1
|
Moghaddam AS, Dunne K, Breyer W, Wu Y, Pashuck ET. Hydrogels with multiple RGD presentations increase cell adhesion and spreading. Acta Biomater 2025:S1742-7061(25)00288-0. [PMID: 40254231 DOI: 10.1016/j.actbio.2025.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/25/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
A key challenge in designing hydrogels for cell culture is replicating the cell-matrix interactions found in tissues. Cells use integrins to bind their local matrix and form adhesions in which integrins dynamically move on the cell membrane while applying significant forces to the local matrix. Identifying the important biomaterial features for these interactions is challenging because it is difficult to independently adjust variables such as matrix stiffness, stress relaxation, the mobility of adhesion ligands, and the ability of these ligands to support cellular forces. In this work, we designed a hydrogel platform consisting of interpenetrating polymer networks of covalently crosslinked poly(ethylene glycol) (PEG) and self-assembled peptide amphiphiles (PA). We can tune the viscoelasticity of the hydrogel by modulating the composition of both networks. Ligand mobility can be adjusted independently of the matrix mechanical properties by attaching the arginine-glycine-aspartic acid (RGD) cell adhesion ligand to either the covalent PEG network, the dynamic PA network, or both networks at once. We find that endothelial cell adhesion formation and spreading is maximized in soft gels in which adhesion ligands are present on both the covalent and non-covalent networks. The dynamic nature of adhesion domains, coupled with their ability to exert substantial forces on the matrix, suggests that having different presentations of RGD ligands which are either mobile or capable of withstanding significant forces is needed to mimic different aspects of complex cell-matrix adhesions. These results will contribute to the design of hydrogels that better recapitulate physiological cell-matrix interactions. STATEMENT OF SIGNIFICANCE: Creating artificial environments that accurately mimic how cells interact with their surrounding matrix in natural tissues remains a fundamental challenge in biomaterials science. This study introduces a dual-network hydrogel platform that independently controls mechanical properties and adhesion ligand mobility by combining stable and dynamic polymer networks. A significant body of work has shown that matrix viscoelasticity and adhesion ligand mobility are important for cell adhesion and spreading. Our work builds on this by showing that endothelial cells function optimally when they can simultaneously engage with both mobile adhesion sites and force-resistant anchoring points, independent of matrix viscoelasticity. These insights will guide the design of more physiologically relevant hydrogels for tissue engineering applications and disease modeling.
Collapse
Affiliation(s)
| | | | - Wendy Breyer
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | | | | |
Collapse
|
2
|
Hou P, Wang S, Shao Z, Tang Y, Wang W, Fang L, Lin B, Zhu Y, Xu RH, Li J. Off-Target Interactions of Vancomycin with Vascular Wall Involving Elastin-Induced Self-Assembly. Anal Chem 2025; 97:7107-7117. [PMID: 40139948 DOI: 10.1021/acs.analchem.4c06259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Off-target effects, which arise from drug interactions in nontarget tissues, can lead to unfavored side effects. The treatment efficacy of vancomycin (Vanco) in Gram-positive bacterial infections is often compromised by the frequent occurrence of Vanco-induced vascular injury. However, the potential targets and underlying molecular mechanisms of this phenomenon remain unclear. Here, we developed multidimensional two-photon imaging for dynamic tracking of fluorescently labeled Vanco in vivo, characterizing the molecular behavior of Vanco in situ after administration and providing the first direct evidence of its interactions with vascular wall. Morphological analysis combined with colocalization imaging identified elastin within the vascular wall as the molecular target. After binding, Vanco underwent self-assembly into forming irregular nanoaggregates, primarily driven by electrostatic and hydrophobic forces. This persistent binding and self-assembly on the elastic lamina resulted in significant endothelial cytotoxicity and subsequent apoptosis, suggesting a mechanistic link to the vascular injury observed in clinical settings. Taken together, our findings revealed off-target molecular interactions between Vanco and vascular elastin in situ, highlighting the importance of considering unintended drug-vascular interactions.
Collapse
Affiliation(s)
- Peidong Hou
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Faculty of Health Sciences and UM-Hangzhou Institute of Medicine (HIM) of the Chinese Academy of Sciences (CAS) Joint Laboratory, University of Macau, Macao SAR 999078, P. R. China
| | - Sipei Wang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Zhentao Shao
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yiyuan Tang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Wei Wang
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China
| | - Luo Fang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Bin Lin
- Department of Pharmacy, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, Zhejiang 313100, P. R. China
| | - Yingdi Zhu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Ren-He Xu
- Faculty of Health Sciences and UM-Hangzhou Institute of Medicine (HIM) of the Chinese Academy of Sciences (CAS) Joint Laboratory, University of Macau, Macao SAR 999078, P. R. China
| | - Juan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| |
Collapse
|
3
|
Floyd TG, Gurnani P, Rho JY. Characterisation of polymeric nanoparticles for drug delivery. NANOSCALE 2025; 17:7738-7752. [PMID: 40018862 DOI: 10.1039/d5nr00071h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Polymeric nanoparticles represent an innovative approach to drug delivery, particularly for addressing complex diseases like cancer. Their nanoscale dimensions facilitate targeted cellular uptake and effective navigation of biological barriers. With a broad range of polymerisation and functionalisation techniques, these nanoparticles can enable precise drug release, enhanced stability, and improved bioavailability while minimising side effects. Compared to conventional carriers, polymeric nanoparticles offer superior stability and versatility. However, despite these beneficial attributes, challenges remain in understanding their dynamic behaviour and interactions within biological systems. This mini-review aims to highlight key characterisation methods for studying polymeric nanocarriers, explore recent advances, and examine current challenges that must be addressed to optimise their therapeutic potential and advance these promising targeted drug delivery systems.
Collapse
Affiliation(s)
- Thomas G Floyd
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Pratik Gurnani
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Julia Y Rho
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
4
|
Sun N, Bai S, Dai L, Jia Y. Super-Resolution Microscopy as a Versatile Tool in Probing Molecular Assembly. Int J Mol Sci 2024; 25:11497. [PMID: 39519049 PMCID: PMC11545975 DOI: 10.3390/ijms252111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Molecular assembly is promising in the construction of advanced materials, obtaining structures with specific functions. In-depth investigation of the relationships between the formation, dynamics, structure, and functionality of the specific molecular assemblies is one of the greatest challenges in nanotechnology and chemistry, which is essential in the rational design and development of functional materials for a variety of applications. Super-resolution microscopy (SRM) has been used as a versatile tool for investigating and elucidating the structures of individual molecular assemblies with its nanometric resolution, multicolor ability, and minimal invasiveness, which are also complementary to conventional optical or electronic techniques that provide the direct observation. In this review, we will provide an overview of the representative studies that utilize SRM to probe molecular assemblies, mainly focusing on the imaging of biomolecular assemblies (lipid-based, peptide-based, protein-based, and DNA-based), organic-inorganic hybrid assemblies, and polymer assemblies. This review will provide guidelines for the evaluation of the dynamics of molecular assemblies, assembly and disassembly processes with distinct dynamic behaviors, and multicomponent assembly through the application of these advanced imaging techniques. We believe that this review will inspire new ideas and propel the development of structural analyses of molecular assemblies to promote the exploitation of new-generation functional materials.
Collapse
Affiliation(s)
- Nan Sun
- National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, China;
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China;
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luru Dai
- Wenzhou Key Laboratory of Biomedical Imaging, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
5
|
Archontakis E, Dhiman S, Zhang M, Vleugels MEJ, Meijer EW, Palmans ARA, Zijlstra P, Albertazzi L. Visualizing the Heterogeneity in Homogeneous Supramolecular Polymers. J Am Chem Soc 2024; 146:19974-19985. [PMID: 38986035 PMCID: PMC11273342 DOI: 10.1021/jacs.4c03562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
The dynamic properties of supramolecular polymers enable new functionality beyond the limitations of conventional polymers. The mechanism of the monomer exchange between different supramolecular polymers is proposed to be closely associated with local disordered domains within the supramolecular polymers. However, a direct detection of such heterogeneity has never been experimentally probed. Here, we present the direct visualization of the local disordered domains in the backbone of supramolecular polymers by a super-resolution microscopy technique: Nile Red-based spectrally resolved point accumulation for imaging in nanoscale topography (NR-sPAINT). We investigate the local disordered domains in trisamide-based supramolecular polymers comprising a (co)assembly of benzene-1,3,5-tricarboxamide (BTA) and a variant with one of the amide bonds inverted (iBTA). The NR-sPAINT allows us to simultaneously map the spatial distribution and polarity of the local disordered domains along the polymers with a spatial precision down to ∼20 nm. Quantitative autocorrelation and cross-correlation analysis show subtle differences in the spatial distribution of the disordered domains between polymers composed of different variants of BTA monomers. Further, statistical analysis unraveled high heterogeneity in monomer packing at both intra- and interpolymer levels. The results reported here demonstrate the necessity of investigating the structures in soft materials at nanoscale to fully understand their intricacy.
