-mammalian vertebrate model, and show that rapid cell cycle during cleavage stages causes DNA replication-dependent passive erasure of H3K9me3. We also find that cell cycle slowing, toward the mid-blastula transition, permits increasing nuclear accumulation of H3K9me3 histone methyltransferase Setdb1, leading to the onset of H3K9me3 re-accumulation. We further demonstrate that cell cycle length in early development also governs H3K9me3 reprogramming in zebrafish and Xenopus laevis. Together with the previous studies in invertebrates, we propose that a cell cycle length-dependent mechanism for both global erasure and re-accumulation of H3K9me3 is conserved among rapid-cleavage species of non-mammalian vertebrates and invertebrates such as Drosophila, C. elegans, Xenopus and teleost fish.
Collapse
Affiliation(s)
- Hiroto S Fukushima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
- Center for Integrative Medical Sciences, RIKEN, Yokohama, 230-0045, Japan.
| | - Takafumi Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, 603-8555, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Shinra Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan.
| |
Collapse
|
9
|
Wei J, Zhang W, Jiang A, Peng H, Zhang Q, Li Y, Bi J, Wang L, Liu P, Wang J, Ge Y, Zhang L, Yu H, Li L, Wang S, Leng L, Chen K, Dong B. Temporospatial hierarchy and allele-specific expression of zygotic genome activation revealed by distant interspecific urochordate hybrids. Nat Commun 2024; 15:2395. [PMID: 38493164 PMCID: PMC10944513 DOI: 10.1038/s41467-024-46780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Zygotic genome activation (ZGA) is a universal process in early embryogenesis of metazoan, when the quiescent zygotic nucleus initiates global transcription. However, the mechanisms related to massive genome activation and allele-specific expression (ASE) remain not well understood. Here, we develop hybrids from two deeply diverged (120 Mya) ascidian species to symmetrically document the dynamics of ZGA. We identify two coordinated ZGA waves represent early developmental and housekeeping gene reactivation, respectively. Single-cell RNA sequencing reveals that the major expression wave exhibits spatial heterogeneity and significantly correlates with cell fate. Moreover, allele-specific expression occurs in a species- rather than parent-related manner, demonstrating the divergence of cis-regulatory elements between the two species. These findings provide insights into ZGA in chordates.
Collapse
Affiliation(s)
- Jiankai Wei
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Wei Zhang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - An Jiang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongzhe Peng
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Quanyong Zhang
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yuting Li
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jianqing Bi
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Linting Wang
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| | - Penghui Liu
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jing Wang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yonghang Ge
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Liya Zhang
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Haiyan Yu
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Lei Li
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shi Wang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119 Haibin Rd, Nansha Dist., Guangzhou, 511458, China.
| | - Bo Dong
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
10
|
Seem K, Kaur S, Kumar S, Mohapatra T. Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression. Crit Rev Biochem Mol Biol 2024; 59:69-98. [PMID: 38440883 DOI: 10.1080/10409238.2024.2320659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Traditionally, it has been believed that inheritance is driven as phenotypic variations resulting from changes in DNA sequence. However, this paradigm has been challenged and redefined in the contemporary era of epigenetics. The changes in DNA methylation, histone modification, non-coding RNA biogenesis, and chromatin remodeling play crucial roles in genomic functions and regulation of gene expression. More importantly, some of these changes are inherited to the next generations as a part of epigenetic memory and play significant roles in gene expression. The sum total of all changes in DNA bases, histone proteins, and ncRNA biogenesis constitutes the epigenome. Continuous progress in deciphering epigenetic regulations and the existence of heritable epigenetic/epiallelic variations associated with trait of interest enables to deploy epigenome editing tools to modulate gene expression. DNA methylation marks can be utilized in epigenome editing for the manipulation of gene expression. Initially, genome/epigenome editing technologies relied on zinc-finger protein or transcriptional activator-like effector protein. However, the discovery of clustered regulatory interspaced short palindromic repeats CRISPR)/deadCRISPR-associated protein 9 (dCas9) enabled epigenome editing to be more specific/efficient for targeted DNA (de)methylation. One of the major concerns has been the off-target effects, wherein epigenome editing may unintentionally modify gene/regulatory element which may cause unintended change/harmful effects. Moreover, epigenome editing of germline cell raises several ethical/safety issues. This review focuses on the recent developments in epigenome editing tools/techniques, technological limitations, and future perspectives of this emerging technology in therapeutics for human diseases as well as plant improvement to achieve sustainable developmental goals.
Collapse
Affiliation(s)
- Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Trilochan Mohapatra
- Protection of Plant Varieties and Farmers' Rights Authority, New Delhi, India
| |
Collapse
|
11
|
Morselli M, Bennett R, Shaidani NI, Horb M, Peshkin L, Pellegrini M. Age-associated DNA methylation changes in Xenopus frogs. Epigenetics 2023; 18:2201517. [PMID: 37092296 PMCID: PMC10128463 DOI: 10.1080/15592294.2023.2201517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Age-associated changes in DNA methylation have been characterized across various animals, but not yet in amphibians, which are of particular interest because they include widely studied model organisms. In this study, we present clear evidence that the aquatic vertebrate species Xenopus tropicalis displays patterns of age-associated changes in DNA methylation. We have generated whole-genome bisulfite sequencing (WGBS) profiles from skin samples of nine frogs representing young, mature, and old adults and characterized the gene- and chromosome-scale DNA methylation changes with age. Many of the methylation features and changes we observe are consistent with what is known in mammalian species, suggesting that the mechanism of age-related changes is conserved. Moreover, we selected a few thousand age-associated CpG sites to build an assay based on targeted DNA methylation analysis (TBSseq) to expand our findings in future studies involving larger cohorts of individuals. Preliminary results of a pilot TBSeq experiment recapitulate the findings obtained with WGBS setting the basis for the development of an epigenetic clock assay. The results of this study will allow us to leverage the unique resources available for Xenopus to study how DNA methylation relates to other hallmarks of ageing.
Collapse
Affiliation(s)
- Marco Morselli
- Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA, USA
| | - Ronan Bennett
- Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA, USA
| | - Nikko-Ideen Shaidani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Marko Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Leonid Peshkin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
- Systems Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
12
|
Fukushima HS, Takeda H, Nakamura R. Incomplete erasure of histone marks during epigenetic reprogramming in medaka early development. Genome Res 2023; 33:572-586. [PMID: 37117034 PMCID: PMC10234297 DOI: 10.1101/gr.277577.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/29/2023] [Indexed: 04/30/2023]
Abstract
Epigenetic modifications undergo drastic erasure and reestablishment after fertilization. This reprogramming is required for proper embryonic development and cell differentiation. In mammals, some histone modifications are not completely reprogrammed and play critical roles in later development. In contrast, in nonmammalian vertebrates, most histone modifications are thought to be more intensively erased and reestablished by the stage of zygotic genome activation (ZGA). However, histone modifications that escape reprogramming in nonmammalian vertebrates and their potential functional roles remain unknown. Here, we quantitatively and comprehensively analyzed histone modification dynamics during epigenetic reprogramming in Japanese killifish, medaka (Oryzias latipes) embryos. Our data revealed that H3K27ac, H3K27me3, and H3K9me3 escape complete reprogramming, whereas H3K4 methylation is completely erased during cleavage stage. Furthermore, we experimentally showed the functional roles of such retained modifications at early stages: (i) H3K27ac premarks promoters during the cleavage stage, and inhibition of histone acetyltransferases disrupts proper patterning of H3K4 and H3K27 methylation at CpG-dense promoters, but does not affect chromatin accessibility after ZGA; (ii) H3K9me3 is globally erased but specifically retained at telomeric regions, which is required for maintenance of genomic stability during the cleavage stage. These results expand the understanding of diversity and conservation of reprogramming in vertebrates, and unveil previously uncharacterized functions of histone modifications retained during epigenetic reprogramming.
