1
|
Ouyang JPT, Shukla S, Bensalah M, Parker R. DM1 repeat-expanded RNAs confer RNA toxicity as individual nuclear-retained RNAs. Cell Rep 2025; 44:115582. [PMID: 40238630 DOI: 10.1016/j.celrep.2025.115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Repeat expansions of short nucleotide sequences underlie over 40 neuromuscular diseases, including myotonic dystrophy type 1 (DM1). The DM1 CUG repeat RNA is thought to accumulate in RNA nuclear foci that sequester RNA-binding proteins, including muscleblind-like splicing regulator 1 (MBNL1). To understand the composition and formation of such nuclear foci, we employed quantitative imaging in a patient-derived myotube model. We find that most "foci" are comprised of single RNAs and that these single RNA species contribute to the sequestration of MBNL1 protein. Rare foci can contain upwards of 25 distinct RNA species, but these foci form from transcriptional bursting and dissociate with time. Last, we find that multimeric CUG repeat RNA foci are dependent upon MBNL proteins. Altogether, these observations argue that the persistence of nuclear-retained CUG RNAs, independent of higher-order RNA assemblies, titrates MBNL1 and contributes to disease progression.
Collapse
Affiliation(s)
- John Paul Tsu Ouyang
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA
| | - Siddharth Shukla
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Mona Bensalah
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
2
|
Khyzha N, Ahmad K, Henikoff S. Profiling transcriptome composition and dynamics within nuclear compartments using SLAM-RT&Tag. Mol Cell 2025; 85:1366-1380.e4. [PMID: 40073862 PMCID: PMC12052203 DOI: 10.1016/j.molcel.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/09/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Nuclear compartments are membrane-less regions enriched in functionally related molecules. RNA is a major component of many nuclear compartments, but the identity and dynamics of transcripts within nuclear compartments are poorly understood. Here, we applied reverse transcribe and tagment (RT&Tag) to human cell lines to identify the transcript populations of Polycomb domains and nuclear speckles. We also developed SLAM-RT&Tag, which combines RNA metabolic labeling with RT&Tag, to quantify transcript dynamics within nuclear compartments. We observed unique transcript populations with differing structures and dynamics within each compartment. Intriguingly, exceptionally long genes are transcribed adjacent to Polycomb domains and are transiently associated with chromatin. By contrast, nuclear speckles act as quality control checkpoints that transiently confine incompletely spliced polyadenylated transcripts and facilitate their post-transcriptional splicing. In summary, we demonstrate that transcripts at Polycomb domains and nuclear speckles undergo distinct RNA processing mechanisms, highlighting the pivotal role of compartmentalization in RNA maturation.
Collapse
Affiliation(s)
- Nadiya Khyzha
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
3
|
Biayna J, Dumbović G. Decoding subcellular RNA localization one molecule at a time. Genome Biol 2025; 26:45. [PMID: 40033325 PMCID: PMC11874642 DOI: 10.1186/s13059-025-03507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Eukaryotic cells are highly structured and composed of multiple membrane-bound and membraneless organelles. Subcellular RNA localization is a critical regulator of RNA function, influencing various biological processes. At any given moment, RNAs must accurately navigate the three-dimensional subcellular environment to ensure proper localization and function, governed by numerous factors, including splicing, RNA stability, modifications, and localizing sequences. Aberrant RNA localization can contribute to the development of numerous diseases. Here, we explore diverse RNA localization mechanisms and summarize advancements in methods for determining subcellular RNA localization, highlighting imaging techniques transforming our ability to study RNA dynamics at the single-molecule level.
Collapse
Affiliation(s)
- Josep Biayna
- Goethe University Frankfurt, Center for Molecular Medicine, Institute for Cardiovascular Regeneration, Frankfurt, Germany
| | - Gabrijela Dumbović
- Goethe University Frankfurt, Center for Molecular Medicine, Institute for Cardiovascular Regeneration, Frankfurt, Germany.
- Cardio-Pulmonary Institute (CPI), Goethe University, Frankfurt, Frankfurt, Germany.
- German Center of Cardiovascular Research (DZHK), Partner Site Rhein/Main, Frankfurt, Germany.
| |
Collapse
|
4
|
McIntyre ABR, Tschan AB, Meyer K, Walser S, Rai AK, Fujita K, Pelkmans L. Phosphorylation of a nuclear condensate regulates cohesion and mRNA retention. Nat Commun 2025; 16:390. [PMID: 39755675 DOI: 10.1038/s41467-024-55469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution. PP1 overexpression increases speckle cohesion and leads to retention of mRNA within speckles and the nucleus. Using APEX2 proximity labeling combined with RNA-sequencing, we characterize the recruitment of specific RNAs. We find that many transcripts are preferentially enriched within nuclear speckles compared to the nucleoplasm, particularly chromatin- and nucleus-associated transcripts. While total polyadenylated RNA retention increases with nuclear speckle cohesion, the ratios of most mRNA species to each other are constant, indicating non-selective retention. We further find that cellular responses to heat shock, oxidative stress, and hypoxia include changes to the phosphorylation and cohesion of nuclear speckles and to mRNA retention. Our results demonstrate that tuning the material properties of nuclear speckles provides a mechanism for the acute control of mRNA localization.
Collapse
Affiliation(s)
- Alexa B R McIntyre
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Adrian Beat Tschan
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Systems Biology PhD program, Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Katrina Meyer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Severin Walser
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Arpan Kumar Rai
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Keisuke Fujita
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, Japan
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Szczepankiewicz AA, Parobczak K, Zaręba-Kozioł M, Ruszczycki B, Bijata M, Trzaskoma P, Hajnowski G, Holm-Kaczmarek D, Włodarczyk J, Sas-Nowosielska H, Wilczyński GM, Rędowicz MJ, Magalska A. Neuronal activation affects the organization and protein composition of the nuclear speckles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119829. [PMID: 39197592 DOI: 10.1016/j.bbamcr.2024.119829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Nuclear speckles, also known as interchromatin granule clusters (IGCs), are subnuclear domains highly enriched in proteins involved in transcription and mRNA metabolism and, until recently, have been regarded primarily as their storage and modification hubs. However, several recent studies on non-neuronal cell types indicate that nuclear speckles may directly contribute to gene expression as some of the active genes have been shown to associate with these structures. Neuronal activity is one of the key transcriptional regulators and may lead to the rearrangement of some nuclear bodies. Notably, the impact of neuronal activation on IGC/nuclear speckles organization and function remains unexplored. To address this research gap, we examined whether and how neuronal stimulation affects the organization of these bodies in granular neurons from the rat hippocampal formation. Our findings demonstrate that neuronal stimulation induces morphological and proteomic remodelling of the nuclear speckles under both in vitro and in vivo conditions. Importantly, these changes are not associated with cellular stress or cell death but are dependent on transcription and splicing.
Collapse
Affiliation(s)
- Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Kamil Parobczak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Błażej Ruszczycki
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; AGH University of Krakow, Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Paweł Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Grzegorz Hajnowski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Dagmara Holm-Kaczmarek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Sas-Nowosielska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Grzegorz Marek Wilczyński
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Adriana Magalska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
6
|
Street LA, Rothamel KL, Brannan KW, Jin W, Bokor BJ, Dong K, Rhine K, Madrigal A, Al-Azzam N, Kim JK, Ma Y, Gorhe D, Abdou A, Wolin E, Mizrahi O, Ahdout J, Mujumdar M, Doron-Mandel E, Jovanovic M, Yeo GW. Large-scale map of RNA-binding protein interactomes across the mRNA life cycle. Mol Cell 2024; 84:3790-3809.e8. [PMID: 39303721 PMCID: PMC11530141 DOI: 10.1016/j.molcel.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
mRNAs interact with RNA-binding proteins (RBPs) throughout their processing and maturation. While efforts have assigned RBPs to RNA substrates, less exploration has leveraged protein-protein interactions (PPIs) to study proteins in mRNA life-cycle stages. We generated an RNA-aware, RBP-centric PPI map across the mRNA life cycle in human cells by immunopurification-mass spectrometry (IP-MS) of ∼100 endogenous RBPs with and without RNase, augmented by size exclusion chromatography-mass spectrometry (SEC-MS). We identify 8,742 known and 20,802 unreported interactions between 1,125 proteins and determine that 73% of the IP-MS-identified interactions are RNA regulated. Our interactome links many proteins, some with unknown functions, to specific mRNA life-cycle stages, with nearly half associated with multiple stages. We demonstrate the value of this resource by characterizing the splicing and export functions of enhancer of rudimentary homolog (ERH), and by showing that small nuclear ribonucleoprotein U5 subunit 200 (SNRNP200) interacts with stress granule proteins and binds cytoplasmic RNA differently during stress.
Collapse
Affiliation(s)
- Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Kristopher W Brannan
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA; Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin J Bokor
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kevin Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin Rhine
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Assael Madrigal
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Norah Al-Azzam
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yanzhe Ma
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ahmed Abdou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Erica Wolin
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Orel Mizrahi
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Ahdout
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mayuresh Mujumdar
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Laboratories for Innovative Medicines, San Diego, CA, USA; Sanford Stem Cell Institute, Innovation Center, San Diego, CA, USA.
| |
Collapse
|
7
|
Paul S, Arias MA, Wen L, Liao SE, Zhang J, Wang X, Regev O, Fei J. RNA molecules display distinctive organization at nuclear speckles. iScience 2024; 27:109603. [PMID: 38638569 PMCID: PMC11024929 DOI: 10.1016/j.isci.2024.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/05/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
RNA molecules often play critical roles in assisting the formation of membraneless organelles in eukaryotic cells. Yet, little is known about the organization of RNAs within membraneless organelles. Here, using super-resolution imaging and nuclear speckles as a model system, we demonstrate that different sequence domains of RNA transcripts exhibit differential spatial distributions within speckles. Specifically, we image transcripts containing a region enriched in binding motifs of serine/arginine-rich (SR) proteins and another region enriched in binding motifs of heterogeneous nuclear ribonucleoproteins (hnRNPs). We show that these transcripts localize to the outer shell of speckles, with the SR motif-rich region localizing closer to the speckle center relative to the hnRNP motif-rich region. Further, we identify that this intra-speckle RNA organization is driven by the strength of RNA-protein interactions inside and outside speckles. Our results hint at novel functional roles of nuclear speckles and likely other membraneless organelles in organizing RNA substrates for biochemical reactions.