Collapse
Affiliation(s)
- Emmanouil Archontakis
- Department
of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Shikha Dhiman
- Laboratory
of Macromolecular and Organic Chemistry, and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Miao Zhang
- Department
of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Marle E. J. Vleugels
- Laboratory
of Macromolecular and Organic Chemistry, and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Laboratory
of Macromolecular and Organic Chemistry, and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- School
of Chemistry and RNA Institute, The University
of New South Wales, Sydney, New South Wales 2052, Australia
| | - Anja R. A. Palmans
- Laboratory
of Macromolecular and Organic Chemistry, and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter Zijlstra
- Department
of Applied Physics and Science Education, and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, 5600MB Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Department
of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
6
|
Zhang W, Chen G, Chen Z, Yang X, Zhang B, Wang S, Li Z, Yang Y, Wu Y, Liu Z, Yu Z. Mitochondria-targeted polyprodrug nanoparticles induce mitochondrial stress for immunogenic chemo-photodynamic therapy of ovarian cancer. J Control Release 2024; 371:470-483. [PMID: 38849094 DOI: 10.1016/j.jconrel.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Hypoimmunogenicity and the immunosuppressive microenvironment of ovarian cancer severely restrict the capability of immune-mediated tumor killing. Immunogenic cell death (ICD) introduces a theoretical principle for antitumor immunity by increasing antigen exposure and presentation. Despite recent research progress, the currently available ICD inducers are still very limited, and many of them can hardly induce sufficient ICD based on traditional endoplasmic reticulum (ER) stress. Accumulating evidence indicates that inducing mitochondrial stress usually shows a higher efficiency in evoking large-scale ICD than that via ER stress. Inspired by this, herein, a mitochondria-targeted polyprodrug nanoparticle (named Mito-CMPN) serves as a much superior ICD inducer, effectively inducing chemo-photodynamic therapy-caused mitochondrial stress in tumor cells. The rationally designed stimuli-responsive polyprodrugs, which can self-assemble into nanoparticles, were functionalized with rhodamine B for mitochondrial targeting, cisplatin and mitoxantrone (MTO) for synergistic chemo-immunotherapy, and MTO also serves as a photosensitizer for photodynamic immunotherapy. The effectiveness and robustness of Mito-CMPNs in reversing the immunosuppressive microenvironment is verified in both an ovarian cancer subcutaneous model and a high-grade serous ovarian cancer model. Our results support that the induction of abundant ICD by focused mitochondrial stress is a highly effective strategy to improve the therapeutic efficacy of immunosuppressive ovarian cancer.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China
| | - Gui Chen
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China
| | - Ziqi Chen
- Hong Yang, Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xin Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Bingchen Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China
| | - Shengtao Wang
- School of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zibo Li
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China
| | - Yifen Wu
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China.
| | - Zhigang Liu
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China.
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, China.
| |
Collapse
|
7
|
Sangji MH, Lee SR, Sai H, Weigand S, Palmer LC, Stupp SI. Self-Sorting vs Coassembly in Peptide Amphiphile Supramolecular Nanostructures. ACS NANO 2024; 18:15878-15887. [PMID: 38848478 DOI: 10.1021/acsnano.4c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The functionality of supramolecular nanostructures can be expanded if systems containing multiple components are designed to either self-sort or mix into coassemblies. This is critical to gain the ability to craft self-assembling materials that integrate functions, and our understanding of this process is in its early stages. In this work, we have utilized three different peptide amphiphiles with the capacity to form β-sheets within supramolecular nanostructures and found binary systems that self-sort and others that form coassemblies. This was measured using atomic force microscopy to reveal the nanoscale morphology of assemblies and confocal laser scanning microscopy to determine the distribution of fluorescently labeled monomers. We discovered that PA assemblies with opposite supramolecular chirality self-sorted into chemically distinct nanostructures. In contrast, the PA molecules that formed a mixture of right-handed, left-handed, and flat nanostructures on their own were able to coassemble with the other PA molecules. We attribute this phenomenon to the energy barrier associated with changing the handedness of a β-sheet twist in a coassembly of two different PA molecules. This observation could be useful for designing biomolecular nanostructures with dual bioactivity or interpenetrating networks of PA supramolecular assemblies.
Collapse
Affiliation(s)
- M Hussain Sangji
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sieun Ruth Lee
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E Superior St., Chicago, Illinois 60611, United States
| | - Steven Weigand
- DuPont-Northwestern-Dow Collaborative Access Team Synchrotron Research Center, Northwestern University, Advanced Photon Source/Argonne National Laboratory 432-A004, Argonne, Illinois 60439, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E Superior St., Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E Superior St., Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, 676 N St. Clair Street, Chicago, Illinois 60611, United States
| |
Collapse
|
8
|
Haque Pial T, Li Y, Olvera de la Cruz M. Microscopically segregated ligand distribution in co-assembled peptide-amphiphile nanofibers. SOFT MATTER 2024; 20:4640-4647. [PMID: 38819791 DOI: 10.1039/d4sm00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Peptide amphiphiles (PAs) self-assemble into cylindrical nanofibers with applications in protein purification, tissue engineering, and regenerative medicine. For these applications, functionalized PAs are often co-assembled with oppositely charged filler PAs. Finding the conditions at which these fibers are homogeneously mixed or segregated is crucial for the required application. We co-assemble negative C12VVEE fillers and positive C12VVKK-OEG4-Z33 ligands, which are important for antibody purifications. Our results show that the ligands tend to cluster and locally segregate in the fiber surfaces. The Z33s are overall neutral and form large aggregates in bulk solution due to short range attractions. However, full segregation of the C12VVKK-OEG4-Z33 is not observed in the cylindrical surface due to the electrostatic penalty of forming large domains of similarly charged molecules. This is commensurate with previous theoretical predictions, showing that the competition between short-range attractive interactions and long-range electrostatic repulsions leads to pattern formation in cylindrical surfaces. This work offers valuable insight into the design of functionalized nanofibers for various biomedical and chemical applications.
Collapse
Affiliation(s)
- Turash Haque Pial
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA.
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Yang Li
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA.
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
9
|
Xing H, Wigham C, Lee SR, Pereira AJ, de Campos LJ, Picco AS, Huck-Iriart C, Escudero C, Perez-Chirinos L, Gajaweera S, Comer J, Sasselli IR, Stupp SI, Zha RH, Conda-Sheridan M. Enhanced Hydrogen Bonding by Urea Functionalization Tunes the Stability and Biological Properties of Peptide Amphiphiles. Biomacromolecules 2024; 25:2823-2837. [PMID: 38602228 DOI: 10.1021/acs.biomac.3c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Self-assembled nanostructures such as those formed by peptide amphiphiles (PAs) are of great interest in biological and pharmacological applications. Herein, a simple and widely applicable chemical modification, a urea motif, was included in the PA's molecular structure to stabilize the nanostructures by virtue of intermolecular hydrogen bonds. Since the amino acid residue nearest to the lipid tail is the most relevant for stability, we decided to include the urea modification at that position. We prepared four groups of molecules (13 PAs in all), with varying levels of intermolecular cohesion, using amino acids with distinct β-sheet promoting potential and/or containing hydrophobic tails of distinct lengths. Each subset contained one urea-modified PA and nonmodified PAs, all with the same peptide sequence. The varied responses of these PAs to variations in pH, temperature, counterions, and biologically related proteins were examined using microscopic, X-ray, spectrometric techniques, and molecular simulations. We found that the urea group contributes to the stabilization of the morphology and internal arrangement of the assemblies against environmental stimuli for all peptide sequences. In addition, microbiological and biological studies were performed with the cationic PAs. These assays reveal that the addition of urea linkages affects the PA-cell membrane interaction, showing the potential to increase the selectivity toward bacteria. Our data indicate that the urea motif can be used to tune the stability of a wide range of PA nanostructures, allowing flexibility on the biomaterial's design and opening a myriad of options for clinical therapies.
