1
|
Desai M, Gulati K, Agrawal M, Ghumra S, Sahoo PK. Stress granules: Guardians of cellular health and triggers of disease. Neural Regen Res 2026; 21:588-597. [PMID: 39995077 DOI: 10.4103/nrr.nrr-d-24-01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Stress granules are membraneless organelles that serve as a protective cellular response to external stressors by sequestering non-translating messenger RNAs (mRNAs) and regulating protein synthesis. Stress granules formation mechanism is conserved across species, from yeast to mammals, and they play a critical role in minimizing cellular damage during stress. Composed of heterogeneous ribonucleoprotein complexes, stress granules are enriched not only in mRNAs but also in noncoding RNAs and various proteins, including translation initiation factors and RNA-binding proteins. Genetic mutations affecting stress granule assembly and disassembly can lead to abnormal stress granule accumulation, contributing to the progression of several diseases. Recent research indicates that stress granule dynamics are pivotal in determining their physiological and pathological functions, with acute stress granule formation offering protection and chronic stress granule accumulation being detrimental. This review focuses on the multifaceted roles of stress granules under diverse physiological conditions, such as regulation of mRNA transport, mRNA translation, apoptosis, germ cell development, phase separation processes that govern stress granule formation, and their emerging implications in pathophysiological scenarios, such as viral infections, cancer, neurodevelopmental disorders, neurodegeneration, and neuronal trauma.
Collapse
Affiliation(s)
- Meghal Desai
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Keya Gulati
- College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, NJ, USA
| | - Manasi Agrawal
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Shruti Ghumra
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| |
Collapse
|
2
|
Hua X, Jin L, Fang Z, Weng Y, Zhang Y, Zhang J, Xie D, Tang Y, Guo S, Huang Y, Dai Y, Li J, Huang Z, Zhang X. TIA1-Mediated Stress Granules Promote the Neuroinflammation and Demyelination in Experimental Autoimmune Encephalomyelitis through Upregulating IL-31RA Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409086. [PMID: 39804990 PMCID: PMC11984900 DOI: 10.1002/advs.202409086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/18/2024] [Indexed: 01/16/2025]
Abstract
The dysfunction of stress granules (SGs) plays a crucial role in the pathogenesis of various neurological disorders, with T cell intracellular antigen 1 (TIA1) being a key component of SGs. However, the role and mechanism of TIA1-mediated SGs in experimental autoimmune encephalomyelitis (EAE) remain unclear. In this study, upregulation of TIA1, its translocation from the nucleus to the cytoplasm, and co-localization with G3BP1 (a marker of SGs) are observed in the spinal cord neurons of EAE mice. Deletion of TIA1 in the CNS alleviates neuroinflammation, suppresses demyelination and axonal damage, and reduces neuronal loss in EAE mice. Furthermore, alleviation of autophagy dysfunction and reduction of chronic persistent SGs are observed in Tia1Nestin-CKO EAE mice. Mechanistically, IL-31RA levels are decreased in Tia1Nestin-CKO EAE mice, which inhibit the downstream PI3K/AKT signaling pathway associated with IL-31RA, thereby enhancing autophagy and suppressing the NF-κB signaling pathway, further alleviating EAE symptoms. Knockdown of TIA1 in primary neurons and N2a cells treated with sodium arsenite also reduces the formation of SGs. These findings reveal an unrecognized role of TIA1-mediated SGs in promoting neuroinflammation and demyelination, offering novel therapeutic targets for MS.
Collapse
Affiliation(s)
- Xin Hua
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Department of NeurologyXuanwu Hospital Capital Medical UniversityNational Center for Neurological DisordersBeijing100053China
| | - Lingting Jin
- School of Basic Medical SciencesWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Zheyu Fang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yiyun Weng
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yuan Zhang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Jingjing Zhang
- School of Basic Medical SciencesWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Dewei Xie
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yang Tang
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
| | - Siyu Guo
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
| | - Yingying Huang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yilin Dai
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Jia Li
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Zhihui Huang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Xu Zhang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| |
Collapse
|
3
|
Bian Y, Fukui Y, Ota-Elliott RS, Hu X, Sun H, Bian Z, Zhai Y, Yu H, Hu X, An H, Liu H, Morihara R, Ishiura H, Yamashita T. The potential mechanism maintaining transactive response DNA binding protein 43 kDa in the mouse stroke model. Neurosci Res 2025; 213:128-137. [PMID: 39889925 DOI: 10.1016/j.neures.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
The disruption of transactive response DNA binding protein 43 kDa (TDP-43) shuttling leads to the depletion of nuclear localization and the cytoplasmic accumulation of TDP-43. We aimed to evaluate the mechanism underlying the behavior of TDP-43 in ischemic stroke. Adult male C57BL/6 J mice were subjected to 30 or 60 min of transient middle cerebral artery occlusion (tMCAO), and examined at 1, 6, and 24 h post reperfusion. Immunostaining was used to evaluate the expression of TDP-43, G3BP1, HDAC6, and RAD23B. The total and cytoplasmic number of TDP-43-positive cells increased compared with sham operation group and peaked at 6 h post reperfusion after tMCAO. The elevated expression of G3BP1 protein peaked at 6 h after reperfusion and decreased at 24 h after reperfusion in ischemic mice brains. We also observed an increase of expression level of HDAC6 and the number of RAD23B-positive cells increased after tMCAO. RAD23B was colocalized with TDP-43 24 h after tMCAO. We proposed that the formation of stress granules might be involved in the mislocalization of TDP-43, based on an evaluation of G3BP1 and HDAC6. Subsequently, RAD23B, may also contribute to the downstream degradation of mislocalized TDP-43 in mice tMCAO model.
Collapse
Affiliation(s)
- Yuting Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Ricardo Satoshi Ota-Elliott
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Hongming Sun
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Yun Zhai
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Haibo Yu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Xiao Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Hangping An
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Hongzhi Liu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
| |
Collapse
|
4
|
Huang L, Zhao B, Wan Y. Disruption of RNA-binding proteins in neurological disorders. Exp Neurol 2025; 385:115119. [PMID: 39709152 DOI: 10.1016/j.expneurol.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
RNA-binding proteins (RBPs) are multifunctional proteins essential for the regulation of RNA processing and metabolism, contributing to the maintenance of cell homeostasis by modulating the expression of target genes. Many RBPs have been associated with neuron-specific processes vital for neuronal development and survival. RBP dysfunction may result in aberrations in RNA processing, which subsequently initiate a cascade of effects. Notably, RBPs are involved in the onset and progression of neurological disorders via diverse mechanisms. Disruption of RBPs not only affects RNA processing, but also promotes the abnormal aggregation of proteins into toxic inclusion bodies, and contributes to immune responses that drive the progression of neurological diseases. In this review, we summarize recent discoveries relating to the roles of RBPs in neurological diseases, discuss their contributions to such conditions, and highlight the unique functions of these RBPs within the nervous system.
Collapse
Affiliation(s)
- Luyang Huang
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Bo Zhao
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Youzhong Wan
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
5
|
Chandran M, Rameshkumar KB, Jaleel A, Ayyappan JP. Embelin Elevates Endoplasmic Reticulum Calcium Levels and Blocks the Sterol Regulatory Element-Binding Protein 2 Mediated Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Improves the Low-Density Lipoprotein Receptor Mediated Lipid Clearance on Hepatocytes. Chem Biol Drug Des 2025; 105:e70055. [PMID: 39902651 DOI: 10.1111/cbdd.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/03/2024] [Accepted: 01/04/2025] [Indexed: 02/06/2025]
Abstract
Cardiovascular diseases (CVDs) continue to be one of the leading causes of morbidity and mortality worldwide, with a significant increase in recent years. Atherosclerosis, the pathological basis and prime reason for CVDs is primarily driven by dysregulated lipid metabolism and inflammation. Recently, proprotein convertase subtilisin kexin9 (PCSK9) has been evolved to be highly implicated in the circulatory low-density lipoprotein cholesterol levels by its modulatory effects on the low-density lipoprotein receptor (LDLR) mediated clearance. Even though not economical, the therapies targeting PCSK9 demonstrated appreciable levels of efficiency in managing hyperlipidaemic conditions. Embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone) is a naturally occurring para-benzoquinone isolated from dried berries of Embelia ribes, which possess several effects in maintaining the cholesterol homeostasis. In this study, we have analysed the role of embelin in sterol regulatory element-binding protein 2 (SREBP2) mediated PCSK9 expression in cultured hepatocytes. The study showed that the embelin treatment attenuates the endoplasmic reticulum (ER) stress-induced reactive oxygen species levels and ER stress markers on cultured hepatocytes. The treatment of embelin modulates the mRNA and protein level expression of SREBP2 and its downstream targets like PCSK9, LDLR, and HMG-CoA reductase (HMGCR). Interestingly the Ca2+ levels and the calcium binding protein of ER were significantly increased with embelin treatment. The work revealed a putative mechanism of embelin in lowering PCSK9 levels by boosting ER Ca2+ levels, thereby blocking SREBP2 nuclear translocation. Further, this reduces LDLR degradation and increases receptor-mediated circulatory lipid clearance. The study summarized the potential clinical applications of embelin in addressing the cardio vascular diseases.
