1
|
Peng SX, Gao SM, Lin ZL, Luo ZH, Zhang SY, Shu WS, Meng F, Huang LN. Biogeography and ecological functions of underestimated CPR and DPANN in acid mine drainage sediments. mBio 2025:e0070525. [PMID: 40298441 DOI: 10.1128/mbio.00705-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Recent genomic surveys have uncovered candidate phyla radiation (CPR) bacteria and DPANN archaea as major microbial dark matter lineages in various anoxic habitats. Despite their extraordinary diversity, the biogeographic patterns and ecological implications of these ultra-small and putatively symbiotic microorganisms have remained elusive. Here, we performed metagenomic sequencing on 90 geochemically diverse acid mine drainage sediments sampled across southeast China and recovered 282 CPR and 189 DPANN nonredundant metagenome-assembled genomes, which collectively account for up to 28.6% and 31.2% of the indigenous prokaryotic communities, respectively. We found that, remarkably, geographic distance represents the primary factor driving the large-scale ecological distribution of both CPR and DPANN organisms, followed by pH and Fe. Although both groups might be capable of iron reduction through a flavin-based extracellular electron transfer mechanism, significant differences are found in their metabolic capabilities (with complex carbon degradation and chitin degradation being more prevalent in CPR whereas fermentation and acetate production being enriched in DPANN), indicating potential niche differentiation. Predicted hosts are mainly Acidobacteriota, Bacteroidota, and Proteobacteria for CPR and Thermoplasmatota for DPANN, and extensive, unbalanced metabolic exchanges between these symbionts and putative hosts are displayed. Together, our results provide initial insights into the complex interplays between the two lineages and their physicochemical environments and host populations at a large geographic scale.IMPORTANCECandidate phyla radiation (CPR) bacteria and DPANN archaea constitute a significant fraction of Earth's prokaryotic diversity. Despite their ubiquity and abundance, especially in anoxic habitats, we know little about the community patterns and ecological drivers of these ultra-small, putatively episymbiotic microorganisms across geographic ranges. This study is facilitated by a large collection of CPR and DPANN metagenome-assembled genomes recovered from the metagenomes of 90 sediments sampled from geochemically diverse acid mine drainage (AMD) environments across southeast China. Our comprehensive analyses have allowed first insights into the biogeographic patterns and functional differentiation of these major enigmatic prokaryotic groups in the AMD model system.
Collapse
Affiliation(s)
- Sheng-Xuan Peng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Liang Lin
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhen-Hao Luo
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Si-Yu Zhang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Saier MH. Cooperation and Competition Were Primary Driving Forces for Biological Evolution. Microb Physiol 2025; 35:13-29. [PMID: 39999802 PMCID: PMC11999638 DOI: 10.1159/000544890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND For many years, scientists have accepted Darwin's conclusion that "Survival of the Fittest" involves successful competition with other organisms for life-endowing molecules and conditions. SUMMARY Newly discovered "partial" organisms with minimal genomes that require symbiotic or parasitic relationships for growth and reproduction suggest that cooperation in addition to competition was and still is a primary driving force for survival. These two phenomena are not mutually exclusive, and both can confer a competitive advantage for survival. In fact, cooperation may have been more important in the early evolution of life on earth before autonomous organisms developed, becoming large genome organisms. KEY MESSAGES This suggestion has tremendous consequences with respect to our conception of the early evolution of life on earth as well as the appearance of intercellular interactions, multicellularity and the nature of interactions between humans and their societies (e.g., social Darwinism).
Collapse
Affiliation(s)
- Milton H Saier
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Wu Z, Liu S, Ni J. Metagenomic characterization of viruses and mobile genetic elements associated with the DPANN archaeal superphylum. Nat Microbiol 2024; 9:3362-3375. [PMID: 39448846 DOI: 10.1038/s41564-024-01839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
The archaeal superphylum DPANN (an acronym formed from the initials of the first five phyla discovered: Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanohaloarchaeota and Nanoarchaeota) is a group of ultrasmall symbionts able to survive in extreme ecosystems. The diversity and dynamics between DPANN archaea and their virome remain largely unknown. Here we use a metagenomic clustered regularly interspaced short palindromic repeats (CRISPR) screening approach to identify 97 globally distributed, non-redundant viruses and unclassified mobile genetic elements predicted to infect hosts across 8 DPANN phyla, including 7 viral groups not previously characterized. Genomic analysis suggests a diversity of viral morphologies including head-tailed, tailless icosahedral and spindle-shaped viruses with the potential to establish lytic, chronic or lysogenic infections. We also find evidence of a virally encoded Cas12f1 protein (probably originating from uncultured DPANN archaea) and a mini-CRISPR array, which could play a role in modulating host metabolism. Many metagenomes have virus-to-host ratios >10, indicating that DPANN viruses play an important role in controlling host populations. Overall, our study illuminates the underexplored diversity, functional repertoires and host interactions of the DPANN virome.
Collapse
Affiliation(s)
- Zongzhi Wu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, People's Republic of China
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China
| | - Shufeng Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, People's Republic of China.