Collapse
Affiliation(s)
- Huihua Xing
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Caleb Wigham
- Department of Chemical & Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sieun Ruth Lee
- Department of Materials Science & Engineering, Chemistry, Biomedical Engineering, Medicine, and Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Aramis J Pereira
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Luana J de Campos
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Agustín S Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, INIFTA-CONICET-UNLP, La Plata 1900, Argentina
| | - Cristián Huck-Iriart
- ALBA Synchrotron Light Source, Experiments Division, 08290 Cerdanyola del Vallès, Spain
| | - Carlos Escudero
- ALBA Synchrotron Light Source, Experiments Division, 08290 Cerdanyola del Vallès, Spain
| | - Laura Perez-Chirinos
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia 20014, San Sebastián, Spain
| | - Sandun Gajaweera
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jeffrey Comer
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Ivan R Sasselli
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia 20014, San Sebastián, Spain
- Centro de Fisica de Materiales (CFM), CSIC-UPV/EHU, Donostia 20018, San Sebastián, Spain
| | - Samuel I Stupp
- Department of Materials Science & Engineering, Chemistry, Biomedical Engineering, Medicine, and Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - R Helen Zha
- Department of Chemical & Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Martin Conda-Sheridan
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
10
|
Zhou W, O’Neill CL, Ding T, Zhang O, Rudra JS, Lew MD. Resolving the Nanoscale Structure of β-Sheet Peptide Self-Assemblies Using Single-Molecule Orientation-Localization Microscopy. ACS NANO 2024; 18:8798-8810. [PMID: 38478911 PMCID: PMC11025465 DOI: 10.1021/acsnano.3c11771] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Synthetic peptides that self-assemble into cross-β fibrils are versatile building blocks for engineered biomaterials due to their modularity and biocompatibility, but their structural and morphological similarities to amyloid species have been a long-standing concern for their translation. Further, their polymorphs are difficult to characterize by using spectroscopic and imaging techniques that rely on ensemble averaging to achieve high resolution. Here, we utilize Nile red (NR), an amyloidophilic fluorogenic probe, and single-molecule orientation-localization microscopy (SMOLM) to characterize fibrils formed by the designed amphipathic enantiomers KFE8L and KFE8D and the pathological amyloid-beta peptide Aβ42. Importantly, NR SMOLM reveals the helical (bilayer) ribbon structure of both KFE8 and Aβ42 and quantifies the precise tilt of the fibrils' inner and outer backbones in relevant buffer conditions without the need for covalent labeling or sequence mutations. SMOLM also distinguishes polymorphic branched and curved morphologies of KFE8, whose backbones exhibit much more heterogeneity than those of typical straight fibrils. Thus, SMOLM is a powerful tool to interrogate the structural differences and polymorphism between engineered and pathological cross-β-rich fibrils.
Collapse
Affiliation(s)
- Weiyan Zhou
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Conor L. O’Neill
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Tianben Ding
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Oumeng Zhang
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Jai S. Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Matthew D. Lew
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| |
Collapse
|
11
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
12
|
Hanssen JNS, Dhiman S. Impact of subtle intermolecular interactions on the structure and dynamics of multicomponent supramolecular polymers. Chem Commun (Camb) 2023; 59:13466-13469. [PMID: 37877229 DOI: 10.1039/d3cc04567f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Multicomponent supramolecular polymers offer versatile dynamic and functional properties; however, the influence of the monomer chemical structures on their structure-dynamics-function relationship remains unclear. In this study, we investigated the subtle variations in monomer interactions using one monomer and its two dopant derivatives, with functionalization away from the self-assembling core. We systematically investigated their multicomponent supramolecular polymers using a combination of spectroscopy and super-resolution microscopy. Our results highlight the significant impact of the supplementary intermolecular interactions, resulting from the functional motifs located away from the core and present in small quantities, on the microstructure and dynamics. Thus, a comprehensive approach, combining spectroscopy, microscopy, and well-designed experiments, is essential for assessing multicomponent supramolecular polymers. These findings have implications for the rational design of functional multicomponent supramolecular materials.
Collapse
Affiliation(s)
- Job N S Hanssen
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany.
| | - Shikha Dhiman
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany.
| |
Collapse
|
13
|
Smith CS, Álvarez Z, Qiu R, Sasselli IR, Clemons T, Ortega JA, Vilela-Picos M, Wellman H, Kiskinis E, Stupp SI. Enhanced Neuron Growth and Electrical Activity by a Supramolecular Netrin-1 Mimetic Nanofiber. ACS NANO 2023; 17:19887-19902. [PMID: 37793046 DOI: 10.1021/acsnano.3c04572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Neurotrophic factors are essential not only for guiding the organization of the developing nervous system but also for supporting the survival and growth of neurons after traumatic injury. In the central nervous system (CNS), inhibitory factors and the formation of a glial scar after injury hinder the functional recovery of neurons, requiring exogenous therapies to promote regeneration. Netrin-1, a neurotrophic factor, can initiate axon guidance, outgrowth, and branching, as well as synaptogenesis, through activation of deleted in colorectal cancer (DCC) receptors. We report here the development of a nanofiber-shaped supramolecular mimetic of netrin-1 with monomers that incorporate a cyclic peptide sequence as the bioactive component. The mimetic structure was found to activate the DCC receptor in primary cortical neurons using low molar ratios of the bioactive comonomer. The supramolecular nanofibers enhanced neurite outgrowth and upregulated maturation as well as pre- and postsynaptic markers over time, resulting in differences in electrical activity similar to neurons treated with the recombinant netrin-1 protein. The results suggest the possibility of using the supramolecular structure as a therapeutic to promote regenerative bioactivity in CNS injuries.
Collapse
Affiliation(s)
- Cara S Smith
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Biomaterials for Neural Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - Ruomeng Qiu
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ivan R Sasselli
- Centro de Fisica de Materiales (CFM), CSIC-UPV/EHU, San Sebastián 20018, Spain
| | - Tristan Clemons
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - J Alberto Ortega
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Marcos Vilela-Picos
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Haley Wellman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Evangelos Kiskinis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Zhou W, O’Neill CL, Ding T, Zhang O, Rudra JS, Lew MD. Resolving the nanoscale structure of β-sheet assemblies using single-molecule orientation-localization microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557571. [PMID: 37745382 PMCID: PMC10515885 DOI: 10.1101/2023.09.13.557571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Synthetic peptides that self-assemble into cross-β fibrils have remarkable utility as engineered biomaterials due to their modularity and biocompatibility, but their structural and morphological similarity to amyloid species has been a long-standing concern for their translation. Further, their polymorphs are difficult to characterize using spectroscopic and imaging techniques that rely on ensemble averaging to achieve high resolution. Here, we utilize single-molecule orientation-localization microscopy (SMOLM) to characterize fibrils formed by the designed amphipathic enantiomers, KFE8L and KFE8D, and the pathological amyloid-beta peptide Aβ42. SMOLM reveals that the orientations of Nile red, as it transiently binds to both KFE8 and Aβ42, are consistent with a helical (bilayer) ribbon structure and convey the precise tilt of the fibrils' inner and outer backbones. SMOLM also finds polymorphic branched and curved morphologies of KFE8 whose backbones exhibit much more heterogeneity than those of more typical straight fibrils. Thus, SMOLM is a powerful tool to interrogate the structural differences and polymorphism between engineered and pathological cross β-rich fibrils.
Collapse
Affiliation(s)
- Weiyan Zhou
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Conor L. O’Neill
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Tianben Ding
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Oumeng Zhang
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Jai S. Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| | - Matthew D. Lew
- Department of Electrical and Systems Engineering, McKelvey School of Engineering, Washington University in St. Louis, MO 63130, USA
| |
Collapse
|
15
|
Sun N, Jia Y, Bai S, Li Q, Dai L, Li J. The power of super-resolution microscopy in modern biomedical science. Adv Colloid Interface Sci 2023; 314:102880. [PMID: 36965225 DOI: 10.1016/j.cis.2023.102880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM's applications.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Qi Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049.
| |
Collapse
|
16
|
Amphipathic peptide-phospholipid nanofibers: Kinetics of fiber formation and molecular transfer between assemblies. Biophys Chem 2023; 296:106985. [PMID: 36863073 DOI: 10.1016/j.bpc.2023.106985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Understanding the kinetics of nano-assembly formation is important to elucidate the biological processes involved and develop novel nanomaterials with biological functions. In the present study, we report the kinetic mechanisms of nanofiber formation from a mixture of phospholipids and the amphipathic peptide 18A[A11C], carrying cysteine substitution of the apolipoprotein A-I-derived peptide 18A at residue 11. 18A[A11C] with acetylated N-terminus and amidated C-terminus can associate with phosphatidylcholine to form fibrous aggregates at neutral pH and lipid-to-peptide molar ratio of ∼1, although the reaction pathways of self-assembly remain unclear. Here, the peptide was added to giant 1-palmitoyl-2-oleoyl phosphatidylcholine vesicles to monitor nanofiber formation under fluorescence microscopy. The peptide initially solubilized the lipid vesicles into particles smaller than the resolution of optical microscope, and fibrous aggregates appeared subsequently. Transmission electron microscopy and dynamic light scattering analyses revealed that the vesicle-solubilized particles were spherical or circular, measuring ∼10-20 nm in diameter. The rate of nanofiber formation of 18A with 1,2-dipalmitoyl phosphatidylcholine from the particles was proportional to the square of lipid-peptide concentration in the system, suggesting that the association of particles, accompanied by conformational changes, was the rate-limiting step. Moreover, molecules in the nanofibers could be transferred between aggregates faster than those in the lipid vesicles. These findings provide useful information for the development and control of nano-assembling structures using peptides and phospholipids.
