1
|
Frydendahl C, Yezekyan T, Zenin VA, Bozhevolnyi SI. 2D Semiconductors as On-Chip Light Sources for Integrated Nanophotonics. NANO LETTERS 2025; 25:6414-6420. [PMID: 40134372 DOI: 10.1021/acs.nanolett.4c06398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Incorporating on-chip light sources directly into nanophotonic waveguides generally requires introducing a different material to the chip than that used for guiding the light, a crucial step that requires dealing with several technical challenges, e.g., atomic lattice mismatch in epitaxial growth between substrate and luminescent materials, resulting in strain defects that lower performance. Here we demonstrate that van der Waals materials, such as the 2D semiconductor MoSe2, can easily be transferred onto gold plasmonic nanowaveguides using standard dry viscoelastic polymer transfer techniques. We further show that the photoluminescence from MoSe2 can be injected directly into the on-chip waveguides. Our fabrication methods are compatible with large-scale roll-to-roll manufacturing techniques, highlighting a potential cost-effective and scalable hybrid plasmonic and 2D semiconductor platform for integrated nanophotonics.
Collapse
Affiliation(s)
- Christian Frydendahl
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus, Denmark
| | - Torgom Yezekyan
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
- POLIMA - Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Vladimir A Zenin
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Sergey I Bozhevolnyi
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
2
|
Yang Y, Jeon Y, Dong Z, Yang JKW, Haddadi Moghaddam M, Kim DS, Oh DK, Lee J, Hentschel M, Giessen H, Kang D, Kim G, Tanaka T, Zhao Y, Bürger J, Maier SA, Ren H, Jung W, Choi M, Bae G, Chen H, Jeon S, Kim J, Lee E, Kang H, Park Y, Du Nguyen D, Kim I, Cencillo-Abad P, Chanda D, Jing X, Liu N, Martynenko IV, Liedl T, Kwak Y, Nam JM, Park SM, Odom TW, Lee HE, Kim RM, Nam KT, Kwon H, Jeong HH, Fischer P, Yoon J, Kim SH, Shim S, Lee D, Pérez LA, Qi X, Mihi A, Keum H, Shim M, Kim S, Jang H, Jung YS, Rossner C, König TAF, Fery A, Li Z, Aydin K, Mirkin CA, Seong J, Jeon N, Xu Z, Gu T, Hu J, Kwon H, Jung H, Alijani H, Aharonovich I, Kim J, Rho J. Nanofabrication for Nanophotonics. ACS NANO 2025; 19:12491-12605. [PMID: 40152322 DOI: 10.1021/acsnano.4c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics. It delves into high-resolution techniques like focused ion beam and electron beam lithography, methods for 3D complex structure fabrication, scalable manufacturing approaches, and material compatibility considerations. Special attention is given to emerging trends such as the utilization of two-photon lithography for 3D structures and advanced materials like phase change substances and 2D materials with excitonic properties. By highlighting these advancements, the review aims to provide insights into the ongoing evolution of nanofabrication, encouraging further research and application in creating functional nanostructures. This work encapsulates critical developments and future perspectives, offering a detailed narrative on the state-of-the-art in nanofabrication tailored for both new researchers and seasoned experts in the field.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngsun Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mario Hentschel
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Harald Giessen
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Dohyun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Takuo Tanaka
- RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8501, Japan
| | - Yang Zhao
- Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Wooik Jung
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Haomin Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dang Du Nguyen
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
- Department of Physics, University of Central Florida, Florida 32816, United States
- The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xinxin Jing
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Na Liu
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
| | - Yuna Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sangmin Shim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Luis A Pérez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Xiaoyu Qi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Agustin Mihi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Hohyun Keum
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Prague 6 166 28, Czech Republic
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01069, Germany
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Mayland 20742, United States
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhiyun Xu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tian Gu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyounghan Kwon
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Quantum Information, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojoong Jung
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
3
|
Qin J, Wu X, Krueger A, Hecht B. Light-driven plasmonic microrobot for nanoparticle manipulation. Nat Commun 2025; 16:2570. [PMID: 40089456 PMCID: PMC11910605 DOI: 10.1038/s41467-025-57871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Recently light-driven microdrones have been demonstrated, making use of plasmonic nanomotors based on directional resonant chiral light scattering. These nanomotors can be addressed individually, without requiring the tracking of a focused laser, leading to exceptional 2D maneuverability which renders microdrones a versatile robotic platform in aqueous environments. Here, we incorporate a light-operated manipulator, a plasmonic nano-tweezer, into the microdrone platform, rendering it a microrobot by enabling precise, all-optical transport and delivery of single nanoparticles suspended in solution. The plasmonic nano-tweezer consists of a resonant cross-antenna nanostructure exhibiting a central near-field hot spot, extending the ability of traditional optical tweezers based on focused laser beams to the trapping of nanoparticles. However, most of plasmonic nano-tweezers are fixed to the substrates and lack mobility. Our plasmonic microrobot utilizes circularly polarized light to control both motors and for stable trapping of a 70-nanometer fluorescent nanodiamond in the cross-antenna center. Complex sequences of microrobot operations, including trap-transport-release-trap-transport actions, demonstrate the microrobot's versatility and precision in picking up and releasing nanoparticles. Our microrobot design opens potential avenues in advancing nanotechnology and life sciences, with applications in targeted drug delivery, single-cell manipulation, and by providing an advanced quantum sensing platform, facilitating interdisciplinary research at the nanoscale.
Collapse
Affiliation(s)
- Jin Qin
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Universität Würzburg, Am Hubland, Würzburg, Germany.
| | - Xiaofei Wu
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena, Germany
| | - Anke Krueger
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, Germany
| | - Bert Hecht
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Universität Würzburg, Am Hubland, Würzburg, Germany.
| |
Collapse
|
4
|
Li Y, Zhou H, Deng X, Gao C, Shen L, Chen Q. Radially Distributed Electron Transfer on Single-Crystalline Surface of Gold Microplates. ACS NANO 2025; 19:4629-4636. [PMID: 39837775 DOI: 10.1021/acsnano.4c14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Electron transfer is ubiquitous in many chemical reactions and biological phenomena; however, the spatial heterogeneities of electron transfer kinetics in electrocatalysis are so far insufficiently resolved. Measuring and understanding the localized electron transfer are crucial to deciphering the intrinsic activity of electrocatalysts and to achieving further improvements in performance. By using scanning electrochemical probe microscopy to spatially resolve redox electrochemistry across the single-crystalline surface of gold microplates, we discover an intriguing radially distributed electron transfer pattern, where the kinetics around the periphery region are significantly higher than those at the central region, regardless of the redox reaction types. In combination with atomic force microscopy-based infrared spectroscopy for synergistic interrogation of local chemical heterogeneities, we deduce that such a radial pattern of electron transfer originates from the uneven distribution of passive adlayer across the microplate surface. Subsequently, we verify that the spatial heterogeneity of electron transfer can be eliminated by removing the surface adlayer by either mild room temperature aging or oxygen plasma exposure. In addition to gaining insight into the spatial heterogeneities of electron transfer at the nanoscale, our work highlights the important effect of adsorbed organic species at nanocrystal surfaces on electrocatalysis.
Collapse
Affiliation(s)
- Yingjian Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Huaxu Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoli Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Cong Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Li Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Wang Y, Garcia-Carrillo R, Ren H. Kinetics and dynamics of atomic-layer dissolution on low-defect Ag. Chem Sci 2025; 16:1447-1454. [PMID: 39713753 PMCID: PMC11660162 DOI: 10.1039/d4sc05954a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
Electrochemical metal dissolution reaction is a fundamental process in various critical technologies, including metal anode batteries and nanofabrication. However, experimentally revealing the kinetics and dynamics of active sites of metal dissolution reactions is challenging. Herein, we investigate metal dissolution on near-perfect single-crystal surfaces of Ag within regions of a few hundred nanometers isolated by scanning electrochemical cell microscopy (SECCM). Potential oscillation is observed under constant current conditions for dissolution. The one-to-one correspondence between the dissolution charge and the geometry of the dissolution pit from colocalized imaging allows ambiguous correlation, which suggests that each oscillation cycle corresponds to the dissolution of one atomic layer. The oscillation behavior is further explained in a kinetic model, which reveals that the oscillation comes from the dynamic evolution of the number of different active sites as the dissolution progresses on each atomic layer. In addition to the fundamental interest, the ability to observe layer-by-layer dissolution in electrochemical measurements suggests a potential pathway for developing electrochemical atomic layer etching for fabricating structures and devices with atomic precision.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Chemistry, The University of Texas at Austin Austin TX 78712 USA
| | | | - Hang Ren
- Department of Chemistry, The University of Texas at Austin Austin TX 78712 USA
- Center for Electrochemistry, The University of Texas at Austin Austin TX 78712 USA
- Texas Materials Institute, The University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
6
|
Mironov MS, Yakubovsky DI, Ermolaev GA, Khramtsov IA, Kirtaev RV, Slavich AS, Tselikov GI, Vyshnevyy AA, Arsenin AV, Volkov VS, Novoselov KS. Graphene-Inspired Wafer-Scale Ultrathin Gold Films. NANO LETTERS 2024; 24:16270-16275. [PMID: 39667738 DOI: 10.1021/acs.nanolett.4c04311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
As the trajectory toward the graphene era continues, there is a compelling need to harness 2D technology further for the transformation of three-dimensional (3D) materials production and applications. Here, we resolve this challenge for one of the most widely utilized 3D materials in modern electronics─gold─using graphene-inspired fabrication technology that allows us to develop a multistep production method of ultrathin gold films. Such films demonstrate continuous morphology, low sheet resistance (10 Ω/sq), and high transparency (80%), offering opportunities in a variety of technological and scientific sectors. To this end, we demonstrate smart contact lenses and thermal camouflage based on ultrathin gold. Technologically, the record-breaking characteristics of ultrathin gold films open new horizons for flexible and transparent electrodes for photonics and optoelectronics. Most importantly, the demonstration of transferable wafer-scale ultrathin gold changes the paradigm of the field of 2D crystals and dramatically expands the range of available quasi-2D materials.
Collapse
Affiliation(s)
- Mikhail S Mironov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Dmitry I Yakubovsky
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Georgy A Ermolaev
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Igor A Khramtsov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Roman V Kirtaev
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Aleksandr S Slavich
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Gleb I Tselikov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Andrey A Vyshnevyy
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Aleksey V Arsenin
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Valentyn S Volkov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Kostya S Novoselov
- National Graphene Institute (NGI), University of Manchester, Manchester M13 9PL, U.K
- Department of Materials Science and Engineering, National University of Singapore, Singapore 03-09 EA, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Building S9, 4 Science Drive 2, Singapore 117544, Singapore
| |
Collapse
|
7
|
Wu C, Pan C, Zheng J, Tong Y, Guo X, Tong L, Wang P. Recrystallization-Enabled Fabrication of Single-Crystalline Gold Flakes for Plasmonic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68204-68210. [PMID: 39612286 DOI: 10.1021/acsami.4c15121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Gold films with a single-crystalline structure and an ultrasmooth surface are highly desired for fabricating plasmonic nanostructures with low loss. Here, we report a recrystallization-based approach to synthesize on-substrate single-crystalline gold flakes with high efficiency. By dissolving a multicrystalline gold film with tetraoctylammonium bromide at ∼140 °C and then recrystallizing at ∼160 °C for 2 h, high-density (>1000 pieces per cm2) gold flakes can be obtained directly on a substrate, which have a thin thickness concentrated around 30 nm and a maximum lateral size up to 0.12 mm. The as-synthesized gold flakes have a face-centered cubic crystalline structure and smooth surface with a surface root-mean-square roughness as low as ∼0.3 nm. To demonstrate their advantage for fabricating high-quality plasmonic nanostructures, gold nanodisk arrays that can support surface lattice resonance mode are fabricated using focused ion beam milling from a single-crystalline gold flake and a multicrystalline gold film, respectively, for comparison. Their transmission spectra show that the single-crystalline gold nanodisk array has a higher quality factor (23.3 vs 15.1) and a deeper transmission dip (41.3% vs 62.2% for the minimum transmittance) of the plasmonic resonance, which can be attributed to the reduction in electron scattering loss caused by surface roughness and grain boundaries.