Collapse
Affiliation(s)
- Mahesh Chandran
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
- DBT-SAHAJ National Facility for Mass Spectrometry, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - K B Rameshkumar
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute Palode, Thiruvananthapuram, Kerala, India
| | - Abdul Jaleel
- DBT-SAHAJ National Facility for Mass Spectrometry, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Janeesh Plakkal Ayyappan
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
- Centre for Advanced Cancer Research, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
6
|
Benedetto MM, Malcolm M, Bruera MG, Penazzi LG, Guido ME, Contín MA, Garbarino-Pico E. Stress Granule Induction in Rat Retinas Damaged by Constant LED Light. Invest Ophthalmol Vis Sci 2025; 66:38. [PMID: 39813056 PMCID: PMC11741064 DOI: 10.1167/iovs.66.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model. Methods Rat retinas were immunohistochemically analyzed for SG markers G3BP1 and eIF3, and SGs were also visualized by RNA fluorescence in situ hybridization. Additionally, SGs were induced in primary retinal cell and eyeball cultures using sodium arsenite. Light exposure experiments used LED lamps with a color temperature of 5500 K and 200 lux intensity for short-term or two- to eight-day exposures. Results SGs were predominantly detected in retinal ganglion cells (RGCs) and inner nuclear layer (INL) cells, with arsenite-induction verified in RGCs. SG abundance was higher in animals exposed to light for 2-8 days compared to light/dark cycle controls. RGCs consistently exhibited more SGs than INL cells, and INL cells more than outer nuclear layer (ONL) cells (Scheirer-Ray-Hare test: H = 13.2, P = 0.0103 for light condition, and H = 278.2, P < 0.00001 for retinal layer). These observations were consistent across four independent experiments, each with three animals per light condition. Conclusions This study characterizes SGs in the mammalian retina for the first time, with increased prevalence after excessive LED light exposure. RGCs and INL cells showed heightened SG formation, suggesting a potential protective mechanism against photodamage. Further investigations are warranted to elucidate the role of SGs in shielding against light stress and their implications in retinopathies.
Collapse
Affiliation(s)
- María M. Benedetto
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Melisa Malcolm
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Manuel G. Bruera
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Laura G. Penazzi
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Mario E. Guido
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - María A. Contín
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Eduardo Garbarino-Pico
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| |
Collapse
|
7
|
Dai Y, Wang ZG, Zare RN. Unlocking the electrochemical functions of biomolecular condensates. Nat Chem Biol 2024; 20:1420-1433. [PMID: 39327453 DOI: 10.1038/s41589-024-01717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/01/2024] [Indexed: 09/28/2024]
Abstract
Biomolecular condensation is a key mechanism for organizing cellular processes in a spatiotemporal manner. The phase-transition nature of this process defines a density transition of the whole solution system. However, the physicochemical features and the electrochemical functions brought about by condensate formation are largely unexplored. We here illustrate the fundamental principles of how the formation of condensates generates distinct electrochemical features in the dilute phase, the dense phase and the interfacial region. We discuss the principles by which these distinct chemical and electrochemical environments can modulate biomolecular functions through the effects brought about by water, ions and electric fields. We delineate the potential impacts on cellular behaviors due to the modulation of chemical and electrochemical environments through condensate formation. This Perspective is intended to serve as a general road map to conceptualize condensates as electrochemically active entities and to assess their functions from a physical chemistry aspect.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO, USA.
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Qin M, Fan W, Chen F, Ruan K, Liu D. Caprin1 Bridges PRMT1 to G3BP1 and Spaces Them to Ensure Proper Stress Granule Formation. J Mol Biol 2024; 436:168727. [PMID: 39079611 DOI: 10.1016/j.jmb.2024.168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Stress granules (SGs) are dynamic biomolecular condensates that form in the cytoplasm in response to cellular stress, encapsulating proteins and RNAs. Methylation is a key factor in the assembly of SGs, with PRMT1, which acts as an arginine methyltransferase, localizing to SGs. However, the precise mechanism of PRMT1 localization within SGs remains unknown. In this study, we identified that Caprin1 plays a primary role in the recruitment of PRMT1 to SGs, particularly through its C-terminal domain. Our findings demonstrate that Caprin1 serves a dual function as both a linker, facilitating the formation of a PRMT1-G3BP1 complex, and as a spacer, preventing the aberrant formation of SGs under non-stress conditions. This study sheds new lights on the regulatory mechanisms governing SG formation and suggests that Caprin1 plays a critical role in cellular responses to stress.
Collapse
Affiliation(s)
- Mengtong Qin
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weiwei Fan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Feng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Ruan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
9
|
Qin M, Fan W, Li L, Xu T, Zhang H, Chen F, Man J, Kombe AJK, Zhang J, Shi Y, Yao X, Yang Z, Hou Z, Ruan K, Liu D. PRMT1 and TDRD3 promote stress granule assembly by rebuilding the protein-RNA interaction network. Int J Biol Macromol 2024; 277:134411. [PMID: 39097054 DOI: 10.1016/j.ijbiomac.2024.134411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Stress granules (SGs) are membrane-less organelles (MLOs) or cytosolic compartments formed upon exposure to environmental cell stress-inducing stimuli. SGs are based on ribonucleoprotein complexes from a set of cytoplasmic proteins and mRNAs, blocked in translation due to stress cell-induced polysome disassembly. Post-translational modifications (PTMs) such as methylation, are involved in SG assembly, with the methylation writer PRMT1 and its reader TDRD3 colocalizing to SGs. However, the role of this writer-reader system in SG assembly remains unclear. Here, we found that PRMT1 methylates SG constituent RNA-binding proteins (RBPs) on their RGG motifs. Besides, we report that TDRD3, as a reader of asymmetric dimethylarginines, enhances RNA binding to recruit additional RNAs and RBPs, lowering the percolation threshold and promoting SG assembly. Our study enriches our understanding of the molecular mechanism of SG formation by elucidating the functions of PRMT1 and TDRD3. We anticipate that our study will provide a new perspective for comprehensively understanding the functions of PTMs in liquid-liquid phase separation driven condensate assembly.
Collapse
Affiliation(s)
- Mengtong Qin
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weiwei Fan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Linge Li
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Tian Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hanyu Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Feng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jingwen Man
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiahai Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yunyu Shi
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zhenye Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhonghuai Hou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China.
| | - Ke Ruan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
10
|
Naseem S, Sun L, Qiu J. Stress granules in atherosclerosis: Insights and therapeutic opportunities. Curr Probl Cardiol 2024; 49:102760. [PMID: 39059785 DOI: 10.1016/j.cpcardiol.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Atherosclerosis, a complex inflammatory and metabolic disorder, is the underlying cause of several life-threatening cardiovascular diseases. Stress granules (SG) are biomolecular condensates composed of proteins and mRNA that form in response to stress. Recent studies suggest a potential link between SG and atherosclerosis development. However, there remain gaps in understanding SG role in atherosclerosis development. Here we provide a thorough analysis of the role of SG in atherosclerosis, covering cellular stresses stimulation, core components, and regulatory genes in SG formation. Furthermore, we explore atherosclerosis induced factors such as inflammation, low or oscillatory shear stress (OSS), and oxidative stress (OS) may impact SG formation and then the development of atherosclerotic lesions. We have assessed how changes in SG dynamics impact pro-atherogenic processes like endothelial dysfunction, lipid metabolism, and immune cell recruitment in atherosclerosis. In summary, this review emphasizes the complex interplay between SG and atherosclerosis that could open innovative directions for targeted therapeutic strategies in preventing or treating atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lijuan Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
11
|
Glorieux C, Liu S, Trachootham D, Huang P. Targeting ROS in cancer: rationale and strategies. Nat Rev Drug Discov 2024; 23:583-606. [PMID: 38982305 DOI: 10.1038/s41573-024-00979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
Reactive oxygen species (ROS) in biological systems are transient but essential molecules that are generated and eliminated by a complex set of delicately balanced molecular machineries. Disruption of redox homeostasis has been associated with various human diseases, especially cancer, in which increased ROS levels are thought to have a major role in tumour development and progression. As such, modulation of cellular redox status by targeting ROS and their regulatory machineries is considered a promising therapeutic strategy for cancer treatment. Recently, there has been major progress in this field, including the discovery of novel redox signalling pathways that affect the metabolism of tumour cells as well as immune cells in the tumour microenvironment, and the intriguing ROS regulation of biomolecular phase separation. Progress has also been made in exploring redox regulation in cancer stem cells, the role of ROS in determining cell fate and new anticancer agents that target ROS. This Review discusses these research developments and their implications for cancer therapy and drug discovery, as well as emerging concepts, paradoxes and future perspectives.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shihua Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Metabolic Innovation Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Yoshioka D, Nakamura T, Kubota Y, Takekawa M. Formation of the NLRP3 inflammasome inhibits stress granule assembly by multiple mechanisms. J Biochem 2024; 175:629-641. [PMID: 38299728 PMCID: PMC11155693 DOI: 10.1093/jb/mvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024] Open
Abstract
Proper regulation of cellular response to environmental stress is crucial for maintaining biological homeostasis and is achieved by the balance between cell death processes, such as the formation of the pyroptosis-inducing NLRP3 inflammasome, and pro-survival processes, such as stress granule (SG) assembly. However, the functional interplay between these two stress-responsive organelles remains elusive. Here, we identified DHX33, a viral RNA sensor for the NLRP3 inflammasome, as a SG component, and the SG-nucleating protein G3BP as an NLRP3 inflammasome component. We also found that a decrease in intracellular potassium (K+) concentration, a key 'common' step in NLRP3 inflammasome activation, markedly inhibited SG assembly. Therefore, when macrophages are exposed to stress stimuli with the potential to induce both SGs and the NLRP3 inflammasome, such as cytoplasmic poly(I:C) stimulation, they preferentially form the NLRP3 inflammasome but avoid SG assembly by sequestering G3BP into the inflammasome and by inducing a reduction in intracellular K+ levels. Thus, under such conditions, DHX33 is primarily utilized as a viral RNA sensor for the inflammasome. Our data reveal the functional crosstalk between NLRP3 inflammasome-mediated pyroptosis and SG-mediated cell survival pathways and delineate a molecular mechanism that regulates cell-fate decisions and anti-viral innate immunity under stress.