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, People's Republic of China.
| |
Collapse
|
4
|
Cloarec LA, Bacchetta T, Bruto M, Leboulanger C, Grossi V, Brochier-Armanet C, Flandrois JP, Zurmely A, Bernard C, Troussellier M, Agogué H, Ader M, Oger-Desfeux C, Oger PM, Vigneron A, Hugoni M. Lineage-dependent partitioning of activities in chemoclines defines Woesearchaeota ecotypes in an extreme aquatic ecosystem. MICROBIOME 2024; 12:249. [PMID: 39609882 PMCID: PMC11606122 DOI: 10.1186/s40168-024-01956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND DPANN archaea, including Woesearchaeota, encompass a large fraction of the archaeal diversity, yet their genomic diversity, lifestyle, and role in natural microbiomes remain elusive. With an archaeal assemblage naturally enriched in Woesearchaeota and steep vertical geochemical gradients, Lake Dziani Dzaha (Mayotte) provides an ideal model to decipher their in-situ activity and ecology. RESULTS Using genome-resolved metagenomics and phylogenomics, we identified highly diversified Woesearchaeota populations and defined novel halophilic clades. Depth distribution of these populations in the water column showed an unusual double peak of abundance, located at two distinct chemoclines that are hotspots of microbial diversity in the water column. Genome-centric metatranscriptomics confirmed this vertical distribution and revealed a fermentative activity, with acetate and lactate as end products, and active cell-to-cell processes, supporting strong interactions with other community members at chemoclines. Our results also revealed distinct Woesearchaeota ecotypes, with different transcriptional patterns, contrasted lifestyles, and ecological strategies, depending on environmental/host conditions. CONCLUSIONS This work provides novel insights into Woesearchaeota in situ activity and metabolism, revealing invariant, bimodal, and adaptative lifestyles among halophilic Woesearchaeota. This challenges our precepts of an invariable host-dependent metabolism for all the members of this taxa and revises our understanding of their contributions to ecosystem functioning and microbiome assemblage. Video Abstract.
Collapse
Affiliation(s)
- Lilian A Cloarec
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Thomas Bacchetta
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Maxime Bruto
- Université de Lyon, UMR Mycoplasmoses Animales, VetAgro Sup, AnsesMarcy L'Etoile, 69280, France
| | | | - Vincent Grossi
- UMR 5276, Laboratoire de Géologie de Lyon: Terre, Univ Lyon, UCBL, CNRS, Environnement (LGL-TPE), PlanètesVilleurbanne, 69622, France
- Present address: Mediterranean Institute of Oceanography (MIO), Aix Marseille Univ-CNRS, Marseille, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie Et Biologie Évolutive, UMR5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Jean-Pierre Flandrois
- Laboratoire de Biométrie Et Biologie Évolutive, UMR5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| | - Adrian Zurmely
- Laboratoire de Biométrie Et Biologie Évolutive, UMR5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| | - Cécile Bernard
- UMR 7245 Molécules de Communication Et Adaptations Des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, Paris, F-75231, France
| | | | - Hélène Agogué
- UMR 7266, LIENSs, La Rochelle Université-CNRS, 2 Rue Olympe de Gouges, La Rochelle, 17000, France
| | - Magali Ader
- Institut de Physique du Globe de Paris, Université de Paris, Paris, France
| | | | - Philippe M Oger
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Adrien Vigneron
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Mylène Hugoni
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
5
|
Gan B, Wang K, Zhang B, Jia C, Lin X, Zhao J, Ding S. Dynamic microbiome diversity shaping the adaptation of sponge holobionts in coastal waters. Microbiol Spectr 2024; 12:e0144824. [PMID: 39400157 PMCID: PMC11537060 DOI: 10.1128/spectrum.01448-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024] Open
Abstract
The microbial communities associated with sponges contribute to the adaptation of hosts to environments, which are essential for the trophic transformation of benthic-marine coupling. However, little is known about the symbiotic microbial community interactions and adaptative strategies of high- and low-microbial abundance (HMA and LMA) sponges, which represent two typical ecological phenotypes. Here, we compared the 1-year dynamic patterns of microbiomes with the HMA sponge Spongia officinalis and two LMA sponge species Tedania sp. and Haliclona simulans widespread on the coast of China. Symbiotic bacterial communities with the characteristic HMA-LMA dichotomy presented higher diversity and stability in S. officinalis than in Tedania sp. and H. simulans, while archaeal communities showed consistent diversity across all sponges throughout the year. Dissolved oxygen, dissolved inorganic phosphorus, dissolved organic phosphorus, and especially temperature were the major factors affecting the seasonal changes in sponge microbial communities. S. officinalis-associated microbiome had higher diversity, stronger stability, and closer interaction, which adopted a relatively isolated strategy to cope with environmental changes, while Tedania sp. and H. simulans were more susceptible and shared more bacterial Amplicon Sequence Variants (ASVs) with surrounding waters, with an open way facing the uncertainty of the environment. Meta-analysis of the microbiome in composition, diversity, and ecological function from 13 marine sponges further supported that bacterial communities associated with HMA and LMA sponges have evolved two distinct environmental adaptation strategies. We propose that the different adaptive ways of sponges responding to the environment may be responsible for their successful evolution and their competence in global ocean change. IMPORTANCE During long-term evolution, sponge holobionts, among the oldest symbiotic relationships between microbes and metazoans, developed two distinct phenotypes with high- and low-microbial abundance (HMA and LMA). Despite sporadic studies indicating that the characteristic microbial assemblages present in HMA and LMA sponges, the adaptation strategies of symbionts responding to environments are still unclear. This deficiency limits our understanding of the selection of symbionts and the ecological functions during the evolutionary history and the adaptative assessment of HMA and LMA sponges in variable environments. Here, we explored symbiotic communities with two distinct phenotypes in a 1-year dynamic environment and combined with the meta-analysis of 13 sponges. The different strategies of symbionts in adapting to the environment were basically drawn: microbes with LMA were more acclimated to environmental changes, forming relatively loose-connected communities, while HMA developed relatively tight-connected and more similar communities beyond the divergence of species and geographical location.