Collapse
Affiliation(s)
- Hiroto S Fukushima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Barsoum M, Stenzel AT, Bochyńska A, Kuo CC, Tsompanidis A, Sayadi-Boroujeni R, Bussmann P, Lüscher-Firzlaff J, Costa IG, Lüscher B. Loss of the Ash2l subunit of histone H3K4 methyltransferase complexes reduces chromatin accessibility at promoters. Sci Rep 2022; 12:21506. [PMID: 36513698 PMCID: PMC9747801 DOI: 10.1038/s41598-022-25881-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Changes in gene expression programs are intimately linked to cell fate decisions. Post-translational modifications of core histones contribute to control gene expression. Methylation of lysine 4 of histone H3 (H3K4) correlates with active promoters and gene transcription. This modification is catalyzed by KMT2 methyltransferases, which require interaction with 4 core subunits, WDR5, RBBP5, ASH2L and DPY30, for catalytic activity. Ash2l is necessary for organismal development and for tissue homeostasis. In mouse embryo fibroblasts (MEFs), Ash2l loss results in gene repression, provoking a senescence phenotype. We now find that upon knockout of Ash2l both H3K4 mono- and tri-methylation (H3K4me1 and me3, respectively) were deregulated. In particular, loss of H3K4me3 at promoters correlated with gene repression, especially at CpG island promoters. Ash2l loss resulted in increased loading of histone H3 and reduced chromatin accessibility at promoters, accompanied by an increase of repressing and a decrease of activating histone marks. Moreover, we observed altered binding of CTCF upon Ash2l loss. Lost and gained binding was noticed at promoter-associated and intergenic sites, respectively. Thus, Ash2l loss and reduction of H3K4me3 correlate with altered chromatin accessibility and transcription factor binding. These findings contribute to a more detailed understanding of mechanistic consequences of H3K4me3 loss and associated repression of gene transcription and thus of the observed cellular consequences.
Collapse
Affiliation(s)
- Mirna Barsoum
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alexander T. Stenzel
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Agnieszka Bochyńska
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Chao-Chung Kuo
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XInterdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alexander Tsompanidis
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Roksaneh Sayadi-Boroujeni
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Philip Bussmann
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Juliane Lüscher-Firzlaff
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Ivan G. Costa
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
14
|
Zhou JJ, Cho KWY. Epigenomic dynamics of early Xenopus Embryos. Dev Growth Differ 2022; 64:508-516. [PMID: 36168140 PMCID: PMC10550391 DOI: 10.1111/dgd.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 12/31/2022]
Abstract
How the embryonic genome regulates accessibility to transcription factors is one of the major questions in understanding the spatial and temporal dynamics of gene expression during embryogenesis. Epigenomic analyses of embryonic chromatin provide molecular insights into cell-specific gene activities and genomic architectures. In recent years, significant advances have been made to elucidate the dynamic changes behind the activation of the zygotic genome in various model organisms. Here we provide an overview of the recent epigenomic studies pertaining to early Xenopus development.
Collapse
Affiliation(s)
- Jeff Jiajing Zhou
- Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Ken W Y Cho
- Developmental and Cell Biology, University of California, Irvine, California, USA
- Center for Complex Biological Systems, University of California, Irvine, California, USA
| |
Collapse
|
15
|
Hnf1b renal expression directed by a distal enhancer responsive to Pax8. Sci Rep 2022; 12:19921. [PMID: 36402859 PMCID: PMC9675860 DOI: 10.1038/s41598-022-21171-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Xenopus provides a simple and efficient model system to study nephrogenesis and explore the mechanisms causing renal developmental defects in human. Hnf1b (hepatocyte nuclear factor 1 homeobox b), a gene whose mutations are the most commonly identified genetic cause of developmental kidney disease, is required for the acquisition of a proximo-intermediate nephron segment in Xenopus as well as in mouse. Genetic networks involved in Hnf1b expression during kidney development remain poorly understood. We decided to explore the transcriptional regulation of Hnf1b in the developing Xenopus pronephros and mammalian renal cells. Using phylogenetic footprinting, we identified an evolutionary conserved sequence (CNS1) located several kilobases (kb) upstream the Hnf1b transcription start and harboring epigenomic marks characteristics of a distal enhancer in embryonic and adult renal cells in mammals. By means of functional expression assays in Xenopus and mammalian renal cell lines we showed that CNS1 displays enhancer activity in renal tissue. Using CRISPR/cas9 editing in Xenopus tropicalis, we demonstrated the in vivo functional relevance of CNS1 in driving hnf1b expression in the pronephros. We further showed the importance of Pax8-CNS1 interaction for CNS1 enhancer activity allowing us to conclude that Hnf1b is a direct target of Pax8. Our work identified for the first time a Hnf1b renal specific enhancer and may open important perspectives into the diagnosis for congenital kidney anomalies in human, as well as modeling HNF1B-related diseases.
Collapse
|
16
|
Chen H, Good MC. Nascent transcriptome reveals orchestration of zygotic genome activation in early embryogenesis. Curr Biol 2022; 32:4314-4324.e7. [PMID: 36007528 PMCID: PMC9560990 DOI: 10.1016/j.cub.2022.07.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/25/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Early embryo development requires maternal-to-zygotic transition, during which transcriptionally silent nuclei begin widespread gene expression during zygotic genome activation (ZGA).1-3 ZGA is vital for early cell fating and germ-layer specification,3,4 and ZGA timing is regulated by multiple mechanisms.1-5 However, controversies remain about whether these mechanisms are interrelated and vary among species6-10 and whether the timing of germ-layer-specific gene activation is temporally ordered.11,12 In some embryonic models, widespread ZGA onset is spatiotemporally graded,13,14 yet it is unclear whether the transcriptome follows this pattern. A major challenge in addressing these questions is to accurately measure the timing of each gene activation. Here, we metabolically label and identify the nascent transcriptome using 5-ethynyl uridine (5-EU) in Xenopus blastula embryos. We find that EU-RNA-seq outperforms total RNA-seq in detecting the ZGA transcriptome, which is dominated by transcription from maternal-zygotic genes, enabling improved ZGA timing determination. We uncover discrete spatiotemporal patterns for individual gene activation, a majority following a spatial pattern of ZGA that is correlated with a cell size gradient.14 We further reveal that transcription necessitates a period of developmental progression and that ZGA can be precociously induced by cycloheximide, potentially through elongation of interphase. Finally, most ectodermal genes are activated earlier than endodermal genes, suggesting a temporal orchestration of germ-layer-specific genes, potentially linked to the spatially graded pattern of ZGA. Together, our study provides fundamental new insights into the composition and dynamics of the ZGA transcriptome, mechanisms regulating ZGA timing, and its role in the onset of early cell fating.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Differential nuclear import sets the timing of protein access to the embryonic genome. Nat Commun 2022; 13:5887. [PMID: 36202846 PMCID: PMC9537182 DOI: 10.1038/s41467-022-33429-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2023] Open
Abstract
The development of a fertilized egg to an embryo requires the proper temporal control of gene expression. During cell differentiation, timing is often controlled via cascades of transcription factors (TFs). However, in early development, transcription is often inactive, and many TF levels stay constant, suggesting that alternative mechanisms govern the observed rapid and ordered onset of gene expression. Here, we find that in early embryonic development access of maternally deposited nuclear proteins to the genome is temporally ordered via importin affinities, thereby timing the expression of downstream targets. We quantify changes in the nuclear proteome during early development and find that nuclear proteins, such as TFs and RNA polymerases, enter the nucleus sequentially. Moreover, we find that the timing of nuclear proteins' access to the genome corresponds to the timing of downstream gene activation. We show that the affinity of proteins to importin is a major determinant in the timing of protein entry into embryonic nuclei. Thus, we propose a mechanism by which embryos encode the timing of gene expression in early development via biochemical affinities. This process could be critical for embryos to organize themselves before deploying the regulatory cascades that control cell identities.
Collapse
|
18
|
Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet 2022; 23:563-580. [PMID: 35338361 DOI: 10.1038/s41576-022-00468-7] [Citation(s) in RCA: 456] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/16/2022]
Abstract
Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Adam Burton
- Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, Munich, Germany
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Center Munich, Munich, Germany.
- Faculty of Biology, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.
| |
Collapse
|
19
|
Rankin SA, Zorn AM. The homeodomain transcription factor Ventx2 regulates respiratory progenitor cell number and differentiation timing during
Xenopus
lung development. Dev Growth Differ 2022; 64:347-361. [PMID: 36053777 PMCID: PMC10088502 DOI: 10.1111/dgd.12807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 11/28/2022]
Abstract
Ventx2 is an Antennapedia superfamily/NK-like subclass homeodomain transcription factor best known for its roles in the regulation of early dorsoventral patterning during Xenopus gastrulation and in the maintenance of neural crest multipotency. In this work we characterize the spatiotemporal expression pattern of ventx2 in progenitor cells of the Xenopus respiratory system epithelium. We find that ventx2 is directly induced by BMP signaling in the ventral foregut prior to nkx2-1, the earliest epithelial marker of the respiratory lineage. Functional studies demonstrate that Ventx2 regulates the number of Nkx2-1/Sox9+ respiratory progenitor cells induced during foregut development, the timing and level of surfactant protein gene expression, and proper tracheal-esophageal separation. Our data suggest that Ventx2 regulates the balance of respiratory progenitor cell expansion and differentiation. While the ventx gene family has been lost from the mouse genome during evolution, humans have retained a ventx2-like gene (VENTX). Finally, we discuss how our findings might suggest a possible function of VENTX in human respiratory progenitor cells.