Collapse
Affiliation(s)
- Sneha Paul
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Mauricio A. Arias
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- Institute for System Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Li Wen
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
| | - Susan E. Liao
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Jiacheng Zhang
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoshu Wang
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Oded Regev
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Han X, Xing L, Hong Y, Zhang X, Hao B, Lu JY, Huang M, Wang Z, Ma S, Zhan G, Li T, Hao X, Tao Y, Li G, Zhou S, Zheng Z, Shao W, Zeng Y, Ma D, Zhang W, Xie Z, Deng H, Yan J, Deng W, Shen X. Nuclear RNA homeostasis promotes systems-level coordination of cell fate and senescence. Cell Stem Cell 2024; 31:694-716.e11. [PMID: 38631356 DOI: 10.1016/j.stem.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Understanding cellular coordination remains a challenge despite knowledge of individual pathways. The RNA exosome, targeting a wide range of RNA substrates, is often downregulated in cellular senescence. Utilizing an auxin-inducible system, we observed that RNA exosome depletion in embryonic stem cells significantly affects the transcriptome and proteome, causing pluripotency loss and pre-senescence onset. Mechanistically, exosome depletion triggers acute nuclear RNA aggregation, disrupting nuclear RNA-protein equilibrium. This disturbance limits nuclear protein availability and hinders polymerase initiation and engagement, reducing gene transcription. Concurrently, it promptly disrupts nucleolar transcription, ribosomal processes, and nuclear exporting, resulting in a translational shutdown. Prolonged exosome depletion induces nuclear structural changes resembling senescent cells, including aberrant chromatin compaction, chromocenter disassembly, and intensified heterochromatic foci. These effects suggest that the dynamic turnover of nuclear RNA orchestrates crosstalk between essential processes to optimize cellular function. Disruptions in nuclear RNA homeostasis result in systemic functional decline, altering the cell state and promoting senescence.
Collapse
Affiliation(s)
- Xue Han
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Linqing Xing
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yantao Hong
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xuechun Zhang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Hao
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - J Yuyang Lu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Mengyuan Huang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zuhui Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shaoqian Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ge Zhan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaowen Hao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yibing Tao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Guanwen Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Shuqin Zhou
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zheng Zheng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Wen Shao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yitian Zeng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Dacheng Ma
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangwei Yan
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaohua Shen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
9
|
Regan-Fendt KE, Izumi K. Nuclear speckleopathies: developmental disorders caused by variants in genes encoding nuclear speckle proteins. Hum Genet 2024; 143:529-544. [PMID: 36929417 DOI: 10.1007/s00439-023-02540-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
Nuclear speckles are small, membrane-less organelles that reside within the nucleus. Nuclear speckles serve as a regulatory hub coordinating complex RNA metabolism steps including gene transcription, pre-mRNA splicing, RNA modifications, and mRNA nuclear export. Reflecting the importance of proper nuclear speckle function in regulating normal human development, an increasing number of genetic disorders have been found to result from mutations in the genes encoding nuclear speckle proteins. To denote this growing class of genetic disorders, we propose "nuclear speckleopathies". Notably, developmental disabilities are commonly seen in individuals with nuclear speckleopathies, suggesting the particular importance of nuclear speckles in ensuring normal neurocognitive development. In this review article, a general overview of nuclear speckle function, and the current knowledge of the mechanisms underlying some nuclear speckleopathies, such as ZTTK syndrome, NKAP-related syndrome, TARP syndrome, and TAR syndrome, are discussed. These nuclear speckleopathies represent valuable models to understand the basic function of nuclear speckles and how its functional defects result in human developmental disorders.
Collapse
Affiliation(s)
- Kelly E Regan-Fendt
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA, USA
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Laboratory of Rare Disease Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Werren EA, LaForce GR, Srivastava A, Perillo DR, Li S, Johnson K, Baris S, Berger B, Regan SL, Pfennig CD, de Munnik S, Pfundt R, Hebbar M, Jimenez-Heredia R, Karakoc-Aydiner E, Ozen A, Dmytrus J, Krolo A, Corning K, Prijoles EJ, Louie RJ, Lebel RR, Le TL, Amiel J, Gordon CT, Boztug K, Girisha KM, Shukla A, Bielas SL, Schaffer AE. TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome. Nat Commun 2024; 15:1640. [PMID: 38388531 PMCID: PMC10884030 DOI: 10.1038/s41467-024-45948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
THOC6 variants are the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 is critical for mammalian Transcription Export complex (TREX) tetramer formation, which is composed of four six-subunit THO monomers. The TREX tetramer facilitates mammalian RNA processing, in addition to the nuclear mRNA export functions of the TREX dimer conserved through yeast. Human and mouse TIDS model systems revealed novel THOC6-dependent, species-specific TREX tetramer functions. Germline biallelic Thoc6 loss-of-function (LOF) variants result in mouse embryonic lethality. Biallelic THOC6 LOF variants reduce the binding affinity of ALYREF to THOC5 without affecting the protein expression of TREX members, implicating impaired TREX tetramer formation. Defects in RNA nuclear export functions were not detected in biallelic THOC6 LOF human neural cells. Instead, mis-splicing was detected in human and mouse neural tissue, revealing novel THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for key signaling pathways known to regulate the transition from proliferative to neurogenic divisions during human corticogenesis. Together, these findings implicate altered RNA processing in the developmental biology of TIDS neuropathology.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Geneva R LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Anshika Srivastava
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Delia R Perillo
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Shaokun Li
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Katherine Johnson
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Brandon Berger
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Samantha L Regan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Christian D Pfennig
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, Nijmegen, 6524, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, Nijmegen, 6524, the Netherlands
| | - Malavika Hebbar
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 98195, Seattle, WA, USA
| | - Raúl Jimenez-Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Jasmin Dmytrus
- Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
| | - Ken Corning
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - E J Prijoles
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | | | - Robert Roger Lebel
- Section of Medical Genetics, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thuy-Linh Le
- Imagine Institute, INSERM U1163, Paris Cité University, Paris, 75015, France
| | - Jeanne Amiel
- Imagine Institute, INSERM U1163, Paris Cité University, Paris, 75015, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, Paris, 75015, France
| | | | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
- Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, 1090, Austria
- St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, 1090, Austria
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
11
|
Bhattacharjee R, Jolly LA, Corbett MA, Wee IC, Rao SR, Gardner AE, Ritchie T, van Hugte EJH, Ciptasari U, Piltz S, Noll JE, Nazri N, van Eyk CL, White M, Fornarino D, Poulton C, Baynam G, Collins-Praino LE, Snel MF, Nadif Kasri N, Hemsley KM, Thomas PQ, Kumar R, Gecz J. Compromised transcription-mRNA export factor THOC2 causes R-loop accumulation, DNA damage and adverse neurodevelopment. Nat Commun 2024; 15:1210. [PMID: 38331934 PMCID: PMC10853216 DOI: 10.1038/s41467-024-45121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.
Collapse
Affiliation(s)
- Rudrarup Bhattacharjee
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lachlan A Jolly
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mark A Corbett
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ing Chee Wee
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sushma R Rao
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Proteomics, Metabolomics and MS-imaging Core Facility, South Australian Health and Medical Research Institute, and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alison E Gardner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tarin Ritchie
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Eline J H van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Ummi Ciptasari
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Sandra Piltz
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Jacqueline E Noll
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide and Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Nazzmer Nazri
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Melissa White
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Dani Fornarino
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cathryn Poulton
- Undiagnosed Diseases Program, Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
| | - Gareth Baynam
- Undiagnosed Diseases Program, Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- Rare Care Centre, Perth Children's Hospital, Nedlands, WA, 6009, Australia
| | - Lyndsey E Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Marten F Snel
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Proteomics, Metabolomics and MS-imaging Core Facility, South Australian Health and Medical Research Institute, and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Kim M Hemsley
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Paul Q Thomas
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Raman Kumar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
12
|
Palazzo AF, Qiu Y, Kang YM. mRNA nuclear export: how mRNA identity features distinguish functional RNAs from junk transcripts. RNA Biol 2024; 21:1-12. [PMID: 38091265 PMCID: PMC10732640 DOI: 10.1080/15476286.2023.2293339] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The division of the cellular space into nucleoplasm and cytoplasm promotes quality control mechanisms that prevent misprocessed mRNAs and junk RNAs from gaining access to the translational machinery. Here, we explore how properly processed mRNAs are distinguished from both misprocessed mRNAs and junk RNAs by the presence or absence of various 'identity features'.
Collapse
Affiliation(s)
| | - Yi Qiu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yoon Mo Kang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Roth JF, Braunschweig U, Wu M, Li JD, Lin ZY, Larsen B, Weatheritt RJ, Gingras AC, Blencowe BJ. Systematic analysis of alternative exon-dependent interactome remodeling reveals multitasking functions of gene regulatory factors. Mol Cell 2023; 83:4222-4238.e10. [PMID: 38065061 DOI: 10.1016/j.molcel.2023.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/09/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
Alternative splicing significantly expands biological complexity, particularly in the vertebrate nervous system. Increasing evidence indicates that developmental and tissue-dependent alternative exons often control protein-protein interactions; yet, only a minor fraction of these events have been characterized. Using affinity purification-mass spectrometry (AP-MS), we show that approximately 60% of analyzed neural-differential exons in proteins previously implicated in transcriptional regulation result in the gain or loss of interaction partners, which in some cases form unexpected links with coupled processes. Notably, a neural exon in Chtop regulates its interaction with the Prmt1 methyltransferase and DExD-Box helicases Ddx39b/a, affecting its methylation and activity in promoting RNA export. Additionally, a neural exon in Sap30bp affects interactions with RNA processing factors, modulating a critical function of Sap30bp in promoting the splicing of <100 nt "mini-introns" that control nuclear RNA levels. AP-MS is thus a powerful approach for elucidating the multifaceted functions of proteins imparted by context-dependent alternative exons.