Collapse
Affiliation(s)
- Daisuke Yoshioka
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
| | - Takanori Nakamura
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuji Kubota
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
13
|
Angel M, Fleshler E, Atrash MK, Kinor N, Benichou JC, Shav-Tal Y. Nuclear RNA-related processes modulate the assembly of cytoplasmic RNA granules. Nucleic Acids Res 2024; 52:5356-5375. [PMID: 38366783 PMCID: PMC11109975 DOI: 10.1093/nar/gkae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Stress granules (SGs) are cytoplasmic assemblies formed under various stress conditions as a consequence of translation arrest. SGs contain RNA-binding proteins, ribosomal subunits and messenger RNAs (mRNAs). It is well known that mRNAs contribute to SG formation; however, the connection between SG assembly and nuclear processes that involve mRNAs is not well established. Here, we examine the effects of inhibiting mRNA transcription, splicing and export on the assembly of SGs and the related cytoplasmic P body (PB). We demonstrate that inhibition of mRNA transcription, splicing and export reduces the formation of canonical SGs in a eukaryotic initiation factor 2α phosphorylation-independent manner, and alters PB size and quantity. We find that the splicing inhibitor madrasin promotes the assembly of stress-like granules. We show that the addition of synthetic mRNAs directly to the cytoplasm is sufficient for SG assembly, and that the assembly of these SGs requires the activation of stress-associated protein synthesis pathways. Moreover, we show that adding an excess of mRNA to cells that do not have active splicing, and therefore have low levels of cytoplasmic mRNAs, promotes SG formation under stress conditions. These findings emphasize the importance of the cytoplasmic abundance of newly transcribed mRNAs in the assembly of SGs.
Collapse
Affiliation(s)
- Mor Angel
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Eden Fleshler
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Mohammad Khaled Atrash
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Noa Kinor
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Jennifer I C Benichou
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
14
|
Fang M, Liu Y, Huang C, Fan S. Targeting stress granules in neurodegenerative diseases: A focus on biological function and dynamics disorders. Biofactors 2024; 50:422-438. [PMID: 37966813 DOI: 10.1002/biof.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Stress granules (SGs) are membraneless organelles formed by eukaryotic cells in response to stress to promote cell survival through their pleiotropic cytoprotective effects. SGs recruit a variety of components to enhance their physiological function, and play a critical role in the propagation of pathological proteins, a key factor in neurodegeneration. Recent advances indicate that SG dynamic disorders exacerbate neuronal susceptibility to stress in neurodegenerative diseases (NDs) including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Huntington's disease (HD) and Parkinson's disease (PD). Here, we outline the biological functions of SGs, highlight SG dynamic disorders in NDs, and emphasize therapeutic approaches for enhancing SG dynamics to provide new insights into ND intervention.
Collapse
Affiliation(s)
- Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Ramos-Velasco B, Naranjo R, Izquierdo JM. Bibliometric Overview on T-Cell Intracellular Antigens and Their Pathological Implications. BIOLOGY 2024; 13:195. [PMID: 38534464 DOI: 10.3390/biology13030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
T-cell intracellular antigen 1 (TIA1) and TIA1-like/related protein (TIAL1/TIAR) are two members of the classical family of RNA binding proteins. Through their selective interactions with distinct RNAs and proteins, these multifunctional regulators are involved in chromatin remodeling, RNA splicing and processing and translation regulation, linking them to a wide range of diseases including neuronal disorders, cancer and other pathologies. From their discovery to the present day, many studies have focused on the behavior of these proteins in order to understand their impact on molecular and cellular processes and to understand their relationship to human pathologies. The volume of research on these proteins in various fields, including molecular biology, biochemistry, cell biology, immunology and cancer, has steadily increased, indicating a growing interest in these gene expression regulators among researchers. This information can be used to know the most productive institutions working in the field, understand the focus of research, identify key areas of involvement, delve deeper into their relationship and impact on different diseases, and to establish the level of study associated with them.
Collapse
Affiliation(s)
- Beatriz Ramos-Velasco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Rocío Naranjo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - José M Izquierdo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
16
|
Liu Q, Wang F, Chen Y, Cui H, Wu H. A regulatory module comprising G3BP1-FBXL5-IRP2 axis determines sodium arsenite-induced ferroptosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133038. [PMID: 38118197 DOI: 10.1016/j.jhazmat.2023.133038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Arsenic contamination is extremely threatening to the global public health. It was reported that sodium arsenite exposure induces serious kidney injury. However, the underlying mechanism is unclear. Ferroptosis is a newly characterized form of iron-dependent programmed cell death, which is implicated in the pathogenesis of various human diseases, including kidney injury. The lethal accumulation of iron-catalyzed lipid peroxidation is the fundamental biochemical characteristic of ferroptosis. Herein we report that sodium arsenite exposure initiates ferroptosis in mammalian HEK293, MEF and HT1080 cells, and induces ferroptosis-associated acute kidney injury in mice. RNA-binding protein G3BP1, the switch component of stress granules, is indispensable for sodium arsenite-induced ferroptosis in a stress granule-independent manner. Mechanistically, G3BP1 stabilizes IRP2, the master regulator of cellular iron homeostasis, through binding to and suppressing the translation of FBXL5 mRNA, which encodes the E3 ligase component to mediate IRP2 ubiquitination and proteasomal degradation. Sodium arsenite intoxication expedites this G3BP1-FBXL5-IRP2 axis and elevates cellular labile free iron, which is responsible for sodium arsenite exposure-induced lipid peroxidation and ferroptotic cell death. In summary, this study highlights a regulatory module comprising G3BP1-FBXL5-IRP2 axis in determining sodium arsenite-induced ferroptosis and ferroptosis-associated acute kidney injury in mice.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingxian Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Hengkang Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
17
|
Chen F, Tang H, Cai X, Lin J, Xiang L, Kang R, Liu J, Tang D. Targeting paraptosis in cancer: opportunities and challenges. Cancer Gene Ther 2024; 31:349-363. [PMID: 38177306 DOI: 10.1038/s41417-023-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Cell death can be classified into two primary categories: accidental cell death and regulated cell death (RCD). Within RCD, there are distinct apoptotic and non-apoptotic cell death pathways. Among the various forms of non-apoptotic RCD, paraptosis stands out as a unique mechanism characterized by distinct morphological changes within cells. These alterations encompass cytoplasmic vacuolization, organelle swelling, notably in the endoplasmic reticulum and mitochondria, and the absence of typical apoptotic features, such as cell shrinkage and DNA fragmentation. Biochemically, paraptosis distinguishes itself by its independence from caspases, which are conventionally associated with apoptotic death. This intriguing cell death pathway can be initiated by various cellular stressors, including oxidative stress, protein misfolding, and specific chemical compounds. Dysregulated paraptosis plays a pivotal role in several critical cancer-related processes, such as autophagic degradation, drug resistance, and angiogenesis. This review provides a comprehensive overview of recent advancements in our understanding of the mechanisms and regulation of paraptosis. Additionally, it delves into the potential of paraptosis-related compounds for targeted cancer treatment, with the aim of enhancing treatment efficacy while minimizing harm to healthy cells.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Junhao Lin
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Limin Xiang
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
18
|
Sun B, Luo J, Li Z, Chen D, Wang Q, Si W. Muscone alleviates neuronal injury via increasing stress granules formation and reducing apoptosis in acute ischemic stroke. Exp Neurol 2024; 373:114678. [PMID: 38185313 DOI: 10.1016/j.expneurol.2024.114678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
As the main bioactive component of musk, muscone has been reported to have marked protective effects in treating acute ischemic stroke (AIS). However, the specific anti-stroke mechanism of muscone still needs further research. In the current investigation, the PC12 cells OGD/R and the rat transient MCAO/R models were utilized as the AIS models. Serum hepatic and renal functional indexes (ALT, AST, BUN, and Cr) and cell viability were determined to select the appropriate muscone concentrations for in vitro and in vivo experiments. TTC, Hematoxylin and eosin (H&E), and Live/Dead staining were utilized to evaluate the protective effects of muscone in injured tissues and cells. Western blotting analysis, TUNEL staining, propidium iodide, and annexin V staining were applied to detect the anti-apoptotic effect of muscone. Double-label immunofluorescence staining of T-cell intracellular antigen-1 (TIA1) and Ras-GAP SH3 domain-binding protein 1 (G3BP1) was performed to observe whether muscone regulated the SG formation level. Molecular docking, TIA1 silencing and TIA1 overexpression experiments were employed to investigate the molecular mechanism underlying the regulation of SG formation by muscone. The 2, 3, 5-Triphenyl-tetrazolium chloride (TTC) staining and live/dead staining showed the AIS injury level of MCAO/R rat and the OGD/R PC12 cells were attenuated by muscone administration. The muscone significantly minimized the apoptosis rate in MCAO/R rats and OGD/R PC12 cells following flow cytometry analysis, western blotting analysis, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The double-label immunofluorescence staining data revealed that muscone promoted the SG formation level in OGD/R PC12 cells and the cortex MCAO/R rats. The results of molecular docking, TIA1 silencing and TIA1 overexpression experiments revealed that muscone could bind to TIA1 protein and regulate its expression level, thereby promoting the formation of stress granules and exerting a protective effect against AIS injury. This study indicated that the significant protective effect of muscone in reducing apoptosis levels might be via promoting SG formation under AIS conditions. This study further explores the therapeutic effect and anti-apoptosis mechanism of muscone in AIS, which may provide a potential candidate drug for the clinical treatment of AIS injury.