Collapse
Affiliation(s)
- Scott A. Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
| | - Aaron M. Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
- University of Cincinnati, College of Medicine, Department of Pediatrics Cincinnati OH
| |
Collapse
|
20
|
Oya S, Takahashi M, Takashima K, Kakutani T, Inagaki S. Transcription-coupled and epigenome-encoded mechanisms direct H3K4 methylation. Nat Commun 2022; 13:4521. [PMID: 35953471 PMCID: PMC9372134 DOI: 10.1038/s41467-022-32165-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mono-, di-, and trimethylation of histone H3 lysine 4 (H3K4me1/2/3) are associated with transcription, yet it remains controversial whether H3K4me1/2/3 promote or result from transcription. Our previous characterizations of Arabidopsis H3K4 demethylases suggest roles for H3K4me1 in transcription. However, the control of H3K4me1 remains unexplored in Arabidopsis, in which no methyltransferase for H3K4me1 has been identified. Here, we identify three Arabidopsis methyltransferases that direct H3K4me1. Analyses of their genome-wide localization using ChIP-seq and machine learning reveal that one of the enzymes cooperates with the transcription machinery, while the other two are associated with specific histone modifications and DNA sequences. Importantly, these two types of localization patterns are also found for the other H3K4 methyltransferases in Arabidopsis and mice. These results suggest that H3K4me1/2/3 are established and maintained via interplay with transcription as well as inputs from other chromatin features, presumably enabling elaborate gene control.
Collapse
Affiliation(s)
- Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | | | | | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- National Institute of Genetics, Mishima, Japan.
| | - Soichi Inagaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan.
| |
Collapse
|
21
|
de Mendoza A, Nguyen TV, Ford E, Poppe D, Buckberry S, Pflueger J, Grimmer MR, Stolzenburg S, Bogdanovic O, Oshlack A, Farnham PJ, Blancafort P, Lister R. Large-scale manipulation of promoter DNA methylation reveals context-specific transcriptional responses and stability. Genome Biol 2022; 23:163. [PMID: 35883107 PMCID: PMC9316731 DOI: 10.1186/s13059-022-02728-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/06/2022] [Indexed: 12/22/2022] Open
Abstract
Background Cytosine DNA methylation is widely described as a transcriptional repressive mark with the capacity to silence promoters. Epigenome engineering techniques enable direct testing of the effect of induced DNA methylation on endogenous promoters; however, the downstream effects have not yet been comprehensively assessed. Results Here, we simultaneously induce methylation at thousands of promoters in human cells using an engineered zinc finger-DNMT3A fusion protein, enabling us to test the effect of forced DNA methylation upon transcription, chromatin accessibility, histone modifications, and DNA methylation persistence after the removal of the fusion protein. We find that transcriptional responses to DNA methylation are highly context-specific, including lack of repression, as well as cases of increased gene expression, which appears to be driven by the eviction of methyl-sensitive transcriptional repressors. Furthermore, we find that some regulatory networks can override DNA methylation and that promoter methylation can cause alternative promoter usage. DNA methylation deposited at promoter and distal regulatory regions is rapidly erased after removal of the zinc finger-DNMT3A fusion protein, in a process combining passive and TET-mediated demethylation. Finally, we demonstrate that induced DNA methylation can exist simultaneously on promoter nucleosomes that possess the active histone modification H3K4me3, or DNA bound by the initiated form of RNA polymerase II. Conclusions These findings have important implications for epigenome engineering and demonstrate that the response of promoters to DNA methylation is more complex than previously appreciated. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02728-5.
Collapse
Affiliation(s)
- Alex de Mendoza
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia. .,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia. .,School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Trung Viet Nguyen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Ethan Ford
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Daniel Poppe
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Sam Buckberry
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jahnvi Pflueger
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Matthew R Grimmer
- Department of Biochemistry and Molecular Medicine, University of Southern California, 1450 Biggy St, Los Angeles, CA, 90089, USA.,Integrated Genetics and Genomics, University of California, Davis, 451 Health Sciences Dr, Davis, CA, 95616, USA.,Department of Neurological Surgery, University of California, 1450 3rd St, San Francisco, CA, 94158, USA
| | - Sabine Stolzenburg
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Ozren Bogdanovic
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Alicia Oshlack
- The Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.,School of BioScience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine, University of Southern California, 1450 Biggy St, Los Angeles, CA, 90089, USA
| | - Pilar Blancafort
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.,School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia.,The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia. .,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
22
|
Li X, Wang M, Liu S, Chen X, Qiao Y, Yang X, Yao J, Wu S. Paternal transgenerational nutritional epigenetic effect: A new insight into nutritional manipulation to reduce the use of antibiotics in animal feeding. ANIMAL NUTRITION 2022; 11:142-151. [PMID: 36204282 PMCID: PMC9527621 DOI: 10.1016/j.aninu.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
The use of antibiotics in animal feeding has been banned in many countries because of increasing concerns about the development of bacterial resistance to antibiotics and potential issues on food safety. Searching for antibiotic substitutes is essential. Applying transgenerational epigenetic technology to animal production could be an alternative. Some environmental changes can be transferred to memory-like responses in the offspring through epigenetic mechanisms without changing the DNA sequence. In this paper, we reviewed those nutrients and non-nutritional additives that have transgenerational epigenetic effects, including some amino acids, vitamins, and polysaccharides. The paternal transgenerational nutritional epigenetic regulation was particularly focused on mechanism of the substantial contribution of male stud animals to the animal industries. We illustrated the effects of paternal transgenerational epigenetics on the metabolism and immunity in farming animals and proposed strategies to modulate male breeding livestock or poultry.
Collapse
Affiliation(s)
- Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Medicine, Karolinska Institutet, Solna, Stockholm 17165, Sweden
| | - Mengya Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shimin Liu
- Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Qiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| |
Collapse
|
23
|
Tsoupra A, Clist B, da Conceição Lopes M, Moita P, Barrulas P, da Piedade de Jesus M, da Silva Domingos S, Bostoen K, Mirao J. A multi-analytical characterization of fourteenth to eighteenth century pottery from the Kongo kingdom, Central Africa. Sci Rep 2022; 12:9943. [PMID: 35705664 PMCID: PMC9200768 DOI: 10.1038/s41598-022-14089-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
Pottery traditions reflect the socioeconomic framework of past cultures, while the spatial distribution of pottery indicates exchange patterns and interaction processes. Material and earth sciences are employed here to determine raw material sourcing, selection and processing. The Kongo kingdom, internationally renowned since the late fifteenth century, is one of the most famous precolonial states in Central Africa. Despite the large number of historical studies relying on African and European oral and written chronicles, there are still considerable gaps in our current understanding of this political unit. Here, we provide new insights into pottery production and circulation within the Kongo kingdom. Implementing a multi-analytical approach, namely XRD, TGA, petrographic analysis, XRF, VP-SEM-EDS and ICP-MS, on selected samples, we determined their petrographic, mineralogical and geochemical signatures. Our results allowed us to correlate the archaeological objects to naturally occurring materials and to establish ceramic traditions. We identified production templates, exchange patterns, distribution of high-quality goods and interaction processes through technological knowledge transmission. Our results demonstrate that political centralisation in the Lower Congo region of Central Africa had a direct impact on pottery production and circulation. We expect our study to provide a sound basis for further comparative research to contextualise the region.