Collapse
Affiliation(s)
- Jonathan F Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Mingkun Wu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jack Daiyang Li
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Robert J Weatheritt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
14
|
Sung HM, Schott J, Boss P, Lehmann JA, Hardt MR, Lindner D, Messens J, Bogeski I, Ohler U, Stoecklin G. Stress-induced nuclear speckle reorganization is linked to activation of immediate early gene splicing. J Cell Biol 2023; 222:e202111151. [PMID: 37956386 PMCID: PMC10641589 DOI: 10.1083/jcb.202111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/13/2023] [Accepted: 09/29/2023] [Indexed: 11/15/2023] Open
Abstract
Current models posit that nuclear speckles (NSs) serve as reservoirs of splicing factors and facilitate posttranscriptional mRNA processing. Here, we discovered that ribotoxic stress induces a profound reorganization of NSs with enhanced recruitment of factors required for splice-site recognition, including the RNA-binding protein TIAR, U1 snRNP proteins and U2-associated factor 65, as well as serine 2 phosphorylated RNA polymerase II. NS reorganization relies on the stress-activated p38 mitogen-activated protein kinase (MAPK) pathway and coincides with splicing activation of both pre-existing and newly synthesized pre-mRNAs. In particular, ribotoxic stress causes targeted excision of retained introns from pre-mRNAs of immediate early genes (IEGs), whose transcription is induced during the stress response. Importantly, enhanced splicing of the IEGs ZFP36 and FOS is accompanied by relocalization of the corresponding nuclear mRNA foci to NSs. Our study reveals NSs as a dynamic compartment that is remodeled under stress conditions, whereby NSs appear to become sites of IEG transcription and efficient cotranscriptional splicing.
Collapse
Affiliation(s)
- Hsu-Min Sung
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Johanna Schott
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Philipp Boss
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Biology, Humboldt University, Berlin, Germany
| | - Janina A. Lehmann
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Marius Roland Hardt
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Doris Lindner
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Joris Messens
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Biology, Humboldt University, Berlin, Germany
| | - Georg Stoecklin
- Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
15
|
Takakuwa H, Yamazaki T, Souquere S, Adachi S, Yoshino H, Fujiwara N, Yamamoto T, Natsume T, Nakagawa S, Pierron G, Hirose T. Shell protein composition specified by the lncRNA NEAT1 domains dictates the formation of paraspeckles as distinct membraneless organelles. Nat Cell Biol 2023; 25:1664-1675. [PMID: 37932453 DOI: 10.1038/s41556-023-01254-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 09/12/2023] [Indexed: 11/08/2023]
Abstract
Many membraneless organelles (MLOs) formed through phase separation play crucial roles in various cellular processes. Although these MLOs co-exist in cells, how they maintain their independence without coalescence or engulfment remains largely unknown. Here, we investigated the molecular mechanism by which paraspeckles with core-shell architecture scaffolded by NEAT1_2 long noncoding RNAs exist as distinct MLOs. We identified NEAT1 deletion mutants that assemble paraspeckles that are incorporated into nuclear speckles. Several paraspeckle proteins, including SFPQ, HNRNPF and BRG1, prevent this incorporation and thus contribute to the segregation of paraspeckles from nuclear speckles. Shell localization of these proteins in the paraspeckles, which is determined by NEAT1_2 long noncoding RNA domains, is required for this segregation process. Conversely, U2-related spliceosomal proteins are involved in internalizing the paraspeckles into nuclear speckles. This study shows that the paraspeckle shell composition dictates the independence of MLOs in the nucleus, providing insights into the importance of the shell in defining features and functions of MLOs.
Collapse
Affiliation(s)
- Hiro Takakuwa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| | | | - Shungo Adachi
- Department of Proteomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hyura Yoshino
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Naoko Fujiwara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan
| | - Tohru Natsume
- Cellular and Molecular Biotechnology Research Institute, National Institute for Advanced Industrial Science and Technology, Tokyo, Japan
| | - Shinichi Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Gerard Pierron
- Centre National de la Recherche Scientifique, UMR-9196, Gustave Roussy, Villejuif, France
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
16
|
Eichenberger BT, Griesbach E, Mitchell J, Chao JA. Following the Birth, Life, and Death of mRNAs in Single Cells. Annu Rev Cell Dev Biol 2023; 39:253-275. [PMID: 37843928 DOI: 10.1146/annurev-cellbio-022723-024045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Recent advances in single-molecule imaging of mRNAs in fixed and living cells have enabled the lives of mRNAs to be studied with unprecedented spatial and temporal detail. These approaches have moved beyond simply being able to observe specific events and have begun to allow an understanding of how regulation is coupled between steps in the mRNA life cycle. Additionally, these methodologies are now being applied in multicellular systems and animals to provide more nuanced insights into the physiological regulation of RNA metabolism.
Collapse
Affiliation(s)
- Bastian T Eichenberger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
- University of Basel, Basel, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| | - Jessica Mitchell
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| |
Collapse
|
17
|
Werren E, LaForce G, Srivastava A, Perillo D, Johnson K, Berger B, Regan S, Pfennig C, Baris S, de Munnik S, Pfundt R, Hebbar M, Jimenez Heredia R, Karakoc-Aydiner E, Ozen A, Dmytrus J, Krolo A, Corning K, Prijoles E, Louie R, Lebel R, Le TL, Amiel J, Gordon C, Boztug K, Girisha K, Shukla A, Bielas S, Schaffer A. Mechanisms of mRNA processing defects in inherited THOC6 intellectual disability syndrome. RESEARCH SQUARE 2023:rs.3.rs-2126145. [PMID: 37720017 PMCID: PMC10503840 DOI: 10.21203/rs.3.rs-2126145/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
THOC6 is the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 facilitates the formation of the Transcription Export complex (TREX) tetramer, composed of four THO monomers. The TREX tetramer supports mammalian mRNA processing that is distinct from yeast TREX dimer functions. Human and mouse TIDS model systems allow novel THOC6-dependent TREX tetramer functions to be investigated. Biallelic loss-of-functon(LOF) THOC6 variants do not influence the expression and localization of TREX members in human cells, but our data suggests reduced binding affinity of ALYREF. Impairment of TREX nuclear export functions were not detected in cells with biallelic THOC6 LOF. Instead, mRNA mis-splicing was observed in human and mouse neural tissue, revealing novel insights into THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for regulation of key signaling pathways in human corticogenesis that dictate the transition from proliferative to neurogenic divisions that may inform TIDS neuropathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jasmin Dmytrus
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
| | | | | | | | | | - Thuy-Linh Le
- Imagine Institute, INSERM U1163, Paris Descartes University
| | | | - Christopher Gordon
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
| | - Katta Girisha
- Kasturba Medical College, Manipal, Manipal Academy of Higher Education
| | | | | | | |
Collapse
|
18
|
Xiao W, Yeom KH, Lin CH, Black DL. Improved enzymatic labeling of fluorescent in situ hybridization probes applied to the visualization of retained introns in cells. RNA (NEW YORK, N.Y.) 2023; 29:1274-1287. [PMID: 37130703 PMCID: PMC10351894 DOI: 10.1261/rna.079591.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
Fluorescence in situ hybridization (FISH) is a widely used tool for quantifying gene expression and determining the location of RNA molecules in cells. We present an improved method for FISH probe production that yields high-purity probes with a wide range of fluorophores using standard laboratory equipment at low cost. The method modifies an earlier protocol that uses terminal deoxynucleotidyl transferase to add fluorescently labeled nucleotides to synthetic deoxyoligonucleotides. In our protocol, amino-11-ddUTP is joined to an oligonucleotide pool prior to its conjugation to a fluorescent dye, thereby generating pools of probes ready for a variety of modifications. This order of reaction steps allows for high labeling efficiencies regardless of the GC content or terminal base of the oligonucleotides. The degree of labeling (DOL) for spectrally distinct fluorophores (Quasar, ATTO, and Alexa dyes) was mostly >90%, comparable with commercial probes. The ease and low cost of production allowed the generation of probe sets targeting a wide variety of RNA molecules. Using these probes, FISH assays in C2C12 cells showed the expected subcellular localization of mRNAs and pre-mRNAs for Polr2a (RNA polymerase II subunit 2a) and Gapdh, and of the long noncoding RNAs Malat1 and Neat1 Developing FISH probe sets for several transcripts containing retained introns, we found that retained introns in the Gabbr1 and Noc2l transcripts are present in subnuclear foci separate from their sites of synthesis and partially coincident with nuclear speckles. This labeling protocol should have many applications in RNA biology.
Collapse
Affiliation(s)
- Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Kyu-Hyeon Yeom
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
19
|
Wu S, Chen J, Teo BHD, Wee SYK, Wong MHM, Cui J, Chen J, Leong KP, Lu J. The axis of complement C1 and nucleolus in antinuclear autoimmunity. Front Immunol 2023; 14:1196544. [PMID: 37359557 PMCID: PMC10288996 DOI: 10.3389/fimmu.2023.1196544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Antinuclear autoantibodies (ANA) are heterogeneous self-reactive antibodies that target the chromatin network, the speckled, the nucleoli, and other nuclear regions. The immunological aberration for ANA production remains partially understood, but ANA are known to be pathogenic, especially, in systemic lupus erythematosus (SLE). Most SLE patients exhibit a highly polygenic disease involving multiple organs, but in rare complement C1q, C1r, or C1s deficiencies, the disease can become largely monogenic. Increasing evidence point to intrinsic autoimmunogenicity of the nuclei. Necrotic cells release fragmented chromatins as nucleosomes and the alarmin HMGB1 is associated with the nucleosomes to activate TLRs and confer anti-chromatin autoimmunogenecity. In speckled regions, the major ANA targets Sm/RNP and SSA/Ro contain snRNAs that confer autoimmunogenecity to Sm/RNP and SSA/Ro antigens. Recently, three GAR/RGG-containing alarmins have been identified in the nucleolus that helps explain its high autoimmunogenicity. Interestingly, C1q binds to the nucleoli exposed by necrotic cells to cause protease C1r and C1s activation. C1s cleaves HMGB1 to inactive its alarmin activity. C1 proteases also degrade many nucleolar autoantigens including nucleolin, a major GAR/RGG-containing autoantigen and alarmin. It appears that the different nuclear regions are intrinsically autoimmunogenic by containing autoantigens and alarmins. However, the extracellular complement C1 complex function to dampen nuclear autoimmunogenecity by degrading these nuclear proteins.