Collapse
Affiliation(s)
- Bin Sun
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Jing Luo
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Zhen Li
- Department of Neurology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, PR China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Qizhang Wang
- Department of Neurology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, PR China
| | - Wenwen Si
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China.
| |
Collapse
|
19
|
Turan G, Olgun ÇE, Ayten H, Toker P, Ashyralyyev A, Savaş B, Karaca E, Muyan M. Dynamic proximity interaction profiling suggests that YPEL2 is involved in cellular stress surveillance. Protein Sci 2024; 33:e4859. [PMID: 38145972 PMCID: PMC10804680 DOI: 10.1002/pro.4859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/27/2023]
Abstract
YPEL2 is a member of the evolutionarily conserved YPEL family involved in cellular proliferation, mobility, differentiation, senescence, and death. However, the mechanism by which YPEL2, or YPEL proteins, mediates its effects is largely unknown. Proteins perform their functions in a network of proteins whose identities, amounts, and compositions change spatiotemporally in a lineage-specific manner in response to internal and external stimuli. Here, we explored interaction partners of YPEL2 by using dynamic TurboID-coupled mass spectrometry analyses to infer a function for the protein. Our results using inducible transgene expressions in COS7 cells indicate that proximity interaction partners of YPEL2 are mainly involved in RNA and mRNA metabolic processes, ribonucleoprotein complex biogenesis, regulation of gene silencing by miRNA, and cellular responses to stress. We showed that YPEL2 interacts with the RNA-binding protein ELAVL1 and the selective autophagy receptor SQSTM1. We also found that YPEL2 localizes stress granules in response to sodium arsenite, an oxidative stress inducer, which suggests that YPEL2 participates in stress granule-related processes. Establishing a point of departure in the delineation of structural/functional features of YPEL2, our results suggest that YPEL2 may be involved in stress surveillance mechanisms.
Collapse
Affiliation(s)
- Gizem Turan
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
| | - Çağla Ece Olgun
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
| | - Hazal Ayten
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
| | - Pelin Toker
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
| | | | - Büşra Savaş
- İzmir Biomedicine and Genome CenterİzmirTürkiye
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTürkiye
| | - Ezgi Karaca
- İzmir Biomedicine and Genome CenterİzmirTürkiye
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTürkiye
| | - Mesut Muyan
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
- CanSyl LaboratoriesMiddle East Technical UniversityAnkaraTürkiye
| |
Collapse
|
20
|
Xiong J, Wang Z, Dong Y, Cao J, Chen Y. The signal pathway of melatonin mediates the monochromatic light-induced T-lymphocyte apoptosis in chicken thymus. Poult Sci 2024; 103:103331. [PMID: 38100948 PMCID: PMC10764265 DOI: 10.1016/j.psj.2023.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023] Open
Abstract
Our previous study revealed that under monochromatic red light (RL), the melatonin nuclear receptor reduces the proliferation activity of broiler thymic lymphocytes through the P65 signaling pathway. The main objective of this study was to investigate the signal mechanism by which RL decreases thymic lymphocyte proliferation. Initially, broilers were purchased and randomly assigned to be fed under white light (WL), red light (RL), green light (GL), and blue light (BL). Pinealectomy was performed 3 d later, and the broilers were euthanized after 14 d. The results showed that the expression of the antiapoptotic proteins Bcl-2/Bcl-xl decreased under RL, while the expression of the pro-apoptotic factor Bax/caspase-3 and the pro-inflammatory factors INF-γ/TNF-α/IL-6 increased. After pinealectomy, the expression of Bax/TNF-α/IL-6 increased in conjunction with the decrease in Bcl-2 expression. In vitro experiments demonstrated that exogenous melatonin decreased the expression of Bax/TNF-α/IL-6 in thymic lymphocytes of chicks reared under RL. This melatonin-induced effect was enhanced by SR1078 (RORα/RORγ agonist) but attenuated by SR3335 (RORα antagonist) and BAY (P65 antagonist). These findings revealed that the melatonin nuclear receptor RORα/RORγ promotes the expression of the pro-apoptotic factor Bax/caspase-3 and the pro-inflammatory factors INF-γ/TNF-α/IL-6, while inhibiting the expression of the antiapoptotic factor Bcl-2/Bcl-xl. Our research suggested the signaling pathway of monochromatic red light impacts the apoptosis of thymus lymphocytes in broiler.
Collapse
Affiliation(s)
- Juanjuan Xiong
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Qixia, Nanjing 210046, China; Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
21
|
Lu D, Liu Y, Huang H, Hu M, Li T, Wang S, Shen S, Wu R, Cai W, Lu T, Lu Z. Melatonin Offers Dual-Phase Protection to Brain Vessel Endothelial Cells in Prolonged Cerebral Ischemia-Recanalization Through Ameliorating ER Stress and Resolving Refractory Stress Granule. Transl Stroke Res 2023; 14:910-928. [PMID: 36181629 DOI: 10.1007/s12975-022-01084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 10/07/2022]
Abstract
Ischemic-reperfusion injury limits the time window of recanalization therapy in cerebral acute ischemic stroke (AIS). Brain vessel endothelial cells (BVECs) form the first layer of the blood-brain barrier (BBB) and are thus the first sufferer of ischemic-reperfusion disorder. The current study demonstrates that melatonin can reduce infarct volume, alleviate brain edema, ameliorate neurological deficits, and protect BBB integrity in prolonged-stroke mice. Here, we demonstrate that endoplasmic reticulum (ER)-associated injury contributes to BVEC death in the dural phase of reperfusion after prolonged ischemia. When encountering ischemia, ER stress arises, specifically activating PERK-EIF2α signaling and the subsequent programmed cell death. Prolonged ischemia leads stress granules (SGs) to be refractory, which remain unresolved and accumulate in ER during recanalization. During reperfusion, refractory SGs activate PKR-EIF2α and further exacerbate BVEC injury. We report that melatonin treatment downregulates ER stress in the ischemic period and enhances dissociation of the refractory SGs during reperfusion, thus offering dual-phase protection to BVECs in prolonged cerebral stroke. Mechanistically, melatonin enhances autophagy in BVECs, which preserves ER function and resolves refractory SGs. We, therefore, propose that melatonin is a potential treatment to extend the time window of delayed recanalization therapy in AIS.
Collapse
Affiliation(s)
- Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Shishi Shen
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Ruizhen Wu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
22
|
Hu S, Zhang Y, Yi Q, Yang C, Liu Y, Bai Y. Time-resolved proteomic profiling reveals compositional and functional transitions across the stress granule life cycle. Nat Commun 2023; 14:7782. [PMID: 38012130 PMCID: PMC10682001 DOI: 10.1038/s41467-023-43470-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Stress granules (SGs) are dynamic, membrane-less organelles. With their formation and disassembly processes characterized, it remains elusive how compositional transitions are coordinated during prolonged stress to meet changing functional needs. Here, using time-resolved proteomic profiling of the acute to prolonged heat-shock SG life cycle, we identify dynamic SG proteins, further segregated into early and late proteins. Comparison of different groups of SG proteins suggests that their biochemical properties help coordinate SG compositional and functional transitions. In particular, early proteins, with high phase-separation-propensity, drive the rapid formation of the initial SG platform, while late proteins are subsequently recruited as discrete modules to further functionalize SGs. This model, supported by immunoblotting and immunofluorescence imaging, provides a conceptual framework for the compositional transitions throughout the acute to prolonged SG life cycle. Additionally, an early SG constituent, non-muscle myosin II, is shown to promote SG formation by increasing SG fusion, underscoring the strength of this dataset in revealing the complexity of SG regulation.
Collapse
Affiliation(s)
- Shuyao Hu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Yufeng Zhang
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Qianqian Yi
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Cuiwei Yang
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yanfen Liu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Yun Bai
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
23
|
Potel KN, Cornelius VA, Yacoub A, Chokr A, Donaghy CL, Kelaini S, Eleftheriadou M, Margariti A. Effects of non-coding RNAs and RNA-binding proteins on mitochondrial dysfunction in diabetic cardiomyopathy. Front Cardiovasc Med 2023; 10:1165302. [PMID: 37719978 PMCID: PMC10502732 DOI: 10.3389/fcvm.2023.1165302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Vascular complications are the main cause of diabetes mellitus-associated morbidity and mortality. Oxidative stress and metabolic dysfunction underly injury to the vascular endothelium and myocardium, resulting in diabetic angiopathy and cardiomyopathy. Mitochondrial dysfunction has been shown to play an important role in cardiomyopathic disruptions of key cellular functions, including energy metabolism and oxidative balance. Both non-coding RNAs and RNA-binding proteins are implicated in diabetic cardiomyopathy, however, their impact on mitochondrial dysfunction in the context of this disease is largely unknown. Elucidating the effects of non-coding RNAs and RNA-binding proteins on mitochondrial pathways in diabetic cardiomyopathy would allow further insights into the pathophysiological mechanisms underlying diabetic vascular complications and could facilitate the development of new therapeutic strategies. Stem cell-based models can facilitate the study of non-coding RNAs and RNA-binding proteins and their unique characteristics make them a promising tool to improve our understanding of mitochondrial dysfunction and vascular complications in diabetes.