Collapse
Affiliation(s)
- Chenming Wu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chenxinyu Pan
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Junsheng Zheng
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanbiao Tong
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin Guo
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Limin Tong
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pan Wang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Sweedan AO, Pavan MJ, Schatz E, Maaß H, Tsega A, Tzin V, Höflich K, Mörk P, Feichtner T, Bashouti MY. Evolutionary Optimized, Monocrystalline Gold Double Wire Gratings as a Novel SERS Sensing Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311937. [PMID: 38529743 DOI: 10.1002/smll.202311937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Indexed: 03/27/2024]
Abstract
Achieving reliable and quantifiable performance in large-area surface-enhanced Raman spectroscopy (SERS) substrates poses a formidable challenge, demanding signal enhancement while ensuring response uniformity and reproducibility. Conventional SERS substrates often made of inhomogeneous materials with random resonator geometries, resulting in multiple or broadened plasmonic resonances, undesired absorptive losses, and uneven field enhancement. These limitations hamper reproducibility, making it difficult to conduct comparative studies with high sensitivity. This study introduces an innovative approach that addresses these challenges by utilizing monocrystalline gold flakes to fabricate well-defined plasmonic double-wire resonators through focused ion-beam lithography. Inspired by biological strategy, the double-wire grating substrate (DWGS) geometry is evolutionarily optimized to maximize the SERS signal by enhancing both excitation and emission processes. The use of monocrystalline material minimizes absorption losses and ensures shape fidelity during nanofabrication. DWGS demonstrates notable reproducibility (RSD = 6.6%), repeatability (RSD = 5.6%), and large-area homogeneity > 104 µm2. It provides a SERS enhancement for sub-monolayer coverage detection of 4-Aminothiophenol analyte. Furthermore, DWGS demonstrates reusability, long-term stability on the shelf, and sustained analyte signal stability over time. Validation with diverse analytes, across different states of matter, including biological macromolecules, confirms the sensitive and reproducible nature of DWGSs, thereby establishing them as a promising platform for future sensing applications.
Collapse
Affiliation(s)
- Amro O Sweedan
- The Ilse-Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba Campus, POB 653, Building 51, Be'er Sheva, 8410501, Israel
- Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshset Ben-Gurion, Building 26, Be'er Sheva, 8499000, Israel
| | - Mariela J Pavan
- The Ilse-Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba Campus, POB 653, Building 51, Be'er Sheva, 8410501, Israel
| | - Enno Schatz
- NanoStruct GmbH, Friedrich-Bergius-Ring 15, 97076, Würzburg, Germany
| | - Henriette Maaß
- NanoStruct GmbH, Friedrich-Bergius-Ring 15, 97076, Würzburg, Germany
| | - Ashageru Tsega
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Be'er Sheva, 8499000, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Be'er Sheva, 8499000, Israel
| | - Katja Höflich
- Joint Lab Photonic Quantum Technologies, Ferdinand-Braun-Institut gGmbH Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, D-12489, Berlin, Germany
| | - Paul Mörk
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Am Hubland, D-97074, Wurzburg, Germany
| | - Thorsten Feichtner
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Am Hubland, D-97074, Wurzburg, Germany
| | - Muhammad Y Bashouti
- The Ilse-Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba Campus, POB 653, Building 51, Be'er Sheva, 8410501, Israel
- Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshset Ben-Gurion, Building 26, Be'er Sheva, 8499000, Israel
| |
Collapse
|
9
|
Nguyen TM, Kim SJ, Ryu DG, Chung JH, Lee SH, Hwang SH, Choi CW, Oh JW. Helical Hybrid Nanostructure Based on Chiral M13 Bacteriophage via Evaporation-Induced Three-Dimensional Process. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1208. [PMID: 39057884 PMCID: PMC11280118 DOI: 10.3390/nano14141208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
The use of naturally sourced organic materials with chirality, such as the M13 bacteriophage, holds intriguing implications, especially in the field of nanotechnology. The chirality properties of bacteriophages have been demonstrated through numerous studies, particularly in the analysis of liquid crystal phase transitions, developing specific applications. However, exploring the utilization of the M13 bacteriophage as a template for creating chiral nanostructures for optics and sensor applications comes with significant challenges. In this study, the chirality of the M13 bacteriophage was leveraged as a valuable tool for generating helical hybrid structures by combining it with nanoparticles through an evaporation-induced three-dimensional (3D) printing process. Utilizing on the self-assembly property of the M13 bacteriophage, metal nanoparticles were organized into a helical chain under the influence of the M13 bacteriophage at the meniscus interface. External parameters, including nanoparticle shape, the ratio between the bacteriophage and nanoparticles, and pulling speed, were demonstrated as crucial factors affecting the fabrication of helical nanostructures. This study aimed to explore the potential of chiral nanostructure fabrication by utilizing the chirality of the M13 bacteriophage and manipulating external parameters to control the properties of the resulting hybrid structures.
Collapse
Affiliation(s)
- Thanh Mien Nguyen
- BK21 FOUR Education and Research Division for Energy Convergence Technology, Pusan National University, Busan 46241, Republic of Korea;
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea;
| | - Sung-Jo Kim
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea;
| | - Dae Gon Ryu
- Department of Internal Medicine, Medical Research Institute, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Jae Hun Chung
- Department of Surgery, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.C.); (S.-H.L.); (S.-H.H.)
| | - Si-Hak Lee
- Department of Surgery, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.C.); (S.-H.L.); (S.-H.H.)
| | - Sun-Hwi Hwang
- Department of Surgery, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.C.); (S.-H.L.); (S.-H.H.)
| | - Cheol Woong Choi
- Department of Internal Medicine, Medical Research Institute, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Jin-Woo Oh
- BK21 FOUR Education and Research Division for Energy Convergence Technology, Pusan National University, Busan 46241, Republic of Korea;
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea;
- Department of Nanoenergy Engineering and Research Center for Energy Convergence Technology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
10
|
Pan C, Tong Y, Qian H, Krasavin AV, Li J, Zhu J, Zhang Y, Cui B, Li Z, Wu C, Liu L, Li L, Guo X, Zayats AV, Tong L, Wang P. Large area single crystal gold of single nanometer thickness for nanophotonics. Nat Commun 2024; 15:2840. [PMID: 38565552 PMCID: PMC10987654 DOI: 10.1038/s41467-024-47133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Two-dimensional single crystal metals, in which the behavior of highly confined optical modes is intertwined with quantum phenomena, are highly sought after for next-generation technologies. Here, we report large area (>104 μm2), single crystal two-dimensional gold flakes (2DGFs) with thicknesses down to a single nanometer level, employing an atomic-level precision chemical etching approach. The decrease of the thickness down to such scales leads to the quantization of the electronic states, endowing 2DGFs with quantum-confinement-augmented optical nonlinearity, particularly leading to more than two orders of magnitude enhancement in harmonic generation compared with their thick polycrystalline counterparts. The nanometer-scale thickness and single crystal quality makes 2DGFs a promising platform for realizing plasmonic nanostructures with nanoscale optical confinement. This is demonstrated by patterning 2DGFs into nanoribbon arrays, exhibiting strongly confined near infrared plasmonic resonances with high quality factors. The developed 2DGFs provide an emerging platform for nanophotonic research and open up opportunities for applications in ultrathin plasmonic, optoelectronic and quantum devices.
Collapse
Affiliation(s)
- Chenxinyu Pan
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanbiao Tong
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haoliang Qian
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Alexey V Krasavin
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London, WC2R 2LS, UK
| | - Jialin Li
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiajie Zhu
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yiyun Zhang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Bowen Cui
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiyong Li
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, 314000, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing, 314000, China
| | - Chenming Wu
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lufang Liu
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Linjun Li
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, 314000, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing, 314000, China
| | - Xin Guo
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, 314000, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing, 314000, China
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London, WC2R 2LS, UK.
| | - Limin Tong
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
| | - Pan Wang
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, 314000, China.
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing, 314000, China.
| |
Collapse
|
11
|
Liebtrau M, Polman A. Angular Dispersion of Free-Electron-Light Coupling in an Optical Fiber-Integrated Metagrating. ACS PHOTONICS 2024; 11:1125-1136. [PMID: 38523743 PMCID: PMC10958598 DOI: 10.1021/acsphotonics.3c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 03/26/2024]
Abstract
Free electrons can couple to optical material excitations on nanometer-length and attosecond-time scales, opening-up unique opportunities for both the generation of radiation and the manipulation of the electron wave function. Here, we exploit the Smith-Purcell effect to experimentally study the coherent coupling of free electrons and light in a circular metallo-dielectric metagrating that is fabricated onto the input facet of a multimode optical fiber. Using hyperspectral angle-resolved (HSAR) far-field imaging inside a scanning electron microscope, we probe the angular dispersion of Smith-Purcell radiation (SPR) that is simultaneously generated in free space and inside the fiber by an electron beam that grazes the metagrating at a nanoscale distance. Furthermore, we analyze the spectral distribution of SPR that is emitted into guided optical modes and correlate it with the numerical aperture of the fiber. By varying the electron energy between 5 and 30 keV, we observe the emission of SPR from the ultraviolet to the near-infrared spectral range, and up to the third emission order. In addition, we detect incoherent cathodoluminescence that is generated by electrons penetrating the input facet of the fiber and scattering inelastically. As a result, our HSAR measurements reveal a Fano resonance that is coupled to a Rayleigh anomaly of the metagrating, and that overlaps with the angular dispersion of second-order SPR at 20 keV. Our findings demonstrate the potential of optical fiber-integrated metasurfaces as a versatile platform to implement novel ultrafast light sources and to synthesize complex free-electron quantum states with light.
Collapse
Affiliation(s)
- Matthias Liebtrau
- Center for Nanophotonics, NWO-Institute
AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Albert Polman
- Center for Nanophotonics, NWO-Institute
AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
12
|
Mkhitaryan V, Weber AP, Abdullah S, Fernández L, Abd El-Fattah ZM, Piquero-Zulaica I, Agarwal H, García Díez K, Schiller F, Ortega JE, García de Abajo FJ. Ultraconfined Plasmons in Atomically Thin Crystalline Silver Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302520. [PMID: 37924223 DOI: 10.1002/adma.202302520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/17/2023] [Indexed: 11/06/2023]
Abstract
The ability to confine light down to atomic scales is critical for the development of applications in optoelectronics and optical sensing as well as for the exploration of nanoscale quantum phenomena. Plasmons in metallic nanostructures with just a few atomic layers in thickness can achieve this type of confinement, although fabrication imperfections down to the subnanometer scale hinder actual developments. Here, narrow plasmons are demonstrated in atomically thin crystalline silver nanostructures fabricated by prepatterning silicon substrates and epitaxially depositing silver films of just a few atomic layers in thickness. Specifically, a silicon wafer is lithographically patterned to introduce on-demand lateral shapes, chemically process the sample to obtain an atomically flat silicon surface, and epitaxially deposit silver to obtain ultrathin crystalline metal films with the designated morphologies. Structures fabricated by following this procedure allow for an unprecedented control over optical field confinement in the near-infrared spectral region, which is here illustrated by the observation of fundamental and higher-order plasmons featuring extreme spatial confinement and high-quality factors that reflect the crystallinity of the metal. The present study constitutes a substantial improvement in the degree of spatial confinement and quality factor that should facilitate the design and exploitation of atomic-scale nanoplasmonic devices for optoelectronics, sensing, and quantum-physics applications.