Collapse
Affiliation(s)
- Shan Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Junjie Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Boon Heng Dennis Teo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Seng Yin Kelly Wee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ming Hui Millie Wong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianzhou Cui
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinmiao Chen
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Khai Pang Leong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jinhua Lu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Street L, Rothamel K, Brannan K, Jin W, Bokor B, Dong K, Rhine K, Madrigal A, Al-Azzam N, Kim JK, Ma Y, Abdou A, Wolin E, Doron-Mandel E, Ahdout J, Mujumdar M, Jovanovic M, Yeo GW. Large-scale map of RNA binding protein interactomes across the mRNA life-cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544225. [PMID: 37333282 PMCID: PMC10274859 DOI: 10.1101/2023.06.08.544225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Messenger RNAs (mRNAs) interact with RNA-binding proteins (RBPs) in diverse ribonucleoprotein complexes (RNPs) during distinct life-cycle stages for their processing and maturation. While substantial attention has focused on understanding RNA regulation by assigning proteins, particularly RBPs, to specific RNA substrates, there has been considerably less exploration leveraging protein-protein interaction (PPI) methodologies to identify and study the role of proteins in mRNA life-cycle stages. To address this gap, we generated an RNA-aware RBP-centric PPI map across the mRNA life-cycle by immunopurification (IP-MS) of ~100 endogenous RBPs across the life-cycle in the presence or absence of RNase, augmented by size exclusion chromatography (SEC-MS). Aside from confirming 8,700 known and discovering 20,359 novel interactions between 1125 proteins, we determined that 73% of our IP interactions are regulated by the presence of RNA. Our PPI data enables us to link proteins to life-cycle stage functions, highlighting that nearly half of the proteins participate in at least two distinct stages. We show that one of the most highly interconnected proteins, ERH, engages in multiple RNA processes, including via interactions with nuclear speckles and the mRNA export machinery. We also demonstrate that the spliceosomal protein SNRNP200 participates in distinct stress granule-associated RNPs and occupies different RNA target regions in the cytoplasm during stress. Our comprehensive RBP-focused PPI network is a novel resource for identifying multi-stage RBPs and exploring RBP complexes in RNA maturation.
Collapse
Affiliation(s)
- Lena Street
- These authors contributed equally
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katherine Rothamel
- These authors contributed equally
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kristopher Brannan
- These authors contributed equally
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Benjamin Bokor
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kevin Dong
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kevin Rhine
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Assael Madrigal
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Norah Al-Azzam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yanzhe Ma
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ahmed Abdou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Erica Wolin
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Joshua Ahdout
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mayuresh Mujumdar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
22
|
DEAD-box ATPases as regulators of biomolecular condensates and membrane-less organelles. Trends Biochem Sci 2023; 48:244-258. [PMID: 36344372 DOI: 10.1016/j.tibs.2022.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
RNA-dependent DEAD-box ATPases (DDXs) are emerging as major regulators of RNA-containing membrane-less organelles (MLOs). On the one hand, oligomerizing DDXs can promote condensate formation 'in cis', often using RNA as a scaffold. On the other hand, DDXs can disrupt RNA-RNA and RNA-protein interactions and thereby 'in trans' remodel the multivalent interactions underlying MLO formation. In this review, we discuss the best studied examples of DDXs modulating MLOs in cis and in trans. Further, we illustrate how this contributes to the dynamic assembly and turnover of MLOs which might help cells to modulate RNA sequestration and processing in a temporal and spatial manner.
Collapse
|
23
|
Esparza M, Bhat P, Fontoura BMA. Viral-host interactions during splicing and nuclear export of influenza virus mRNAs. Curr Opin Virol 2022; 55:101254. [PMID: 35908311 PMCID: PMC9945342 DOI: 10.1016/j.coviro.2022.101254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
As influenza-A viruses (IAV) replicate in the host cell nucleus, intranuclear pathways are usurped for viral gene expression. The eight genomic viral ribonucleoproteins (vRNPs) segments of IAV are transcribed and two generate viral mRNAs (M and NS) that undergo alternative splicing followed by export from the nucleus. The focus of this review is on viral RNA splicing and nuclear export. Recent mechanistic advances on M and NS splicing show differential regulation by RNA-binding proteins as well as distinct intranuclear localization. After a review of IAV splicing, we will discuss the nuclear export of viral mRNAs, which occur by interacting with specific constituents of the host mRNA export machinery that translocate viral mRNAs through the nuclear pore complex for translation in the cytoplasm.
Collapse
|
24
|
Kaczynski TJ, Au ED, Farkas MH. Exploring the lncRNA localization landscape within the retinal pigment epithelium under normal and stress conditions. BMC Genomics 2022; 23:539. [PMID: 35883037 PMCID: PMC9327364 DOI: 10.1186/s12864-022-08777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are emerging as a class of genes whose importance has yet to be fully realized. It is becoming clear that the primary function of lncRNAs is to regulate gene expression, and they do so through a variety of mechanisms that are critically tied to their subcellular localization. Although most lncRNAs are poorly understood, mapping lncRNA subcellular localization can provide a foundation for understanding these mechanisms. RESULTS Here, we present an initial step toward uncovering the localization landscape of lncRNAs in the human retinal pigment epithelium (RPE) using high throughput RNA-Sequencing (RNA-Seq). To do this, we differentiated human induced pluripotent stem cells (iPSCs) into RPE, isolated RNA from nuclear and cytoplasmic fractions, and performed RNA-Seq on both. Furthermore, we investigated lncRNA localization changes that occur in response to oxidative stress. We discovered that, under normal conditions, most lncRNAs are seen in both the nucleus and the cytoplasm to a similar degree, but of the transcripts that are highly enriched in one compartment, far more are nuclear than cytoplasmic. Interestingly, under oxidative stress conditions, we observed an increase in lncRNA localization in both nuclear and cytoplasmic fractions. In addition, we found that nuclear localization was partially attributable to the presence of previously described nuclear retention motifs, while adenosine to inosine (A-to-I) RNA editing appeared to play a very minimal role. CONCLUSIONS Our findings map lncRNA localization in the RPE and provide two avenues for future research: 1) how lncRNAs function in the RPE, and 2) how one environmental factor, in isolation, may potentially play a role in retinal disease pathogenesis through altered lncRNA localization.
Collapse
Affiliation(s)
- Tadeusz J Kaczynski
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY, USA
- Research Service, VA Medical Center, Buffalo, NY, USA
| | - Elizabeth D Au
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Michael H Farkas
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY, USA.
- Research Service, VA Medical Center, Buffalo, NY, USA.
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
25
|
A critical update on the strategies towards small molecule inhibitors targeting Serine/arginine-rich (SR) proteins and Serine/arginine-rich proteins related kinases in alternative splicing. Bioorg Med Chem 2022; 70:116921. [PMID: 35863237 DOI: 10.1016/j.bmc.2022.116921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
>90% of genes in the human body undergo alternative splicing (AS) after transcription, which enriches protein species and regulates protein levels. However, there is growing evidence that various genetic isoforms resulting from dysregulated alternative splicing are prevalent in various types of cancers. Dysregulated alternative splicing leads to cancer generation and maintenance of cancer properties such as proliferation differentiation, apoptosis inhibition, invasion metastasis, and angiogenesis. Serine/arginine-rich proteins and SR protein-associated kinases mediate splice site recognition and splice complex assembly during variable splicing. Based on the impact of dysregulated alternative splicing on disease onset and progression, the search for small molecule inhibitors targeting alternative splicing is imminent. In this review, we discuss the structure and specific biological functions of SR proteins and describe the regulation of SR protein function by SR protein related kinases meticulously, which are closely related to the occurrence and development of various types of cancers. On this basis, we summarize the reported small molecule inhibitors targeting SR proteins and SR protein related kinases from the perspective of medicinal chemistry. We mainly categorize small molecule inhibitors from four aspects, including targeting SR proteins, targeting Serine/arginine-rich protein-specific kinases (SRPKs), targeting Cdc2-like kinases (CLKs) and targeting dual-specificity tyrosine-regulated kinases (DYRKs), in terms of structure, inhibition target, specific mechanism of action, biological activity, and applicable diseases. With this review, we are expected to provide a timely summary of recent advances in alternative splicing regulated by kinases and a preliminary introduction to relevant small molecule inhibitors.
Collapse
|
26
|
Faber GP, Nadav-Eliyahu S, Shav-Tal Y. Nuclear speckles - a driving force in gene expression. J Cell Sci 2022; 135:275909. [PMID: 35788677 DOI: 10.1242/jcs.259594] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear speckles are dynamic membraneless bodies located in the cell nucleus. They harbor RNAs and proteins, many of which are splicing factors, that together display complex biophysical properties dictating nuclear speckle formation and maintenance. Although these nuclear bodies were discovered decades ago, only recently has in-depth genomic analysis begun to unravel their essential functions in modulation of gene activity. Major advancements in genomic mapping techniques combined with microscopy approaches have enabled insights into the roles nuclear speckles may play in enhancing gene expression, and how gene positioning to specific nuclear landmarks can regulate gene expression and RNA processing. Some studies have drawn a link between nuclear speckles and disease. Certain maladies either involve nuclear speckles directly or dictate the localization and reorganization of many nuclear speckle factors. This is most striking during viral infection, as viruses alter the entire nuclear architecture and highjack host machinery. As discussed in this Review, nuclear speckles represent a fascinating target of study not only to reveal the links between gene positioning, genome subcompartments and gene activity, but also as a potential target for therapeutics.