Collapse
Affiliation(s)
- Koray N. Potel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Victoria A. Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Andrew Yacoub
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ali Chokr
- Faculty of Medicine, University of Picardie Jules Verne, Amiens, France
| | - Clare L. Donaghy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Sophia Kelaini
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Magdalini Eleftheriadou
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
24
|
Relton EL, Roth NJ, Yasa S, Kaleem A, Hermey G, Minnis CJ, Mole SE, Shelkovnikova T, Lefrancois S, McCormick PJ, Locker N. The Batten disease protein CLN3 is important for stress granules dynamics and translational activity. J Biol Chem 2023; 299:104649. [PMID: 36965618 PMCID: PMC10149212 DOI: 10.1016/j.jbc.2023.104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
The assembly of membrane-less organelles such as stress granules (SGs) is emerging as central in helping cells rapidly respond and adapt to stress. Following stress sensing, the resulting global translational shutoff leads to the condensation of stalled mRNAs and proteins into SGs. By reorganizing cytoplasmic contents, SGs can modulate RNA translation, biochemical reactions, and signaling cascades to promote survival until the stress is resolved. While mechanisms for SG disassembly are not widely understood, the resolution of SGs is important for maintaining cell viability and protein homeostasis. Mutations that lead to persistent or aberrant SGs are increasingly associated with neuropathology and a hallmark of several neurodegenerative diseases. Mutations in CLN3 are causative of juvenile neuronal ceroid lipofuscinosis, a rare neurodegenerative disease affecting children also known as Batten disease. CLN3 encodes a transmembrane lysosomal protein implicated in autophagy, endosomal trafficking, metabolism, and response to oxidative stress. Using a HeLa cell model lacking CLN3, we now show that CLN3KO is associated with an altered metabolic profile, reduced global translation, and altered stress signaling. Furthermore, loss of CLN3 function results in perturbations in SG dynamics, resulting in assembly and disassembly defects, and altered expression of the key SG nucleating factor G3BP1. With a growing interest in SG-modulating drugs for the treatment of neurodegenerative diseases, novel insights into the molecular basis of CLN3 Batten disease may reveal avenues for disease-modifying treatments for this debilitating childhood disease.
Collapse
Affiliation(s)
- Emily L Relton
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Nicolas J Roth
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Seda Yasa
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Canada
| | - Abuzar Kaleem
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher J Minnis
- Great Ormond Street, Institute of Child Health and MRC Laboratory for Molecular Cell Biology and Great Ormond Street, Institute of Child Health, University College London, London, United Kingdom
| | - Sara E Mole
- Great Ormond Street, Institute of Child Health and MRC Laboratory for Molecular Cell Biology and Great Ormond Street, Institute of Child Health, University College London, London, United Kingdom
| | - Tatyana Shelkovnikova
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, Canada
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom.
| |
Collapse
|
25
|
Fujikawa D, Nakamura T, Yoshioka D, Li Z, Moriizumi H, Taguchi M, Tokai-Nishizumi N, Kozuka-Hata H, Oyama M, Takekawa M. Stress granule formation inhibits stress-induced apoptosis by selectively sequestering executioner caspases. Curr Biol 2023; 33:1967-1981.e8. [PMID: 37119817 DOI: 10.1016/j.cub.2023.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2023] [Accepted: 04/06/2023] [Indexed: 05/01/2023]
Abstract
Cytoplasmic stress granules (SGs) are phase-separated membrane-less organelles that form in response to various stress stimuli. SGs are mainly composed of non-canonical stalled 48S preinitiation complexes. In addition, many other proteins also accumulate into SGs, but the list is still incomplete. SG assembly suppresses apoptosis and promotes cell survival under stress. Furthermore, hyperformation of SGs is frequently observed in various human cancers and accelerates tumor development and progression by reducing stress-induced damage of cancer cells. Therefore, they are of clinical importance. However, the precise mechanism underlying SG-mediated inhibition of apoptosis remains ill-defined. Here, using a proximity-labeling proteomic approach, we comprehensively analyzed SG-resident proteins and identified the executioner caspases, caspase-3 and -7, as SG components. We demonstrate that accumulation of caspase-3/7 into SGs is mediated by evolutionarily conserved amino acid residues within their large catalytic domains and inhibits caspase activities and consequent apoptosis induced by various stresses. Expression of an SG-localization-deficient caspase-3 mutant in cells largely counteracted the anti-apoptotic effect of SGs, whereas enforced relocalization of the caspase-3 mutant to SGs restored it. Thus, SG-mediated sequestration of executioner caspases is a mechanism underlying the broad cytoprotective function of SGs. Furthermore, using a mouse xenograft tumor model, we show that this mechanism prevents cancer cells from apoptosis in tumor tissues, thereby promoting cancer progression. Our results reveal the functional crosstalk between SG-mediated cell survival and caspase-mediated cell death signaling pathways and delineate a molecular mechanism that dictates cell-fate decisions under stress and promotes tumorigenesis.
Collapse
Affiliation(s)
- Daichi Fujikawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takanori Nakamura
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Daisuke Yoshioka
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8562, Chiba, Japan
| | - Zizheng Li
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8562, Chiba, Japan
| | - Hisashi Moriizumi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8562, Chiba, Japan
| | - Mari Taguchi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noriko Tokai-Nishizumi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8562, Chiba, Japan; Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
26
|
Xing F, Qin Y, Xu J, Wang W, Zhang B. Stress granules dynamics and promising functions in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188885. [PMID: 36990249 DOI: 10.1016/j.bbcan.2023.188885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
Stress granules (SGs), non-membrane subcellular organelles made up of non-translational messenger ribonucleoproteins (mRNPs), assemble in response to various environmental stimuli in cancer cells, including pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC) which has a low 5-year survival rate of 10%. The pertinent research on SGs and pancreatic cancer has not, however, been compiled. In this review, we talk about the dynamics of SGs and their positive effects on pancreatic cancer such as SGs promote PDAC viability and repress apoptosis, meanwhile emphasizing the connection between SGs in pancreatic cancer and signature mutations such KRAS, P53, and SMAD4 as well as the functions of SGs in antitumor drug resistance. This novel stress management technique may open the door to better treatment options in the future.
Collapse
|
27
|
Wu S, Jiang L, Lei L, Fu C, Huang J, Hu Y, Dong Y, Chen J, Zeng Q. Crosstalk between G-quadruplex and ROS. Cell Death Dis 2023; 14:37. [PMID: 36653351 PMCID: PMC9849334 DOI: 10.1038/s41419-023-05562-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The excessive production of reactive oxygen species (ROS) can lead to single nucleic acid base damage, DNA strand breakage, inter- and intra-strand cross-linking of nucleic acids, and protein-DNA cross-linking involved in the pathogenesis of cancer, neurodegenerative diseases, and aging. G-quadruplex (G4) is a stacked nucleic acid structure that is ubiquitous across regulatory regions of multiple genes. Abnormal formation and destruction of G4s due to multiple factors, including cations, helicases, transcription factors (TFs), G4-binding proteins, and epigenetic modifications, affect gene replication, transcription, translation, and epigenetic regulation. Due to the lower redox potential of G-rich sequences and unique structural characteristics, G4s are highly susceptible to oxidative damage. Additionally, the formation, stability, and biological regulatory role of G4s are affected by ROS. G4s are involved in regulating gene transcription, translation, and telomere length maintenance, and are therefore key players in age-related degeneration. Furthermore, G4s also mediate the antioxidant process by forming stress granules and activating Nrf2, which is suggestive of their involvement in developing ROS-related diseases. In this review, we have summarized the crosstalk between ROS and G4s, and the possible regulatory mechanisms through which G4s play roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Songjiang Wu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yumeng Dong
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| |
Collapse
|
28
|
STRESS granule-associated RNA-binding protein CAPRIN1 drives cancer progression and regulates treatment response in nasopharyngeal carcinoma. Med Oncol 2023; 40:47. [PMID: 36515758 PMCID: PMC9750908 DOI: 10.1007/s12032-022-01910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignancy of the head and neck that is mainly diagnosed in southern China and Southeast Asia, with a strong etiological link to Epstein‒Barr virus infection. Those with advanced-stage disease have a significantly worse prognosis. There is an urgent need to identify novel therapeutic targets for the recurrent or metastatic nasopharyngeal carcinoma. With a particular focus on Cell Cycle Associated Protein 1 (CAPRIN1), one of the important RNA-binding proteints associated with stress granule formation, we used RT‒qPCR and immunohistochemistry to validate CAPRIN1 expression in NPC tissues and cell lines. Further, CAPRIN1 expression was knocked down using siRNA, and the effect on cell proliferation and migration was systematically assessed by in vitro assays. As a result, we demonstrated that CAPRIN1 was elevated in NPC compared to adjacent normal tissues. Knockdown of CAPRIN1 in NPC cells inhibited proliferation and migration, involving the regulation of cell cycle protein CCND2 and EMT signaling, respectively. Notably, we found that CAPRIN1 knockdown promoted cell apoptosis by regulation of the expression of apoptosis-related proteins cleaved-PARP and cleaved-Caspase3. Knockdown of CAPRIN1 increased NPC cell sensitivity to rapamycin, and increased NPC cell sensitivity to cisplatin and to X-rays. In conclusion, CAPRIN1 might drive NPC proliferation, regulate cell cycle and apoptosis, and affect tumor cell response to anti-cancer agents and X-ray irradiation. CAPRIN1 might serve as a potential target for NPC.
Collapse
|
29
|
Zhang Y, Kang JY, Liu M, Huang Y. Diverse roles of biomolecular condensation in eukaryotic translational regulation. RNA Biol 2023; 20:893-907. [PMID: 37906632 PMCID: PMC10730148 DOI: 10.1080/15476286.2023.2275108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
Biomolecular condensates, forming membrane-less organelles, orchestrate the sub-cellular compartment to execute designated biological processes. An increasing body of evidence demonstrates the involvement of these biomolecular condensates in translational regulation. This review summarizes recent discoveries concerning biomolecular condensates associated with translational regulation, including their composition, assembly, and functions. Furthermore, we discussed the common features among these biomolecular condensates and the critical questions in the translational regulation areas. These emerging discoveries shed light on the enigmatic translational machinery, refine our understanding of translational regulation, and put forth potential therapeutic targets for diseases born out of translation dysregulation.