Collapse
Affiliation(s)
- Vahagn Mkhitaryan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Andrew P Weber
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
- Donostia International Physics Center, Paseo Manuel Lardizabal 4, 20018, Donostia-San Sebastián, Spain
| | - Saad Abdullah
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Laura Fernández
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center, 20018, San Sebastián, Spain
| | - Zakaria M Abd El-Fattah
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, E-11884, Cairo, Egypt
| | - Ignacio Piquero-Zulaica
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center, 20018, San Sebastián, Spain
| | - Hitesh Agarwal
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Kevin García Díez
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center, 20018, San Sebastián, Spain
| | - Frederik Schiller
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center, 20018, San Sebastián, Spain
| | - J Enrique Ortega
- Donostia International Physics Center, Paseo Manuel Lardizabal 4, 20018, Donostia-San Sebastián, Spain
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center, 20018, San Sebastián, Spain
- Departamento de Física Aplicada I, Universidad del País Vasco, 20018, San Sebastián, Spain
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
13
|
Kiani F, Bowman AR, Sabzehparvar M, Karaman CO, Sundararaman R, Tagliabue G. Transport and Interfacial Injection of d-Band Hot Holes Control Plasmonic Chemistry. ACS ENERGY LETTERS 2023; 8:4242-4250. [PMID: 37854045 PMCID: PMC10580318 DOI: 10.1021/acsenergylett.3c01505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Harnessing nonequilibrium hot carriers from plasmonic metal nanostructures constitutes a vibrant research field with the potential to control photochemical reactions, particularly for solar fuel generation. However, a comprehensive understanding of the interplay of plasmonic hot-carrier-driven processes in metal/semiconducting heterostructures has remained elusive. In this work, we reveal the complex interdependence among plasmon excitation, hot-carrier generation, transport, and interfacial collection in plasmonic photocatalytic devices, uniquely determining the charge injection efficiency at the solid/liquid interface. Measuring the internal quantum efficiency of ultrathin (14-33 nm) single-crystalline plasmonic gold (Au) nanoantenna arrays on titanium dioxide substrates, we find that the performance of the device is limited by hot hole collection at the metal/electrolyte interface. Our solid- and liquid-state experimental approach, combined with ab initio simulations, demonstrates more efficient collection of high-energy d-band holes traveling in the [111] orientation, enhancing oxidation reactions on {111} surfaces. These findings establish new guidelines for optimizing plasmonic photocatalytic systems and optoelectronic devices.
Collapse
Affiliation(s)
- Fatemeh Kiani
- Laboratory
of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alan R. Bowman
- Laboratory
of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Milad Sabzehparvar
- Laboratory
of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Can O. Karaman
- Laboratory
of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ravishankar Sundararaman
- Department
of Materials Science & Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Giulia Tagliabue
- Laboratory
of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Wu C, Ku C, Yu M, Yang J, Wu P, Huang C, Lu T, Huang J, Ishii S, Chen K. Near-Field Photodetection in Direction Tunable Surface Plasmon Polaritons Waveguides Embedded with Graphene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302707. [PMID: 37661570 PMCID: PMC10602515 DOI: 10.1002/advs.202302707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/06/2023] [Indexed: 09/05/2023]
Abstract
2D materials have manifested themselves as key components toward compact integrated circuits. Because of their capability to circumvent the diffraction limit, light manipulation using surface plasmon polaritons (SPPs) is highly-valued. In this study, plasmonic photodetection using graphene as a 2D material is investigated. Non-scattering near-field detection of SPPs is implemented via monolayer graphene stacked under an SPP waveguide with a symmetric antenna. Energy conversion between radiation power and electrical signals is utilized for the photovoltaic and photoconductive processes of the gold-graphene interface and biased electrodes, measuring a maximum photoresponsivity of 29.2 mA W-1 . The generated photocurrent is altered under the polarization state of the input light, producing a 400% contrast between the maximum and minimum signals. This result is universally applicable to all on-chip optoelectronic circuits.
Collapse
Affiliation(s)
- Chia‐Hung Wu
- College of PhotonicsNational Yang Ming Chiao Tung University301 Gaofa 3rd RoadTainan71150Taiwan
| | - Chih‐Jen Ku
- Institute of Imaging and Biomedical PhotonicsCollege of PhotonicsNational Yang Ming Chiao Tung University301 Gaofa 3rd RoadTainan71150Taiwan
| | - Min‐Wen Yu
- College of PhotonicsNational Yang Ming Chiao Tung University301 Gaofa 3rd RoadTainan71150Taiwan
| | - Jhen‐Hong Yang
- College of PhotonicsNational Yang Ming Chiao Tung University301 Gaofa 3rd RoadTainan71150Taiwan
| | - Pei‐Yuan Wu
- Institute of Photonics TechnologiesNational Tsing Hua UniversityHsinchu300Taiwan
| | - Chen‐Bin Huang
- Institute of Photonics TechnologiesNational Tsing Hua UniversityHsinchu300Taiwan
| | - Tien‐Chang Lu
- Department of PhotonicsCollege of Electrical and Computer EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Jer‐Shing Huang
- Leibniz Institute of Photonic TechnologyAlbert‐Einstein Straße 907745JenaGermany
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich‐Schiller‐Universität JenaHelmholtzweg 4D‐07743JenaGermany
- Research Center for Applied SciencesAcademia Sinica128 Academia Road, Sec. 2, Nankang DistrictTaipei11529Taiwan
- Department of ElectrophysicsNational Yang Ming Chiao Tung UniversityNo. 1001 Daxue Rd, East DistrictHsinchu30010Taiwan
| | - Satoshi Ishii
- Research Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
| | - Kuo‐Ping Chen
- Institute of Imaging and Biomedical PhotonicsCollege of PhotonicsNational Yang Ming Chiao Tung University301 Gaofa 3rd RoadTainan71150Taiwan
- Institute of Photonics TechnologiesNational Tsing Hua UniversityHsinchu300Taiwan
| |
Collapse
|
15
|
V Grayli S, Kamal S, Leach GW. High performance, single crystal gold bowtie nanoantennas fabricated via epitaxial electroless deposition. Sci Rep 2023; 13:12745. [PMID: 37550311 PMCID: PMC10406868 DOI: 10.1038/s41598-023-38154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/04/2023] [Indexed: 08/09/2023] Open
Abstract
Material quality plays a critical role in the performance of nanometer-scale plasmonic structures and represents a significant hurdle to large-scale device integration. Progress has been hindered by the challenges of realizing scalable, high quality, ultrasmooth metal deposition strategies, and by the poor pattern transfer and device fabrication yields characteristic of most metal deposition approaches which yield polycrystalline metal structure. Here we highlight a novel and scalable electrochemical method to deposit ultrasmooth, single-crystal (100) gold and to fabricate a series of bowtie nanoantennas through subtractive nanopatterning. We investigate some of the less well-explored design and performance characteristics of these single-crystal nanoantennas in relation to their polycrystalline counterparts, including pattern transfer and device yield, polarization response, gap-field magnitude, and the ability to model accurately the antenna local field response. Our results underscore the performance advantages of single-crystal nanoscale plasmonic materials and provide insight into their use for large-scale manufacturing of plasmon-based devices. We anticipate that this approach will be broadly useful in applications where local near-fields can enhance light-matter interactions, including for the fabrication of optical sensors, photocatalytic structures, hot carrier-based devices, and nanostructured noble metal architectures targeting nano-attophysics.
Collapse
Affiliation(s)
- Sasan V Grayli
- Institute for Quantum Computing, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada
| | - Saeid Kamal
- Laboratory for Advanced Spectroscopy and Imaging Research, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada
| | - Gary W Leach
- Laboratory for Advanced Spectroscopy and Imaging Research, and 4D LABS, Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
16
|
Lin ZH, Kushida S, Lin FC, Chen JY, Singh AK, Yamamoto Y, Huang JS. Impact of Plasmonic and Dielectric Substrates on the Whispering-Gallery Modes in Self-Assembled Fluorescent Semiconductor Polymer Microspheres. NANO LETTERS 2023. [PMID: 37405910 DOI: 10.1021/acs.nanolett.3c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
In this work, the impact of metallic and dielectric conducting substrates, gold and indium tin oxide (ITO)-coated glass, on the whispering gallery modes (WGMs) of semiconductor π-conjugated polymer microspheres is investigated. Hyperspectral mapping was performed to obtain the excitation-position-dependent emission spectra of the microspheres. Substrate-dependent quenching of WGMs sensitive to mode polarization was observed and explained. On a glass substrate, both transverse-electric (TE) and transverse-magnetic (TM) WGMs are quenched due to frustrated total internal reflection. On a gold substrate, however, only the TM WGMs are allowed in symmetry to leak into surface plasmons. An atomically flat gold substrate with subwavelength slits was used to experimentally verify the leakage of WGMs into the surface plasmon polaritons (SPPs). This work provides insight into the damping mechanisms of WGMs in microspheres on metallic and dielectric substrates.
Collapse
Affiliation(s)
- Zhan-Hong Lin
- Leibniz Institute of Photonic Technology, Albert-Einstein Straße 9, 07745 Jena, Germany
| | - Soh Kushida
- Department of Materials Science and Tsukuba Research Center for Energy Materials Science (TREMS), Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Fan-Cheng Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jhih-Yuan Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ankit Kumar Singh
- Leibniz Institute of Photonic Technology, Albert-Einstein Straße 9, 07745 Jena, Germany
| | - Yohei Yamamoto
- Department of Materials Science and Tsukuba Research Center for Energy Materials Science (TREMS), Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Jer-Shing Huang
- Leibniz Institute of Photonic Technology, Albert-Einstein Straße 9, 07745 Jena, Germany
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Research Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academia Road, Nankang District, 11529 Taipei, Taiwan
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, 07743 Jena, Germany
- Department of Electrophysics, National Yang Ming Chiao Tung University, 1001 University Road, 30010 Hsinchu, Taiwan
| |
Collapse
|
17
|
Qin K, Liu K, Peng S, Zuo Z, He X, Ding J, Lu Y, Zhu Y, Zhang X. Strongly coupled Raman scattering enhancement revealed by scattering-type scanning near-field optical microscopy. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1857-1864. [PMID: 39635140 PMCID: PMC11502024 DOI: 10.1515/nanoph-2023-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/19/2023] [Indexed: 12/07/2024]
Abstract
Recent advances in near-field technology with an ultrahigh spatial resolution breaking optical diffraction limit, make it possible to further identify surface-enhanced Raman scattering (SERS) enhancement theories, and to monitor the SERS substrates. Here we verify the electromagnetic enhancement mechanism for SERS with a close-up view, using scattering-type scanning near-field optical microscopy. The array of metal-insulator-metal (MIM) subwavelength structures is studied, in which the field enhancement comes from the strong coupling between gap plasmon polariton and surface plasmon polariton modes. The near-field optical measurements reveal that SERS enhancement factor (EF) varies from one MIM subwavelength unit to another in a finite array. Besides the enhancement of isolated unit, the loss exchange phenomenon in strong coupling with a large Rabi splitting can give rise to an additional enhancement of more than 2 orders of magnitude in periodic arrays and close to 3 orders of magnitude in finite arrays. The SERS EF of the array composed of only 5 units is demonstrated to yield the best SERS performance. Our near-field optical measurements show evidence that finite-size structures embodied with strong coupling effect are a key way to develop practical high-performance SERS substrates.