Collapse
Affiliation(s)
- Gabriel P Faber
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shani Nadav-Eliyahu
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
27
|
Gao S, Esparza M, Dehghan I, Aksenova V, Zhang K, Batten K, Ferretti MB, Begg BE, Cagatay T, Shay JW, García-Sastre A, Goldsmith EJ, Chen ZJ, Dasso M, Lynch KW, Cobb MH, Fontoura BMA. Nuclear speckle integrity and function require TAO2 kinase. Proc Natl Acad Sci U S A 2022; 119:e2206046119. [PMID: 35704758 PMCID: PMC9231605 DOI: 10.1073/pnas.2206046119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Nuclear speckles are non-membrane-bound organelles known as storage sites for messenger RNA (mRNA) processing and splicing factors. More recently, nuclear speckles have also been implicated in splicing and export of a subset of mRNAs, including the influenza virus M mRNA that encodes proteins required for viral entry, trafficking, and budding. However, little is known about how nuclear speckles are assembled or regulated. Here, we uncovered a role for the cellular protein kinase TAO2 as a constituent of nuclear speckles and as a factor required for the integrity of these nuclear bodies and for their functions in pre-mRNA splicing and trafficking. We found that a nuclear pool of TAO2 is localized at nuclear speckles and interacts with nuclear speckle factors involved in RNA splicing and nuclear export, including SRSF1 and Aly/Ref. Depletion of TAO2 or inhibition of its kinase activity disrupts nuclear speckle structure, decreasing the levels of several proteins involved in nuclear speckle assembly and splicing, including SC35 and SON. Consequently, splicing and nuclear export of influenza virus M mRNA were severely compromised and caused a disruption in the virus life cycle. In fact, low levels of TAO2 led to a decrease in viral protein levels and inhibited viral replication. Additionally, depletion or inhibition of TAO2 resulted in abnormal expression of a subset of mRNAs with key roles in viral replication and immunity. Together, these findings uncovered a function of TAO2 in nuclear speckle formation and function and revealed host requirements and vulnerabilities for influenza infection.
Collapse
Affiliation(s)
- Shengyan Gao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Matthew Esparza
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ishmael Dehghan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Ke Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kimberly Batten
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Max B. Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104
| | - Bridget E. Begg
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104
| | - Tolga Cagatay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jerry W. Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Elizabeth J. Goldsmith
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhijian J. Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Kristen W. Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104
| | - Melanie H. Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Beatriz M. A. Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
28
|
Lee ES, Smith HW, Wolf EJ, Guvenek A, Wang YE, Emili A, Tian B, Palazzo AF. ZFC3H1 and U1-70K promote the nuclear retention of mRNAs with 5' splice site motifs within nuclear speckles. RNA (NEW YORK, N.Y.) 2022; 28:878-894. [PMID: 35351812 PMCID: PMC9074902 DOI: 10.1261/rna.079104.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/12/2022] [Indexed: 05/22/2023]
Abstract
Quality control of mRNA represents an important regulatory mechanism for gene expression in eukaryotes. One component of this quality control is the nuclear retention and decay of misprocessed RNAs. Previously, we demonstrated that mature mRNAs containing a 5' splice site (5'SS) motif, which is typically found in misprocessed RNAs such as intronic polyadenylated (IPA) transcripts, are nuclear retained and degraded. Using high-throughput sequencing of cellular fractions, we now demonstrate that IPA transcripts require the zinc finger protein ZFC3H1 for their nuclear retention and degradation. Using reporter mRNAs, we demonstrate that ZFC3H1 promotes the nuclear retention of mRNAs with intact 5'SS motifs by sequestering them into nuclear speckles. Furthermore, we find that U1-70K, a component of the spliceosomal U1 snRNP, is also required for the nuclear retention of these reporter mRNAs and likely functions in the same pathway as ZFC3H1. Finally, we show that the disassembly of nuclear speckles impairs the nuclear retention of reporter mRNAs with 5'SS motifs. Our results highlight a splicing independent role of U1 snRNP and indicate that it works in conjunction with ZFC3H1 in preventing the nuclear export of misprocessed mRNAs by sequestering them into nuclear speckles.
Collapse
Affiliation(s)
- Eliza S Lee
- Department of Biochemistry, University of Toronto, Ontario M5S 1A8, Canada
| | - Harrison W Smith
- Department of Biochemistry, University of Toronto, Ontario M5S 1A8, Canada
| | - Eric J Wolf
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Aysegul Guvenek
- Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Yifan E Wang
- Department of Biochemistry, University of Toronto, Ontario M5S 1A8, Canada
| | - Andrew Emili
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Bin Tian
- Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
29
|
Wang YH, Sheetz MP. When PIP 2 Meets p53: Nuclear Phosphoinositide Signaling in the DNA Damage Response. Front Cell Dev Biol 2022; 10:903994. [PMID: 35646908 PMCID: PMC9136457 DOI: 10.3389/fcell.2022.903994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanisms that maintain genome stability are critical for preventing tumor progression. In the past decades, many strategies were developed for cancer treatment to disrupt the DNA repair machinery or alter repair pathway selection. Evidence indicates that alterations in nuclear phosphoinositide lipids occur rapidly in response to genotoxic stresses. This implies that nuclear phosphoinositides are an upstream element involved in DNA damage signaling. Phosphoinositides constitute a new signaling interface for DNA repair pathway selection and hence a new opportunity for developing cancer treatment strategies. However, our understanding of the underlying mechanisms by which nuclear phosphoinositides regulate DNA damage repair, and particularly the dynamics of those processes, is rather limited. This is partly because there are a limited number of techniques that can monitor changes in the location and/or abundance of nuclear phosphoinositide lipids in real time and in live cells. This review summarizes our current knowledge regarding the roles of nuclear phosphoinositides in DNA damage response with an emphasis on the dynamics of these processes. Based upon recent findings, there is a novel model for p53's role with nuclear phosphoinositides in DNA damage response that provides new targets for synthetic lethality of tumors.
Collapse
Affiliation(s)
| | - Michael P. Sheetz
- Biochemistry and Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
30
|
Kow RL, Black AH, Saxton AD, Liachko NF, Kraemer BC. Loss of aly/ALYREF suppresses toxicity in both tau and TDP-43 models of neurodegeneration. GeroScience 2022; 44:747-761. [PMID: 35122183 PMCID: PMC9135935 DOI: 10.1007/s11357-022-00526-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/27/2022] [Indexed: 11/04/2022] Open
Abstract
Neurodegenerative diseases with tau pathology, or tauopathies, include Alzheimer's disease and related dementia disorders. Previous work has shown that loss of the poly(A) RNA-binding protein gene sut-2/MSUT2 strongly suppressed tauopathy in Caenorhabditis elegans, human cell culture, and mouse models of tauopathy. However, the mechanism of suppression is still unclear. Recent work has shown that MSUT2 protein interacts with the THO complex and ALYREF, which are components of the mRNA nuclear export complex. Additionally, previous work showed ALYREF homolog Ref1 modulates TDP-43 and G4C2 toxicity in Drosophila melanogaster models. We used transgenic C. elegans models of tau or TDP-43 toxicity to investigate the effects of loss of ALYREF function on tau and TDP-43 toxicity. In C. elegans, three genes are homologous to human ALYREF: aly-1, aly-2, and aly-3. We found that loss of C. elegans aly gene function, especially loss of both aly-2 and aly-3, suppressed tau-induced toxic phenotypes. Loss of aly-2 and aly-3 was also able to suppress TDP-43-induced locomotor behavior deficits. However, loss of aly-2 and aly-3 had divergent effects on mRNA and protein levels as total tau protein levels were reduced while mRNA levels were increased, but no significant effects were seen on total TDP-43 protein or mRNA levels. Our results suggest that although aly genes modulate both tau and TDP-43-induced toxicity phenotypes, the molecular mechanisms of suppression are different and separated from impacts on mRNA and protein levels. Altogether, this study highlights the importance of elucidating RNA-related mechanisms in both tau and TDP-43-induced toxicity.
Collapse
Affiliation(s)
- Rebecca L Kow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA.
| | - Aristide H Black
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
| | - Aleen D Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
| | - Nicole F Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA
| | - Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
31
|
Weis K, Hondele M. The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates. Annu Rev Biochem 2022; 91:197-219. [PMID: 35303788 DOI: 10.1146/annurev-biochem-032620-105429] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DEAD-box ATPases constitute a very large protein family present in all cells, often in great abundance. From bacteria to humans, they play critical roles in many aspects of RNA metabolism, and due to their widespread importance in RNA biology, they have been characterized in great detail at both the structural and biochemical levels. DEAD-box proteins function as RNA-dependent ATPases that can unwind short duplexes of RNA, remodel ribonucleoprotein (RNP) complexes, or act as clamps to promote RNP assembly. Yet, it often remains enigmatic how individual DEAD-box proteins mechanistically contribute to specific RNA-processing steps. Here, we review the role of DEAD-box ATPases in the regulation of gene expression and propose that one common function of these enzymes is in the regulation of liquid-liquid phase separation of RNP condensates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Karsten Weis
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland;
| | - Maria Hondele
- Biozentrum, University of Basel, Basel, Switzerland;
| |
Collapse
|
32
|
Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns. Mol Cell 2022; 82:1035-1052.e9. [PMID: 35182477 DOI: 10.1016/j.molcel.2021.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022]
Abstract
The nucleus is highly compartmentalized through the formation of distinct classes of membraneless domains. However, the composition and function of many of these structures are not well understood. Using APEX2-mediated proximity labeling and RNA sequencing, we surveyed human transcripts associated with nuclear speckles, several additional domains, and the lamina. Remarkably, speckles and lamina are associated with distinct classes of retained introns enriched in genes that function in RNA processing, translation, and the cell cycle, among other processes. In contrast to the lamina-proximal introns, retained introns associated with speckles are relatively short, GC-rich, and enriched for functional sites of RNA-binding proteins that are concentrated in these domains. They are also highly differentially regulated across diverse cellular contexts, including the cell cycle. Thus, our study provides a resource of nuclear domain-associated transcripts and further reveals speckles and lamina as hubs of distinct populations of retained introns linked to gene regulation and cell cycle progression.