Collapse
|
17
|
Venugopal A, Ruiz-Perez L, Swamynathan K, Kulkarni C, Calò A, Kumar M. Caught in Action: Visualizing Dynamic Nanostructures Within Supramolecular Systems Chemistry. Angew Chem Int Ed Engl 2023; 62:e202208681. [PMID: 36469792 DOI: 10.1002/anie.202208681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Supramolecular systems chemistry has been an area of active research to develop nanomaterials with life-like functions. Progress in systems chemistry relies on our ability to probe the nanostructure formation in solution. Often visualizing the dynamics of nanostructures which transform over time is a formidable challenge. This necessitates a paradigm shift from dry sample imaging towards solution-based techniques. We review the application of state-of-the-art techniques for real-time, in situ visualization of dynamic self-assembly processes. We present how solution-based techniques namely optical super-resolution microscopy, solution-state atomic force microscopy, liquid-phase transmission electron microscopy, molecular dynamics simulations and other emerging techniques are revolutionizing our understanding of active and adaptive nanomaterials with life-like functions. This Review provides the visualization toolbox and futuristic vision to tap the potential of dynamic nanomaterials.
Collapse
Affiliation(s)
- Akhil Venugopal
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Lorena Ruiz-Perez
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - K Swamynathan
- Soft Condensed Matter, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore-560080, India.,Department of Chemistry, NITTE Meenakshi Institute of Technology, Yelahanka, Bengaluru 560064, India
| | - Chidambar Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Annalisa Calò
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Department of Electronic and Biomedical Engineering, University of Barcelona, Calle Marti i Fraquès 1-11, 08028, Barcelona, Spain
| | - Mohit Kumar
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Department of Organic Chemistry, University of Barcelona, Calle Marti i Fraquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
18
|
Álvarez Z, Ortega JA, Sato K, Sasselli IR, Kolberg-Edelbrock AN, Qiu R, Marshall KA, Nguyen TP, Smith CS, Quinlan KA, Papakis V, Syrgiannis Z, Sather NA, Musumeci C, Engel E, Stupp SI, Kiskinis E. Artificial extracellular matrix scaffolds of mobile molecules enhance maturation of human stem cell-derived neurons. Cell Stem Cell 2023; 30:219-238.e14. [PMID: 36638801 PMCID: PMC9898161 DOI: 10.1016/j.stem.2022.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/04/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Human induced pluripotent stem cell (hiPSC) technologies offer a unique resource for modeling neurological diseases. However, iPSC models are fraught with technical limitations including abnormal aggregation and inefficient maturation of differentiated neurons. These problems are in part due to the absence of synergistic cues of the native extracellular matrix (ECM). We report on the use of three artificial ECMs based on peptide amphiphile (PA) supramolecular nanofibers. All nanofibers display the laminin-derived IKVAV signal on their surface but differ in the nature of their non-bioactive domains. We find that nanofibers with greater intensity of internal supramolecular motion have enhanced bioactivity toward hiPSC-derived motor and cortical neurons. Proteomic, biochemical, and functional assays reveal that highly mobile PA scaffolds caused enhanced β1-integrin pathway activation, reduced aggregation, increased arborization, and matured electrophysiological activity of neurons. Our work highlights the importance of designing biomimetic ECMs to study the development, function, and dysfunction of human neurons.
Collapse
Affiliation(s)
- Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Medicine, Northwestern University, Chicago, IL 60611, USA; Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - J Alberto Ortega
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Kohei Sato
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Ivan R Sasselli
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
| | - Alexandra N Kolberg-Edelbrock
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ruomeng Qiu
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Kelly A Marshall
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Thao Phuong Nguyen
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Cara S Smith
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Katharina A Quinlan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Vasileios Papakis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zois Syrgiannis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Nicholas A Sather
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Chiara Musumeci
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA; Department of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Evangelos Kiskinis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
19
|
Broadbelt T, Mutlu-Smith M, Carnicero-Senabre D, Saido TC, Saito T, Wang SH. Impairment in novelty-promoted memory via behavioral tagging and capture before apparent memory loss in a knock-in model of Alzheimer's disease. Sci Rep 2022; 12:22298. [PMID: 36566248 PMCID: PMC9789965 DOI: 10.1038/s41598-022-26113-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is associated with cognitive impairments and age-dependent memory deficits which have been studied using genetic models of AD. Whether the processes for modulating memory persistence are more vulnerable to the influence of amyloid pathology than the encoding and consolidation of the memory remains unclear. Here, we investigated whether early amyloid pathology would affect peri-learning novelty in promoting memory, through a process called behavioral tagging and capture (BTC). AppNL-G-F/NL-G-F mice and wild-type littermates were trained in an appetitive delayed matching-to-place (ADMP) task which allows for the assessment of peri-learning novelty in facilitating memory. The results show that novelty enabled intermediate-term memory in wild-type mice, but not in AppNL-G-F/NL-G-F mice in adulthood. This effect preceded spatial memory impairment in the ADMP task seen in middle age. Other memory tests in the Barnes maze, Y-maze, novel object or location recognition tasks remained intact. Together, memory modulation through BTC is impaired before apparent deficits in learning and memory. Relevant biological mechanisms underlying BTC and the implication in AD are discussed.
Collapse
Affiliation(s)
- Tabitha Broadbelt
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Menekse Mutlu-Smith
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Daniel Carnicero-Senabre
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,grid.5515.40000000119578126Present Address: Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Takaomi C. Saido
- grid.474690.8Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, 351-0198 Japan
| | - Takashi Saito
- grid.260433.00000 0001 0728 1069Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601 Japan
| | - Szu-Han Wang
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| |
Collapse
|
20
|
Dannenhoffer A, Sai H, Bruckner EP, Ðorđević L, Narayanan A, Yang Y, Ma X, Palmer LC, Stupp SI. Metallurgical alloy approach to two-dimensional supramolecular materials. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Yuan SC, Lewis JA, Sai H, Weigand SJ, Palmer LC, Stupp SI. Peptide Sequence Determines Structural Sensitivity to Supramolecular Polymerization Pathways and Bioactivity. J Am Chem Soc 2022; 144:16512-16523. [PMID: 36049084 DOI: 10.1021/jacs.2c05759] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pathways in supramolecular polymerization traverse different regions of the system's energy landscape, affecting not only their architectures and internal structure but also their functions. We report here on the effects of pathway selection on polymerization for two isomeric peptide amphiphile monomers with amino acid sequences AAEE and AEAE. We subjected the monomers to five different pathways that varied in the order they were exposed to electrostatic screening by electrolytes and thermal annealing. We found that introducing electrostatic screening of E residues before annealing led to crystalline packing of AAEE monomers. Electrostatic screening decreased intermolecular repulsion among AAEE monomers thus promoting internal order within the supramolecular polymers, while subsequent annealing brought them closer to thermodynamic equilibrium with enhanced β-sheet secondary structure. In contrast, supramolecular polymerization of AEAE monomers was less pathway dependent, which we attribute to side-chain dimerization. Regardless of the pathway, the internal structure of AEAE nanostructures had limited internal order and moderate β-sheet structure. These supramolecular polymers generated hydrogels with lower porosity and greater bulk mechanical strength than those formed by the more cohesive AAEE polymers. The combination of dynamic, less ordered internal structure and bulk strength of AEAE networks promoted strong cell-material interactions in adherent epithelial-like cells, evidenced by increased cytoskeletal remodeling and cell spreading. The highly ordered AAEE nanostructures formed porous hydrogels with inferior bulk mechanical properties and weaker cell-material interactions. We conclude that pathway sensitivity in supramolecular synthesis, and therefore structure and function, is highly dependent on the nature of dominant interactions driving polymerization.