Collapse
Affiliation(s)
- Bifu Gan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Kai Wang
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, China
| | - Beibei Zhang
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, China
| | - Chenzheng Jia
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, China
| | - Jing Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, China
| | - Shaoxiong Ding
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Dzhuraeva M, Bobodzhanova K, Birkeland N. The metagenomic landscape of a high-altitude geothermal spring in Tajikistan reveals a novel Desulfurococcaceae member, Zestomicrobium tamdykulense gen. nov., sp. nov. Microbiologyopen 2024; 13:e70004. [PMID: 39390720 PMCID: PMC11467010 DOI: 10.1002/mbo3.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Metagenomic analysis was conducted to assess the microbial community in the high-altitude Tamdykul geothermal spring in Tajikistan. This analysis yielded six high-quality bins from the members of Thermaceae, Aquificaceae, and Halothiobacillaceae, with a 41.2%, 19.7%, and 18.1% share in the total metagenome, respectively. Minor components included Schleiferia thermophila (1.6%) and members of the archaeal taxa Pyrobaculum (1.2%) and Desulfurococcaceae (0.7%). Further analysis of the metagenome-assembled genome (MAG) from the Desulfurococcaceae family (MAG002) revealed novel taxonomy with only 80.95% closest placement average nucleotide identity value to its most closely related member of the Desulfurococcaceae family, which is part of the Thermoproteota phylum comprising hyperthermophilic members widespread in geothermal environments. MAG002 consisted of 1.3 Mbp, distributed into 48 contigs with 1504 predicted coding sequences, had an average GC content of 41.3%, a completeness and contamination rate of 98.7% and 2.6%, respectively, and branched phylogenetically between the Ignisphaera and Zestosphaera lineages. Digital DNA-DNA hybridization values compared with Ignisphaera aggregans and Zestosphaera tikiterensis were 33.7% and 19.4%, respectively, suggesting that this MAG represented a novel species and genus. Its 16S rRNA gene contained a large 421 bp intron. It encodes a complete gluconeogenesis pathway involving a bifunctional fructose-1,6-bisphosphate phosphatase/aldolase; however, the glycolysis pathway is incomplete. The ribulose monophosphate pathway enzymes could be used for pentose synthesis. MAG002 encodes several hydrogen-evolving hydrogenases, with possible roles as hydrogen sinks during fermentation. We propose the name Zestomicrobium tamdykulense gen. nov. sp. nov. for this organism; it is the first thermophilic genome reported from Tajikistan.
Collapse
Affiliation(s)
- Munavvara Dzhuraeva
- Center of Biotechnology of the Tajik National UniversityDushanbeTajikistan
- Department of Biological SciencesUniversity of BergenBergenNorway
| | | | | |
Collapse
|
7
|
Nakagawa S, Sakai HD, Shimamura S, Takamatsu Y, Kato S, Yagi H, Yanaka S, Yagi-Utsumi M, Kurosawa N, Ohkuma M, Kato K, Takai K. N-linked protein glycosylation in Nanobdellati (formerly DPANN) archaea and their hosts. J Bacteriol 2024; 206:e0020524. [PMID: 39194224 PMCID: PMC11411935 DOI: 10.1128/jb.00205-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Members of the kingdom Nanobdellati, previously known as DPANN archaea, are characterized by ultrasmall cell sizes and reduced genomes. They primarily thrive through ectosymbiotic interactions with specific hosts in diverse environments. Recent successful cultivations have emphasized the importance of adhesion to host cells for understanding the ecophysiology of Nanobdellati. Cell adhesion is often mediated by cell surface carbohydrates, and in archaea, this may be facilitated by the glycosylated S-layer protein that typically coats their cell surface. In this study, we conducted glycoproteomic analyses on two co-cultures of Nanobdellati with their host archaea, as well as on pure cultures of both host and non-host archaea. Nanobdellati exhibited various glycoproteins, including archaellins and hypothetical proteins, with glycans that were structurally distinct from those of their hosts. This indicated that Nanobdellati autonomously synthesize their glycans for protein modifications probably using host-derived substrates, despite the high energy cost. Glycan modifications on Nanobdellati proteins consistently occurred on asparagine residues within the N-X-S/T sequon, consistent with patterns observed across archaea, bacteria, and eukaryotes. In both host and non-host archaea, S-layer proteins were commonly modified with hexose, N-acetylhexosamine, and sulfonated deoxyhexose. However, the N-glycan structures of host archaea, characterized by distinct sugars such as deoxyhexose, nonulosonate sugar, and pentose at the nonreducing ends, were implicated in enabling Nanobdellati to differentiate between host and non-host cells. Interestingly, the specific sugar, xylose, was eliminated from the N-glycan in a host archaeon when co-cultured with Nanobdella. These findings enhance our understanding of the role of protein glycosylation in archaeal interactions.IMPORTANCENanobdellati archaea, formerly known as DPANN, are phylogenetically diverse, widely distributed, and obligately ectosymbiotic. The molecular mechanisms by which Nanobdellati recognize and adhere to their specific hosts remain largely unexplored. Protein glycosylation, a fundamental biological mechanism observed across all domains of life, is often crucial for various cell-cell interactions. This study provides the first insights into the glycoproteome of Nanobdellati and their host and non-host archaea. We discovered that Nanobdellati autonomously synthesize glycans for protein modifications, probably utilizing substrates derived from their hosts. Additionally, we identified distinctive glycosylation patterns that suggest mechanisms through which Nanobdellati differentiate between host and non-host cells. This research significantly advances our understanding of the molecular basis of microbial interactions in extreme environments.