Collapse
Affiliation(s)
- Kang Qin
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, No. 22, Hankou Road, 210093Nanjing, P.R. China
| | - Kai Liu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, No. 22, Hankou Road, 210093Nanjing, P.R. China
| | - Sheng Peng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, No. 22, Hankou Road, 210093Nanjing, P.R. China
| | - Zongyan Zuo
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, No. 22, Hankou Road, 210093Nanjing, P.R. China
| | - Xiao He
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, No. 22, Hankou Road, 210093Nanjing, P.R. China
| | - Jianping Ding
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, No. 22, Hankou Road, 210093Nanjing, P.R. China
| | - Yanqing Lu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, No. 22, Hankou Road, 210093Nanjing, P.R. China
| | - Yongyuan Zhu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, No. 22, Hankou Road, 210093Nanjing, P.R. China
| | - Xuejin Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, No. 22, Hankou Road, 210093Nanjing, P.R. China
| |
Collapse
|
18
|
Oh DK, Kim Y, Kim J, Kim I, Rho J. Guided domino lithography for uniform fabrication of single-digit-nanometer scale plasmonic nanoantenna. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1435-1441. [PMID: 39634586 PMCID: PMC11501949 DOI: 10.1515/nanoph-2022-0694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/16/2023] [Indexed: 12/07/2024]
Abstract
Single-digit-nanometer scale plasmonic nanoantenna platforms are widely used in optical sensors, quantum plasmonics, and other applications. Uniform and reliable fabrications with a single-digit-nanometer resolution are desirable for diverse quantum nanophotonic device applications, but improving the process yield and uniformity of the shape of the nanoantenna over the entire fabrication area remains a challenge. Here we report the guided domino lithography fabrication method for uniform ultra-sharp nanoantenna arrays. We use a collapsing of unstable photoresist nanostructures with a guide structure to uniformly fabricate ultra-sharp bowtie photoresist masks. We directly compare the yields of the conventional and the guided domino lithography under the optimized electron beam exposing and development conditions. Furthermore, we conduct a rigorous analysis to verify the electric field enhancement effect from ultra-sharp bowtie nanoantennas fabricated with different geometry. We believe that guided domino lithography can be a promising solution toward a practical manufacturing method for single-digit-nanometer plasmonic nanoantennas.
Collapse
Affiliation(s)
- Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Yeseul Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang37673, Republic of Korea
| |
Collapse
|
19
|
Scarabelli L, Sun M, Zhuo X, Yoo S, Millstone JE, Jones MR, Liz-Marzán LM. Plate-Like Colloidal Metal Nanoparticles. Chem Rev 2023; 123:3493-3542. [PMID: 36948214 PMCID: PMC10103137 DOI: 10.1021/acs.chemrev.3c00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- NANOPTO Group, Institue of Materials Science of Barcelona, Bellaterra, 08193, Spain
| | - Muhua Sun
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, Department of Chemical and Petroleum Engineering, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, 43009 Bilbao, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
20
|
Lee Y, Chang Y, Ryu H, Kim JH, Watanabe K, Taniguchi T, Kim M, Lee GH. Quasi-van der Waals Epitaxial Recrystallization of a Gold Thin Film into Crystallographically Aligned Single Crystals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6092-6097. [PMID: 36577086 DOI: 10.1021/acsami.2c18514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Heterointerfaces between two-dimensional (2D) materials and bulk metals determine the electrical and optical properties of their heterostructures. Although deposition of various metals on 2D materials has been studied, there is still a lack of studies on the interaction at the van der Waals (vdW) heterointerface between 2D materials and metals. Here, we report quasi-van der Waals (qvdW) epitaxial recrystallization of a gold thin film into crystallographically aligned single crystals by encapsulation annealing of a gold thin film with hexagonal boron nitride (hBN). When a polycrystalline gold thin film passivated with hBN was annealed, it was recrystallized into single gold crystals with a planar shape and crystallographic alignment with hBN due to a strong interaction between the gold film and hBN at the heterointerface. This reflects that a weak vdW force at the heterointerface is sufficiently strong to induce epitaxial recrystallization. Using this method, we fabricated a gold nanocrystal array with the same crystalline orientation and smooth top surface. Our work demonstrates a new method for epitaxial recrystallization of bulk crystals and provides a deep understanding of the interaction at the vdW heterointerface of 2D materials and metals.
Collapse
Affiliation(s)
- Yuna Lee
- Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Yunyeong Chang
- Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Huije Ryu
- Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Jong Hun Kim
- Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Miyoung Kim
- Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Gwan-Hyoung Lee
- Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
21
|
Barman P, Chakraborty A, Akimov DA, Singh AK, Meyer-Zedler T, Wu X, Ronning C, Schmitt M, Popp J, Huang JS. Nonlinear Optical Signal Generation Mediated by a Plasmonic Azimuthally Chirped Grating. NANO LETTERS 2022; 22:9914-9919. [PMID: 36480926 PMCID: PMC9801425 DOI: 10.1021/acs.nanolett.2c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Plasmonic gratings are simple and effective platforms for nonlinear signal generation since they provide a well-defined momentum for photon-plasmon coupling and local hot spots for frequency conversion. Here, a plasmonic azimuthally chirped grating (ACG), which provides spatially resolved broadband momentum for photon-plasmon coupling, was exploited to investigate the plasmonic enhancement effect in two nonlinear optical processes, namely two-photon photoluminescence (TPPL) and second harmonic generation (SHG). The spatial distributions of the nonlinear signals were determined experimentally by hyperspectral mapping with ultrashort pulsed excitation. The experimental spatial distributions of nonlinear signals agree very well with the analytical prediction based on photon-plasmon coupling with the momentum of the ACG, revealing the "antenna" function of the grating in plasmonic nonlinear signal generation. This work highlights the importance of the antenna effect of the gratings for nonlinear signal generation and provides insight into the enhancement mechanism of plasmonic gratings in addition to local hot spot engineering.
Collapse
Affiliation(s)
- Parijat Barman
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, D-07743 Jena, Germany
- Leibniz
Institute of Photonic Technology, Albert-Einstein Str. 9, 07745 Jena, Germany
| | - Abhik Chakraborty
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, D-07743 Jena, Germany
- Leibniz
Institute of Photonic Technology, Albert-Einstein Str. 9, 07745 Jena, Germany
| | - Denis A. Akimov
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, D-07743 Jena, Germany
- Leibniz
Institute of Photonic Technology, Albert-Einstein Str. 9, 07745 Jena, Germany
| | - Ankit Kumar Singh
- Leibniz
Institute of Photonic Technology, Albert-Einstein Str. 9, 07745 Jena, Germany
| | - Tobias Meyer-Zedler
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, D-07743 Jena, Germany
- Leibniz
Institute of Photonic Technology, Albert-Einstein Str. 9, 07745 Jena, Germany
| | - Xiaofei Wu
- Leibniz
Institute of Photonic Technology, Albert-Einstein Str. 9, 07745 Jena, Germany
| | - Carsten Ronning
- Institut
für Festkörperphysik, Friedrich-Schiller-Universität
Jena, Max-Wien-Platz
1, 07743 Jena, Germany
| | - Michael Schmitt
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | - Jürgen Popp
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, D-07743 Jena, Germany
- Leibniz
Institute of Photonic Technology, Albert-Einstein Str. 9, 07745 Jena, Germany
| | - Jer-Shing Huang
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, D-07743 Jena, Germany
- Leibniz
Institute of Photonic Technology, Albert-Einstein Str. 9, 07745 Jena, Germany
- Research
Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
- Department
of Electrophysics, National Yang Ming Chiao
Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
22
|
Zhang J, Li Q, Dai C, Cheng M, Hu X, Kim HS, Yang H, Preston DJ, Li Z, Zhang X, Lee WK. Hydrogel-Based, Dynamically Tunable Plasmonic Metasurfaces with Nanoscale Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205057. [PMID: 36269881 DOI: 10.1002/smll.202205057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Flat metasurfaces with subwavelength meta-atoms can be designed to manipulate the electromagnetic parameters of incident light and enable unusual light-matter interactions. Although hydrogel-based metasurfaces have the potential to control optical properties dynamically in response to environmental conditions, the pattern resolution of these surfaces has been limited to microscale features or larger, limiting capabilities at the nanoscale, and precluding effective use in metamaterials. This paper reports a general approach to developing tunable plasmonic metasurfaces with hydrogel meta-atoms at the subwavelength scale. Periodic arrays of hydrogel nanodots with continuously tunable diameters are fabricated on silver substrates, resulting in humidity-responsive surface plasmon polaritons (SPPs) at the nanostructure-metal interfaces. The peaks of the SPPs are controlled reversibly by absorbing or releasing water within the hydrogel matrix, the matrix-generated plasmonic color rendering in the visible spectrum. This work demonstrates that metasurfaces designed with these spatially patterned nanodots of varying sizes benefit applications in anti-counterfeiting and generate multicolored displays with single-nanodot resolution. Furthermore, this work shows system versatility exhibited by broadband beam-steering on a phase modulator consisting of hydrogel supercell units in which the size variations of constituent hydrogel nanostructures engineer the wavefront of reflected light from the metasurface.
Collapse
Affiliation(s)
- Jian Zhang
- Information Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qiang Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chenjie Dai
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Mingliang Cheng
- Information Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xin Hu
- Information Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Hyun-Sik Kim
- Department of Materials Science and Engineering, University of Seoul, Seoul, 02504, Korea
| | - Heesun Yang
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Korea
| | - Daniel J Preston
- Department of Mechanical Engineering, Rice University, Houston, TX, 77006, USA
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Xuefeng Zhang
- Information Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Won-Kyu Lee
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Korea
| |
Collapse
|
23
|
Neal RD, Lawson ZR, Tuff WJ, Xu K, Kumar V, Korsa MT, Zhukovskyi M, Rosenberger MR, Adam J, Hachtel JA, Camden JP, Hughes RA, Neretina S. Large-Area Periodic Arrays of Atomically Flat Single-Crystal Gold Nanotriangles Formed Directly on Substrate Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205780. [PMID: 36344422 DOI: 10.1002/smll.202205780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The advancement of nanoenabled wafer-based devices requires the establishment of core competencies related to the deterministic positioning of nanometric building blocks over large areas. Within this realm, plasmonic single-crystal gold nanotriangles represent one of the most attractive nanoscale components but where the formation of addressable arrays at scale has heretofore proven impracticable. Herein, a benchtop process is presented for the formation of large-area periodic arrays of gold nanotriangles. The devised growth pathway sees the formation of an array of defect-laden seeds using lithographic and vapor-phase assembly processes followed by their placement in a growth solution promoting planar growth and threefold symmetric side-faceting. The nanotriangles formed in this high-yield synthesis distinguish themselves in that they are epitaxially aligned with the underlying substrate, grown to thicknesses that are not readily obtainable in colloidal syntheses, and present atomically flat pristine surfaces exhibiting gold atoms with a close-packed structure. As such, they express crisp and unambiguous plasmonic modes and form photoactive surfaces with highly tunable and readily modeled plasmon resonances. The devised methods, hence, advance the integration of single-crystal gold nanotriangles into device platforms and provide an overall fabrication strategy that is adaptable to other nanomaterials.