Collapse
Affiliation(s)
- Shelby C Yuan
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Jacob A Lewis
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven J Weigand
- DuPont-Northwestern-Dow Collaborative Access Team Synchrotron Research Center, Northwestern University, Advanced Photon Source/Argonne National Laboratory 432-A004, Argonne, Illinois 60439, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
22
|
Qiao Q, Liu W, Zhang Y, Chen J, Wang G, Tao Y, Miao L, Jiang W, An K, Xu Z. In Situ Real‐Time Nanoscale Resolution of Structural Evolution and Dynamics of Fluorescent Self‐Assemblies by Super‐Resolution Imaging. Angew Chem Int Ed Engl 2022; 61:e202208678. [DOI: 10.1002/anie.202208678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yinchan Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guangying Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yi Tao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenchao Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kai An
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
23
|
Qiao Q, Liu W, Zhang Y, Chen J, Wang G, Tao Y, Miao L, Jiang W, An K, Xu Z. In Situ Real‐time Nanoscale Resolution of Structural Evolution and Dynamics of Fluorescent Self‐assemblies by Super‐Resolution Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qinglong Qiao
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Wenjuan Liu
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Yinchan Zhang
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Jie Chen
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Guangying Wang
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Yi Tao
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Lu Miao
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Wenchao Jiang
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Kai An
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Zhaochao Xu
- Dalian Institute of Chemical Physics Department of Biotechnology Department of Biological Technology 457 Zhongshan Road 116023 Dalian CHINA
| |
Collapse
|
24
|
Anderson CF, Chakroun RW, Grimmett ME, Domalewski CJ, Wang F, Cui H. Collagen-Binding Peptide-Enabled Supramolecular Hydrogel Design for Improved Organ Adhesion and Sprayable Therapeutic Delivery. NANO LETTERS 2022; 22:4182-4191. [PMID: 35522052 PMCID: PMC9844543 DOI: 10.1021/acs.nanolett.2c00967] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Spraying serves as an attractive, minimally invasive means of administering hydrogels for localized delivery, particularly due to high-throughput deposition of therapeutic depots over an entire target site of uneven surfaces. However, it remains a great challenge to design systems capable of rapid gelation after shear-thinning during spraying and adhering to coated tissues in wet, physiological environments. We report here on the use of a collagen-binding peptide to enable a supramolecular design of a biocompatible, bioadhesive, and sprayable hydrogel for sustained release of therapeutics. After spraying, the designed peptide amphiphile-based supramolecular filaments exhibit fast, physical cross-linking under physiological conditions. Our ex vivo studies suggest that the hydrogelator strongly adheres to the wet surfaces of multiple organs, and the extent of binding to collagen influences release kinetics from the gel. We envision that the sprayable organ-adhesive hydrogel can serve to enhance the efficacy of incorporated therapeutics for many biomedical applications.
Collapse
Affiliation(s)
- Caleb F Anderson
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rami W Chakroun
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Maria E Grimmett
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Christopher J Domalewski
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
25
|
Kalaw JM, Kitagawa M, Shigemitsu H, Kida T. Highly Regulated Supramolecular Assembly of 2- O-Methylated α-Cyclodextrin to Construct Vertically Oriented Microrods on Graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5149-5155. [PMID: 34652161 DOI: 10.1021/acs.langmuir.1c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precisely controlling self-assembled molecules to fabricate highly ordered nano/microstructures is a challenging task. Here, a simple precipitation technique with common solvents forms supramolecular microstructures with highly regulated molecular arrangements from a methylated derivative of α-cyclodextrin at the 2-O position (2-Me-α-CD). The formation of a head-to-tail channel assembly of 2-Me-α-CD through host-guest complexation with a solvent molecule such as benzene or cyclohexane yields well-defined hexagonal microrods. Specifically, the self-assembly of 2-Me-α-CD forms vertically aligned hexagonal microrods on a highly ordered pyrolytic graphite (HOPG) surface via epitaxial growth. This work should provide insight into the design of supramolecular building blocks for controlled self-assembly.
Collapse
|
26
|
Molecular communications in complex systems of dynamic supramolecular polymers. Nat Commun 2022; 13:2162. [PMID: 35443756 PMCID: PMC9021206 DOI: 10.1038/s41467-022-29804-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Supramolecular polymers are composed of monomers that self-assemble non-covalently, generating distributions of monodimensional fibres in continuous communication with each other and with the surrounding solution. Fibres, exchanging molecular species, and external environment constitute a sole complex system, which intrinsic dynamics is hard to elucidate. Here we report coarse-grained molecular simulations that allow studying supramolecular polymers at the thermodynamic equilibrium, explicitly showing the complex nature of these systems, which are composed of exquisitely dynamic molecular entities. Detailed studies of molecular exchange provide insights into key factors controlling how assemblies communicate with each other, defining the equilibrium dynamics of the system. Using minimalistic and finer chemically relevant molecular models, we observe that a rich concerted complexity is intrinsic in such self-assembling systems. This offers a new dynamic and probabilistic (rather than structural) picture of supramolecular polymer systems, where the travelling molecular species continuously shape the assemblies that statistically emerge at the equilibrium. The dynamic structure of supramolecular polymers is challenging to determine both in experiments and in simulations. Here the authors use coarse-grained molecular models to provide a comprehensive analysis of the molecular communication in these complex molecular systems.
Collapse
|
27
|
Abstract
Purpose of Review Despite the continued growth of spine fusion procedures, the ideal material for bone regeneration remains unclear. Current bone graft substitutes and extenders in use such as exogenous BMP-2 or demineralized bone matrix and hydroxyapatite either have serious complications associated with use or lead to clinically significant rates of non-union. The introduction of nanotechnology and 3D printing to regenerative medicine facilitates the development of safer and more efficacious bone regenerative scaffolds that present solutions to these problems. Many researchers in orthopedics recognize the importance of lowering the dose of recombinant growth factors like BMP-2 to avoid the complications associated with its normal required supraphysiologic dosing to achieve high rates of fusion in spine surgery. Recent Findings Recent iterations of bioactive scaffolds have moved towards peptide amphiphiles that bind endogenous osteoinductive growth factor sources at the site of implantation. These molecules have been shown to provide a highly fluid, natural mimetic of natural extracellular matrix to achieve 100% fusion rates at 10–100 times lower doses of BMP-2 relative to controls in pre-clinical animal posterolateral fusion models. Alternative approaches to bone regeneration include the combination of existing natural growth factor sources like human bone combined with bioactive, biocompatible components like hydroxyapatite using 3D-printing technologies. Their elastomeric, 3D-printed scaffolds demonstrate an optimal safety profile and high rates of fusion (~92%) in the rat posterolateral fusion model. Summary Bioactive peptide amphiphiles and developments in 3D printing offer the promising future of a recombinant growth factor- free bone graft substitute with similar efficacy but improved safety profiles compared to existing bone graft substitutes.
Collapse
|
28
|
Dhiman S, Andrian T, Gonzalez BS, Tholen MME, Wang Y, Albertazzi L. Can super-resolution microscopy become a standard characterization technique for materials chemistry? Chem Sci 2022; 13:2152-2166. [PMID: 35310478 PMCID: PMC8864713 DOI: 10.1039/d1sc05506b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
The characterization of newly synthesized materials is a cornerstone of all chemistry and nanotechnology laboratories. For this purpose, a wide array of analytical techniques have been standardized and are used routinely by laboratories across the globe. With these methods we can understand the structure, dynamics and function of novel molecular architectures and their relations with the desired performance, guiding the development of the next generation of materials. Moreover, one of the challenges in materials chemistry is the lack of reproducibility due to improper publishing of the sample preparation protocol. In this context, the recent adoption of the reporting standard MIRIBEL (Minimum Information Reporting in Bio-Nano Experimental Literature) for material characterization and details of experimental protocols aims to provide complete, reproducible and reliable sample preparation for the scientific community. Thus, MIRIBEL should be immediately adopted in publications by scientific journals to overcome this challenge. Besides current standard spectroscopy and microscopy techniques, there is a constant development of novel technologies that aim to help chemists unveil the structure of complex materials. Among them super-resolution microscopy (SRM), an optical technique that bypasses the diffraction limit of light, has facilitated the study of synthetic materials with multicolor ability and minimal invasiveness at nanometric resolution. Although still in its infancy, the potential of SRM to unveil the structure, dynamics and function of complex synthetic architectures has been highlighted in pioneering reports during the last few years. Currently, SRM is a sophisticated technique with many challenges in sample preparation, data analysis, environmental control and automation, and moreover the instrumentation is still expensive. Therefore, SRM is currently limited to expert users and is not implemented in characterization routines. This perspective discusses the potential of SRM to transition from a niche technique to a standard routine method for material characterization. We propose a roadmap for the necessary developments required for this purpose based on a collaborative effort from scientists and engineers across disciplines.