Collapse
Affiliation(s)
- Satoshi Nakagawa
- Division of Applied Biosciences, Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Hiroyuki D. Sakai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Shigeru Shimamura
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshiki Takamatsu
- Division of Applied Biosciences, Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hirokazu Yagi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
| |
Collapse
|
8
|
Lauzon J, Caron D, Lazar CS. The Saint-Leonard Urban Glaciotectonic Cave Harbors Rich and Diverse Planktonic and Sedimentary Microbial Communities. Microorganisms 2024; 12:1791. [PMID: 39338466 PMCID: PMC11434022 DOI: 10.3390/microorganisms12091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The terrestrial subsurface harbors unique microbial communities that play important biogeochemical roles and allow for studying a yet unknown fraction of the Earth's biodiversity. The Saint-Leonard cave in Montreal City (Canada) is of glaciotectonic origin. Its speleogenesis traces back to the withdrawal of the Laurentide Ice Sheet 13,000 years ago, during which the moving glacier dislocated the sedimentary rock layers. Our study is the first to investigate the microbial communities of the Saint-Leonard cave. By using amplicon sequencing, we analyzed the taxonomic diversity and composition of bacterial, archaeal and eukaryote communities living in the groundwater (0.1 µm- and 0.2 µm-filtered water), in the sediments and in surface soils. We identified a microbial biodiversity typical of cave ecosystems. Communities were mainly shaped by habitat type and harbored taxa associated with a wide variety of lifestyles and metabolic capacities. Although we found evidence of a geochemical connection between the above soils and the cave's galleries, our results suggest that the community assembly dynamics are driven by habitat selection rather than dispersal. Furthermore, we found that the cave's groundwater, in addition to being generally richer in microbial taxa than sediments, contained a considerable diversity of ultra-small bacteria and archaea.
Collapse
Affiliation(s)
- Jocelyn Lauzon
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| | | | - Cassandre Sara Lazar
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
9
|
Johnson MD, Shepherd DC, Sakai HD, Mudaliyar M, Pandurangan AP, Short FL, Veith PD, Scott NE, Kurosawa N, Ghosal D. Cell-to-cell interactions revealed by cryo-tomography of a DPANN co-culture system. Nat Commun 2024; 15:7066. [PMID: 39152123 PMCID: PMC11329633 DOI: 10.1038/s41467-024-51159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
DPANN is a widespread and diverse group of archaea characterized by their small size, reduced genome, limited metabolic pathways, and symbiotic existence. Known DPANN species are predominantly obligate ectosymbionts that depend on their host for proliferation. The structural and molecular details of host recognition, host-DPANN intercellular communication, and host adaptation in response to DPANN attachment remain unknown. Here, we use electron cryotomography (cryo-ET) to show that the Microcaldus variisymbioticus ARM-1 may interact with its host, Metallosphaera javensis AS-7 through intercellular proteinaceous nanotubes. Combining cryo-ET and sub-tomogram averaging, we show the in situ architectures of host and DPANN S-layers and the structures of the nanotubes in their primed and extended states. In addition, comparative proteomics and genomic analyses identified host proteomic changes in response to DPANN attachment. These results provide insights into the structural basis of host-DPANN communication and deepen our understanding of the host ectosymbiotic relationships.
Collapse
Affiliation(s)
- Matthew D Johnson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Doulin C Shepherd
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Hiroyuki D Sakai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, 192-8577, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Manasi Mudaliyar
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Arun Prasad Pandurangan
- Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Francesca L Short
- Department of Microbiology and Infection Program, Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Paul D Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, 192-8577, Japan
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
10
|
Hamm JN, Liao Y, von Kügelgen A, Dombrowski N, Landers E, Brownlee C, Johansson EMV, Whan RM, Baker MAB, Baum B, Bharat TAM, Duggin IG, Spang A, Cavicchioli R. The parasitic lifestyle of an archaeal symbiont. Nat Commun 2024; 15:6449. [PMID: 39085207 PMCID: PMC11291902 DOI: 10.1038/s41467-024-49962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
DPANN archaea are a diverse group of microorganisms characterised by small cells and reduced genomes. To date, all cultivated DPANN archaea are ectosymbionts that require direct cell contact with an archaeal host species for growth and survival. However, these interactions and their impact on the host species are poorly understood. Here, we show that a DPANN archaeon (Candidatus Nanohaloarchaeum antarcticus) engages in parasitic interactions with its host (Halorubrum lacusprofundi) that result in host cell lysis. During these interactions, the nanohaloarchaeon appears to enter, or be engulfed by, the host cell. Our results provide experimental evidence for a predatory-like lifestyle of an archaeon, suggesting that at least some DPANN archaea may have roles in controlling host populations and their ecology.