Collapse
Affiliation(s)
- Robert D Neal
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Zachary R Lawson
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Walker J Tuff
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kaikui Xu
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Vishal Kumar
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matiyas T Korsa
- Computational Materials Group, SDU Centre for Photonics Engineering, Mads Clausen Institute, University of Southern Denmark, Odense, 5230, Denmark
| | - Maksym Zhukovskyi
- Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | - Jost Adam
- Computational Materials Group, SDU Centre for Photonics Engineering, Mads Clausen Institute, University of Southern Denmark, Odense, 5230, Denmark
| | - Jordan A Hachtel
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
24
|
Cha L, Li P. Metallic On-Chip Light Concentrators Fabricated by In Situ Plasmonic Etching Technique. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4195. [PMID: 36500820 PMCID: PMC9739918 DOI: 10.3390/nano12234195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
One-dimensional tapered metallic nanostructures are highly interesting for nanophotonic applications because of their plasmonic waveguiding and field-focusing properties. Here, we developed an in situ etching technique for unique tapered crystallized silver nanowire fabrication. Under the focused laser spot, plasmon-induced charge separation of chemically synthesized nanowires is excited, which triggers the uniaxial etching of silver nanowires along the radial direction with decreasing rate, forming tapered structures several micrometers long and with diameter attenuating from hundreds to tens of nanometers. These tapered metallic nanowires have smooth surfaces showing excellent performance for plasmonic waveguiding, and can be good candidates for nanocircuits and remote-excitation sources.
Collapse
Affiliation(s)
- Lihua Cha
- School of Law, Central University of Finance and Economics, Beijing 100081, China
| | - Pan Li
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing 100089, China
- Department of Physics, Capital Normal University, Beijing 100048, China
- School of Information Technology, Beijing City University, Beijing 100083, China
| |
Collapse
|
25
|
Yu SY, Shih MH, Ku YC, Kuo YH, Liaw JW. Water-Immersion Laser-Scanning Annealing for Improving Polycrystalline Au Films. ACS OMEGA 2022; 7:42272-42282. [PMID: 36440141 PMCID: PMC9686192 DOI: 10.1021/acsomega.2c05101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
A water-immersion laser-scanning annealing (WILSA) method was developed for the heat treatment of a deposited polycrystalline Au film on a glass. The material characterization using X-ray diffraction, field-emission scanning electron microscopy, and electron backscatter diffraction shows improved crystallinity with a more uniform crystallographic orientation of (111) and the grain growth of the annealed Au film. Additionally, the optical constants of the Au film before and after annealing were characterized by spectroscopic ellipsometry in the visible to near-infrared (NIR) regime, and the corresponding optical densities (ODs) were measured by transmittance spectroscopy. Our results show that the extinction coefficient and the OD of the annealed film are significantly reduced, particularly in the NIR regime. This is because the grain growth caused by the annealing reduces the density of grain boundaries, leading to the decrease of the loss of free electrons' scattering at grain boundaries. Hence, the damping effect of the surface plasmon is reduced. Additionally, the integrity of the WILSA-treated thin film is kept intact without pinholes, usually produced by the conventional thermal annealing. Based on the improved optical property of the WILSA-treated Au film, two performances of an insulator-metal-insulator (IMI) layered structure of biosensors are theoretically analyzed. Numerical results show that the propagation length of a long-range surface plasmon polariton along an IMI structure with an annealed Au film is significantly increased, compared to an unannealed film, particular in the NIR region. For the other application of using an IMI sensor to detect the shift of the surface-plasmon-resonance dip in the total internal reflection spectrum for the measurement of a change of the medium's refractive index, the sensitivity is also profoundly improved by the WILSA method. It is worth mentioning that the optimal heating conditions (laser wavelength, fluence, exposure time, and scanning step) depend on the thickness of the Au film. Our study provides a postprocess of WILSA to improve the optical properties of a deposited polycrystalline Au film for raising the sensitivity of the related biosensors.
Collapse
Affiliation(s)
- Shang-Yang Yu
- Department
of Mechanical Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Taoyuan 333323, Taiwan
| | - Min-Hsiung Shih
- Research
Center for Applied Sciences, Academia Sinica, 128 Academia Road, Sec. 2,Taipei 115201, Taiwan
| | - Yun-Cheng Ku
- Institute
of Applied Mechanics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Yi-Han Kuo
- Department
of Mechanical Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Taoyuan 333323, Taiwan
| | - Jiunn-Woei Liaw
- Department
of Mechanical Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Taoyuan 333323, Taiwan
- Department
of Mechanical Engineering, Ming Chi University
of Technology, 84 Gungjuan
Rd., New Taipei 243303, Taiwan
- Proton
and Radiation Therapy Center, Linkou Chang
Gung Memorial Hospital, 15 Wen-Hwa 1st Rd., Taoyuan 333011, Taiwan
| |
Collapse
|
26
|
Semple M, Scheuer KG, DeCorby RG, Iyer AK. Complex 10-nm resolution nanogap and nanowire geometries for plasmonic metasurface miniaturization. OPTICS EXPRESS 2022; 30:42480-42494. [PMID: 36366701 DOI: 10.1364/oe.471884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Emerging electromagnetic inverse design methods have pushed nanofabrication methods to their limits to extract maximum performance from plasmonic aperture-based metasurfaces. Using plasmonic metamaterial-lined apertures as an example, we demonstrate the importance of fine nanowire and nanogap features for achieving strong miniaturization of plasmonic nanoapertures. Metamaterial-lined nanoapertures are miniaturized over bowtie nanoapertures with identical minimum feature sizes by a factor of 25% without loss of field enhancement. We show that features as small as 10 nm can be reliably patterned over the wide areas required of metasurfaces using the helium focused ion beam microscope. Under imperfect fabrication conditions, we achieve 11-nm-wide nanogaps and 12-nm-wide nanowires over an area of 13 µm2, and successfully validate our results with optical characterization and comparable full-wave simulations.
Collapse
|
27
|
Zhang H, Wang Q, Hou L, Xiao F, Zhao J. Selective triggering in-plane and out-of-plane dipolar modes of hexagonal Au nanoplate with the polarization of excitation beam. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:505302. [PMID: 36279871 DOI: 10.1088/1361-648x/ac9d18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The dipolar responses of a single hexagonal Au nanoplate are investigated under the illuminations of linearly polarized beam and tightly focused radially polarized beam (RPB). It is found from the scattering spectra that the in-plane and out-of-plane electric dipole modes can be selectively triggered with a linearly polarized beam and tightly focused RPB, respectively. The features of these two dipolar modes are further confirmed in terms of electrical field and charge maps by the finite-difference time-domain simulation. Additionally, using the multipole expansion method, the existence of the out-of-plane dipole mode is further verified by the fact that thez-component of electric dipole response has a dominant contribution to the scattered power. Moreover, by combining the back focal plane imaging technique with the simulation, the appearance of in-plane and out-of-plane dipoles in the scattering pattern are clearly discerned. Our results provide an efficient method for selectively exciting the in-plane and out-of-plane dipolar modes of the nanoplate. We envision that the ease of tuning the dipolar momentum may facilitate the enhancement of the interaction between the plasmon and emitters at single-particle level.
Collapse
Affiliation(s)
- Hanmou Zhang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| | - Qifa Wang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| | - Liping Hou
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| | - Fajun Xiao
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| | - Jianlin Zhao
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| |
Collapse
|
28
|
Gladstein Gladstone R, Dev S, Allen J, Allen M, Shvets G. Topological edge states of a long-range surface plasmon polariton at the telecommunication wavelength. OPTICS LETTERS 2022; 47:4532-4535. [PMID: 36048697 DOI: 10.1364/ol.471442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Confining light by plasmonic waveguides is promising for miniaturizing optical components, while topological photonics has been explored for robust light localization. Here we propose combining the two approaches into a simple periodically perforated plasmonic waveguide (PPW) design exhibiting robust localization of long-range surface plasmon polaritons. We predict the existence of a topological edge state originating from a quantized topological invariant, and numerically demonstrate the viability of its excitation at telecommunication wavelength using near-field and waveguide-based approaches. Strong modification of the radiative lifetime of dipole emitters by the edge state, and its robustness to disorder, are demonstrated.
Collapse
|
29
|
Lebsir Y, Boroviks S, Thomaschewski M, Bozhevolnyi SI, Zenin VA. Ultimate Limit for Optical Losses in Gold, Revealed by Quantitative Near-Field Microscopy. NANO LETTERS 2022; 22:5759-5764. [PMID: 35787133 DOI: 10.1021/acs.nanolett.2c01059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report thorough measurements of surface plasmon polaritons (SPPs) running along nearly perfect air-gold interfaces formed by atomically flat surfaces of chemically synthesized gold monocrystals. By means of amplitude- and phase-resolved near-field microscopy, we obtain their propagation length and effective mode index at visible wavelengths (532, 594, 632.8, 729, and 800 nm). The measured values are compared with the values obtained from the dielectric functions of gold that are reported in literature. Importantly, a reported dielectric function of monocrystalline gold implies ∼1.5 times shorter propagation lengths than those observed in our experiments, whereas a dielectric function reported for properly fabricated polycrystalline gold leads to SPP propagation lengths matching our results. We argue that the SPP propagation lengths measured in our experiments signify the ultimate limit of optical losses in gold, encouraging further comprehensive characterization of optical material properties of pure gold as well as other plasmonic materials.
Collapse
Affiliation(s)
- Yonas Lebsir
- Centre for Nano Optics, University of Southern Denmark, 5230 Odense, Denmark
- Institute for Experimental and Applied Physics, Kiel University, 24118 Kiel, Germany
| | - Sergejs Boroviks
- Centre for Nano Optics, University of Southern Denmark, 5230 Odense, Denmark
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | - Sergey I Bozhevolnyi
- Centre for Nano Optics, University of Southern Denmark, 5230 Odense, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, 5230 Odense, Denmark
| | - Vladimir A Zenin
- Centre for Nano Optics, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
30
|
Menabde SG, Boroviks S, Ahn J, Heiden JT, Watanabe K, Taniguchi T, Low T, Hwang DK, Mortensen NA, Jang MS. Near-field probing of image phonon-polaritons in hexagonal boron nitride on gold crystals. SCIENCE ADVANCES 2022; 8:eabn0627. [PMID: 35857499 PMCID: PMC9278849 DOI: 10.1126/sciadv.abn0627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Near-field mapping has been widely used to study hyperbolic phonon-polaritons in van der Waals crystals. However, an accurate measurement of the polaritonic loss remains challenging because of the inherent complexity of the near-field signal and the substrate-mediated loss. Here we demonstrate that large-area monocrystalline gold flakes, an atomically flat low-loss substrate for image polaritons, provide a platform for precise near-field measurement of the complex propagation constant of polaritons in van der Waals crystals. As a topical example, we measure propagation loss of the image phonon-polaritons in hexagonal boron nitride, revealing that their normalized propagation length exhibits a parabolic spectral dependency. Furthermore, we show that image phonon-polaritons exhibit up to a twice longer normalized propagation length, while being 2.4 times more compressed compared to the case of the dielectric substrate. We conclude that the monocrystalline gold flakes provide a unique nanophotonic platform for probing and exploitation of the image modes in low-dimensional materials.