Collapse
|
33
|
Maron MI, Casill AD, Gupta V, Roth JS, Sidoli S, Query CC, Gamble MJ, Shechter D. Type I and II PRMTs inversely regulate post-transcriptional intron detention through Sm and CHTOP methylation. eLife 2022; 11:e72867. [PMID: 34984976 PMCID: PMC8765754 DOI: 10.7554/elife.72867] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are required for the regulation of RNA processing factors. Type I PRMT enzymes catalyze mono- and asymmetric dimethylation; Type II enzymes catalyze mono- and symmetric dimethylation. To understand the specific mechanisms of PRMT activity in splicing regulation, we inhibited Type I and II PRMTs and probed their transcriptomic consequences. Using the newly developed Splicing Kinetics and Transcript Elongation Rates by Sequencing (SKaTER-seq) method, analysis of co-transcriptional splicing demonstrated that PRMT inhibition resulted in altered splicing rates. Surprisingly, co-transcriptional splicing kinetics did not correlate with final changes in splicing of polyadenylated RNA. This was particularly true for retained introns (RI). By using actinomycin D to inhibit ongoing transcription, we determined that PRMTs post-transcriptionally regulate RI. Subsequent proteomic analysis of both PRMT-inhibited chromatin and chromatin-associated polyadenylated RNA identified altered binding of many proteins, including the Type I substrate, CHTOP, and the Type II substrate, SmB. Targeted mutagenesis of all methylarginine sites in SmD3, SmB, and SmD1 recapitulated splicing changes seen with Type II PRMT inhibition, without disrupting snRNP assembly. Similarly, mutagenesis of all methylarginine sites in CHTOP recapitulated the splicing changes seen with Type I PRMT inhibition. Examination of subcellular fractions further revealed that RI were enriched in the nucleoplasm and chromatin. Taken together, these data demonstrate that, through Sm and CHTOP arginine methylation, PRMTs regulate the post-transcriptional processing of nuclear, detained introns.
Collapse
Affiliation(s)
- Maxim I Maron
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Alyssa D Casill
- Department of Molecular Pharmacology, Albert Einstein College of MedicineBronxUnited States
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Jacob S Roth
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Charles C Query
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Matthew J Gamble
- Department of Molecular Pharmacology, Albert Einstein College of MedicineBronxUnited States
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
34
|
Lin Y, Fang X. Phase separation in RNA biology. J Genet Genomics 2021; 48:872-880. [PMID: 34371110 DOI: 10.1016/j.jgg.2021.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022]
Abstract
The formation of biomolecular condensates via liquid-liquid phase separation (LLPS) is an advantageous strategy for cells to organize subcellular compartments for diverse functions. The involvement of LLPS is more widespread and overrepresented in RNA-related biological processes. This is in part because that RNAs are intrinsically multivalent macromolecules, and the presence of RNAs affects the formation, dissolution, and biophysical properties of biomolecular condensates formed by LLPS. Emerging studies have illustrated how LLPS participates in RNA transcription, splicing, processing, quality control, translation, and function. The interconnected regulation between LLPS and RNAs ensures tight control of RNA-related cellular functions.
Collapse
Affiliation(s)
- Yi Lin
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Xiaofeng Fang
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
35
|
Lu YY, Krebber H. Nuclear mRNA Quality Control and Cytoplasmic NMD Are Linked by the Guard Proteins Gbp2 and Hrb1. Int J Mol Sci 2021; 22:ijms222011275. [PMID: 34681934 PMCID: PMC8541090 DOI: 10.3390/ijms222011275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 12/23/2022] Open
Abstract
Pre-mRNA splicing is critical for cells, as defects in this process can lead to altered open reading frames and defective proteins, potentially causing neurodegenerative diseases and cancer. Introns are removed in the nucleus and splicing is documented by the addition of exon-junction-complexes (EJCs) at exon-exon boundaries. This “memory” of splicing events is important for the ribosome, which translates the RNAs in the cytoplasm. In case a stop codon was detected before an EJC, translation is blocked and the RNA is eliminated by the nonsense-mediated decay (NMD). In the model organism Saccharomyces cerevisiae, two guard proteins, Gbp2 and Hrb1, have been identified as nuclear quality control factors for splicing. In their absence, intron-containing mRNAs leak into the cytoplasm. Their presence retains transcripts until the process is completed and they release the mRNAs by recruitment of the export factor Mex67. On transcripts that experience splicing problems, these guard proteins recruit the nuclear RNA degradation machinery. Interestingly, they continue their quality control function on exported transcripts. They support NMD by inhibiting translation and recruiting the cytoplasmic degradation factors. In this way, they link the nuclear and cytoplasmic quality control systems. These discoveries are also intriguing for humans, as homologues of these guard proteins are present also in multicellular organisms. Here, we provide an overview of the quality control mechanisms of pre-mRNA splicing, and present Gbp2 and Hrb1, as well as their human counterparts, as important players in these pathways.
Collapse
|
36
|
Phosphor-IWS1-dependent U2AF2 splicing regulates trafficking of CAR-E-positive intronless gene mRNAs and sensitivity to viral infection. Commun Biol 2021; 4:1179. [PMID: 34635782 PMCID: PMC8505486 DOI: 10.1038/s42003-021-02668-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
AKT-phosphorylated IWS1 promotes Histone H3K36 trimethylation and alternative RNA splicing of target genes, including the U2AF65 splicing factor-encoding U2AF2. The predominant U2AF2 transcript, upon IWS1 phosphorylation block, lacks the RS-domain-encoding exon 2, and encodes a protein which fails to bind Prp19. Here we show that although both U2AF65 isoforms bind intronless mRNAs containing cytoplasmic accumulation region elements (CAR-E), only the RS domain-containing U2AF65 recruits Prp19 and promotes their nuclear export. The loading of U2AF65 to CAR-Elements was RS domain-independent, but RNA PolII-dependent. Virus- or poly(I:C)-induced type I IFNs are encoded by genes targeted by the pathway. IWS1 phosphorylation-deficient cells therefore, express reduced levels of IFNα1/IFNβ1 proteins, and exhibit enhanced sensitivity to infection by multiple cytolytic viruses. Enhanced sensitivity of IWS1-deficient cells to Vesicular Stomatitis Virus and Reovirus resulted in enhanced apoptotic cell death via caspase activation. Inhibition of this pathway may therefore sensitize cancer cells to oncolytic viruses.
Collapse
|
37
|
Wang Y, Fan J, Wang J, Zhu Y, Xu L, Tong D, Cheng H. ZFC3H1 prevents RNA trafficking into nuclear speckles through condensation. Nucleic Acids Res 2021; 49:10630-10643. [PMID: 34530450 PMCID: PMC8501945 DOI: 10.1093/nar/gkab774] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 01/23/2023] Open
Abstract
Controlling proper RNA pool for nuclear export is important for accurate gene expression. ZFC3H1 is a key controller that not only facilitates nuclear exosomal degradation, but also retains its bound polyadenylated RNAs in the nucleus upon exosome inactivation. However, how ZFC3H1 retains RNAs and how its roles in RNA retention and degradation are related remain largely unclear. Here, we found that upon degradation inhibition, ZFC3H1 forms nuclear condensates to prevent RNA trafficking to nuclear speckles (NSs) where many RNAs gain export competence. Systematic mapping of ZFC3H1 revealed that it utilizes distinct domains for condensation and RNA degradation. Interestingly, ZFC3H1 condensation activity is required for preventing RNA trafficking to NSs, but not for RNA degradation. Considering that no apparent ZFC3H1 condensates are formed in normal cells, our study suggests that nuclear RNA degradation and retention are two independent mechanisms with different preference for controlling proper export RNA pool—degradation is preferred in normal cells, and condensation retention is activated upon degradation inhibition.
Collapse
Affiliation(s)
- Yimin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Fan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianshu Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Zhu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Deng Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
38
|
Barreiro-Alonso A, Lamas-Maceiras M, Lorenzo-Catoira L, Pardo M, Yu L, Choudhary JS, Cerdán ME. HMGB1 Protein Interactions in Prostate and Ovary Cancer Models Reveal Links to RNA Processing and Ribosome Biogenesis through NuRD, THOC and Septin Complexes. Cancers (Basel) 2021; 13:cancers13184686. [PMID: 34572914 PMCID: PMC8466577 DOI: 10.3390/cancers13184686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary HMGB1 over-expression is associated to prostate and ovary cancers: in this work, using a proteomic approach, we aimed to discover new protein interactions that might contribute to understand the oncogenic function of HMGB1 in cancers models. Our findings show that HMGB1 interacts with components of the NuRD, THOC and septin complexes, revealing new connections of HMGB1 functions to RNA processing and ribosome biogenesis. Results might contribute to consider the components of these interactomes as targets for diagnosis and therapy in future studies. Abstract This study reports the HMGB1 interactomes in prostate and ovary cancer cells lines. Affinity purification coupled to mass spectrometry confirmed that the HMGB1 nuclear interactome is involved in HMGB1 known functions such as maintenance of chromatin stability and regulation of transcription, and also in not as yet reported processes such as mRNA and rRNA processing. We have identified an interaction between HMGB1 and the NuRD complex and validated this by yeast-two-hybrid, confirming that the RBBP7 subunit directly interacts with HMGB1. In addition, we describe for the first time an interaction between two HMGB1 interacting complexes, the septin and THOC complexes, as well as an interaction of these two complexes with Rab11. Analysis of Pan-Cancer Atlas public data indicated that several genes encoding HMGB1-interacting proteins identified in this study are dysregulated in tumours from patients diagnosed with ovary and prostate carcinomas. In PC-3 cells, silencing of HMGB1 leads to downregulation of the expression of key regulators of ribosome biogenesis and RNA processing, namely BOP1, RSS1, UBF1, KRR1 and LYAR. Upregulation of these genes in prostate adenocarcinomas is correlated with worse prognosis, reinforcing their functional significance in cancer progression.
Collapse
Affiliation(s)
- Aida Barreiro-Alonso
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
- Correspondence: (A.B.-A.); (M.E.C.)
| | - Mónica Lamas-Maceiras
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
| | - Mercedes Pardo
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
| | - Lu Yu
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
| | - Jyoti S. Choudhary
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
| | - M. Esperanza Cerdán
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
- Correspondence: (A.B.-A.); (M.E.C.)
| |
Collapse
|
39
|
Abstract
Viral infection is intrinsically linked to the capacity of the virus to generate progeny. Many DNA and some RNA viruses need to access the nuclear machinery and therefore transverse the nuclear envelope barrier through the nuclear pore complex. Viral genomes then become chromatinized either in their episomal form or upon integration into the host genome. Interactions with host DNA, transcription factors or nuclear bodies mediate their replication. Often interfering with nuclear functions, viruses use nuclear architecture to ensure persistent infections. Discovering these multiple modes of replication and persistence served in unraveling many important nuclear processes, such as nuclear trafficking, transcription, and splicing. Here, by using examples of DNA and RNA viral families, we portray the nucleus with the virus inside.