Collapse
Affiliation(s)
- Joshua N Hamm
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, The Netherlands, 1797 SZ.
| | - Yan Liao
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Andriko von Kügelgen
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, The Netherlands, 1797 SZ
| | - Evan Landers
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christopher Brownlee
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Fluorescence Analysis Facility, Molecular Horizons, University of Wollongong, Keiraville, NSW, 2522, Australia
| | - Emma M V Johansson
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Renee M Whan
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Matthew A B Baker
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Buzz Baum
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Iain G Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, The Netherlands, 1797 SZ
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
11
|
Ding S, Hamm JN, Bale NJ, Sinninghe Damsté JS, Spang A. Selective lipid recruitment by an archaeal DPANN symbiont from its host. Nat Commun 2024; 15:3405. [PMID: 38649682 PMCID: PMC11035636 DOI: 10.1038/s41467-024-47750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
The symbiont Ca. Nanohaloarchaeum antarcticus is obligately dependent on its host Halorubrum lacusprofundi for lipids and other metabolites due to its lack of certain biosynthetic genes. However, it remains unclear which specific lipids or metabolites are acquired from its host, and how the host responds to infection. Here, we explored the lipidome dynamics of the Ca. Nha. antarcticus - Hrr. lacusprofundi symbiotic relationship during co-cultivation. By using a comprehensive untargeted lipidomic methodology, our study reveals that Ca. Nha. antarcticus selectively recruits 110 lipid species from its host, i.e., nearly two-thirds of the total number of host lipids. Lipid profiles of co-cultures displayed shifts in abundances of bacterioruberins and menaquinones and changes in degree of bilayer-forming glycerolipid unsaturation. This likely results in increased membrane fluidity and improved resistance to membrane disruptions, consistent with compensation for higher metabolic load and mechanical stress on host membranes when in contact with Ca. Nha. antarcticus cells. Notably, our findings differ from previous observations of other DPANN symbiont-host systems, where no differences in lipidome composition were reported. Altogether, our work emphasizes the strength of employing untargeted lipidomics approaches to provide details into the dynamics underlying a DPANN symbiont-host system.
Collapse
Affiliation(s)
- Su Ding
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands.
| | - Joshua N Hamm
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands.
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Hassani Y, Aboudharam G, Drancourt M, Grine G. The discovery of Candidatus Nanopusillus phoceensis sheds light on the diversity of the microbiota nanoarchaea. iScience 2024; 27:109488. [PMID: 38595798 PMCID: PMC11001627 DOI: 10.1016/j.isci.2024.109488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/11/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
To further assess the spectrum of nanoarchaea in human microbiota, we prospectively searched for nanoarchaea in 110 leftover stool specimens, using the complementary approaches of PCR-sequencing screening, fluorescent in situ hybridization, scanning electron microscopy and metagenomics. These investigations yielded a nanoarchaea, Candidatus Nanopusillus phoceensis sp. nov., detected in stool samples by specific PCR-based assays. Microscopic observations indicated its close contact with the archaea Methanobrevibacter smithii. Genomic sequencing revealed 607,775-bp contig with 24.5% G + C content encoding 30 tRNAs, 3 rRNA genes, and 1,403 coding DNA sequences, of which 719 were assigned to clusters of orthologous groups. Ca. Nanopusillus phoceensis is only the second nanoarchaea to be detected in humans, expanding our knowledge of the repertoire of nanoarchaea associated with the human microbiota and encouraging further research to explore the repertoire of this emerging group of nanomicrobes in clinical samples.