Collapse
Affiliation(s)
- Sergey G Menabde
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sergejs Boroviks
- Center for Nano Optics, University of Southern Denmark, Odense, Denmark
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jongtae Ahn
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul, Korea
| | - Jacob T Heiden
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Do Kyung Hwang
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
- Division of Nano and Information Technology, University of Science and Technology, Daejeon, Korea
| | - N Asger Mortensen
- Center for Nano Optics, University of Southern Denmark, Odense, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Min Seok Jang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
31
|
Nakhoul A, Rudenko A, Maurice C, Reynaud S, Garrelie F, Pigeon F, Colombier J. Boosted Spontaneous Formation of High-Aspect Ratio Nanopeaks on Ultrafast Laser-Irradiated Ni Surface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200761. [PMID: 35618474 PMCID: PMC9313481 DOI: 10.1002/advs.202200761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Indexed: 05/27/2023]
Abstract
The capacity to synthesize and design highly intricated nanoscale objects of different sizes, surfaces, and shapes dramatically conditions the development of multifunctional nanomaterials. Ultrafast laser technology holds great promise as a contactless process able to rationally and rapidly manufacture complex nanostructures bringing innovative surface functions. The most critical challenge in controlling the growth of laser-induced structures below the light diffraction limit is the absence of external order associated to the inherent local interaction due to the self-organizing nature of the phenomenon. Here high aspect-ratio nanopatterns driven by near-field surface coupling and architectured by timely-controlled polarization pulse shaping are reported. Electromagnetic coupled with hydrodynamic simulations reveal why this unique optical manipulation allows peaks generation by inhomogeneous local absorption sustained by nanoscale convection. The obtained high aspect-ratio surface nanotopography is expected to prevent bacterial proliferation, and have great potential for catalysis, vacuum to deep UV photonics and sensing.
Collapse
Affiliation(s)
- Anthony Nakhoul
- Univ LyonUJM‐Saint‐Etienne, CNRS, IOGS, Laboratoire Hubert Curien, UMR5516St‐Etienne42023France
- Univ LyonMines Saint‐Etienne, CNRS, Centre SMS, Laboratoire Georges Friedel, UMR5307St‐Etienne42023France
| | - Anton Rudenko
- Arizona Center for Mathematical Sciences and College of Optical SciencesUniversity of ArizonaTucsonAZ85721USA
| | - Claire Maurice
- Univ LyonMines Saint‐Etienne, CNRS, Centre SMS, Laboratoire Georges Friedel, UMR5307St‐Etienne42023France
| | - Stéphanie Reynaud
- Univ LyonUJM‐Saint‐Etienne, CNRS, IOGS, Laboratoire Hubert Curien, UMR5516St‐Etienne42023France
| | - Florence Garrelie
- Univ LyonUJM‐Saint‐Etienne, CNRS, IOGS, Laboratoire Hubert Curien, UMR5516St‐Etienne42023France
| | - Florent Pigeon
- Univ LyonUJM‐Saint‐Etienne, CNRS, IOGS, Laboratoire Hubert Curien, UMR5516St‐Etienne42023France
| | - Jean‐Philippe Colombier
- Univ LyonUJM‐Saint‐Etienne, CNRS, IOGS, Laboratoire Hubert Curien, UMR5516St‐Etienne42023France
| |
Collapse
|
32
|
Greenwood A, Balram KC, Gersen H. Smooth Sidewalls on Crystalline Gold through Facet-Selective Anisotropic Reactive Ion Etching: Toward Low-Loss Plasmonic Devices. NANO LETTERS 2022; 22:4617-4621. [PMID: 35652540 PMCID: PMC9228404 DOI: 10.1021/acs.nanolett.1c04405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Quantum plasmonics aims to harness the deeply subwavelength confinement provided by plasmonic devices to engineer more efficient interfaces to quantum systems in particular single emitters. Realizing this vision is hampered by the roughness-induced scattering and loss inherent in most nanofabricated devices. In this work, we show evidence of a reactive ion etching process to selectively etch gold along select crystalline facets. Since the etch is facet selective, the sidewalls of fabricated devices are smoother than the lithography induced line-edge roughness with the prospect of achieving atomic smoothness by further optimization of the etch chemistry. This opens up a route toward fabricating integrated plasmonic circuits that can achieve loss metrics close to fundamental bounds.
Collapse
Affiliation(s)
- Alexander
B. Greenwood
- Nanophotonics
and Nanophysics Group, H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, United Kingdom
| | - Krishna C. Balram
- Quantum
Engineering Technology Laboratories and Department of Electrical and
Electronic Engineering, University of Bristol, Woodland Road, Bristol BS8 1UB, United
Kingdom
| | - Henkjan Gersen
- Nanophotonics
and Nanophysics Group, H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, United Kingdom
| |
Collapse
|
33
|
Segervald J, Boulanger N, Salh R, Jia X, Wågberg T. Plasmonic metasurface assisted by thermally imprinted polymer nano‐well array for surface enhanced Raman scattering. NANO SELECT 2022. [DOI: 10.1002/nano.202200010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | | | | | - Xueen Jia
- Department of Physics Umeå University Umeå Sweden
| | | |
Collapse
|
34
|
Boroviks S, Lin ZH, Zenin VA, Ziegler M, Dellith A, Gonçalves PAD, Wolff C, Bozhevolnyi SI, Huang JS, Mortensen NA. Extremely confined gap plasmon modes: when nonlocality matters. Nat Commun 2022; 13:3105. [PMID: 35661728 PMCID: PMC9166740 DOI: 10.1038/s41467-022-30737-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Historically, the field of plasmonics has been relying on the framework of classical electrodynamics, with the local-response approximation of material response being applied even when dealing with nanoscale metallic structures. However, when the confinement of electromagnetic radiation approaches atomic scales, mesoscopic effects are anticipated to become observable, e.g., those associated with the nonlocal electrodynamic surface response of the electron gas. Here, we investigate nonlocal effects in propagating gap surface plasmon modes in ultrathin metal-dielectric-metal planar waveguides, exploiting monocrystalline gold flakes separated by atomic-layer-deposited aluminum oxide. We use scanning near-field optical microscopy to directly access the near-field of such confined gap plasmon modes and measure their dispersion relation via their complex-valued propagation constants. We compare our experimental findings with the predictions of the generalized nonlocal optical response theory to unveil signatures of nonlocal damping, which becomes appreciable for few-nanometer-sized dielectric gaps.
Collapse
Affiliation(s)
- Sergejs Boroviks
- Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
- Leibniz Institute of Photonic Technology, Albert-Einstein Straße 9, 07745, Jena, Germany
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), Station 11, CH 1015, Lausanne, Switzerland
| | - Zhan-Hong Lin
- Leibniz Institute of Photonic Technology, Albert-Einstein Straße 9, 07745, Jena, Germany
| | - Vladimir A Zenin
- Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Mario Ziegler
- Leibniz Institute of Photonic Technology, Albert-Einstein Straße 9, 07745, Jena, Germany
| | - Andrea Dellith
- Leibniz Institute of Photonic Technology, Albert-Einstein Straße 9, 07745, Jena, Germany
| | - P A D Gonçalves
- Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Christian Wolff
- Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Sergey I Bozhevolnyi
- Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Jer-Shing Huang
- Leibniz Institute of Photonic Technology, Albert-Einstein Straße 9, 07745, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany
- Research Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academia Road, Nankang District, 11529, Taipei, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, 1001 University Road, 30010, Hsinchu, Taiwan
| | - N Asger Mortensen
- Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| |
Collapse
|
35
|
Dell'Ova F, Shakirova D, Brulé Y, Moreaud L, Colas-des-Francs G, Dujardin E, Bouhelier A. Coherent two-beam steering of delocalized nonlinear photoluminescence in a plasmon cavity. OPTICS EXPRESS 2022; 30:17517-17528. [PMID: 36221572 DOI: 10.1364/oe.456599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/12/2022] [Indexed: 06/16/2023]
Abstract
We aim at controlling the spatial distribution of nonlinear photoluminescence in a shaped micrometer-size crystalline gold flake. Interestingly, the underlying surface plasmon modal landscape sustained by this mesoscopic structure can be advantageously used to generate nonlinear photoluminescence (nPL) in remote locations away from the excitation spot. By controlling the modal pattern, we show that the delocalized nonlinear photoluminescence intensity can be redistributed spatially. This is first accomplished by changing the polarization orientation of the pulsed laser excitation in order to select a subset of available surface plasmon modes within a continuum. We then propose a second approach to redistribute the nPL within the structure by implementing a phase control of the plasmon interference pattern arising from a coherent two-beam excitation. Control and engineering of the nonlinear photoluminescence spatial extension is a prerequisite for deploying the next generation of plasmonic-enabled integrated devices relying on hot carriers.
Collapse
|
36
|
Wu X, Ehehalt R, Razinskas G, Feichtner T, Qin J, Hecht B. Light-driven microdrones. NATURE NANOTECHNOLOGY 2022; 17:477-484. [PMID: 35449413 DOI: 10.1038/s41565-022-01099-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
When photons interact with matter, forces and torques occur due to the transfer of linear and angular momentum, respectively. The resulting accelerations are small for macroscopic objects but become substantial for microscopic objects with small masses and moments of inertia, rendering photon recoil very attractive to propel micro- and nano-objects. However, until now, using light to control object motion in two or three dimensions in all three or six degrees of freedom has remained an unsolved challenge. Here we demonstrate light-driven microdrones (size roughly 2 μm and mass roughly 2 pg) in an aqueous environment that can be manoeuvred in two dimensions in all three independent degrees of freedom (two translational and one rotational) using two overlapping unfocused light fields of 830 and 980 nm wavelength. To actuate the microdrones independent of their orientation, we use up to four individually addressable chiral plasmonic nanoantennas acting as nanomotors that resonantly scatter the circular polarization components of the driving light into well-defined directions. The microdrones are manoeuvred by only adjusting the optical power for each motor (the power of each circular polarization component of each wavelength). The actuation concept is therefore similar to that of macroscopic multirotor drones. As a result, we demonstrate manual steering of the microdrones along complex paths. Since all degrees of freedom can be addressed independently and directly, feedback control loops may be used to counteract Brownian motion. We posit that the microdrones can find applications in transport and release of cargos, nanomanipulation, and local probing and sensing of nano and mesoscale objects.
Collapse
Affiliation(s)
- Xiaofei Wu
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany.
- Leibniz Institute of Photonic Technology, Jena, Germany.
| | - Raphael Ehehalt
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
| | - Gary Razinskas
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Thorsten Feichtner
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
| | - Jin Qin
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
| | - Bert Hecht
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
37
|
Ray D, Wang HC, Kim J, Santschi C, Martin OJF. A Low-Temperature Annealing Method for Alloy Nanostructures and Metasurfaces: Unlocking a Novel Degree of Freedom. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108225. [PMID: 35167722 DOI: 10.1002/adma.202108225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The material and exact shape of a nanostructure determine its optical response, which is especially strong for plasmonic metals. Unfortunately, only a few plasmonic metals are available, which limits the spectral range where these strong optical effects can be utilized. Alloying different plasmonic metals can overcome this limitation, at the expense of using a high-temperature alloying process, which adversely destroys the nanostructure shape. Here, a low-temperature alloying process is developed where the sample is heated at only 300 °C for 8 h followed by 30 min at 450 °C and Au-Ag nanostructures with a broad diversity of shapes, aspect ratios, and stoichiometries are fabricated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy analyses confirm the homogeneous alloying through the entire sample. Varying the alloy stoichiometry tunes the optical response and controls spectral features, such as Fano resonances. Binary metasurfaces that combine nanostructures with different stoichiometries are fabricated using multiple-step electron-beam lithography, and their optical function as a hologram or a Fresnel zone plate is demonstrated at the visible wavelength of λ = 532 nm. This low-temperature annealing technique provides a versatile and cost-effective way of fabricating complex Au-Ag nanostructures with arbitrary stoichiometry.