Collapse
Grants
- 32171186 AND 91940302 National Natural Science Foundation of China
- 91940305, 31830109, 31821004, 31961133022, 91640201, 32170815, AND 32101037 TO M.L., AND 32201058 National Natural Science Foundation of China
- 2022YFC2702600 National Key R&D Program of China
- 17JC1420100, 2017SHZDZX01, 19JC1410200, 21ZR1470200, 21PJ1413800, 21YF1452700, AND 21ZR1470500 Science and Technology Commission of Shanghai Municipality
- 2022YFC2702600 National Key R&D Program of China
- 2022T150425 China Postdoctoral Science Foundation
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Yan Kang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mofang Liu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
PARP1 Activation Controls Stress Granule Assembly after Oxidative Stress and DNA Damage. Cells 2022; 11:cells11233932. [PMID: 36497190 PMCID: PMC9740212 DOI: 10.3390/cells11233932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
DNA damage causes PARP1 activation in the nucleus to set up the machinery responsible for the DNA damage response. Here, we report that, in contrast to cytoplasmic PARPs, the synthesis of poly(ADP-ribose) by PARP1 opposes the formation of cytoplasmic mRNA-rich granules after arsenite exposure by reducing polysome dissociation. However, when mRNA-rich granules are pre-formed, whether in the cytoplasm or nucleus, PARP1 activation positively regulates their assembly, though without additional recruitment of poly(ADP-ribose) in stress granules. In addition, PARP1 promotes the formation of TDP-43- and FUS-rich granules in the cytoplasm, two RNA-binding proteins which form neuronal cytoplasmic inclusions observed in certain neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Together, the results therefore reveal a dual role of PARP1 activation which, on the one hand, prevents the early stage of stress granule assembly and, on the other hand, enables the persistence of cytoplasmic mRNA-rich granules in cells which may be detrimental in aging neurons.
Collapse
|
31
|
Lee JI, Namkoong S. Stress granules dynamics: benefits in cancer. BMB Rep 2022; 55:577-586. [PMID: 36330685 PMCID: PMC9813431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 12/29/2022] Open
Abstract
Stress granules (SGs) are stress-induced subcellular compartments, which carry out a particular function to cope with stress. These granules protect cells from stress-related damage and cell death through dynamic sequestration of numerous ribonucleoproteins (RNPs) and signaling proteins, thereby promoting cell survival under both physiological and pathological condition. During tumorigenesis, cancer cells are repeatedly exposed to diverse stress stimuli from the tumor microenvironment, and the dynamics of SGs is often modulated due to the alteration of gene expression patterns in cancer cells, leading to tumor progression as well as resistance to anticancer treatment. In this mini review, we provide a brief discussion about our current understanding of the fundamental roles of SGs during physiological stress and the effect of dysregulated SGs on cancer cell fitness and cancer therapy. [BMB Reports 2022; 55(12): 577-586].
Collapse
Affiliation(s)
- Jeong In Lee
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
32
|
Cabral AJ, Costello DC, Farny NG. The enigma of ultraviolet radiation stress granules: Research challenges and new perspectives. Front Mol Biosci 2022; 9:1066650. [PMID: 36533077 PMCID: PMC9751325 DOI: 10.3389/fmolb.2022.1066650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 01/16/2025] Open
Abstract
Stress granules (SGs) are non-membrane bound cytoplasmic condensates that form in response to a variety of different stressors. Canonical SGs are thought to have a cytoprotective role, reallocating cellular resources during stress by activation of the integrated stress response (ISR) to inhibit translation and avoid apoptosis. However, different stresses result in compositionally distinct, non-canonical SG formation that is likely pro-apoptotic, though the exact function(s) of both SGs subtypes remain unclear. A unique non-canonical SG subtype is triggered upon exposure to ultraviolet (UV) radiation. While it is generally agreed that UV SGs are bona fide SGs due to their dependence upon the core SG nucleating protein Ras GTPase-activating protein-binding protein 1 (G3BP1), the localization of other key components of UV SGs are unknown or under debate. Further, the dynamics of UV SGs are not known, though unique properties such as cell cycle dependence have been observed. This Perspective compiles the available information on SG subtypes and on UV SGs in particular in an attempt to understand the formation, dynamics, and function of these mysterious stress-specific complexes. We identify key gaps in knowledge related to UV SGs, and examine the unique aspects of their formation. We propose that more thorough knowledge of the distinct properties of UV SGs will lead to new avenues of understanding of the function of SGs, as well as their roles in disease.
Collapse
Affiliation(s)
| | | | - Natalie G. Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
33
|
Lee JI, Namkoong S. Stress granules dynamics: benefits in cancer. BMB Rep 2022; 55:577-586. [PMID: 36330685 PMCID: PMC9813431 DOI: 10.5483/bmbrep.2022.55.12.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Stress granules (SGs) are stress-induced subcellular compartments, which carry out a particular function to cope with stress. These granules protect cells from stress-related damage and cell death through dynamic sequestration of numerous ribonucleoproteins (RNPs) and signaling proteins, thereby promoting cell survival under both physiological and pathological condition. During tumorigenesis, cancer cells are repeatedly exposed to diverse stress stimuli from the tumor microenvironment, and the dynamics of SGs is often modulated due to the alteration of gene expression patterns in cancer cells, leading to tumor progression as well as resistance to anticancer treatment. In this mini review, we provide a brief discussion about our current understanding of the fundamental roles of SGs during physiological stress and the effect of dysregulated SGs on cancer cell fitness and cancer therapy. [BMB Reports 2022; 55(12): 577-586].
Collapse
Affiliation(s)
- Jeong In Lee
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
34
|
Li Z, Liu X, Liu M. Stress Granule Homeostasis, Aberrant Phase Transition, and Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2022; 13:2356-2370. [PMID: 35905138 DOI: 10.1021/acschemneuro.2c00262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. In recent years, a large number of ALS-related mutations have been discovered to have a strong link to stress granules (SGs). SGs are cytoplasmic ribonucleoprotein condensates mediated by liquid-liquid phase separation (LLPS) of biomacromolecules. They help cells cope with stress. The normal physiological functions of SGs are dependent on three key aspects of SG "homeostasis": SG assembly, disassembly, and SG components. Any of these three aspects can be disrupted, resulting in abnormalities in the cellular stress response and leading to cytotoxicity. Several ALS-related pathogenic mutants have abnormal LLPS abilities that disrupt SG homeostasis, and some of them can even cause aberrant phase transitions. As a result, ALS-related mutants may disrupt various aspects of SG homeostasis by directly disturbing the intermolecular interactions or affecting core SG components, thus disrupting the phase equilibrium of the cytoplasm during stress. Considering that the importance of the "global view" of SG homeostasis in ALS pathogenesis has not received enough attention, we first systematically summarize the physiological regulatory mechanism of SG homeostasis based on LLPS and then examine ALS pathogenesis from the perspective of disrupted SG homeostasis and aberrant phase transition of biomacromolecules.
Collapse
Affiliation(s)
- Zhanxu Li
- Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Xionghao Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Mujun Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
35
|
Iida K, Suzuki N, Sasaki A, Ishida S, Arai T. Development of a novel light-up probe for detection of G-quadruplexes in stress granules. Sci Rep 2022; 12:12892. [PMID: 35902691 PMCID: PMC9334577 DOI: 10.1038/s41598-022-17230-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
G-quadruplexes (G4s) regulate various biological processes in cells. However, cellular imaging of dynamically forming G4s in biomolecular condensates using small molecules has been poorly investigated. Herein, we present a fluorescent light-up probe with the ability to selectively stabilize G4s and enhance fluorescence upon G4 binding. The foci of the probe were mainly observed in the nucleoli. These were co-localized with anti-fibrillarin antibodies and anti-G4 antibodies (BG4). Moreover, we tested detection of G4 in stress granules using the developed probe. Stress granules were induced through treatment with not only thapsigargin, but also known G4 ligands (pyridostatin, RHPS4, and BRACO-19). In the stress granules, co-localization between the probe, BG4, and stress granule markers (TIA1 and G3BP1) was detected. We present a practical light-up probe for G4s in stress granules, providing potential targets for G4 ligands.
Collapse
Affiliation(s)
- Keisuke Iida
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba , 263-8522, Japan.
| | - Natsumi Suzuki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba , 263-8522, Japan
| | - Ayano Sasaki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba , 263-8522, Japan
| | - Shunsuke Ishida
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba , 263-8522, Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba , 263-8522, Japan
| |
Collapse
|
36
|
Stress Granules and Acute Ischemic Stroke: Beyond mRNA Translation. Int J Mol Sci 2022; 23:ijms23073747. [PMID: 35409112 PMCID: PMC8998762 DOI: 10.3390/ijms23073747] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Following an ischemic insult, cells undergo endoplasmic reticulum (ER) stress, which increases the ER’s protein-folding and degradative capacities and blocks the global synthesis of proteins by phosphorylating the eukaryotic translation initiation factor 2-alpha (eIF2α). Phosphorylation of eIF2α is directly related to the dynamics of stress granules (SGs), which are membraneless organelles composed of RNA-binding proteins and mRNA. SGs play a critical role in mRNA metabolism and translational control. Other translation factors are also linked to cellular pathways, including SG dynamics following a stroke. Because the formation of SGs is closely connected to mRNA translation, it is interesting to study the relationship between SG dynamics and cellular outcome in cases of ischemic damage. Therefore, in this review, we focus on the role of SG dynamics during cerebral ischemia.