Collapse
Affiliation(s)
- Yasmine Hassani
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Gerard Aboudharam
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, 13005 Marseille, France
- Ecole de Médecine Dentaire, Aix-Marseille Université, 13005 Marseille, France
| | - Michel Drancourt
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Ghiles Grine
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, 13005 Marseille, France
- Ecole de Médecine Dentaire, Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
13
|
Kuroda K, Maeda R, Shinshima F, Urasaki K, Kubota K, Nobu MK, Noguchi TQP, Satoh H, Yamauchi M, Narihiro T, Yamada M. Microbiological insights into anaerobic phenol degradation mechanisms and bulking phenomenon in a mesophilic upflow anaerobic sludge blanket reactor in long-term operation. WATER RESEARCH 2024; 253:121271. [PMID: 38341972 DOI: 10.1016/j.watres.2024.121271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/14/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
In this study, a long-term operation of 2,747 days was conducted to evaluate the performance of the upflow anaerobic sludge blanket (UASB) reactor and investigated the degradation mechanisms of high-organic loading phenol wastewater. During the reactor operation, the maximum chemical oxygen demand (COD) removal rate of 6.1 ± 0.6 kg/m3/day under 1,680 mg/L phenol concentration was achieved in the mesophilic UASB reactor. After a significant change in the operating temperature from 24.0 ± 4.1 °C to 35.9 ± 0.6 °C, frequent observations of floating and washout of the bloated granular sludge (novel types of the bulking phenomenon) were made in the UASB reactor, suggesting that the change in operating temperature could be a trigger for the bulking phenomenon. Through the metagenomic analysis, phenol degradation mechanisms were predicted that phenol was converted to 4-hydroxybenzoate via two possible routes by Syntrophorhabdaceae and Pelotomaculaceae bacteria. Furthermore, the degradation of 4-hydroxybenzoate to benzoyl-CoA was carried out by members of Syntrophorhabdaceae and Smithellaceae. In the bulking sludge, a predominant presence of Nanobdellota, belonging to DPANN archaea, was detected. The metagenome-assembled genome of the Nanobdellota lacks many biosynthetic pathways and has several genes for the symbiotic lifestyle such as trimeric autotransporter adhesin-related protein. Furthermore, the Nanobdellota have significant correlations with several methanogenic archaea that are predominantly present in the UASB reactor. Considering the results of this study, the predominant Nanobdellota may negatively affect the growth of the methanogens through the parasitic lifestyle and change the balance of microbial interactions in the granular sludge ecosystem.
Collapse
Affiliation(s)
- Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan.
| | - Ryota Maeda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan; Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshio-cho, Miyakonojo, Miyazaki 885-8567, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Futaba Shinshima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan; Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshio-cho, Miyakonojo, Miyazaki 885-8567, Japan
| | - Kampachiro Urasaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kengo Kubota
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Taro Q P Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshio-cho, Miyakonojo, Miyazaki 885-8567, Japan
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Hokkaido 060-8628 Japan
| | - Masahito Yamauchi
- Department of Urban Environmental Design and Engineering, National Institute of Technology, Kagoshima College, 1460-1 Shinkou, Hayato, Kirishima, Kagoshima 899-5193, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan.
| | - Masayoshi Yamada
- Department of Urban Environmental Design and Engineering, National Institute of Technology, Kagoshima College, 1460-1 Shinkou, Hayato, Kirishima, Kagoshima 899-5193, Japan.
| |
Collapse
|
14
|
Kato S, Tahara YO, Nishimura Y, Uematsu K, Arai T, Nakane D, Ihara A, Nishizaka T, Iwasaki W, Itoh T, Miyata M, Ohkuma M. Cell surface architecture of the cultivated DPANN archaeon Nanobdella aerobiophila. J Bacteriol 2024; 206:e0035123. [PMID: 38289045 PMCID: PMC10882981 DOI: 10.1128/jb.00351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024] Open
Abstract
The DPANN archaeal clade includes obligately ectosymbiotic species. Their cell surfaces potentially play an important role in the symbiotic interaction between the ectosymbionts and their hosts. However, little is known about the mechanism of ectosymbiosis. Here, we show cell surface structures of the cultivated DPANN archaeon Nanobdella aerobiophila strain MJ1T and its host Metallosphaera sedula strain MJ1HA, using a variety of electron microscopy techniques, i.e., negative-staining transmission electron microscopy, quick-freeze deep-etch TEM, and 3D electron tomography. The thickness, unit size, and lattice symmetry of the S-layer of strain MJ1T were different from those of the host archaeon strain MJ1HA. Genomic and transcriptomic analyses highlighted the most highly expressed MJ1T gene for a putative S-layer protein with multiple glycosylation sites and immunoglobulin-like folds, which has no sequence homology to known S-layer proteins. In addition, genes for putative pectin lyase- or lectin-like extracellular proteins, which are potentially involved in symbiotic interaction, were found in the MJ1T genome based on in silico 3D protein structure prediction. Live cell imaging at the optimum growth temperature of 65°C indicated that cell complexes of strains MJ1T and MJ1HA were motile, but sole MJ1T cells were not. Taken together, we propose a model of the symbiotic interaction and cell cycle of Nanobdella aerobiophila.IMPORTANCEDPANN archaea are widely distributed in a variety of natural and artificial environments and may play a considerable role in the microbial ecosystem. All of the cultivated DPANN archaea so far need host organisms for their growth, i.e., obligately ectosymbiotic. However, the mechanism of the ectosymbiosis by DPANN archaea is largely unknown. To this end, we performed a comprehensive analysis of the cultivated DPANN archaeon, Nanobdella aerobiophila, using electron microscopy, live cell imaging, transcriptomics, and genomics, including 3D protein structure prediction. Based on the results, we propose a reasonable model of the symbiotic interaction and cell cycle of Nanobdella aerobiophila, which will enhance our understanding of the enigmatic physiology and ecological significance of DPANN archaea.