Collapse
Affiliation(s)
- Anna Tsoupra
- HERCULES Laboratory, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809, Évora, Portugal
| | | | - Maria da Conceição Lopes
- Research Center in Archaeology, Arts and Heritage Sciences, University of Coimbra, Coimbra, Portugal
| | - Patricia Moita
- HERCULES Laboratory, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809, Évora, Portugal.,Department of Geosciences, School of Science and Technology, University of Évora, Colégio Luís António Verney, Évora, Portugal
| | - Pedro Barrulas
- HERCULES Laboratory, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809, Évora, Portugal
| | | | | | - Koen Bostoen
- Department of Languages and Cultures, BantUGent - UGent Centre for Bantu Studies, Ghent University, Ghent, Belgium
| | - José Mirao
- HERCULES Laboratory, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809, Évora, Portugal. .,Department of Geosciences, School of Science and Technology, University of Évora, Colégio Luís António Verney, Évora, Portugal.
| |
Collapse
|
24
|
Jansen C, Paraiso KD, Zhou JJ, Blitz IL, Fish MB, Charney RM, Cho JS, Yasuoka Y, Sudou N, Bright AR, Wlizla M, Veenstra GJC, Taira M, Zorn AM, Mortazavi A, Cho KWY. Uncovering the mesendoderm gene regulatory network through multi-omic data integration. Cell Rep 2022; 38:110364. [PMID: 35172134 PMCID: PMC8917868 DOI: 10.1016/j.celrep.2022.110364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 10/30/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
Mesendodermal specification is one of the earliest events in embryogenesis, where cells first acquire distinct identities. Cell differentiation is a highly regulated process that involves the function of numerous transcription factors (TFs) and signaling molecules, which can be described with gene regulatory networks (GRNs). Cell differentiation GRNs are difficult to build because existing mechanistic methods are low throughput, and high-throughput methods tend to be non-mechanistic. Additionally, integrating highly dimensional data composed of more than two data types is challenging. Here, we use linked self-organizing maps to combine chromatin immunoprecipitation sequencing (ChIP-seq)/ATAC-seq with temporal, spatial, and perturbation RNA sequencing (RNA-seq) data from Xenopus tropicalis mesendoderm development to build a high-resolution genome scale mechanistic GRN. We recover both known and previously unsuspected TF-DNA/TF-TF interactions validated through reporter assays. Our analysis provides insights into transcriptional regulation of early cell fate decisions and provides a general approach to building GRNs using highly dimensional multi-omic datasets.
Collapse
Affiliation(s)
- Camden Jansen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Jeff J Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Margaret B Fish
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Rebekah M Charney
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Jin Sun Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Norihiro Sudou
- Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan
| | - Ann Rose Bright
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, the Netherlands
| | - Marcin Wlizla
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, the Netherlands
| | - Masanori Taira
- Department of Biological Sciences, Chuo University, Tokyo, Japan
| | - Aaron M Zorn
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| |
Collapse
|
25
|
Pokrovsky D, Forné I, Straub T, Imhof A, Rupp RAW. A systemic cell cycle block impacts stage-specific histone modification profiles during Xenopus embryogenesis. PLoS Biol 2021; 19:e3001377. [PMID: 34491983 PMCID: PMC8535184 DOI: 10.1371/journal.pbio.3001377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/22/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022] Open
Abstract
Forming an embryo from a zygote poses an apparent conflict for epigenetic regulation. On the one hand, the de novo induction of cell fate identities requires the establishment and subsequent maintenance of epigenetic information to harness developmental gene expression. On the other hand, the embryo depends on cell proliferation, and every round of DNA replication dilutes preexisting histone modifications by incorporation of new unmodified histones into chromatin. Here, we investigated the possible relationship between the propagation of epigenetic information and the developmental cell proliferation during Xenopus embryogenesis. We systemically inhibited cell proliferation during the G1/S transition in gastrula embryos and followed their development until the tadpole stage. Comparing wild-type and cell cycle-arrested embryos, we show that the inhibition of cell proliferation is principally compatible with embryo survival and cellular differentiation. In parallel, we quantified by mass spectrometry the abundance of a large set of histone modification states, which reflects the developmental maturation of the embryonic epigenome. The arrested embryos developed abnormal stage-specific histone modification profiles (HMPs), in which transcriptionally repressive histone marks were overrepresented. Embryos released from the cell cycle block during neurulation reverted toward normality on morphological, molecular, and epigenetic levels. These results suggest that the cell cycle block by HUA alters stage-specific HMPs. We propose that this influence is strong enough to control developmental decisions, specifically in cell populations that switch between resting and proliferating states such as stem cells.
Collapse
Affiliation(s)
- Daniil Pokrovsky
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ignasi Forné
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tobias Straub
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Axel Imhof
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ralph A. W. Rupp
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
26
|
Jukam D, Kapoor RR, Straight AF, Skotheim JM. The DNA-to-cytoplasm ratio broadly activates zygotic gene expression in Xenopus. Curr Biol 2021; 31:4269-4281.e8. [PMID: 34388374 DOI: 10.1016/j.cub.2021.07.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
In multicellular animals, the first major event after fertilization is the switch from maternal to zygotic control of development. During this transition, zygotic gene transcription is broadly activated in an otherwise quiescent genome in a process known as zygotic genome activation (ZGA). In fast-developing embryos, ZGA often overlaps with the slowing of initially synchronous cell divisions at the mid-blastula transition (MBT). Initial studies of the MBT led to the nuclear-to-cytoplasmic ratio model where MBT timing is regulated by the exponentially increasing amounts of some nuclear component "N" titrated against a fixed cytoplasmic component "C." However, more recent experiments have been interpreted to suggest that ZGA is independent of the N/C ratio. To determine the role of the N/C ratio in ZGA, we generated Xenopus frog embryos with ∼3-fold differences in genomic DNA (i.e., N) by using X. tropicalis sperm to fertilize X. laevis eggs with or without their maternal genome. Resulting embryos have otherwise identical X. tropicalis genome template amounts, embryo sizes, and X. laevis maternal environments. We generated transcriptomic time series across the MBT in both conditions and used X. tropicalis paternally derived mRNA to identify a high-confidence set of exclusively zygotic transcripts. Both ZGA and the increase in cell-cycle duration are delayed in embryos with ∼3-fold less DNA per cell. Thus, DNA is an important component of the N/C ratio, which is a critical regulator of zygotic genome activation in Xenopus embryos.
Collapse
Affiliation(s)
- David Jukam
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rishabh R Kapoor
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Zupkovitz G, Kabiljo J, Kothmayer M, Schlick K, Schöfer C, Lagger S, Pusch O. Analysis of Methylation Dynamics Reveals a Tissue-Specific, Age-Dependent Decline in 5-Methylcytosine Within the Genome of the Vertebrate Aging Model Nothobranchius furzeri. Front Mol Biosci 2021; 8:627143. [PMID: 34222326 PMCID: PMC8242171 DOI: 10.3389/fmolb.2021.627143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Erosion of the epigenetic DNA methylation landscape is a widely recognized hallmark of aging. Emerging advances in high throughput sequencing techniques, in particular DNA methylation data analysis, have resulted in the establishment of precise human and murine age prediction tools. In vertebrates, methylation of cytosine at the C5 position of CpG dinucleotides is executed by DNA methyltransferases (DNMTs) whereas the process of enzymatic demethylation is highly dependent on the activity of the ten-eleven translocation methylcytosine dioxygenase (TET) family of enzymes. Here, we report the identification of the key players constituting the DNA methylation machinery in the short-lived teleost aging model Nothobranchius furzeri. We present a comprehensive spatio-temporal expression profile of the methylation-associated enzymes from embryogenesis into late adulthood, thereby covering the complete killifish life cycle. Data mining of the N. furzeri genome produced five dnmt gene family orthologues corresponding to the mammalian DNMTs (DNMT1, 2, 3A, and 3B). Comparable to other teleost species, N. furzeri harbors multiple genomic copies of the de novo DNA methylation subfamily. A related search for the DNMT1 recruitment factor UHRF1 and TET family members resulted in the identification of N. furzeri uhrf1, tet1, tet2, and tet3. Phylogenetic analysis revealed high cross-species similarity on the amino acid level of all individual dnmts, tets, and uhrf1, emphasizing a high degree of functional conservation. During early killifish development all analyzed dnmts and tets showed a similar expression profile characterized by a strong increase in transcript levels after fertilization, peaking either at embryonic day 6 or at the black eye stage of embryonic development. In adult N. furzeri, DNA methylation regulating enzymes showed a ubiquitous tissue distribution. Specifically, we observed an age-dependent downregulation of dnmts, and to some extent uhrf1, which correlated with a significant decrease in global DNA methylation levels in the aging killifish liver and muscle. The age-dependent DNA methylation profile and spatio-temporal expression characteristics of its enzymatic machinery reported here may serve as an essential platform for the identification of an epigenetic aging clock in the new vertebrate model system N. furzeri.