Collapse
|
37
|
The Multifunctional Faces of T-Cell Intracellular Antigen 1 in Health and Disease. Int J Mol Sci 2022; 23:ijms23031400. [PMID: 35163320 PMCID: PMC8836218 DOI: 10.3390/ijms23031400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein that is expressed in many tissues and in the vast majority of species, although it was first discovered as a component of human cytotoxic T lymphocytes. TIA1 has a dual localization in the nucleus and cytoplasm, where it plays an important role as a regulator of gene-expression flux. As a multifunctional master modulator, TIA1 controls biological processes relevant to the physiological functioning of the organism and the development and/or progression of several human pathologies. This review summarizes our current knowledge of the molecular aspects and cellular processes involving TIA1, with relevance for human pathophysiology.
Collapse
|
38
|
Srivastava RK, Mishra B, Muzaffar S, Gorbatyuk MS, Agarwal A, Mukhtar MS, Athar M. Dynamic Regulation of the Nexus Between Stress Granules, Roquin, and Regnase-1 Underlies the Molecular Pathogenesis of Warfare Vesicants. Front Immunol 2022; 12:809365. [PMID: 35082795 PMCID: PMC8784689 DOI: 10.3389/fimmu.2021.809365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/16/2021] [Indexed: 01/23/2023] Open
Abstract
The use of chemical warfare agents is prohibited but they have been used in recent Middle Eastern conflicts. Their accidental exposure (e.g. arsenical lewisite) is also known and causes extensive painful cutaneous injury. However, their molecular pathogenesis is not understood. Here, we demonstrate that a nexus of stress granules (SGs), integrated stress, and RNA binding proteins (RBPs) Roquin and Reganse-1 play a key role. Lewisite and its prototype phenylarsine oxide (PAO) induce SG assembly in skin keratinocytes soon after exposure, which associate with various RBPs and translation-related proteins. SG disassembly was detected several hours after exposure. The dynamics of SG assembly-disassembly associates with the chemical insult and cell damage. Enhanced Roquin and Regnase-1 expression occurs when Roquin was recruited to SGs and Regnase-1 to the ribosome while in the disassembling SGs their expression is decreased with consequent induction of inflammatory mediators. SG-targeted protein translational control is regulated by the phosphorylation-dependent activation of eukaryotic initiation factors 2α (eIF2α). Treatment with integrated stress response inhibitor (ISRIB), which blocks eIF2α phosphorylation, impacted SG assembly dynamics. Topical application of ISRIB attenuated the inflammation and tissue disruption in PAO-challenged mice. Thus, the dynamic regulation of these pathways provides underpinning to cutaneous injury and identify translational therapeutic approach for these and similar debilitating chemicals.
Collapse
Affiliation(s)
- Ritesh Kumar Srivastava
- University of Alabama at Birmingham (UAB) Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suhail Muzaffar
- University of Alabama at Birmingham (UAB) Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Veterans Affairs, Birmingham Veterans Administration Medical Center, Birmingham, AL, United States
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohammad Athar
- University of Alabama at Birmingham (UAB) Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
39
|
Dynamic alternative polyadenylation during iPSC differentiation into cardiomyocytes. Comput Struct Biotechnol J 2022; 20:5859-5869. [DOI: 10.1016/j.csbj.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022] Open
|
40
|
Shao W, Zeng ST, Yu ZY, Tang GX, Chen SB, Huang ZS, Chen XC, Tan JH. Tracking Stress Granule Dynamics in Live Cells and In Vivo with a Small Molecule. Anal Chem 2021; 93:16297-16301. [PMID: 34843219 DOI: 10.1021/acs.analchem.1c03577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Because of the lack of facile and accurate methods to track stress granule (SG) dynamics in live cells and in vivo, in-depth studies of the biological roles of this attractive membraneless organelle have been limited. Herein, we report the first small-molecule probe, TASG, for the selective, convenient and real-time monitoring of SGs. This novel molecule can simultaneously bind to SG RNAs, the core SG protein G3BP1, and their complexes, triggering a significant enhancement in fluorescence intensity, making TASG broadly applicable to SG imaging under various stress conditions in fixed and live cells, ex vivo and in vivo. Using TASG, the complicated endogenous SG dynamics were revealed in both live cells and C. elegans. Collectively, our work provides an ideal probe that has thus far been absent in the field of SG investigations. We anticipate that this powerful tool may create exciting opportunities to investigate the underlying roles of SGs in different organisms.
Collapse
Affiliation(s)
- Wen Shao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shu-Tang Zeng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ze-Yi Yu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiu-Cai Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
41
|
Early Life Irradiation-Induced Hypoplasia and Impairment of Neurogenesis in the Dentate Gyrus and Adult Depression Are Mediated by MicroRNA- 34a-5p/T-Cell Intracytoplasmic Antigen-1 Pathway. Cells 2021; 10:cells10092476. [PMID: 34572124 PMCID: PMC8466295 DOI: 10.3390/cells10092476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/05/2023] Open
Abstract
Early life radiation exposure causes abnormal brain development, leading to adult depression. However, few studies have been conducted to explore pre- or post-natal irradiation-induced depression-related neuropathological changes. Relevant molecular mechanisms are also poorly understood. We induced adult depression by irradiation of mice at postnatal day 3 (P3) to reveal hippocampal neuropathological changes and investigate their molecular mechanism, focusing on MicroRNA (miR) and its target mRNA and protein. P3 mice were irradiated by γ-rays with 5Gy, and euthanized at 1, 7 and 120 days after irradiation. A behavioral test was conducted before the animals were euthanized at 120 days after irradiation. The animal brains were used for different studies including immunohistochemistry, CAP-miRSeq, Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) and western blotting. The interaction of miR-34a-5p and its target T-cell intracytoplasmic antigen-1 (Tia1) was confirmed by luciferase reporter assay. Overexpression of Tia1 in a neural stem cell (NSC) model was used to further validate findings from the mouse model. Irradiation with 5 Gy at P3 induced depression in adult mice. Animal hippocampal pathological changes included hypoplasia of the infrapyramidal blade of the stratum granulosum, aberrant and impaired cell division, and neurogenesis in the dentate gyrus. At the molecular level, upregulation of miR-34a-5p and downregulation of Tia1 mRNA were observed in both animal and neural stem cell models. The luciferase reporter assay and gene transfection studies further confirmed a direct interaction between miR-43a-5p and Tia1. Our results indicate that the early life γ-radiation-activated miR-43a-5p/Tia1 pathway is involved in the pathogenesis of adult depression. This novel finding may provide a new therapeutic target by inhibiting the miR-43a-5p/Tia1 pathway to prevent radiation-induced pathogenesis of depression.
Collapse
|
42
|
Jovanovic B, Eiermann N, Talwar D, Boulougouri M, Dick TP, Stoecklin G. Thioredoxin 1 is required for stress granule assembly upon arsenite-induced oxidative stress. Food Chem Toxicol 2021; 156:112508. [PMID: 34390821 DOI: 10.1016/j.fct.2021.112508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/11/2021] [Accepted: 08/09/2021] [Indexed: 10/25/2022]
Abstract
Arsenic is a major water pollutant and health hazard, leading to acute intoxication and, upon chronic exposure, several diseases including cancer development. Arsenic exerts its pronounced cellular toxicity through its trivalent oxide arsenite (ASN), which directly inhibits numerous proteins including Thioredoxin 1 (Trx1), and causes severe oxidative stress. Cells respond to arsenic by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic condensates of stalled mRNAs, translation factors and RNA-binding proteins. The biological role of SGs is diverse and not completely understood; they are important for regulation of cell signaling and survival under stress conditions, and for adapting de novo protein synthesis to the protein folding capacity during the recovery from stress. In this study, we identified Trx1 as a novel component of SGs. Trx1 is required for the assembly of ASN-induced SGs, but not for SGs induced by energy deprivation or heat shock. Importantly, our results show that Trx1 is essential for cell survival upon acute exposure to ASN, through a mechanism that is independent of translation inhibition.
Collapse
Affiliation(s)
- Bogdan Jovanovic
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| | - Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Deepti Talwar
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maria Boulougouri
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
43
|
Hu K, Relton E, Locker N, Phan NTN, Ewing AG. Electrochemical Measurements Reveal Reactive Oxygen Species in Stress Granules**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Keke Hu
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Emily Relton
- Faculty of Health and Medical Sciences School of Biosciences and Medicine University of Surrey Guildford Surrey GU2 7XH UK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences School of Biosciences and Medicine University of Surrey Guildford Surrey GU2 7XH UK
| | - Nhu T. N. Phan
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
44
|
Hu K, Relton E, Locker N, Phan NTN, Ewing AG. Electrochemical Measurements Reveal Reactive Oxygen Species in Stress Granules*. Angew Chem Int Ed Engl 2021; 60:15302-15306. [PMID: 33876544 PMCID: PMC8456511 DOI: 10.1002/anie.202104308] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/15/2021] [Indexed: 12/03/2022]
Abstract
Stress granules (SGs) are membrane-less organelles that assemble in the cytoplasm to organize cellular contents and promote rapid adaptation during stress. To understand how SGs contribute to physiological functions, we used electrochemical measurements to detect electroactive species in SGs. With amperometry, we discovered that reactive oxygen species (ROS) are encapsulated inside arsenite-induced SGs, and H2 O2 is the main species. The release kinetics of H2 O2 from single SGs and the number of H2 O2 molecules were quantified. The discovery that SGs contain ROS implicates them as communicators of the cellular stresses rather than a simple endpoint. This may explain how SGs regulate cellular metabolism and stress responses. This may also help better understand their cytoprotective functions in pathological conditions associated with SGs such as neurodegenerative diseases (NDs), cancers and viral infections.