Collapse
Affiliation(s)
- Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Yuhei O. Tahara
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Yuki Nishimura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | - Daisuke Nakane
- Department of Physics, Gakushuin University, Tokyo, Japan
| | - Ayaka Ihara
- Department of Physics, Gakushuin University, Tokyo, Japan
| | | | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Takashi Itoh
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Krishnan N, Csiszár V, Móri TF, Garay J. Genesis of ectosymbiotic features based on commensalistic syntrophy. Sci Rep 2024; 14:1366. [PMID: 38228651 DOI: 10.1038/s41598-023-47211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/10/2023] [Indexed: 01/18/2024] Open
Abstract
The symbiogenetic origin of eukaryotes with mitochondria is considered a major evolutionary transition. The initial interactions and conditions of symbiosis, along with the phylogenetic affinity of the host, are widely debated. Here, we focus on a possible evolutionary path toward an association of individuals of two species based on unidirectional syntrophy. With the backing of a theoretical model, we hypothesize that the first step in the evolution of such symbiosis could be the appearance of a linking structure on the symbiont's membrane, using which it forms an ectocommensalism with its host. We consider a commensalistic model based on the syntrophy hypothesis in the framework of coevolutionary dynamics and mutant invasion into a monomorphic resident system (evolutionary substitution). We investigate the ecological and evolutionary stability of the consortium (or symbiotic merger), with vertical transmissions playing a crucial role. The impact of the 'effectiveness of vertical transmission' on the dynamics is also analyzed. We find that the transmission of symbionts and the additional costs incurred by the mutant determine the conditions of fixation of the consortia. Additionally, we observe that small and highly metabolically active symbionts are likely to form the consortia.
Collapse
Affiliation(s)
- Nandakishor Krishnan
- HUN-REN Centre for Ecological Research, Institute of Evolution, Konkoly-Thege M. Út 29-33, Budapest, 1121, Hungary.
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
| | - Villő Csiszár
- Department of Probability Theory and Statistics, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Tamás F Móri
- HUN-REN Alfréd Rényi Institute of Mathematics, Reáltanoda U. 13-15, Budapest, 1053, Hungary
| | - József Garay
- HUN-REN Centre for Ecological Research, Institute of Evolution, Konkoly-Thege M. Út 29-33, Budapest, 1121, Hungary
| |
Collapse
|
16
|
Johnson MD, Sakai HD, Paul B, Nunoura T, Dalvi S, Mudaliyar M, Shepherd DC, Shimizu M, Udupa S, Ohkuma M, Kurosawa N, Ghosal D. Large attachment organelle mediates interaction between Nanobdellota archaeon YN1 and its host. THE ISME JOURNAL 2024; 18:wrae154. [PMID: 39113594 PMCID: PMC11420986 DOI: 10.1093/ismejo/wrae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 08/07/2024] [Indexed: 09/25/2024]
Abstract
DPANN archaea are an enigmatic superphylum that are difficult to isolate and culture in the laboratory due to their specific culture conditions and apparent ectosymbiotic lifestyle. Here, we successfully isolated and cultivated a coculture system of a novel Nanobdellota archaeon YN1 and its host Sulfurisphaera ohwakuensis YN1HA. We characterized the coculture system by complementary methods, including metagenomics and metabolic pathway analysis, fluorescence microscopy, and high-resolution electron cryo-tomography (cryoET). We show that YN1 is deficient in essential metabolic processes and requires host resources to proliferate. CryoET imaging revealed an enormous attachment organelle present in the YN1 envelope that forms a direct interaction with the host cytoplasm, bridging the two cells. Together, our results unravel the molecular and structural basis of ectosymbiotic relationship between YN1 and YN1HA. This research broadens our understanding of DPANN biology and the versatile nature of their ectosymbiotic relationships.
Collapse
Affiliation(s)
- Matthew D Johnson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hiroyuki D Sakai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Bindusmita Paul
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka 237-0061, Japan
| | - Somavally Dalvi
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Manasi Mudaliyar
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Doulin C Shepherd
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michiru Shimizu
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Shubha Udupa
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
17
|
Gaisin VA, van Wolferen M, Albers SV, Pilhofer M. Distinct life cycle stages of an ectosymbiotic DPANN archaeon. THE ISME JOURNAL 2024; 18:wrae076. [PMID: 38691426 PMCID: PMC11104419 DOI: 10.1093/ismejo/wrae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
DPANN archaea are a diverse group of microorganisms that are thought to rely on an ectosymbiotic lifestyle; however, the cell biology of these cell-cell interactions remains largely unknown. We applied live-cell imaging and cryo-electron tomography to the DPANN archaeon Nanobdella aerobiophila and its host, revealing two distinct life cycle stages. Free cells possess archaella and are motile. Ectobiotic cells are intimately linked with the host through an elaborate attachment organelle. Our data suggest that free cells may actively seek a new host, while the ectobiotic state is adapted to mediate intricate interaction with the host.