Collapse
Affiliation(s)
- Gordin Zupkovitz
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.,Department of Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,City of Vienna Competence Team Aging Tissue, Vienna, Austria
| | - Julijan Kabiljo
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.,Department of General Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Michael Kothmayer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Katharina Schlick
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Christian Schöfer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Oliver Pusch
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Abstract
The fertilized frog egg contains all the materials needed to initiate development of a new organism, including stored RNAs and proteins deposited during oogenesis, thus the earliest stages of development do not require transcription. The onset of transcription from the zygotic genome marks the first genetic switch activating the gene regulatory network that programs embryonic development. Zygotic genome activation occurs after an initial phase of transcriptional quiescence that continues until the midblastula stage, a period called the midblastula transition, which was first identified in Xenopus. Activation of transcription is programmed by maternally supplied factors and is regulated at multiple levels. A similar switch exists in most animals and is of great interest both to developmental biologists and to those interested in understanding nuclear reprogramming. Here we review in detail our knowledge on this major switch in transcription in Xenopus and place recent discoveries in the context of a decades old problem.
Collapse
Affiliation(s)
- Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States.
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States.
| |
Collapse
|
29
|
Bright AR, van Genesen S, Li Q, Grasso A, Frölich S, van der Sande M, van Heeringen SJ, Veenstra GJC. Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates. EMBO J 2021; 40:e104913. [PMID: 33555045 PMCID: PMC8090851 DOI: 10.15252/embj.2020104913] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
During vertebrate gastrulation, mesoderm is induced in pluripotent cells, concomitant with dorsal‐ventral patterning and establishing of the dorsal axis. We applied single‐cell chromatin accessibility and transcriptome analyses to explore the emergence of cellular heterogeneity during gastrulation in Xenopus tropicalis. Transcriptionally inactive lineage‐restricted genes exhibit relatively open chromatin in animal caps, whereas chromatin accessibility in dorsal marginal zone cells more closely reflects transcriptional activity. We characterized single‐cell trajectories and identified head and trunk organizer cell clusters in early gastrulae. By integrating chromatin accessibility and transcriptome data, we inferred the activity of transcription factors in single‐cell clusters and tested the activity of organizer‐expressed transcription factors in animal caps, alone or in combination. The expression profile induced by a combination of Foxb1 and Eomes most closely resembles that observed in the head organizer. Genes induced by Eomes, Otx2, or the Irx3‐Otx2 combination are enriched for maternally regulated H3K4me3 modifications, whereas Lhx8‐induced genes are marked more frequently by zygotically controlled H3K4me3. Taken together, our results show that transcription factors cooperate in a combinatorial fashion in generally open chromatin to orchestrate zygotic gene expression.
Collapse
Affiliation(s)
- Ann Rose Bright
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Siebe van Genesen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Qingqing Li
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Alexia Grasso
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Siebren Frölich
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Maarten van der Sande
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Simon J van Heeringen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Niu L, Shen W, Shi Z, Tan Y, He N, Wan J, Sun J, Zhang Y, Huang Y, Wang W, Fang C, Li J, Zheng P, Cheung E, Chen Y, Li L, Hou C. Three-dimensional folding dynamics of the Xenopus tropicalis genome. Nat Genet 2021; 53:1075-1087. [PMID: 34099928 PMCID: PMC8270788 DOI: 10.1038/s41588-021-00878-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023]
Abstract
Animal interphase chromosomes are organized into topologically associating domains (TADs). How TADs are formed is not fully understood. Here, we combined high-throughput chromosome conformation capture and gene silencing to obtain insights into TAD dynamics in Xenopus tropicalis embryos. First, TAD establishment in X. tropicalis is similar to that in mice and flies and does not depend on zygotic genome transcriptional activation. This process is followed by further refinements in active and repressive chromatin compartments and the appearance of loops and stripes. Second, within TADs, higher self-interaction frequencies at one end of the boundary are associated with higher DNA occupancy of the architectural proteins CTCF and Rad21. Third, the chromatin remodeling factor ISWI is required for de novo TAD formation. Finally, TAD structures are variable in different tissues. Our work shows that X. tropicalis is a powerful model for chromosome architecture analysis and suggests that chromatin remodeling plays an essential role in de novo TAD establishment.
Collapse
Affiliation(s)
- Longjian Niu
- grid.263817.9Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wei Shen
- grid.35155.370000 0004 1790 4137Department of Bioinformatics, Huazhong Agricultural University, Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Zhaoying Shi
- grid.263817.9Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yongjun Tan
- grid.263817.9Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Na He
- grid.263817.9Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jing Wan
- grid.35155.370000 0004 1790 4137Department of Bioinformatics, Huazhong Agricultural University, Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Jialei Sun
- grid.263817.9Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuedong Zhang
- grid.263817.9Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yingzhang Huang
- grid.263817.9Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenjing Wang
- grid.263817.9Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Chao Fang
- grid.263817.9Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China ,grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Jiashuo Li
- grid.263817.9Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Piaopiao Zheng
- grid.263817.9Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Edwin Cheung
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, China ,grid.437123.00000 0004 1794 8068Centre of Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Yonglong Chen
- grid.263817.9Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Li Li
- grid.35155.370000 0004 1790 4137Department of Bioinformatics, Huazhong Agricultural University, Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Chunhui Hou
- grid.263817.9Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
31
|
Mukherjee S, Chaturvedi P, Rankin SA, Fish MB, Wlizla M, Paraiso KD, MacDonald M, Chen X, Weirauch MT, Blitz IL, Cho KW, Zorn AM. Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network. eLife 2020; 9:58029. [PMID: 32894225 PMCID: PMC7498262 DOI: 10.7554/elife.58029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Lineage specification is governed by gene regulatory networks (GRNs) that integrate the activity of signaling effectors and transcription factors (TFs) on enhancers. Sox17 is a key transcriptional regulator of definitive endoderm development, and yet, its genomic targets remain largely uncharacterized. Here, using genomic approaches and epistasis experiments, we define the Sox17-governed endoderm GRN in Xenopus gastrulae. We show that Sox17 functionally interacts with the canonical Wnt pathway to specify and pattern the endoderm while repressing alternative mesectoderm fates. Sox17 and β-catenin co-occupy hundreds of key enhancers. In some cases, Sox17 and β-catenin synergistically activate transcription apparently independent of Tcfs, whereas on other enhancers, Sox17 represses β-catenin/Tcf-mediated transcription to spatially restrict gene expression domains. Our findings establish Sox17 as a tissue-specific modifier of Wnt responses and point to a novel paradigm where genomic specificity of Wnt/β-catenin transcription is determined through functional interactions between lineage-specific Sox TFs and β-catenin/Tcf transcriptional complexes. Given the ubiquitous nature of Sox TFs and Wnt signaling, this mechanism has important implications across a diverse range of developmental and disease contexts.
Collapse
Affiliation(s)
- Shreyasi Mukherjee
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Praneet Chaturvedi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Scott A Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Margaret B Fish
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| | - Marcin Wlizla
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States.,Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
| | - Melissa MacDonald
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology (CAGE), Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Matthew T Weirauch
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States.,Center for Autoimmune Genomics and Etiology (CAGE), Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| | - Ken Wy Cho
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| |
Collapse
|
32
|
Paraiso KD, Blitz IL, Coley M, Cheung J, Sudou N, Taira M, Cho KWY. Endodermal Maternal Transcription Factors Establish Super-Enhancers during Zygotic Genome Activation. Cell Rep 2020; 27:2962-2977.e5. [PMID: 31167141 PMCID: PMC6610736 DOI: 10.1016/j.celrep.2019.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/30/2019] [Accepted: 05/01/2019] [Indexed: 01/06/2023] Open
Abstract
Elucidation of the sequence of events underlying the dynamic interaction
between transcription factors and chromatin states is essential. Maternal
transcription factors function at the top of the regulatory hierarchy to specify
the primary germ layers at the onset of zygotic genome activation (ZGA). We
focus on the formation of endoderm progenitor cells and examine the interactions
between maternal transcription factors and chromatin state changes underlying
the cell specification process. Endoderm-specific factors Otx1 and Vegt together
with Foxh1 orchestrate endoderm formation by coordinated binding to select
regulatory regions. These interactions occur before the deposition of enhancer
histone marks around the regulatory regions, and these TFs recruit RNA
polymerase II, regulate enhancer activity, and establish super-enhancers
associated with important endodermal genes. Therefore, maternal transcription
factors Otx1, Vegt, and Foxh1 combinatorially regulate the activity of
super-enhancers, which in turn activate key lineage-specifying genes during
ZGA. How do maternal transcription factors interact with chromatin regions to
coordinate the endodermal gene regulatory program? Paraiso et al. demonstrate
that combinatorial binding of maternal Otx1, Vegt, and Foxh1 to select enhancers
and super-enhancers in the genome controls endodermal cell fate specification
during zygotic gene activation.