Collapse
Affiliation(s)
- Debdatta Ray
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology, Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Hsiang-Chu Wang
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology, Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Jeonghyeon Kim
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology, Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Christian Santschi
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology, Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Olivier J F Martin
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology, Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
38
|
Casses LN, Kaltenecker KJ, Xiao S, Wubs M, Stenger N. Quantitative near-field characterization of surface plasmon polaritons on monocrystalline gold platelets. OPTICS EXPRESS 2022; 30:11181-11191. [PMID: 35473067 DOI: 10.1364/oe.454740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Near-field microscopy allows for visualization of both the amplitude and phase of surface plasmon polaritons (SPPs). However, their quantitative characterization in a reflection configuration is challenging due to complex wave patterns arising from the interference between several excitation channels. Here, we present near-field measurements of SPPs on large monocrystalline gold platelets in the visible. We study systematically the influence of the incident angle of the exciting light on the SPPs launched by an atomic force microscope tip. We find that the amplitude and phase signals of these SPPs are best disentangled from other signals at grazing incident angle relative to the edge of the gold platelet. Furthermore, we introduce a simple model to extract the wavelength and in particular the propagation length of the tip-launched plasmons. Our experimental results are in excellent agreement with our theoretical model. The presented method allows the quantitative analysis of polaritons occurring in different materials at visible wavelengths.
Collapse
|
39
|
Liu L, Krasavin AV, Zheng J, Tong Y, Wang P, Wu X, Hecht B, Pan C, Li J, Li L, Guo X, Zayats AV, Tong L. Atomically Smooth Single-Crystalline Platform for Low-Loss Plasmonic Nanocavities. NANO LETTERS 2022; 22:1786-1794. [PMID: 35129980 DOI: 10.1021/acs.nanolett.2c00095] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticle-on-mirror plasmonic nanocavities, capable of extreme optical confinement and enhancement, have triggered state-of-the-art progress in nanophotonics and development of applications in enhanced spectroscopies. However, the optical quality factor and thus performance of these nanoconstructs are undermined by the granular polycrystalline metal films (especially when they are optically thin) used as a mirror. Here, we report an atomically smooth single-crystalline platform for low-loss nanocavities using chemically synthesized gold microflakes as a mirror. Nanocavities constructed using gold nanorods on such microflakes exhibit a rich structure of plasmonic modes, which are highly sensitive to the thickness of optically thin (down to ∼15 nm) microflakes. The microflakes endow nanocavities with significantly improved quality factor (∼2 times) and scattering intensity (∼3 times) compared with their counterparts based on deposited films. The developed low-loss nanocavities further allow for the integration with a mature platform of fiber optics, opening opportunities for realizing nanocavity-based miniaturized photonic devices for practical applications.
Collapse
Affiliation(s)
- Lufang Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Alexey V Krasavin
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, U.K
| | - Junsheng Zheng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanbiao Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pan Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaofei Wu
- NanoOptics & Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bert Hecht
- NanoOptics & Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Chenxinyu Pan
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jialin Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linjun Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin Guo
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, U.K
| | - Limin Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
40
|
Grimm P, Zeißner S, Rödel M, Wiegand S, Hammer S, Emmerling M, Schatz E, Kullock R, Pflaum J, Hecht B. Color-Switchable Subwavelength Organic Light-Emitting Antennas. NANO LETTERS 2022; 22:1032-1038. [PMID: 35001635 DOI: 10.1021/acs.nanolett.1c03994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Future photonic devices require efficient, multifunctional, electrically driven light sources with directional emission properties and subwavelength dimensions. Electrically driven plasmonic nanoantennas have been demonstrated as enabling technology. Here, we present the concept of a nanoscale organic light-emitting antenna (OLEA) as a color- and directionality-switchable point source. The device consists of laterally arranged electrically contacted gold nanoantennas with their gap filled by the organic semiconductor zinc phthalocyanine (ZnPc). Since ZnPc shows preferred hole conduction in combination with gold, the recombination zone relocates depending on the polarity of the applied voltage and couples selectively to either of the two antennas. Thereby, the emission characteristics of the device also depend on polarity. Contrary to large-area OLEDs where recombination at metal contacts significantly contributes to losses, our ultracompact OLEA structures facilitate efficient radiation into the far-field rendering transparent electrodes obsolete. We envision OLEA structures to serve as wavelength-scale pixels with tunable color and directionality for advanced display applications.
Collapse
Affiliation(s)
- Philipp Grimm
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefan Zeißner
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Rödel
- Experimentelle Physik 6, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Simon Wiegand
- Experimentelle Physik 6, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sebastian Hammer
- Experimentelle Physik 6, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Monika Emmerling
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Enno Schatz
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - René Kullock
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jens Pflaum
- Experimentelle Physik 6, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bert Hecht
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
41
|
Li X, Zhang T, Chen Z, Yu J, Cao A, Liu D, Cai W, Li Y. Au Polyhedron Array with Tunable Crystal Facets by PVP-Assisted Thermodynamic Control and Its Sharp Shape As Well As High-Energy Exposed Planes Co-Boosted SERS Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105045. [PMID: 34841652 DOI: 10.1002/smll.202105045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/08/2021] [Indexed: 06/13/2023]
Abstract
A route is developed for directly growing 2D Au polyhedron arrays with controllable exposed facets of polyhedron by utilizing the substrate-supported 2D Au quasi-spherical nanoparticle arrays as the Au seed arrays, which cannot be realized by traditional lithography. In the reaction system, polyvinyl pyrrolidone (PVP) plays a vital role in guiding the reduced Au atoms and stabilizing the substrate-supported Au seeds. More importantly, by thermodynamic control, PVP as a capping agent can further direct the formation of {111} facets. The key to guarantee the integrity and periodicity of array is a proper reduction of Au ions and low growth rate of crystal. Benefiting from the higher electric field intensity near the sharp vertexes and edges of Au polyhedra and the exposed {110} facets with high energy, the Au polyhedron array with {110} facets encasing polyhedron exhibits good, stable surface enhanced Raman scattering activity toward 4-aminothiophenol among the involved arrays. The proposed fabrication approach tremendously enriches the structural diversity of Au nanoarrays on substrates and greatly overcomes the shortcoming of traditional lithography.
Collapse
Affiliation(s)
- Xuejiao Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Materials Physics and Anhui, Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Tao Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Zhiming Chen
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Materials Physics and Anhui, Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Jie Yu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - An Cao
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Materials Physics and Anhui, Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Dilong Liu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Weiping Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yue Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
42
|
Ai Q, Sterl F, Zhang H, Wang J, Giessen H. Giant Second Harmonic Generation Enhancement in a High- Q Doubly Resonant Hybrid Plasmon-Fiber Cavity System. ACS NANO 2021; 15:19409-19417. [PMID: 34871493 DOI: 10.1021/acsnano.1c05970] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A high-quality plasmon-fiber cavity in a doubly resonant configuration can exhibit second-harmonic generation (SHG) with over 5 orders of magnitude enhancement compared to gold nanoparticles on a fused silica substrate. Through coupling to a fiber cavity with the proper diameter, a high-quality (Q ≈ 160) resonance can be achieved in combination with a single gold nanoparticle. In a classical picture, where the incident electric field travels coherently Q times around the fiber during the nonlinear process, the high Q of the coupled mode aids in highly efficient SHG. We accomplish two feats: First, we analyze the Q factor dependence of the SHG efficiency, proving the expected Q4 dependence and thus confirming coherent E-field amplification in the fiber cavity. Second, we carefully adjust the fiber size further and tune the plasmon response of a gold nanoparticle to a high-Q cavity mode. We make sure that the second harmonic wavelength is simultaneously in resonance with a higher order fiber cavity mode, fulfilling the doubly resonant condition. As a result, a giant SH response with conversion efficiency up to 1.6 × 10-5 is detected upon a pump intensity of 5 × 108 W/cm2 for 100 fs pump pulses around 840 nm incident wavelength. Additionally, the importance of the doubly resonant condition is proven by detuning the size of the fiber, which leads to a drastic drop in SHG efficiency. This disparity of the SHG efficiency can be observed even by eye, when monitoring the intensity changes of the visible SH light during detuning.
Collapse
Affiliation(s)
- Qi Ai
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Florian Sterl
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
43
|
Schörner C, Lippitz M. High-Q plasmonic nanowire-on-mirror resonators by atomically smooth single-crystalline silver flakes. J Chem Phys 2021; 155:234202. [PMID: 34937368 DOI: 10.1063/5.0074387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmonic nanoparticles in close vicinity to a metal surface confine light to nanoscale volumes within the insulating gap. With gap sizes in the range of a few nanometers or below, atomic-scale dynamical phenomena within the nanogap come into reach. However, at these tiny scales, an ultra-smooth material is a crucial requirement. Here, we demonstrate large-scale (50 μm) single-crystalline silver flakes with a truly atomically smooth surface, which are an ideal platform for vertically assembled silver plasmonic nanoresonators. We investigate crystalline silver nanowires in a sub-2 nm separation to the silver surface and observe narrow plasmonic resonances with a quality factor Q of about 20. We propose a concept toward the observation of the spectral diffusion of the lowest-frequency cavity plasmon resonance and present first measurements. Our study demonstrates the benefit of using purely crystalline silver for plasmonic nanoparticle-on-mirror resonators and further paves the way toward the observation of dynamic phenomena within a nanoscale gap.
Collapse
Affiliation(s)
| | - Markus Lippitz
- Experimental Physics III, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
44
|
Chikkaraddy R, Baumberg JJ. Accessing Plasmonic Hotspots Using Nanoparticle-on-Foil Constructs. ACS PHOTONICS 2021; 8:2811-2817. [PMID: 34553005 PMCID: PMC8447257 DOI: 10.1021/acsphotonics.1c01048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 05/20/2023]
Abstract
Metal-insulator-metal (MIM) nanogaps in the canonical nanoparticle-on-mirror geometry (NPoM) provide deep-subwavelength confinement of light with mode volumes smaller than V/V λ < 10-6. However, access to these hotspots is limited by the impendence mismatch between the high in-plane k ∥ of trapped light and free-space plane-waves, making the in- and out-coupling of light difficult. Here, by constructing a nanoparticle-on-foil (NPoF) system with thin metal films, we show the mixing of insulator-metal-insulator (IMI) modes and MIM gap modes results in MIMI modes. This mixing provides multichannel access to the plasmonic nanocavity through light incident from both sides of the metal film. The red-tuning and near-field strength of MIMI modes for thinner foils is measured experimentally with white-light scattering and surface-enhanced Raman scattering from individual NPoFs. We discuss further the utility of NPoF systems, since the geometry allows tightly confined light to be accessed simply through different ports.