Collapse
Affiliation(s)
- Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital and German Center for Infection Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Ines J de Castro
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital and German Center for Infection Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital and German Center for Infection Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| |
Collapse
|
40
|
Khan M, Hou S, Azam S, Lei H. Sequence-dependent recruitment of SRSF1 and SRSF7 to intronless lncRNA NKILA promotes nuclear export via the TREX/TAP pathway. Nucleic Acids Res 2021; 49:6420-6436. [PMID: 34096602 PMCID: PMC8216466 DOI: 10.1093/nar/gkab445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
The TREX-TAP pathway is vital for mRNA export. For spliced mRNA, the TREX complex is recruited during splicing; however, for intronless mRNA, recruitment is sequence dependent. However, the export of cytoplasmic long noncoding RNA (lncRNA) is poorly characterized. We report the identification of a cytoplasmic accumulation region (CAR-N) in the intronless lncRNA, NKILA. CAR-N removal led to strong nuclear retention of NKILA, and CAR-N insertion promoted the export of cDNA transcripts. In vitro RNP purification via CAR-N, mass spectrometry, and siRNA screening revealed that SRSF1 and SRSF7 were vital to NKILA export, and identified a cluster of SRSF1/7 binding sites within a 55 nucleotide sequence in CAR-N. Significant nuclear enrichment of NKILA was observed for NKILA lacking CAR-N or the cluster of binding sites in knock-in models. Depletion of TREX-TAP pathway components resulted in strong nuclear retention of NKILA. RNA and protein immunoprecipitation verified that SRSF1/7 were bound to NKILA and interacted with UAP56 and ALYREF. Moreover, NKILA lacking CAR-N was unable to inhibit breast cancer cell migration. We concluded that the binding of SRSF1/7 to clustered motifs in CAR-N facilitated TREX recruitment, promoting the export of NKILA, and confirmed the importance of NKILA localization to its function.
Collapse
Affiliation(s)
- Misbah Khan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China
| | - Shuai Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian 1160343, P.R. China
| | - Sikandar Azam
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, USA
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China
| |
Collapse
|
41
|
Martelly W, Fellows B, Kang P, Vashisht A, Wohlschlegel JA, Sharma S. Synergistic roles for human U1 snRNA stem-loops in pre-mRNA splicing. RNA Biol 2021; 18:2576-2593. [PMID: 34105434 DOI: 10.1080/15476286.2021.1932360] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
During spliceosome assembly, interactions that bring the 5' and 3' ends of an intron in proximity are critical for the production of mature mRNA. Here, we report synergistic roles for the stem-loops 3 (SL3) and 4 (SL4) of the human U1 small nuclear RNA (snRNA) in maintaining the optimal U1 snRNP function, and formation of cross-intron contact with the U2 snRNP. We find that SL3 and SL4 bind distinct spliceosomal proteins and combining a U1 snRNA activity assay with siRNA-mediated knockdown, we demonstrate that SL3 and SL4 act through the RNA helicase UAP56 and the U2 protein SF3A1, respectively. In vitro analysis using UV crosslinking and splicing assays indicated that SL3 likely promotes the SL4-SF3A1 interaction leading to enhancement of A complex formation and pre-mRNA splicing. Overall, these results highlight the vital role of the distinct contacts of SL3 and SL4 in bridging the pre-mRNA bound U1 and U2 snRNPs during the early steps of human spliceosome assembly.
Collapse
Affiliation(s)
- William Martelly
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bernice Fellows
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Paul Kang
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Ajay Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| |
Collapse
|
42
|
Gordon JM, Phizicky DV, Neugebauer KM. Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision. Curr Opin Genet Dev 2021; 67:67-76. [PMID: 33291060 PMCID: PMC8084925 DOI: 10.1016/j.gde.2020.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Thousands of genes produce polyadenylated mRNAs that still contain one or more introns. These transcripts are known as retained intron RNAs (RI-RNAs). In the past 10 years, RI-RNAs have been linked to post-transcriptional alternative splicing in a variety of developmental contexts, but they can also be dead-end products fated for RNA decay. Here we discuss the role of intron retention in shaping gene expression programs, as well as recent evidence suggesting that the biogenesis and fate of RI-RNAs is regulated by nuclear organization. We discuss the possibility that proximity of RNA to nuclear speckles - biomolecular condensates that are highly enriched in splicing factors and other RNA binding proteins - is associated with choices ranging from efficient co-transcriptional splicing, export and stability to regulated post-transcriptional splicing and possible vulnerability to decay.
Collapse
Affiliation(s)
- Jackson M Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - David V Phizicky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
43
|
Xie Y, Clarke BP, Kim YJ, Ivey AL, Hill PS, Shi Y, Ren Y. Cryo-EM structure of the yeast TREX complex and coordination with the SR-like protein Gbp2. eLife 2021; 10:e65699. [PMID: 33787496 PMCID: PMC8043747 DOI: 10.7554/elife.65699] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
The evolutionarily conserved TRanscript-EXport (TREX) complex plays central roles during mRNP (messenger ribonucleoprotein) maturation and export from the nucleus to the cytoplasm. In yeast, TREX is composed of the THO sub-complex (Tho2, Hpr1, Tex1, Mft1, and Thp2), the DEAD box ATPase Sub2, and Yra1. Here we present a 3.7 Å cryo-EM structure of the yeast THO•Sub2 complex. The structure reveals the intimate assembly of THO revolving around its largest subunit Tho2. THO stabilizes a semi-open conformation of the Sub2 ATPase via interactions with Tho2. We show that THO interacts with the serine-arginine (SR)-like protein Gbp2 through both the RS domain and RRM domains of Gbp2. Cross-linking mass spectrometry analysis supports the extensive interactions between THO and Gbp2, further revealing that RRM domains of Gbp2 are in close proximity to the C-terminal domain of Tho2. We propose that THO serves as a landing pad to configure Gbp2 to facilitate its loading onto mRNP.
Collapse
Affiliation(s)
- Yihu Xie
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Bradley P Clarke
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Yong Joon Kim
- Department of Cell Biology, University of PittsburghPittsburghUnited States
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon UniversityPittsburghUnited States
| | - Austin L Ivey
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Pate S Hill
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Yi Shi
- Department of Cell Biology, University of PittsburghPittsburghUnited States
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon UniversityPittsburghUnited States
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
44
|
Liao SE, Regev O. Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Res 2021; 49:636-645. [PMID: 33337476 PMCID: PMC7826271 DOI: 10.1093/nar/gkaa1209] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Phase-separated membraneless bodies play important roles in nucleic acid biology. While current models for the roles of phase separation largely focus on the compartmentalization of constituent proteins, we reason that other properties of phase separation may play functional roles. Specifically, we propose that interfaces of phase-separated membraneless bodies could have functional roles in spatially organizing biochemical reactions. Here we propose such a model for the nuclear speckle, a membraneless body implicated in RNA splicing. In our model, sequence-dependent RNA positioning along the nuclear speckle interface coordinates RNA splicing. Our model asserts that exons are preferentially sequestered into nuclear speckles through binding by SR proteins, while introns are excluded through binding by nucleoplasmic hnRNP proteins. As a result, splice sites at exon-intron boundaries are preferentially positioned at nuclear speckle interfaces. This positioning exposes splice sites to interface-localized spliceosomes, enabling the subsequent splicing reaction. Our model provides a simple mechanism that seamlessly explains much of the complex logic of splicing. This logic includes experimental results such as the antagonistic duality between splicing factors, the position dependence of splicing sequence motifs, and the collective contribution of many motifs to splicing decisions. Similar functional roles for phase-separated interfaces may exist for other membraneless bodies.
Collapse
Affiliation(s)
- Susan E Liao
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Oded Regev
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| |
Collapse
|
45
|
Lee ES, Wolf EJ, Ihn SSJ, Smith HW, Emili A, Palazzo AF. TPR is required for the efficient nuclear export of mRNAs and lncRNAs from short and intron-poor genes. Nucleic Acids Res 2021; 48:11645-11663. [PMID: 33091126 PMCID: PMC7672458 DOI: 10.1093/nar/gkaa919] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022] Open
Abstract
While splicing has been shown to enhance nuclear export, it has remained unclear whether mRNAs generated from intronless genes use specific machinery to promote their export. Here, we investigate the role of the major nuclear pore basket protein, TPR, in regulating mRNA and lncRNA nuclear export in human cells. By sequencing mRNA from the nucleus and cytosol of control and TPR-depleted cells, we provide evidence that TPR is required for the efficient nuclear export of mRNAs and lncRNAs that are generated from short transcripts that tend to have few introns, and we validate this with reporter constructs. Moreover, in TPR-depleted cells reporter mRNAs generated from short transcripts accumulate in nuclear speckles and are bound to Nxf1. These observations suggest that TPR acts downstream of Nxf1 recruitment and may allow mRNAs to leave nuclear speckles and properly dock with the nuclear pore. In summary, our study provides one of the first examples of a factor that is specifically required for the nuclear export of intronless and intron-poor mRNAs and lncRNAs.
Collapse
Affiliation(s)
- Eliza S Lee
- University of Toronto, Department of Biochemistry, Canada
| | - Eric J Wolf
- University of Toronto, Department of Molecular Genetics, Canada
| | - Sean S J Ihn
- University of Toronto, Department of Biochemistry, Canada
| | | | - Andrew Emili
- University of Toronto, Department of Molecular Genetics, Canada.,Boston University School of Medicine, Department of Biochemistry, Boston, MA, USA
| | | |
Collapse
|
46
|
Zhang L, Zhang Y, Chen Y, Gholamalamdari O, Wang Y, Ma J, Belmont AS. TSA-seq reveals a largely conserved genome organization relative to nuclear speckles with small position changes tightly correlated with gene expression changes. Genome Res 2021; 31:251-264. [PMID: 33355299 PMCID: PMC7849416 DOI: 10.1101/gr.266239.120] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
TSA-seq mapping suggests that gene distance to nuclear speckles is more deterministic and predictive of gene expression levels than gene radial positioning. Gene expression correlates inversely with distance to nuclear speckles, with chromosome regions of unusually high expression located at the apex of chromosome loops protruding from the nuclear periphery into the interior. Genomic distances to the nearest lamina-associated domain are larger for loop apexes mapping closest to nuclear speckles, suggesting the possibility of conservation of speckle-associated regions. To facilitate comparison of genome organization by TSA-seq, we reduced required cell numbers 10- to 20-fold for TSA-seq by deliberately saturating protein-labeling while preserving distance mapping by the still unsaturated DNA-labeling. Only ∼10% of the genome shows statistically significant shifts in relative nuclear speckle distances in pair-wise comparisons between human cell lines (H1, HFF, HCT116, K562); however, these moderate shifts in nuclear speckle distances tightly correlate with changes in cell type-specific gene expression. Similarly, half of heat shock-induced gene loci already preposition very close to nuclear speckles, with the remaining positioned near or at intermediate distance (HSPH1) to nuclear speckles but shifting even closer with transcriptional induction. Speckle association together with chromatin decondensation correlates with expression amplification upon HSPH1 activation. Our results demonstrate a largely "hardwired" genome organization with specific genes moving small mean distances relative to speckles during cell differentiation or a physiological transition, suggesting an important role of nuclear speckles in gene expression regulation.