Collapse
Affiliation(s)
- Shikha Dhiman
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Teodora Andrian
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
| | - Beatriz Santiago Gonzalez
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Marrit M E Tholen
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
- Department of Applied Physics, Eindhoven University of Technology Postbus 513 5600 MB Eindhoven The Netherlands
| | - Lorenzo Albertazzi
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
29
|
|
30
|
Isik M, Eylem CC, Haciefendioglu T, Yildirim E, Sari B, Nemutlu E, Emregul E, Okesola BO, Derkus B. Mechanically robust hybrid hydrogels of photo-crosslinkable gelatin and laminin-mimetic peptide amphiphiles for neural induction. Biomater Sci 2021; 9:8270-8284. [PMID: 34766605 DOI: 10.1039/d1bm01350e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembling bio-instructive materials that can provide a biomimetic tissue microenvironment with the capability to regulate cellular behaviors represent an attractive platform in regenerative medicine. Herein, we develop a hybrid neuro-instructive hydrogel that combines the properties of a photo-crosslinkable gelatin methacrylate (GelMA) and self-assembling peptide amphiphiles (PAs) bearing a laminin-derived neuro-inductive epitope (PA-GSR). Electrostatic interaction and ultraviolet light crosslinking mechanisms were combined to create dual-crosslinked hybrid hydrogels with tunable stiffness. Spectroscopic, microscopic and theoretical techniques show that the cationic PA-GSR(+) electrostatically co-assembles with the negatively charged GelMA to create weak hydrogels with hierarchically ordered microstructures, which were further photo-crosslinked to create mechanically robust hydrogels. Dynamic oscillatory rheology and micromechanical testing show that photo-crosslinking of the co-assembled GelMA and PA-GSR(+) hydrogel results in robust hydrogels displaying improved stiffness. Gene expression analysis was used to show that GelMA/PA-GSR(+) hydrogels can induce human mesenchymal stem cells (hMSCs) into neural-lineage cells and supports neural-lineage specification of neuroblast-like cells (SH-SY5Y) in a growth-factor-free manner. Also, metabolomics analysis suggests that the hydrogel alters the metabolite profiles in the cells by affecting multiple molecular pathways. This work highlights a new approach for the design of PA-based hybrid hydrogels with robust mechanical properties and biological functionalities for nerve tissue regeneration.
Collapse
Affiliation(s)
- Melis Isik
- Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey.
| | - Cemil Can Eylem
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, 06230 Ankara, Turkey
| | | | - Erol Yildirim
- Chemistry Department, Middle East Technical University, 06800 Ankara, Turkey.,Department of Polymer Science and Technology, Middle East Technical University, 06800 Ankara, Turkey.,Department of Micro and Nanotechnology, Middle East Technical University, 06800 Ankara, Turkey
| | - Buse Sari
- Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey. .,Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey
| | - Emirhan Nemutlu
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, 06230 Ankara, Turkey.,Bioanalytic and Omics Laboratory, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Emel Emregul
- Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey.
| | - Babatunde O Okesola
- Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK. .,School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Burak Derkus
- Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey. .,Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, 06560 Ankara, Turkey
| |
Collapse
|
31
|
Shen Y, Wang Y, Hamley IW, Qi W, Su R, He Z. Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Park J, Kim CH. Regulation of common neurological disorders by gut microbial metabolites. Exp Mol Med 2021; 53:1821-1833. [PMID: 34857900 PMCID: PMC8741890 DOI: 10.1038/s12276-021-00703-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
The gut is connected to the CNS by immunological mediators, lymphocytes, neurotransmitters, microbes and microbial metabolites. A mounting body of evidence indicates that the microbiome exerts significant effects on immune cells and CNS cells. These effects frequently result in the suppression or exacerbation of inflammatory responses, the latter of which can lead to severe tissue damage, altered synapse formation and disrupted maintenance of the CNS. Herein, we review recent progress in research on the microbial regulation of CNS diseases with a focus on major gut microbial metabolites, such as short-chain fatty acids, tryptophan metabolites, and secondary bile acids. Pathological changes in the CNS are associated with dysbiosis and altered levels of microbial metabolites, which can further exacerbate various neurological disorders. The cellular and molecular mechanisms by which these gut microbial metabolites regulate inflammatory diseases in the CNS are discussed. We highlight the similarities and differences in the impact on four major CNS diseases, i.e., multiple sclerosis, Parkinson's disease, Alzheimer's disease, and autism spectrum disorder, to identify common cellular and molecular networks governing the regulation of cellular constituents and pathogenesis in the CNS by microbial metabolites.
Collapse
Affiliation(s)
- Jeongho Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
- Mary H. Weiser Food Allergy Center, Center for Gastrointestinal Research, and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
33
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, UK
| |
Collapse
|
34
|
Godbe JM, Freeman R, Lewis JA, Sasselli IR, Sangji MH, Stupp SI. Hydrogen Bonding Stiffens Peptide Amphiphile Supramolecular Filaments by Aza-Glycine Residues. Acta Biomater 2021; 135:87-99. [PMID: 34481055 DOI: 10.1016/j.actbio.2021.08.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022]
Abstract
Peptide amphiphiles (PAs) are a class of molecules comprised of short amino acid sequences conjugated to hydrophobic moieties that may exhibit self-assembly in water into supramolecular structures. We investigate here how mechanical properties of hydrogels formed by PA supramolecular nanofibers are affected by hydrogen bond densities within their internal structure by substituting glycine for aza-glycine (azaG) residues. We found that increasing the number of PA molecules that contain azaG up to 5 mol% in PA supramolecular nanofibers increases their persistence length fivefold and decreases their diffusion coefficients as measured by fluorescence recovery after photobleaching. When these PAs are used to create hydrogels, their bulk storage modulus (G') was found to increase as azaG PA content in the supramolecular assemblies increases up to a value of 10 mol% and beyond this value a decrease was observed, likely due to diminished levels of nanofiber entanglement in the hydrogels as a direct result of increased supramolecular rigidity. Interestingly, we found that the bioactivity of the scaffolds toward dopaminergic neurons derived from induced pluripotent stem cells can be enhanced directly by persistence length independently of storage modulus. We hypothesize that this is due to interactions between the cells and the extracellular environment across different size scales: from filopodia adhering to individual nanofiber bundles to cell adhesion sites that interact with the hydrogel as a bulk substrate. Fine tuning of hydrogen bond density in self-assembling peptide biomaterials such as PAs provides an approach to control nanoscale stiffness as part of an overall strategy to optimize bioactivity in these supramolecular systems. supramolecular biomaterials. STATEMENT OF SIGNIFICANCE: Hydrogen bonding is an important driving force for the self-assembly of peptides in both biological and artificial systems. Here, we increase the amount of hydrogen bonding within self-assembled peptide amphiphile (PA) nanofibers by substituting glycine for an aza-glycine (azaG). We show that increasing the molar concentration of azaG increases the internal order of individual nanofibers and increases their persistence length. We also show that these changes are sufficient to increase survival and tyrosine hydroxylase expression in induced pluripotent stem cell-derived dopaminergic neurons cultured in 3D gels made of these materials. Our strategy of tuning the number of hydrogen bonds in a supramolecular assembly provides mechanical customization for 3D cell culture and tissue engineering.
Collapse
Affiliation(s)
- Jacqueline M Godbe
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior St, Chicago, Illinois 60611, United States; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ronit Freeman
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior St, Chicago, Illinois 60611, United States
| | - Jacob A Lewis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior St, Chicago, Illinois 60611, United States; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ivan R Sasselli
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - M Hussain Sangji
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior St, Chicago, Illinois 60611, United States; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Department of Medicine, Northwestern University, 676 N St Clair St Suite 1600, Chicago, IL 60611, United States; Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.
| |
Collapse
|
35
|
Lai Z, Jian Q, Li G, Shao C, Zhu Y, Yuan X, Chen H, Shan A. Self-Assembling Peptide Dendron Nanoparticles with High Stability and a Multimodal Antimicrobial Mechanism of Action. ACS NANO 2021; 15:15824-15840. [PMID: 34549935 DOI: 10.1021/acsnano.1c03301] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembling nanometer-scale structured peptide polymers and peptide dendrimers have shown promise in biomedical applications due to their versatile properties and easy availability. Herein, self-assembling peptide dendron nanoparticles (SPDNs) with potent antimicrobial activity against a range of bacteria were developed based on the nanoscale self-assembly of an arginine-proline repeat branched peptide dendron bearing a hexadecanoic acid chain. The SPDNs are biocompatible, and our most active peptide dendron nanoparticle, C16-3RP, was found to have negligible toxicity after both in vitro and in vivo studies. Furthermore, the C16-3RP nanoparticles showed excellent stability under physiological concentrations of salt ions and against serum and protease degradation, resulting in highly effective treatment in a mouse acute peritonitis model. Comprehensive analyses using a series of biofluorescence, microscopy, and transcriptome sequencing techniques revealed that C16-3RP nanoparticles kill Gram-negative bacteria by increasing bacterial membrane permeability, inducing cytoplasmic membrane depolarization and drastic membrane disruption, inhibiting ribosome biogenesis, and influencing energy generation and other processes. Collectively, C16-3RP nanoparticles show promising biocompatibility and in vivo therapeutic efficacy without apparent resistance development. These advancements may facilitate the development of peptide-based antibiotics in clinical settings.