Collapse
Affiliation(s)
- Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Masani Coley
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Jessica Cheung
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Norihiro Sudou
- Department of Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| | - Masanori Taira
- Department of Biological Sciences, Chuo University, Tokyo, Japan
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| |
Collapse
|
33
|
Oikawa M, Simeone A, Hormanseder E, Teperek M, Gaggioli V, O'Doherty A, Falk E, Sporniak M, D'Santos C, Franklin VNR, Kishore K, Bradshaw CR, Keane D, Freour T, David L, Grzybowski AT, Ruthenburg AJ, Gurdon J, Jullien J. Epigenetic homogeneity in histone methylation underlies sperm programming for embryonic transcription. Nat Commun 2020; 11:3491. [PMID: 32661239 PMCID: PMC7359334 DOI: 10.1038/s41467-020-17238-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Sperm contributes genetic and epigenetic information to the embryo to efficiently support development. However, the mechanism underlying such developmental competence remains elusive. Here, we investigated whether all sperm cells have a common epigenetic configuration that primes transcriptional program for embryonic development. Using calibrated ChIP-seq, we show that remodelling of histones during spermiogenesis results in the retention of methylated histone H3 at the same genomic location in most sperm cell. This homogeneously methylated fraction of histone H3 in the sperm genome is maintained during early embryonic replication. Such methylated histone fraction resisting post-fertilisation reprogramming marks developmental genes whose expression is perturbed upon experimental reduction of histone methylation. A similar homogeneously methylated histone H3 fraction is detected in human sperm. Altogether, we uncover a conserved mechanism of paternal epigenetic information transmission to the embryo through the homogeneous retention of methylated histone in a sperm cells population.
Collapse
Affiliation(s)
- Mami Oikawa
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Angela Simeone
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Eva Hormanseder
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Marta Teperek
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Vincent Gaggioli
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Alan O'Doherty
- UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, D04 V1W8, Ireland
| | - Emma Falk
- CRTI, INSERM, UNIV Nantes, Nantes, France
| | | | - Clive D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Charles R Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Declan Keane
- ReproMed Ireland, Rockfield Medical Campus, Northblock, Dundrum, Dublin 16, D16 W7W3, Ireland
| | - Thomas Freour
- Service de Biologie de la Reproduction, CHU Nantes, Nantes, France
| | | | - Adrian T Grzybowski
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60637, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60637, USA
| | - John Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
- CRTI, INSERM, UNIV Nantes, Nantes, France.
| |
Collapse
|
34
|
Foxh1/Nodal Defines Context-Specific Direct Maternal Wnt/β-Catenin Target Gene Regulation in Early Development. iScience 2020; 23:101314. [PMID: 32650116 PMCID: PMC7347983 DOI: 10.1016/j.isci.2020.101314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/20/2020] [Accepted: 06/20/2020] [Indexed: 12/19/2022] Open
Abstract
Although Wnt/β-catenin signaling is generally conserved and well understood, the regulatory mechanisms controlling context-specific direct Wnt target gene expression in development and disease are still unclear. The onset of zygotic gene transcription in early embryogenesis represents an ideal, accessible experimental system to investigate context-specific direct Wnt target gene regulation. We combine transcriptomics using RNA-seq with genome-wide β-catenin association using ChIP-seq to identify stage-specific direct Wnt target genes. We propose coherent feedforward regulation involving two distinct classes of direct maternal Wnt target genes, which differ both in expression and persistence of β-catenin association. We discover that genomic β-catenin association overlaps with Foxh1-associated regulatory sequences and demonstrate that direct maternal Wnt target gene expression requires Foxh1 function and Nodal/Tgfβ signaling. Our results support a new paradigm for direct Wnt target gene co-regulation with context-specific mechanisms that will inform future studies of embryonic development and more widely stem cell-mediated homeostasis and human disease. Combining RNA-seq and β-catenin ChIP-seq identifies direct Wnt target genes Two distinct classes of direct maternal Wnt/β-catenin target genes can be discerned We propose coherent feedforward regulation of gene expression of the second class Maternal Wnt target gene expression of both classes requires Nodal/Foxh1 signaling
Collapse
|
35
|
Esmaeili M, Blythe SA, Tobias JW, Zhang K, Yang J, Klein PS. Chromatin accessibility and histone acetylation in the regulation of competence in early development. Dev Biol 2020; 462:20-35. [PMID: 32119833 PMCID: PMC7225061 DOI: 10.1016/j.ydbio.2020.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
As development proceeds, inductive cues are interpreted by competent tissues in a spatially and temporally restricted manner. While key inductive signaling pathways within competent cells are well-described at a molecular level, the mechanisms by which tissues lose responsiveness to inductive signals are not well understood. Localized activation of Wnt signaling before zygotic gene activation in Xenopus laevis leads to dorsal development, but competence to induce dorsal genes in response to Wnts is lost by the late blastula stage. We hypothesize that loss of competence is mediated by changes in histone modifications leading to a loss of chromatin accessibility at the promoters of Wnt target genes. We use ATAC-seq to evaluate genome-wide changes in chromatin accessibility across several developmental stages. Based on overlap with p300 binding, we identify thousands of putative cis-regulatory elements at the gastrula stage, including sites that lose accessibility by the end of gastrulation and are enriched for pluripotency factor binding motifs. Dorsal Wnt target gene promoters are not accessible after the loss of competence in the early gastrula while genes involved in mesoderm and neural crest development maintain accessibility at their promoters. Inhibition of histone deacetylases increases acetylation at the promoters of dorsal Wnt target genes and extends competence for dorsal gene induction by Wnt signaling. Histone deacetylase inhibition, however, is not sufficient to extend competence for mesoderm or neural crest induction. These data suggest that chromatin state regulates the loss of competence to inductive signals in a context-dependent manner.
Collapse
Affiliation(s)
- Melody Esmaeili
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shelby A Blythe
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - John W Tobias
- Penn Genomic Analysis Core and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Peter S Klein
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Departments of Medicine (Hematology-Oncology) and Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Gilchrist MJ, Cho KWY, Veenstra GJC. Genomics Methods for Xenopus Embryos and Tissues. Cold Spring Harb Protoc 2020; 2020:097915. [PMID: 32123020 DOI: 10.1101/pdb.top097915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High-throughput sequencing methods have created exciting opportunities to explore the regulatory landscape of the entire genome. Here we introduce methods to characterize the genomic locations of bound proteins, open chromatin, and sites of DNA-DNA contact in Xenopus embryos. These methods include chromatin immunoprecipitation followed by sequencing (ChIP-seq), a combination of DNase I digestion and sequencing (DNase-seq), the assay for transposase-accessible chromatin and sequencing (ATAC-seq), and the use of proximity-based DNA ligation followed by sequencing (Hi-C).
Collapse
Affiliation(s)
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697;
| | - Gert Jan C Veenstra
- Radboud University, Department of Molecular Developmental Biology, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
37
|
Akdogan-Ozdilek B, Duval KL, Goll MG. Chromatin dynamics at the maternal to zygotic transition: recent advances from the zebrafish model. F1000Res 2020; 9. [PMID: 32528656 PMCID: PMC7262572 DOI: 10.12688/f1000research.21809.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Early animal development is characterized by intense reorganization of the embryonic genome, including large-scale changes in chromatin structure and in the DNA and histone modifications that help shape this structure. Particularly profound shifts in the chromatin landscape are associated with the maternal-to-zygotic transition, when the zygotic genome is first transcribed and maternally loaded transcripts are degraded. The accessibility of the early zebrafish embryo facilitates the interrogation of chromatin during this critical window of development, making it an important model for early chromatin regulation. Here, we review our current understanding of chromatin dynamics during early zebrafish development, highlighting new advances as well as similarities and differences between early chromatin regulation in zebrafish and other species.