Collapse
Affiliation(s)
- Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Yu Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Omid Gholamalamdari
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yuchuan Wang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
47
|
Dou Y, Barbosa I, Jiang H, Iasillo C, Molloy KR, Schulze WM, Cusack S, Schmid M, Le Hir H, LaCava J, Jensen TH. NCBP3 positively impacts mRNA biogenesis. Nucleic Acids Res 2020; 48:10413-10427. [PMID: 32960271 PMCID: PMC7544205 DOI: 10.1093/nar/gkaa744] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
The nuclear Cap-Binding Complex (CBC), consisting of Nuclear Cap-Binding Protein 1 (NCBP1) and 2 (NCBP2), associates with the nascent 5′cap of RNA polymerase II transcripts and impacts RNA fate decisions. Recently, the C17orf85 protein, also called NCBP3, was suggested to form an alternative CBC by replacing NCBP2. However, applying protein–protein interaction screening of NCBP1, 2 and 3, we find that the interaction profile of NCBP3 is distinct. Whereas NCBP1 and 2 identify known CBC interactors, NCBP3 primarily interacts with components of the Exon Junction Complex (EJC) and the TRanscription and EXport (TREX) complex. NCBP3-EJC association in vitro and in vivo requires EJC core integrity and the in vivo RNA binding profiles of EJC and NCBP3 overlap. We further show that NCBP3 competes with the RNA degradation factor ZC3H18 for binding CBC-bound transcripts, and that NCBP3 positively impacts the nuclear export of polyadenylated RNAs and the expression of large multi-exonic transcripts. Collectively, our results place NCBP3 with the EJC and TREX complexes in supporting mRNA expression.
Collapse
Affiliation(s)
- Yuhui Dou
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Aarhus 8000, Denmark
| | - Isabelle Barbosa
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Claudia Iasillo
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Aarhus 8000, Denmark
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Wiebke Manuela Schulze
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Aarhus 8000, Denmark
| | - Hervé Le Hir
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.,European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen 9713 AV, Netherlands
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Aarhus 8000, Denmark
| |
Collapse
|
48
|
Culjkovic-Kraljacic B, Skrabanek L, Revuelta MV, Gasiorek J, Cowling VH, Cerchietti L, Borden KLB. The eukaryotic translation initiation factor eIF4E elevates steady-state m 7G capping of coding and noncoding transcripts. Proc Natl Acad Sci U S A 2020; 117:26773-26783. [PMID: 33055213 PMCID: PMC7604501 DOI: 10.1073/pnas.2002360117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methyl-7-guanosine (m7G) "capping" of coding and some noncoding RNAs is critical for their maturation and subsequent activity. Here, we discovered that eukaryotic translation initiation factor 4E (eIF4E), itself a cap-binding protein, drives the expression of the capping machinery and increased capping efficiency of ∼100 coding and noncoding RNAs. To quantify this, we developed enzymatic (cap quantification; CapQ) and quantitative cap immunoprecipitation (CapIP) methods. The CapQ method has the further advantage that it captures information about capping status independent of the type of 5' cap, i.e., it is not restricted to informing on m7G caps. These methodological advances led to unanticipated revelations: 1) Many RNA populations are inefficiently capped at steady state (∼30 to 50%), and eIF4E overexpression increased this to ∼60 to 100%, depending on the RNA; 2) eIF4E physically associates with noncoding RNAs in the nucleus; and 3) approximately half of eIF4E-capping targets identified are noncoding RNAs. eIF4E's association with noncoding RNAs strongly positions it to act beyond translation. Coding and noncoding capping targets have activities that influence survival, cell morphology, and cell-to-cell interaction. Given that RNA export and translation machineries typically utilize capped RNA substrates, capping regulation provides means to titrate the protein-coding capacity of the transcriptome and, for noncoding RNAs, to regulate their activities. We also discovered a cap sensitivity element (CapSE) which conferred eIF4E-dependent capping sensitivity. Finally, we observed elevated capping for specific RNAs in high-eIF4E leukemia specimens, supporting a role for cap dysregulation in malignancy. In all, levels of capping RNAs can be regulated by eIF4E.
Collapse
Affiliation(s)
- Biljana Culjkovic-Kraljacic
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Lucy Skrabanek
- Applied Bioinformatics Core, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
| | - Maria V Revuelta
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Jadwiga Gasiorek
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Leandro Cerchietti
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Katherine L B Borden
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| |
Collapse
|
49
|
Robinson-Thiewes S, McCloskey J, Kimble J. Two classes of active transcription sites and their roles in developmental regulation. Proc Natl Acad Sci U S A 2020; 117:26812-26821. [PMID: 33033228 PMCID: PMC7604424 DOI: 10.1073/pnas.2013163117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of genes encoding powerful developmental regulators is exquisitely controlled, often at multiple levels. Here, we investigate developmental expression of three conserved genes, Caenorhabditis elegans mpk-1, lag-1, and lag-3/sel-8, which encode homologs of ERK/MAPK and core components of the Notch-dependent transcription complex, respectively. We use single-molecule FISH (smFISH) and MATLAB to visualize and quantify nuclear nascent transcripts and cytoplasmic mRNAs as a function of position along the germline developmental axis. Using differentially labeled probes, one spanning an exceptionally long first intron and the other spanning exons, we identify two classes of active transcription sites (ATS). The iATS class, for "incomplete" ATS, harbors only partial nascent transcripts; the cATS class, for "complete" ATS, harbors full-length nascent transcripts. Remarkably, the frequencies of iATS and cATS are patterned along the germline axis. For example, most mpk-1 ATS are iATS in hermaphrodite germline stem cells, but most are cATS in differentiating stem cell daughters. Thus, mpk-1 ATS class frequencies switch in a graded manner as stem cell daughters begin differentiation. Importantly, the patterns of ATS class frequency are gene-, stage-, and sex-specific, and cATS frequency strongly correlates with transcriptional output. Although the molecular mechanism underlying ATS classes is not understood, their primary difference is the extent of transcriptional progression. To generate only partial nascent transcripts in iATS, progression must be slowed, paused, or aborted midway through the gene. We propose that regulation of ATS class can be a critical mode of developmental gene regulation.
Collapse
Affiliation(s)
| | - John McCloskey
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
50
|
NS5 Sumoylation Directs Nuclear Responses That Permit Zika Virus To Persistently Infect Human Brain Microvascular Endothelial Cells. J Virol 2020; 94:JVI.01086-20. [PMID: 32699085 DOI: 10.1128/jvi.01086-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV) is cytopathic to neurons and persistently infects brain microvascular endothelial cells (hBMECs), which normally restrict viral access to neurons. Despite replicating in the cytoplasm, ZIKV and Dengue virus (DENV) polymerases, NS5 proteins, are predominantly trafficked to the nucleus. We found that a SUMO interaction motif in ZIKV and DENV NS5 proteins directs nuclear localization. However, ZIKV NS5 formed discrete punctate nuclear bodies (NBs), while DENV NS5 was uniformly dispersed in the nucleoplasm. Yet, mutating one DENV NS5 SUMO site (K546R) localized the NS5 mutant to discrete NBs, and NBs formed by the ZIKV NS5 SUMO mutant (K252R) were restructured into discrete protein complexes. In hBMECs, NBs formed by STAT2 and promyelocytic leukemia (PML) protein are present constitutively and enhance innate immunity. During ZIKV infection or NS5 expression, we found that ZIKV NS5 evicts PML from STAT2 NBs, forming NS5/STAT2 NBs that dramatically reduce PML expression in hBMECs and inhibit the transcription of interferon-stimulated genes (ISG). Expressing the ZIKV NS5 SUMO site mutant (K252R) resulted in NS5/STAT2/PML NBs that failed to degrade PML, reduce STAT2 expression, or inhibit ISG induction. Additionally, the K252 SUMOylation site and NS5 nuclear localization were required for ZIKV NS5 to regulate hBMEC cell cycle transcriptional responses. Our data reveal NS5 SUMO motifs as novel NB coordinating factors that distinguish flavivirus NS5 proteins. These findings establish SUMOylation of ZIKV NS5 as critical in the regulation of antiviral ISG and cell cycle responses that permit ZIKV to persistently infect hBMECs.IMPORTANCE ZIKV is a unique neurovirulent flavivirus that persistently infects human brain microvascular endothelial cells (hBMECs), the primary barrier that restricts viral access to neuronal compartments. Here, we demonstrate that flavivirus-specific SIM and SUMO sites determine the assembly of NS5 proteins into discrete nuclear bodies (NBs). We found that NS5 SIM sites are required for NS5 nuclear localization and that SUMO sites regulate NS5 NB complex constituents, assembly, and function. We reveal that ZIKV NS5 SUMO sites direct NS5 binding to STAT2, disrupt the formation of antiviral PML-STAT2 NBs, and direct PML degradation. ZIKV NS5 SUMO sites also transcriptionally regulate cell cycle and ISG responses that permit ZIKV to persistently infect hBMECs. Our findings demonstrate the function of SUMO sites in ZIKV NS5 NB formation and their importance in regulating nuclear responses that permit ZIKV to persistently infect hBMECs and thereby gain access to neurons.
Collapse
|