Collapse
Affiliation(s)
- Zhenheng Lai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qiao Jian
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Guoyu Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Changxuan Shao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yongjie Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaojie Yuan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Hongyu Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
36
|
Cook AB, Clemons TD. Bottom‐Up versus Top‐Down Strategies for Morphology Control in Polymer‐Based Biomedical Materials. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Alexander B. Cook
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Via Morego 30 Genova 16163 Italy
| | - Tristan D. Clemons
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg MS 39406 USA
| |
Collapse
|
37
|
Schoenmakers SMC, van den Bersselaar BWL, Dhiman S, Su L, Palmans ARA. Facilitating functionalization of benzene-1,3,5-tricarboxamides by switching amide connectivity. Org Biomol Chem 2021; 19:8281-8294. [PMID: 34518862 PMCID: PMC8494077 DOI: 10.1039/d1ob01587g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022]
Abstract
Synthetic water-compatible supramolecular polymers based on benzene-1,3,5-tricarboxamides (BTAs) have attracted a lot of interest in recent years, as they are uniquely suited to generate functional multicomponent biomaterials. Their morphologies and intrinsic dynamic behaviour mimic fibrous structures found in nature. Moreover, their modularity allows control of the density of functionalities presented on the surface of the fibres when using functionalized BTA monomers. However, such moieties generally comprise a functionality on only one of three side chains, resulting in lengthy synthetic protocols and limited yields. In this work, we avert the need for desymmetrization of the core by starting from commercially available 5-aminoisophthalic acid. This approach eliminates the statistical reactions and reduces the number of synthetic steps. It also leads to the inversion of the connectivity of one of the amides to the benzene core. By combining spectroscopy, light scattering and cryogenic transmission electron microscopy, we confirm that the inversed amide BTAs (iBTAs) form intermolecular hydrogen bonds and assemble into supramolecular polymers, like previously used symmetrical BTAs, albeit with a slight decrease in water solubility. Solubility problems were overcome by incorporating iBTAs into conventional BTA-based supramolecular polymers. These two-component mixtures formed supramolecular fibres with a morphology and dynamic behaviour similar to BTA-homopolymers. Finally, iBTAs were decorated with a fluorescent dye to demonstrate the synthesis of functional monomers, and to visualize their co-assembly with BTAs. Our results show that functionality can be introduced into supramolecular polymers with monomers that slightly differ in their core structure while maintaining the structure and dynamics of the fibres.
Collapse
Affiliation(s)
- Sandra M C Schoenmakers
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Bart W L van den Bersselaar
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Shikha Dhiman
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Lu Su
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Anja R A Palmans
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
38
|
de Marco AL, Bochicchio D, Gardin A, Doni G, Pavan GM. Controlling Exchange Pathways in Dynamic Supramolecular Polymers by Controlling Defects. ACS NANO 2021; 15:14229-14241. [PMID: 34472834 PMCID: PMC8482751 DOI: 10.1021/acsnano.1c01398] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/26/2021] [Indexed: 05/23/2023]
Abstract
Supramolecular fibers composed of monomers that self-assemble directionally via noncovalent interactions are ubiquitous in nature, and of great interest in chemistry. In these structures, the constitutive monomers continuously exchange in-and-out the assembly according to a well-defined supramolecular equilibrium. However, unraveling the exchange pathways and their molecular determinants constitutes a nontrivial challenge. Here, we combine coarse-grained modeling, enhanced sampling, and machine learning to investigate the key factors controlling the monomer exchange pathways in synthetic supramolecular polymers having an intrinsic dynamic behavior. We demonstrate how the competition of directional vs. nondirectional interactions between the monomers controls the creation/annihilation of defects in the supramolecular polymers, from where monomers exchange proceeds. This competition determines the exchange pathway, dictating whether a fiber statistically swaps monomers from the tips or from all along its length. Finally, thanks to their generality, our models allow the investigation of molecular approaches to control the exchange pathways in these dynamic assemblies.
Collapse
Affiliation(s)
- Anna L. de Marco
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus
Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
- Department
of Physics, Universit degli studi di Genova, Via Dodecaneso 33, 16100 Genova, Italy
| | - Davide Bochicchio
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus
Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
- Department
of Physics, Universit degli studi di Genova, Via Dodecaneso 33, 16100 Genova, Italy
| | - Andrea Gardin
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Giovanni Doni
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus
Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
| | - Giovanni M. Pavan
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus
Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
39
|
Juanes-Gusano D, Santos M, Reboto V, Alonso M, Rodríguez-Cabello JC. Self-assembling systems comprising intrinsically disordered protein polymers like elastin-like recombinamers. J Pept Sci 2021; 28:e3362. [PMID: 34545666 DOI: 10.1002/psc.3362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
Despite lacking cooperatively folded structures under native conditions, numerous intrinsically disordered proteins (IDPs) nevertheless have great functional importance. These IDPs are hybrids containing both ordered and intrinsically disordered protein regions (IDPRs), the structure of which is highly flexible in this unfolded state. The conformational flexibility of these disordered systems favors transitions between disordered and ordered states triggered by intrinsic and extrinsic factors, folding into different dynamic molecular assemblies to enable proper protein functions. Indeed, prokaryotic enzymes present less disorder than eukaryotic enzymes, thus showing that this disorder is related to functional and structural complexity. Protein-based polymers that mimic these IDPs include the so-called elastin-like polypeptides (ELPs), which are inspired by the composition of natural elastin. Elastin-like recombinamers (ELRs) are ELPs produced using recombinant techniques and which can therefore be tailored for a specific application. One of the most widely used and studied characteristic structures in this field is the pentapeptide (VPGXG)n . The structural disorder in ELRs probably arises due to the high content of proline and glycine in the ELR backbone, because both these amino acids help to keep the polypeptide structure of elastomers disordered and hydrated. Moreover, the recombinant nature of these systems means that different sequences can be designed, including bioactive domains, to obtain specific structures for each application. Some of these structures, along with their applications as IDPs that self-assemble into functional vesicles or micelles from diblock copolymer ELRs, will be studied in the following sections. The incorporation of additional order- and disorder-promoting peptide/protein domains, such as α-helical coils or β-strands, in the ELR sequence, and their influence on self-assembly, will also be reviewed. In addition, chemically cross-linked systems with controllable order-disorder balance, and their role in biomineralization, will be discussed. Finally, we will review different multivalent IDPs-based coatings and films for different biomedical applications, such as spatially controlled cell adhesion, osseointegration, or biomaterial-associated infection (BAI).
Collapse
Affiliation(s)
- Diana Juanes-Gusano
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - Mercedes Santos
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - Virginia Reboto
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - Matilde Alonso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| |
Collapse
|
40
|
Peters EB, Karver MR, Sun K, Gillis DC, Biswas S, Clemons TD, He W, Tsihlis ND, Stupp SI, Kibbe MR. Self-Assembled Peptide Amphiphile Nanofibers for Controlled Therapeutic Delivery to the Atherosclerotic Niche. ADVANCED THERAPEUTICS 2021; 4:2100103. [PMID: 34926792 PMCID: PMC8680456 DOI: 10.1002/adtp.202100103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 11/08/2022]
Abstract
Atherosclerotic plaque remains the leading contributor to cardiovascular disease and requires invasive surgical procedures for its removal. Nanomedicine offers a minimally invasive approach to alleviate plaque burden by targeted therapeutic delivery. However, nanocarriers are limited without the ability to sense and respond to the diseased microenvironment. In this study, targeted self-assembled peptide amphiphile (PA) nanofibers were developed that cleave in response to biochemical cues expressed in atherosclerotic lesions-reactive oxygen species (ROS) and intracellular glutathione-to deliver a liver X receptor agonist (LXR) to enhance macrophage cholesterol efflux. The PAs released LXR in response to physiological levels of ROS and reducing agents and could be co-assembled with plaque-targeting PAs to form nanofibers. The resulting LXR PA nanofibers promoted cholesterol efflux from macrophages in vitro as well as LXR alone and with lower cytotoxicity. Further, the ApoA1-LXR PA nanofibers targeted plaque within an atherosclerotic mouse model in vivo and activated ATP-binding cassette A1 (ABCA1) expression as well as LXR alone with reduced liver toxicity. Taken together, these results demonstrate the potential of self-assembled PA nanofibers for controlled therapeutic delivery to the atherosclerotic niche.
Collapse
Affiliation(s)
- Erica B. Peters
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark R. Karver
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Kui Sun
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David C. Gillis
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Suvendu Biswas
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Tristan D. Clemons
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Wenhan He
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nick D. Tsihlis
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel I. Stupp
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science & Engineering and Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Melina R. Kibbe
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
41
|
Novelli F, Vilela M, Pazó A, Amorín M, Granja JR. Molecular Plumbing to Bend Self‐Assembling Peptide Nanotubes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Federica Novelli
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Marcos Vilela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Antía Pazó
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Juan R. Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry Department Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
42
|
Novelli F, Vilela M, Pazó A, Amorín M, Granja JR. Molecular Plumbing to Bend Self-Assembling Peptide Nanotubes. Angew Chem Int Ed Engl 2021; 60:18838-18844. [PMID: 34185371 PMCID: PMC8456905 DOI: 10.1002/anie.202107034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Light-induced molecular piping of cyclic peptide nanotubes to form bent tubular structures is described. The process is based on the [4+4] photocycloaddition of anthracene moieties, whose structural changes derived from the interdigitated flat disposition of precursors to the corresponding cycloadduct moieties, induced the geometrical modifications in nanotubes packing that provokes their curvature. For this purpose, we designed a new class of cyclic peptide nanotubes formed by β- and α-amino acids. The presence of the former predisposes the peptide to stack in a parallel fashion with the β-residues aligned along the nanotube and the homogeneous distribution of anthracene pendants.