Collapse
Affiliation(s)
| | | | - Mary G Goll
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
38
|
Paraiso KD, Cho JS, Yong J, Cho KWY. Early Xenopus gene regulatory programs, chromatin states, and the role of maternal transcription factors. Curr Top Dev Biol 2020; 139:35-60. [PMID: 32450966 PMCID: PMC11344482 DOI: 10.1016/bs.ctdb.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For decades, the early development of the Xenopus embryo has been an essential model system to study the gene regulatory mechanisms that govern cellular specification. At the top of the hierarchy of gene regulatory networks, maternally deposited transcription factors initiate this process and regulate the expression of zygotic genes that give rise to three distinctive germ layer cell types (ectoderm, mesoderm, and endoderm), and subsequent generation of organ precursors. The onset of germ layer specification is also closely coupled with changes associated with chromatin modifications. This review will examine the timing of maternal transcription factors initiating the zygotic genome activation, the epigenetic landscape of embryonic chromatin, and the network structure that governs the process.
Collapse
Affiliation(s)
- Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States; Center for Complex Biological Systems, University of California, Irvine, CA, United States
| | - Jin S Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Junseok Yong
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States; Center for Complex Biological Systems, University of California, Irvine, CA, United States.
| |
Collapse
|
39
|
Wu E, Vastenhouw NL. From mother to embryo: A molecular perspective on zygotic genome activation. Curr Top Dev Biol 2020; 140:209-254. [PMID: 32591075 DOI: 10.1016/bs.ctdb.2020.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In animals, the early embryo is mostly transcriptionally silent and development is fueled by maternally supplied mRNAs and proteins. These maternal products are important not only for survival, but also to gear up the zygote's genome for activation. Over the last three decades, research with different model organisms and experimental approaches has identified molecular factors and proposed mechanisms for how the embryo transitions from being transcriptionally silent to transcriptionally competent. In this chapter, we discuss the molecular players that shape the molecular landscape of ZGA and provide insights into their mode of action in activating the transcription program in the developing embryo.
Collapse
Affiliation(s)
- Edlyn Wu
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
40
|
Chen P, Tomschik M, Nelson KM, Oakey J, Gatlin JC, Levy DL. Nucleoplasmin is a limiting component in the scaling of nuclear size with cytoplasmic volume. J Cell Biol 2019; 218:4063-4078. [PMID: 31636119 PMCID: PMC6891103 DOI: 10.1083/jcb.201902124] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/08/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022] Open
Abstract
How nuclear size is regulated relative to cell size is a fundamental cell biological question. Reductions in both cell and nuclear sizes during Xenopus laevis embryogenesis provide a robust scaling system to study mechanisms of nuclear size regulation. To test if the volume of embryonic cytoplasm is limiting for nuclear growth, we encapsulated gastrula-stage embryonic cytoplasm and nuclei in droplets of defined volume using microfluidics. Nuclei grew and reached new steady-state sizes as a function of cytoplasmic volume, supporting a limiting component mechanism of nuclear size control. Through biochemical fractionation, we identified the histone chaperone nucleoplasmin (Npm2) as a putative nuclear size effector. Cellular amounts of Npm2 decrease over development, and nuclear size was sensitive to Npm2 levels both in vitro and in vivo, affecting nuclear histone levels and chromatin organization. We propose that reductions in cell volume and the amounts of limiting components, such as Npm2, contribute to developmental nuclear size scaling.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Biology, University of Wyoming, Laramie, WY
| | | | - Katherine M Nelson
- Department of Molecular Biology, University of Wyoming, Laramie, WY
- Department of Chemical Engineering, University of Wyoming, Laramie, WY
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY
| |
Collapse
|
41
|
de Mendoza A, Lister R, Bogdanovic O. Evolution of DNA Methylome Diversity in Eukaryotes. J Mol Biol 2019:S0022-2836(19)30659-X. [PMID: 31726061 DOI: 10.1016/j.jmb.2019.11.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
Cytosine DNA methylation (5mC) is a widespread base modification in eukaryotic genomes with critical roles in transcriptional regulation. In recent years, our understanding of 5mC has changed because of advances in 5mC detection techniques that allow mapping of this mark on the whole genome scale. Profiling DNA methylomes from organisms across the eukaryotic tree of life has reshaped our views on the evolution of 5mC. In this review, we explore the macroevolution of 5mC in major eukaryotic groups, and then focus on recent advances made in animals. Genomic 5mC patterns as well as the mechanisms of 5mC deposition tend to be evolutionary labile across large phylogenetic distances; however, some common patterns are starting to emerge. Within the animal kingdom, 5mC diversity has proven to be much greater than anticipated. For example, a previously held common view that genome hypermethylation is a trait exclusive to vertebrates has recently been challenged. Also, data from genome-wide studies are starting to yield insights into the potential roles of 5mC in invertebrate cis regulation. Here we provide an evolutionary perspective of both the well-known and enigmatic roles of 5mC across the eukaryotic tree of life.
Collapse
Affiliation(s)
- Alex de Mendoza
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia.
| | - Ryan Lister
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
42
|
de Mendoza A, Hatleberg WL, Pang K, Leininger S, Bogdanovic O, Pflueger J, Buckberry S, Technau U, Hejnol A, Adamska M, Degnan BM, Degnan SM, Lister R. Convergent evolution of a vertebrate-like methylome in a marine sponge. Nat Ecol Evol 2019; 3:1464-1473. [PMID: 31558833 PMCID: PMC6783312 DOI: 10.1038/s41559-019-0983-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/16/2019] [Indexed: 12/29/2022]
Abstract
Vertebrates have highly methylated genomes at CpG positions, whereas invertebrates have sparsely methylated genomes. This increase in methylation content is considered a major regulatory innovation of vertebrate genomes. However, here we report that a sponge, proposed as the potential sister group to the rest of animals, has a highly methylated genome. Despite major differences in genome size and architecture, we find similarities between the independent acquisitions of the hypermethylated state. Both lineages show genome-wide CpG depletion, conserved strong transcription factor methyl-sensitivity and developmental methylation dynamics at 5-hydroxymethylcytosine enriched regions. Together, our findings trace back patterns associated with DNA methylation in vertebrates to the early steps of animal evolution. Thus, the sponge methylome challenges previous hypotheses concerning the uniqueness of vertebrate genome hypermethylation and its implications for regulatory complexity.
Collapse
Affiliation(s)
- Alex de Mendoza
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.
| | - William L Hatleberg
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kevin Pang
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Sven Leininger
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jahnvi Pflueger
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Sam Buckberry
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna, Austria
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Maja Adamska
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Australian Research Council Centre for Excellence for Coral Reef Studies, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sandie M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.
| |
Collapse
|
43
|
Abstract
The idea that epigenetic determinants such as DNA methylation, histone modifications or RNA can be passed to the next generation through meiotic products (gametes) is long standing. Such meiotic epigenetic inheritance (MEI) is fairly common in yeast, plants and nematodes, but its extent in mammals has been much debated. Advances in genomics techniques are now driving the profiling of germline and zygotic epigenomes, thereby improving our understanding of MEI in diverse species. Whereas the role of DNA methylation in MEI remains unclear, insights from genome-wide studies suggest that a previously underappreciated fraction of mammalian genomes bypass epigenetic reprogramming during development. Notably, intergenerational inheritance of histone modifications, tRNA fragments and microRNAs can affect gene regulation in the offspring. It is important to note that MEI in mammals rarely constitutes transgenerational epigenetic inheritance (TEI), which spans multiple generations. In this Review, we discuss the examples of MEI in mammals, including mammalian epigenome reprogramming, and the molecular mechanisms of MEI in vertebrates in general. We also discuss the implications of the inheritance of histone modifications and small RNA for embryogenesis in metazoans, with a particular focus on insights gained from genome-wide studies.
Collapse
|
44
|
Karimi K, Fortriede JD, Lotay VS, Burns KA, Wang DZ, Fisher ME, Pells TJ, James-Zorn C, Wang Y, Ponferrada VG, Chu S, Chaturvedi P, Zorn AM, Vize PD. Xenbase: a genomic, epigenomic and transcriptomic model organism database. Nucleic Acids Res 2019; 46:D861-D868. [PMID: 29059324 PMCID: PMC5753396 DOI: 10.1093/nar/gkx936] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 01/03/2023] Open
Abstract
Xenbase (www.xenbase.org) is an online resource for researchers utilizing Xenopus laevis and Xenopus tropicalis, and for biomedical scientists seeking access to data generated with these model systems. Content is aggregated from a variety of external resources and also generated by in-house curation of scientific literature and bioinformatic analyses. Over the past two years many new types of content have been added along with new tools and functionalities to reflect the impact of high-throughput sequencing. These include new genomes for both supported species (each with chromosome scale assemblies), new genome annotations, genome segmentation, dynamic and interactive visualization for RNA-Seq data, updated ChIP-Seq mapping, GO terms, protein interaction data, ORFeome support, and improved connectivity to other biomedical and bioinformatic resources.