Collapse
Affiliation(s)
- Rohit Chikkaraddy
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Jeremy J Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
45
|
Treebupachatsakul T, Shinnakerdchoke S, Pechprasarn S. Analysis of Effects of Surface Roughness on Sensing Performance of Surface Plasmon Resonance Detection for Refractive Index Sensing Application. SENSORS 2021; 21:s21186164. [PMID: 34577371 PMCID: PMC8473353 DOI: 10.3390/s21186164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/26/2022]
Abstract
This paper provides a theoretical framework to analyze and quantify roughness effects on sensing performance parameters of surface plasmon resonance measurements. Rigorous coupled-wave analysis and the Monte Carlo method were applied to compute plasmonic reflectance spectra for different surface roughness profiles. The rough surfaces were generated using the low pass frequency filtering method. Different coating and surface treatments and their reported root-mean-square roughness in the literature were extracted and investigated in this study to calculate the refractive index sensing performance parameters, including sensitivity, full width at half maximum, plasmonic dip intensity, plasmonic dip position, and figure of merit. Here, we propose a figure-of-merit equation considering optical intensity contrast and signal-to-noise ratio. The proposed figure-of-merit equation could predict a similar refractive index sensing performance compared to experimental results reported in the literature. The surface roughness height strongly affected all the performance parameters, resulting in a degraded figure of merit for surface plasmon resonance measurement.
Collapse
Affiliation(s)
- Treesukon Treebupachatsakul
- Department of Biomedical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.T.); (S.S.)
| | - Siratchakrit Shinnakerdchoke
- Department of Biomedical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.T.); (S.S.)
| | - Suejit Pechprasarn
- College of Biomedical Engineering, Rangsit University, Pathum Thani 12000, Thailand
- Correspondence:
| |
Collapse
|
46
|
Zhou S, Chen K, Cole MT, Li Z, Li M, Chen J, Lienau C, Li C, Dai Q. Ultrafast Electron Tunneling Devices-From Electric-Field Driven to Optical-Field Driven. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101449. [PMID: 34240495 DOI: 10.1002/adma.202101449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/05/2021] [Indexed: 06/13/2023]
Abstract
The search for ever higher frequency information processing has become an area of intense research activity within the micro, nano, and optoelectronics communities. Compared to conventional semiconductor-based diffusive transport electron devices, electron tunneling devices provide significantly faster response times due to near-instantaneous tunneling that occurs at sub-femtosecond timescales. As a result, the enhanced performance of electron tunneling devices is demonstrated, time and again, to reimagine a wide variety of traditional electronic devices with a variety of new "lightwave electronics" emerging, each capable of reducing the electron transport channel transit time down to attosecond timescales. In response to unprecedented rapid progress within this field, here the current state-of-the-art in electron tunneling devices is reviewed, current challenges and opportunities are highlighted, and possible future research directions are identified.
Collapse
Affiliation(s)
- Shenghan Zhou
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Matthew Thomas Cole
- Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Zhenjun Li
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mo Li
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Christoph Lienau
- Institut für Physik, Center of Interface Science, Carl von Ossietzky Universität, 26129, Oldenburg, Germany
| | - Chi Li
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
47
|
Abasahl B, Santschi C, Raziman TV, Martin OJF. Fabrication of plasmonic structures with well-controlled nanometric features: a comparison between lift-off and ion beam etching. NANOTECHNOLOGY 2021; 32:475202. [PMID: 34348240 DOI: 10.1088/1361-6528/ac1a93] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
After providing a detailed overview of nanofabrication techniques for plasmonics, we discuss in detail two different approaches for the fabrication of metallic nanostructures based on e-beam lithography. The first approach relies on a negative e-beam resist, followed by ion beam milling, while the second uses a positive e-beam resist and lift-off. Overall, ion beam etching provides smaller and more regular features including tiny gaps between sub-parts, that can be controlled down to about 10 nm. In the lift-off process, the metal atoms are deposited within the resist mask and can diffuse on the substrate, giving rise to the formation of nanoclusters that render the nanostructure outline slightly fuzzy. Scattering cross sections computed for both approaches highlight some spectral differences, which are especially visible for structures that support complex resonances, such as Fano resonances. Both techniques can produce useful nanostructures and the results reported therein should guide the researcher to choose the best suited approach for a given application, depending on the available technology.
Collapse
Affiliation(s)
- B Abasahl
- Nanophotonics and Metrology Laboratory, Swiss Federal Insititute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - C Santschi
- Nanophotonics and Metrology Laboratory, Swiss Federal Insititute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - T V Raziman
- Nanophotonics and Metrology Laboratory, Swiss Federal Insititute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - O J F Martin
- Nanophotonics and Metrology Laboratory, Swiss Federal Insititute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
48
|
Jonker D, Jafari Z, Winczewski JP, Eyovge C, Berenschot JW, Tas NR, Gardeniers JGE, De Leon I, Susarrey-Arce A. A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars. NANOSCALE ADVANCES 2021; 3:4926-4939. [PMID: 34485816 PMCID: PMC8386417 DOI: 10.1039/d1na00316j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Access to nanofabrication strategies for crafting three-dimensional plasmonic structures is limited. In this work, a fabrication strategy to produce 3D plasmonic hollow nanopillars (HNPs) using Talbot lithography and I-line photolithography is introduced. This method is named subtractive hybrid lithography (SHL), and permits intermixed usage of nano-and-macroscale patterns. Sputter-redeposition of gold (Au) on the SHL resist pattern yields large areas of dense periodic Au-HNPs. These Au-HNPs are arranged in a square unit cell with a 250 nm pitch. The carefully controlled fabrication process resulted in Au-HNPs with nanoscale dimensions over the Au-HNP dimensions such as an 80 ± 2 nm thick solid base with a 133 ± 4 nm diameter, and a 170 ± 10 nm high nano-rim with a 14 ± 3 nm sidewall rim-thickness. The plasmonic optical response is assessed with FDTD-modeling and reveals that the highest field enhancement is at the top of the hollow nanopillar rim. The modeled field enhancement factor (EF) is compared to the experimental analytical field enhancement factor, which shows to pair up with ca. 103 < EF < 104 and ca. 103 < EF < 105 for excitation wavelengths of 633 and 785 nm. From a broader perspective, our results can stimulate the use of Au-HNPs in the fields of plasmonic sensors and spectroscopy.
Collapse
Affiliation(s)
- D Jonker
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - Z Jafari
- School of Engineering and Sciences, Tecnologico de Monterrey Monterrey Nuevo Leon 64849 Mexico
| | - J P Winczewski
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - C Eyovge
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - J W Berenschot
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - N R Tas
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - J G E Gardeniers
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - I De Leon
- School of Engineering and Sciences, Tecnologico de Monterrey Monterrey Nuevo Leon 64849 Mexico
| | - A Susarrey-Arce
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| |
Collapse
|
49
|
Kumar U, Cuche A, Girard C, Viarbitskaya S, Dell'Ova F, Al Rafrafin R, Colas des Francs G, Bolisetty S, Mezzenga R, Bouhelier A, Dujardin E. Interconnect-Free Multibit Arithmetic and Logic Unit in a Single Reconfigurable 3 μm 2 Plasmonic Cavity. ACS NANO 2021; 15:13351-13359. [PMID: 34308639 DOI: 10.1021/acsnano.1c03196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Processing information with conventional integrated circuits remains beset by the interconnect bottleneck: circuits made of smaller active devices need longer and narrower interconnects, which have become the prime source of power dissipation and clock rate saturation. Optical interchip communication provides a fast and energy-saving option that still misses a generic on-chip optical information processing by interconnect-free and reconfigurable Boolean arithmetic logic units (ALU). Considering metal plasmons as a platform with dual optical and electronic compatibilities, we forge interconnect-free, ultracompact plasmonic Boolean logic gates and reconfigure them, at will, into computing ALU without any redesign nor cascaded circuitry. We tailor the plasmon mode landscape of a single 2.6 μm2 planar gold cavity and demonstrate the operation and facile reconfiguration of all 2-input logic gates. The potential for higher complexity of the same logic unit is shown by a multi-input excitation and a phase control to realize an arithmetic 2-bit adder.
Collapse
Affiliation(s)
- Upkar Kumar
- CEMES CNRS UPR 8011 and University of Toulouse, 29 rue J. Marvig, 31055 Toulouse, France
| | - Aurélien Cuche
- CEMES CNRS UPR 8011 and University of Toulouse, 29 rue J. Marvig, 31055 Toulouse, France
| | - Christian Girard
- CEMES CNRS UPR 8011 and University of Toulouse, 29 rue J. Marvig, 31055 Toulouse, France
| | - Sviatlana Viarbitskaya
- Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université de Bourgogne Franche-Comté, 9 Av. A. Savary, 21000 Dijon, France
| | - Florian Dell'Ova
- CEMES CNRS UPR 8011 and University of Toulouse, 29 rue J. Marvig, 31055 Toulouse, France
- Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université de Bourgogne Franche-Comté, 9 Av. A. Savary, 21000 Dijon, France
| | - Raminfar Al Rafrafin
- Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université de Bourgogne Franche-Comté, 9 Av. A. Savary, 21000 Dijon, France
| | - Gérard Colas des Francs
- Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université de Bourgogne Franche-Comté, 9 Av. A. Savary, 21000 Dijon, France
| | - Sreenath Bolisetty
- Department of Health Sciences and Technology, ETH Zurich, Schmelzberg-strasse 9, CH-8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Schmelzberg-strasse 9, CH-8092 Zurich, Switzerland
| | - Alexandre Bouhelier
- Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université de Bourgogne Franche-Comté, 9 Av. A. Savary, 21000 Dijon, France
| | - Erik Dujardin
- CEMES CNRS UPR 8011 and University of Toulouse, 29 rue J. Marvig, 31055 Toulouse, France
| |
Collapse
|
50
|
Deinhart V, Kern LM, Kirchhof JN, Juergensen S, Sturm J, Krauss E, Feichtner T, Kovalchuk S, Schneider M, Engel D, Pfau B, Hecht B, Bolotin KI, Reich S, Höflich K. The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:304-318. [PMID: 33889477 PMCID: PMC8042487 DOI: 10.3762/bjnano.12.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/05/2021] [Indexed: 05/30/2023]
Abstract
Focused beams of helium ions are a powerful tool for high-fidelity machining with spatial precision below 5 nm. Achieving such a high patterning precision over large areas and for different materials in a reproducible manner, however, is not trivial. Here, we introduce the Python toolbox FIB-o-mat for automated pattern creation and optimization, providing full flexibility to accomplish demanding patterning tasks. FIB-o-mat offers high-level pattern creation, enabling high-fidelity large-area patterning and systematic variations in geometry and raster settings. It also offers low-level beam path creation, providing full control over the beam movement and including sophisticated optimization tools. Three applications showcasing the potential of He ion beam nanofabrication for two-dimensional material systems and devices using FIB-o-mat are presented.
Collapse
Affiliation(s)
- Victor Deinhart
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
- Corelab Correlative Microscopy and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Lisa-Marie Kern
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Jan N Kirchhof
- Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | - Joris Sturm
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
- Corelab Correlative Microscopy and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Enno Krauss
- Department of Experimental Physics 5, Röntgen Research Center for Complex Material Research (RCCM), Physics Institute, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Thorsten Feichtner
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32 20133 Milano, Italy
| | | | - Michael Schneider
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Dieter Engel
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Bastian Pfau
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Bert Hecht
- Department of Experimental Physics 5, Röntgen Research Center for Complex Material Research (RCCM), Physics Institute, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | - Stephanie Reich
- Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Katja Höflich
- Corelab Correlative Microscopy and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|