Collapse
Affiliation(s)
- Federica Novelli
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Marcos Vilela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Antía Pazó
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Juan R. Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Organic Chemistry DepartmentUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| |
Collapse
|
43
|
Cho Y, Christoff-Tempesta T, Kaser SJ, Ortony JH. Dynamics in supramolecular nanomaterials. SOFT MATTER 2021; 17:5850-5863. [PMID: 34114584 DOI: 10.1039/d1sm00047k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly of amphiphilic small molecules in water leads to nanostructures with customizable structure-property relationships arising from their tunable chemistries. Characterization of these assemblies is generally limited to their static structures -e.g. their geometries and dimensions - but the implementation of tools that provide a deeper understanding of molecular motions has recently emerged. Here, we summarize recent reports showcasing dynamics characterization tools and their application to small molecule assemblies, and we go on to highlight supramolecular systems whose properties are substantially affected by their conformational, exchange, and water dynamics. This review illustrates the importance of considering dynamics in rational amphiphile design.
Collapse
Affiliation(s)
- Yukio Cho
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ty Christoff-Tempesta
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Samuel J Kaser
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julia H Ortony
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
44
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
45
|
Panja S, Adams DJ. Stimuli responsive dynamic transformations in supramolecular gels. Chem Soc Rev 2021; 50:5165-5200. [PMID: 33646219 DOI: 10.1039/d0cs01166e] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular gels are formed by the self-assembly of small molecules under the influence of various non-covalent interactions. As the interactions are individually weak and reversible, it is possible to perturb the gels easily, which in turn enables fine tuning of their properties. Synthetic supramolecular gels are kinetically trapped and usually do not show time variable changes in material properties after formation. However, such materials potentially become switchable when exposed to external stimuli like temperature, pH, light, enzyme, redox, and chemical analytes resulting in reconfiguration of gel matrix into a different type of network. Such transformations allow gel-to-gel transitions while the changes in the molecular aggregation result in alteration of physical and chemical properties of the gel with time. Here, we discuss various methods that have been used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. We also describe methods that allow time-dependent autonomous switching of gels into different networks enabling synthesis of next generation functional materials. Dynamic modification of gels allows construction of an array of supramolecular gels with various properties from a single material which eventually extend the limit of applications of the gels. In some cases, gel-to-gel transitions lead to materials that cannot be accessed directly. Finally, we point out the necessity and possibility of further exploration of the field.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
46
|
Abstract
Supramolecular self-assembly enables living organisms to form highly functional hierarchical structures with individual components self-organized across multiple length scales. This has inspired work on multicomponent supramolecular materials to understand factors behind co-assembly versus self-sorting of molecules. We report here on a supramolecular system comprised of negatively charged peptide amphiphile (PA) molecules, in which only a tiny fraction of the molecules (0.7 mol%) were covalently conjugated to one of two different fluorophores, half to fluorescein isothiocyanate (FTIC) and the other half to tetramethylrhodamine (TAMRA). Confocal microscopy of the system revealed self-sorting of the two different fluorescent PA molecules, where TAMRA PA is concentrated in micron-scale domains while FITC PA remains dispersed throughout the sample. From Förster resonance energy transfer and fluorescence recovery experiments, we conclude that conjugation of the negatively charged FITC to PA significantly disrupts its co-assembly with the 99.3 mol% of unlabeled molecules, which are responsible for formation of micron-scale domains. Conversely, conjugation of the zwitterionic TAMRA causes no such disruption. Interestingly, this dissimilar behavior between FITC and TAMRA PA causes them to self-sort at large length scales in the supramolecular system, mediated not by specific interactions among the individual fluorophores but instead by their different propensities to co-assemble with the majority component. We also found that greater ionic strength in the aqueous environment of the system promotes mixing by lowering the electrostatic barriers involved in self-sorting. Our results demonstrate great thermodynamic subtlety in the driving forces that mediate self-sorting versus co-assembly in supramolecular peptide assemblies.
Collapse
Affiliation(s)
- Charlotte H Chen
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA.
| | | | | |
Collapse
|
47
|
Edelbrock AN, Clemons TD, Chin SM, Roan JJW, Bruckner EP, Álvarez Z, Edelbrock JF, Wek KS, Stupp SI. Superstructured Biomaterials Formed by Exchange Dynamics and Host-Guest Interactions in Supramolecular Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004042. [PMID: 33898187 PMCID: PMC8061421 DOI: 10.1002/advs.202004042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Indexed: 05/12/2023]
Abstract
Dynamic and reversible assembly of molecules is ubiquitous in the hierarchical superstructures of living systems and plays a key role in cellular functions. Recent work from the laboratory reported on the reversible formation of such superstructures in systems of peptide amphiphiles conjugated to oligonucleotides and electrostatically complimentary peptide sequences. Here, a supramolecular system is reported upon where exchange dynamics and host-guest interactions between β-cyclodextrin and adamantane on peptide amphiphiles lead to superstructure formation. Superstructure formation with bundled nanoribbons generates a mechanically robust hydrogel with a highly porous architecture that can be 3D printed. Functionalization of the porous superstructured material with a biological signal results in a matrix with significant in vitro bioactivity toward neurons that could be used as a supramolecular model to design novel biomaterials.
Collapse
Affiliation(s)
- Alexandra N. Edelbrock
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Simpson Querrey InstituteNorthwestern UniversityChicagoIL60611USA
| | - Tristan D. Clemons
- Simpson Querrey InstituteNorthwestern UniversityChicagoIL60611USA
- Department of ChemistryNorthwestern UniversityEvanstonIL60208USA
| | - Stacey M. Chin
- Department of ChemistryNorthwestern UniversityEvanstonIL60208USA
| | - Joshua J. W. Roan
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Eric P. Bruckner
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Zaida Álvarez
- Simpson Querrey InstituteNorthwestern UniversityChicagoIL60611USA
- Department of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Jack F. Edelbrock
- Simpson Querrey InstituteNorthwestern UniversityChicagoIL60611USA
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Kristen S. Wek
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Samuel I. Stupp
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Simpson Querrey InstituteNorthwestern UniversityChicagoIL60611USA
- Department of ChemistryNorthwestern UniversityEvanstonIL60208USA
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of MedicineNorthwestern UniversityChicagoIL60611USA
| |
Collapse
|
48
|
Christoff-Tempesta T, Cho Y, Kim DY, Geri M, Lamour G, Lew AJ, Zuo X, Lindemann WR, Ortony JH. Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads. NATURE NANOTECHNOLOGY 2021; 16:447-454. [PMID: 33462430 DOI: 10.1038/s41565-020-00840-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement-among other dynamic instabilities-and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young's modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young's moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials.
Collapse
Affiliation(s)
- Ty Christoff-Tempesta
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yukio Cho
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dae-Yoon Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Bondong, Korea
| | - Michela Geri
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guillaume Lamour
- LAMBE, Université Paris-Saclay, University of Evry, CNRS, Evry-Courcouronnes, France
| | - Andrew J Lew
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiaobing Zuo
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - William R Lindemann
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia H Ortony
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
49
|
González-Freire E, Novelli F, Pérez-Estévez A, Seoane R, Amorín M, Granja JR. Double Orthogonal Click Reactions for the Development of Antimicrobial Peptide Nanotubes. Chemistry 2021; 27:3029-3038. [PMID: 32986280 DOI: 10.1002/chem.202004127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 01/25/2023]
Abstract
A new class of amphipathic cyclic peptides, which assemble in bacteria membranes to form polymeric supramolecular nanotubes giving them antimicrobial properties, is described. The method is based on the use of two orthogonal clickable transformations to incorporate different hydrophobic or hydrophilic moieties in a simple, regioselective, and divergent manner. The resulting cationic amphipathic cyclic peptides described in this article exhibit strong antimicrobial properties with a broad therapeutic window. Our studies suggest that the active form is the nanotube resulted from the parallel stacking of the cyclic peptide precursors. Several techniques, CD, FTIR, fluorescence, and STEM, among others, confirm the nanotube formation.
Collapse
Affiliation(s)
- Eva González-Freire
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Federica Novelli
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Antonio Pérez-Estévez
- Department of Microbiology and Parasitology, Medical School, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rafael Seoane
- Department of Microbiology and Parasitology, Medical School, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Juan R Granja
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
50
|
Dilip H, Chakraborty D. Structural and dynamical properties of water in surfactant-like peptide-based nanotubes: Effect of pore size, tube length and charge. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|