Collapse
Affiliation(s)
- Keke Hu
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Emily Relton
- Faculty of Health and Medical SciencesSchool of Biosciences and MedicineUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Nicolas Locker
- Faculty of Health and Medical SciencesSchool of Biosciences and MedicineUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Nhu T. N. Phan
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| |
Collapse
|
45
|
Wang L, Yang W, Li B, Yuan S, Wang F. Response to stress in biological disorders: Implications of stress granule assembly and function. Cell Prolif 2021; 54:e13086. [PMID: 34170048 PMCID: PMC8349659 DOI: 10.1111/cpr.13086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
It is indispensable for cells to adapt and respond to environmental stresses, in order for organisms to survive. Stress granules (SGs) are condensed membrane‐less organelles dynamically formed in the cytoplasm of eukaryotes cells to cope with diverse intracellular or extracellular stress factors, with features of liquid‐liquid phase separation. They are composed of multiple constituents, including translationally stalled mRNAs, translation initiation factors, RNA‐binding proteins and also non‐RNA‐binding proteins. SG formation is triggered by stress stimuli, viral infection and signal transduction, while aberrant assembly of SGs may contribute to tissue degenerative diseases. Recently, a growing body of evidence has emerged on SG response mechanisms for cells facing high temperatures, oxidative stress and osmotic stress. In this review, we aim to summarize factors affecting SGs assembly, present the impact of SGs on germ cell development and other biological processes. We particularly emphasize the significance of recently reported RNA modifications in SG stress responses. In parallel, we also review all current perspectives on the roles of SGs in male germ cells, with a particular focus on the dynamics of SG assembly.
Collapse
Affiliation(s)
- Lingjuan Wang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Weina Yang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shuiqiao Yuan
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Fengli Wang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
46
|
Sanchez II, Nguyen TB, England WE, Lim RG, Vu AQ, Miramontes R, Byrne LM, Markmiller S, Lau AL, Orellana I, Curtis MA, Faull RLM, Yeo GW, Fowler CD, Reidling JC, Wild EJ, Spitale RC, Thompson LM. Huntington's disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization. J Clin Invest 2021; 131:140723. [PMID: 33945510 DOI: 10.1172/jci140723] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Chronic cellular stress associated with neurodegenerative disease can result in the persistence of stress granule (SG) structures, membraneless organelles that form in response to cellular stress. In Huntington's disease (HD), chronic expression of mutant huntingtin generates various forms of cellular stress, including activation of the unfolded protein response and oxidative stress. However, it has yet to be determined whether SGs are a feature of HD neuropathology. We examined the miRNA composition of extracellular vesicles (EVs) present in the cerebrospinal fluid (CSF) of patients with HD and show that a subset of their target mRNAs were differentially expressed in the prefrontal cortex. Of these targets, SG components were enriched, including the SG-nucleating Ras GTPase-activating protein-binding protein 1 (G3BP1). We investigated localization and levels of G3BP1 and found a significant increase in the density of G3BP1-positive granules in the cortex and hippocampus of R6/2 transgenic mice and in the superior frontal cortex of the brains of patients with HD. Intriguingly, we also observed that the SG-associated TAR DNA-binding protein 43 (TDP43), a nuclear RNA/DNA binding protein, was mislocalized to the cytoplasm of G3BP1 granule-positive HD cortical neurons. These findings suggest that G3BP1 SG dynamics may play a role in the pathophysiology of HD.
Collapse
Affiliation(s)
| | | | | | - Ryan G Lim
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Anthony Q Vu
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Ricardo Miramontes
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Lauren M Byrne
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Alice L Lau
- Department of Psychiatry & Human Behavior, and
| | - Iliana Orellana
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | | | - Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Edward J Wild
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, and.,Department of Chemistry, University of California, Irvine, California, USA
| | - Leslie M Thompson
- Department of Neurobiology & Behavior.,Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA.,Department of Psychiatry & Human Behavior, and.,Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| |
Collapse
|
47
|
Marcelo A, Koppenol R, de Almeida LP, Matos CA, Nóbrega C. Stress granules, RNA-binding proteins and polyglutamine diseases: too much aggregation? Cell Death Dis 2021; 12:592. [PMID: 34103467 PMCID: PMC8187637 DOI: 10.1038/s41419-021-03873-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
Stress granules (SGs) are membraneless cell compartments formed in response to different stress stimuli, wherein translation factors, mRNAs, RNA-binding proteins (RBPs) and other proteins coalesce together. SGs assembly is crucial for cell survival, since SGs are implicated in the regulation of translation, mRNA storage and stabilization and cell signalling, during stress. One defining feature of SGs is their dynamism, as they are quickly assembled upon stress and then rapidly dispersed after the stress source is no longer present. Recently, SGs dynamics, their components and their functions have begun to be studied in the context of human diseases. Interestingly, the regulated protein self-assembly that mediates SG formation contrasts with the pathological protein aggregation that is a feature of several neurodegenerative diseases. In particular, aberrant protein coalescence is a key feature of polyglutamine (PolyQ) diseases, a group of nine disorders that are caused by an abnormal expansion of PolyQ tract-bearing proteins, which increases the propensity of those proteins to aggregate. Available data concerning the abnormal properties of the mutant PolyQ disease-causing proteins and their involvement in stress response dysregulation strongly suggests an important role for SGs in the pathogenesis of PolyQ disorders. This review aims at discussing the evidence supporting the existence of a link between SGs functionality and PolyQ disorders, by focusing on the biology of SGs and on the way it can be altered in a PolyQ disease context.
Collapse
Affiliation(s)
- Adriana Marcelo
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- PhD Program in Biomedial Sciences, Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Rebekah Koppenol
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- PhD Program in Biomedial Sciences, Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Carlos A Matos
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal.
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| |
Collapse
|
48
|
Cambronero-Urena A, Choi S, Choi S, Kim KK, Kim EM. Polyhexamethylene guanidine phosphate, chloromethylisothiazolinone, and particulate matter are dispensable for stress granule formation in human airway epithelial cells. Anim Cells Syst (Seoul) 2021; 25:146-151. [PMID: 34262657 PMCID: PMC8253204 DOI: 10.1080/19768354.2021.1931442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Environmental risk factors are recognized as threats to public health. Stress granules (SGs) are non-membranous assemblies of mRNAs and proteins expressed in response to various stressors to promote cell survival. In this study, SG formation was examined to confirm the effects of polyhexamethylene guanidine phosphate (PHMG), chloromethylisothiazolinone (CMIT), and particulate matter (PM10) in airway epithelial cells, A549, HPAEpiC, and BEAS-2B cells. SGs were not observed after CMIT, PHMG, and PM10 treatments, as determined by immunofluorescence microscopy. Moreover, there was no change in the phosphorylation of the translation initiation factor eIF2αfollowing treatment with PHMG, CMIT, and PM10. Taken together, our findings might help determine the biological hazards of these materials.
Collapse
Affiliation(s)
| | - Sunkyung Choi
- Department of Biochemistry, Chungnam National University, Daejeon, South Korea
| | - Seri Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon, South Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| |
Collapse
|
49
|
Verma A, Sumi S, Seervi M. Heat shock proteins-driven stress granule dynamics: yet another avenue for cell survival. Apoptosis 2021; 26:371-384. [PMID: 33978921 DOI: 10.1007/s10495-021-01678-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/24/2022]
Abstract
Heat shock proteins (HSPs) are evolutionary conserved 'stress-response' proteins that facilitate cell survival against various adverse conditions. HSP-mediated cytoprotection was hitherto reported to occur principally in two ways. Firstly, HSPs interact directly or indirectly with apoptosis signaling components and suppress apoptosis. Secondly, through chaperon activity, HSPs suppress proteotoxicity and maintain protein-homeostasis. Recent studies highlight the interaction of HSPs with cytoplasmic stress granules (SGs). SGs are conserved cytoplasmic mRNPs granules that aid in cell survival under stressful conditions. We primarily aim to describe the distinct cell survival strategy mediated by HSPs as the crucial regulators of SGs assembly and disassembly. Based on the growing evidence, HSPs and associated co-chaperones act as important determinants of SG assembly, composition and dissolution. Under cellular stress, as a 'stress-coping mechanism', the formation of SGs reprograms protein translation machinery and modulates signaling pathways indispensable for cell survival. Besides their role in suppressing apoptosis, HSPs also regulate protein-homeostasis by their chaperone activity as well as by their tight regulation of SG dynamics. The intricate molecular signaling in and around the nexus of HSPs-SGs and its importance in diseases has to be unearthed. These studies have significant implications in the management of chronic diseases such as cancer and neurodegenerative diseases where SGs possess pathological functions.
Collapse
Affiliation(s)
- Akanksha Verma
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - S Sumi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Mahendra Seervi
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
50
|
Harley J, Clarke BE, Patani R. The Interplay of RNA Binding Proteins, Oxidative Stress and Mitochondrial Dysfunction in ALS. Antioxidants (Basel) 2021; 10:antiox10040552. [PMID: 33918215 PMCID: PMC8066094 DOI: 10.3390/antiox10040552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Jasmine Harley
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Benjamin E. Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Correspondence: (B.E.C.); (R.P.)
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- National Hospital for Neurology and Neurosurgery, University College London NHS, London WC1N 3BG, UK
- Correspondence: (B.E.C.); (R.P.)
| |
Collapse
|