Collapse
Affiliation(s)
- Kamran Karimi
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Joshua D Fortriede
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Vaneet S Lotay
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Kevin A Burns
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Dong Zhou Wang
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Malcom E Fisher
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Troy J Pells
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Christina James-Zorn
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Ying Wang
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - V G Ponferrada
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Stanley Chu
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Praneet Chaturvedi
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Cincinnati Children's Hospital, Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Peter D Vize
- Departments of Biological Sciences and Computer Science, University of Calgary, Calgary, Alberta T2N1N4, Canada
| |
Collapse
|
45
|
Abstract
Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development. This essential transition has been broadly characterized through decades of research in several model organisms. However, we still lack a full mechanistic understanding of how genome activation is executed and how this activation relates to the reprogramming of the zygotic chromatin architecture. Recent work highlights the central role of transcriptional activators and suggests that these factors may coordinate transcriptional activation with other developmental changes.
Collapse
|
46
|
Skvortsova K, Tarbashevich K, Stehling M, Lister R, Irimia M, Raz E, Bogdanovic O. Retention of paternal DNA methylome in the developing zebrafish germline. Nat Commun 2019; 10:3054. [PMID: 31296860 PMCID: PMC6624265 DOI: 10.1038/s41467-019-10895-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Two waves of DNA methylation reprogramming occur during mammalian embryogenesis; during preimplantation development and during primordial germ cell (PGC) formation. However, it is currently unclear how evolutionarily conserved these processes are. Here we characterise the DNA methylomes of zebrafish PGCs at four developmental stages and identify retention of paternal epigenetic memory, in stark contrast to the findings in mammals. Gene expression profiling of zebrafish PGCs at the same developmental stages revealed that the embryonic germline is defined by a small number of markers that display strong developmental stage-specificity and that are independent of DNA methylation-mediated regulation. We identified promoters that are specifically targeted by DNA methylation in somatic and germline tissues during vertebrate embryogenesis and that are frequently misregulated in human cancers. Together, these detailed methylome and transcriptome maps of the zebrafish germline provide insight into vertebrate DNA methylation reprogramming and enhance our understanding of the relationships between germline fate acquisition and oncogenesis.
Collapse
Affiliation(s)
- Ksenia Skvortsova
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, 48149, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max-Planck-Institute for Molecular Biomedicine, Roentgenstraße 20, 48149, Münster, Germany
| | - Ryan Lister
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Molecular Medicine Division, Harry Perkins Institute of Medical Research, Perth, WA, 6009, Australia
| | - Manuel Irimia
- Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08002, Spain
- ICREA, Barcelona, 08010, Spain
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, 48149, Germany
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2010, Australia.
| |
Collapse
|
47
|
Gentsch GE, Owens NDL, Smith JC. The Spatiotemporal Control of Zygotic Genome Activation. iScience 2019; 16:485-498. [PMID: 31229896 PMCID: PMC6593175 DOI: 10.1016/j.isci.2019.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
One of the earliest and most significant events in embryonic development is zygotic genome activation (ZGA). In several species, bulk transcription begins at the midblastula transition (MBT) when, after a certain number of cleavages, the embryo attains a particular nuclear-to-cytoplasmic (N/C) ratio, maternal repressors become sufficiently diluted, and the cell cycle slows down. Here we resolve the frog ZGA in time and space by profiling RNA polymerase II (RNAPII) engagement and its transcriptional readout. We detect a gradual increase in both the quantity and the length of RNAPII elongation before the MBT, revealing that >1,000 zygotic genes disregard the N/C timer for their activation and that the sizes of newly transcribed genes are not necessarily constrained by cell cycle duration. We also find that Wnt, Nodal, and BMP signaling together generate most of the spatiotemporal dynamics of regional ZGA, directing the formation of orthogonal body axes and proportionate germ layers.
Collapse
Affiliation(s)
- George E Gentsch
- Developmental Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK.
| | - Nick D L Owens
- Department of Stem Cell and Developmental Biology, Pasteur Institute, Paris 75015, France
| | - James C Smith
- Developmental Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
48
|
Vastenhouw NL, Cao WX, Lipshitz HD. The maternal-to-zygotic transition revisited. Development 2019; 146:146/11/dev161471. [PMID: 31189646 DOI: 10.1242/dev.161471] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation. These changes in the gene expression program of embryos are precisely controlled and highly interconnected. Here, we review current understanding of the mechanisms that underlie handover of developmental control during the MZT.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
49
|
Yin X, Yang AA, Gao JM. Mushroom Toxins: Chemistry and Toxicology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5053-5071. [PMID: 30986058 DOI: 10.1021/acs.jafc.9b00414] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mushroom consumption is a global tradition that is still gaining popularity. However, foraging for wild mushrooms and accidental ingestion of toxic mushrooms can result in serious illness and even death. The early diagnosis and treatment of mushroom poisoning are quite difficult, as the symptoms are similar to those caused by common diseases. Chemically, mushroom poisoning is related to very powerful toxins, suggesting that the isolation and identification of toxins have great research value, especially in determining the lethal components of toxic mushrooms. In contrast, most of these toxins have remarkable physiological properties that could promote advances in chemistry, biochemistry, physiology, and pharmacology. Although more than 100 toxins have been elucidated, there are a number of lethal mushrooms that have not been fully investigated. This review provides information on the chemistry (including chemical structures, total synthesis, and biosynthesis) and the toxicology of these toxins, hoping to inspire further research in this area.
Collapse
Affiliation(s)
- Xia Yin
- Shaanxi Key Laboratory of Natural Products & Chemistry Biology, College of Chemistry & Pharmacy , Northwest A & F University , Yangling 712100 , People's Republic of China
| | - An-An Yang
- Department of Pathology , The 969th Hospital of PLA , Hohhot , Inner Mongolia 010000 , People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemistry Biology, College of Chemistry & Pharmacy , Northwest A & F University , Yangling 712100 , People's Republic of China
| |
Collapse
|
50
|
Kondo M, Matsuo M, Igarashi K, Haramoto Y, Yamamoto T, Yasuoka Y, Taira M. De novo transcription of multiple Hox cluster genes takes place simultaneously in early Xenopus tropicalis embryos. Biol Open 2019; 8:bio.038422. [PMID: 30651235 PMCID: PMC6451350 DOI: 10.1242/bio.038422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
hox genes are found as clusters in the genome in most bilaterians. The order of genes in the cluster is supposed to be correlated with the site of expression along the anterior-posterior body axis and the timing of expression during development, and these correlations are called spatial and temporal collinearity, respectively. Here we studied the expression dynamics of all hox genes of the diploid species Xenopus tropicalis in four Hox clusters (A–D) by analyzing high-temporal-resolution RNA-seq databases and the results showed that temporal collinearity is not supported, which is consistent with our previous data from allotetraploid Xenopuslaevis. Because the temporal collinearity hypothesis implicitly assumes the collinear order of gene activation, not mRNA accumulation, we determined for the first time the timing of when new transcripts of hox genes are produced, by detecting pre-spliced RNA in whole embryos with reverse transcription and quantitative PCR (RT-qPCR) for all hoxa genes as well as several selected hoxb, hoxc and hoxd genes. Our analyses showed that, coinciding with the RNA-seq results, hoxa genes started to be transcribed in a non-sequential order, and found that multiple genes start expression almost simultaneously or more posterior genes could be expressed earlier than anterior ones. This tendency was also found in hoxb and hoxc genes. These results suggest that temporal collinearity of hox genes is not held during early development of Xenopus. Summary: qPCR analysis for de novo transcription of hox genes suggest that temporal collinearity is not held for all hox genes during early development of Xenopus tropicalis.
Collapse
Affiliation(s)
- Mariko Kondo
- Misaki Marine Biological Station, Graduate School of Science and Center for Marine Biology, The University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Megumi Matsuo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kento Igarashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshikazu Haramoto
- Biotechnology Research Institute for Drug Discovery (BRD), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Takayoshi Yamamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|