Collapse
Affiliation(s)
- Vasil A Gaisin
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
18
|
Chen B, Yu K, Fu L, Wei Y, Liang J, Liao Z, Qin Z, Yu X, Deng C, Han M, Ma H. The diversity, community dynamics, and interactions of the microbiome in the world's deepest blue hole: insights into extreme environmental response patterns and tolerance of marine microorganisms. Microbiol Spectr 2023; 11:e0053123. [PMID: 37861344 PMCID: PMC10883803 DOI: 10.1128/spectrum.00531-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE This study comprehensively examined the community dynamics, functional profiles, and interactions of the microbiome in the world's deepest blue hole. The findings revealed a positive correlation between the α-diversities of Symbiodiniaceae and archaea, indicating the potential reliance of Symbiodiniaceae on archaea in an extreme environment resulting from a partial niche overlap. The negative association between the α-diversity and β-diversity of the bacterial community suggested that the change rule of the bacterial community was consistent with the Anna Karenina effects. The core microbiome comprised nine microbial taxa, highlighting their remarkable tolerance and adaptability to sharp environmental gradient variations. Bacteria and archaea played significant roles in carbon, nitrogen, and sulfur cycles, while fungi contributed to carbon metabolism. This study advanced our understanding of the community dynamics, response patterns, and resilience of microorganisms populating the world's deepest blue hole, thereby facilitating further ecological and evolutional exploration of microbiomes in diverse extreme environments.
Collapse
Affiliation(s)
- Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai, China
| | - Liang Fu
- Sansha Track Ocean Coral Reef Conservation Research Institute Co. Ltd. , Qionghai, China
| | - Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University , Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Chuanqi Deng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Honglin Ma
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University , Nanning, China
| |
Collapse
|
19
|
Hassani Y, Aboudharam G, Drancourt M, Grine G. Current knowledge and clinical perspectives for a unique new phylum: Nanaorchaeota. Microbiol Res 2023; 276:127459. [PMID: 37557061 DOI: 10.1016/j.micres.2023.127459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/28/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Nanoarchaea measuring less than 500 nm and encasing an average 600-kb compact genome have been studied for twenty years, after an estimated 4193-million-year evolution. Comprising only four co-cultured representatives, these symbiotic organisms initially detected in deep-sea hydrothermal vents and geothermal springs, have been further distributed in various environmental ecosystems worldwide. Recent isolation by co-culture of Nanopusillus massiliensis from the unique ecosystem of the human oral cavity, prompted us to review the evolutionary diversity of nanaorchaea resulting in a rapidly evolving taxonomiy. Regardless of their ecological niche, all nanoarchaea share limited metabolic capacities correlating with an obligate ectosymbiotic or parasitic lifestyle; focusing on the dynamics of nanoarchaea-bacteria nanoarchaea-archaea interactions at the morphological and metabolic levels; highlighting proteins involved in nanoarchaea attachment to the hosts, as well metabolic exchanges between both organisms; and highlighting clinical nanoarchaeology, an emerging field of research in the frame of the recent discovery of Candidate Phyla radiation (CPR) in human microbiota. Future studies in clinical nanobiology will expand knowledge of the nanaorchaea repertoire associated with human microbiota and diseases, to improve our understanding of the diversity of these nanoorganims and their intreactions with microbiota and host tissues.
Collapse
Affiliation(s)
- Yasmine Hassani
- Aix-Marseille-Univ., IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille 13005, France; IHU Méditerranée Infection, Marseille 13005, France
| | - Gérard Aboudharam
- IHU Méditerranée Infection, Marseille 13005, France; Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France
| | - Michel Drancourt
- Aix-Marseille-Univ., IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille 13005, France; IHU Méditerranée Infection, Marseille 13005, France
| | - Ghiles Grine
- Aix-Marseille-Univ., IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille 13005, France; Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France.
| |
Collapse
|
20
|
Esser SP, Rahlff J, Zhao W, Predl M, Plewka J, Sures K, Wimmer F, Lee J, Adam PS, McGonigle J, Turzynski V, Banas I, Schwank K, Krupovic M, Bornemann TLV, Figueroa-Gonzalez PA, Jarett J, Rattei T, Amano Y, Blaby IK, Cheng JF, Brazelton WJ, Beisel CL, Woyke T, Zhang Y, Probst AJ. A predicted CRISPR-mediated symbiosis between uncultivated archaea. Nat Microbiol 2023; 8:1619-1633. [PMID: 37500801 DOI: 10.1038/s41564-023-01439-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
CRISPR-Cas systems defend prokaryotic cells from invasive DNA of viruses, plasmids and other mobile genetic elements. Here, we show using metagenomics, metatranscriptomics and single-cell genomics that CRISPR systems of widespread, uncultivated archaea can also target chromosomal DNA of archaeal episymbionts of the DPANN superphylum. Using meta-omics datasets from Crystal Geyser and Horonobe Underground Research Laboratory, we find that CRISPR spacers of the hosts Candidatus Altiarchaeum crystalense and Ca. A. horonobense, respectively, match putative essential genes in their episymbionts' genomes of the genus Ca. Huberiarchaeum and that some of these spacers are expressed in situ. Metabolic interaction modelling also reveals complementation between host-episymbiont systems, on the basis of which we propose that episymbionts are either parasitic or mutualistic depending on the genotype of the host. By expanding our analysis to 7,012 archaeal genomes, we suggest that CRISPR-Cas targeting of genomes associated with symbiotic archaea evolved independently in various archaeal lineages.
Collapse
Affiliation(s)
- Sarah P Esser
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Janina Rahlff
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Weishu Zhao
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
- Shanghai Jiao Tong University, School of Life Sciences and Biotechnology, International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Michael Predl
- Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Julia Plewka
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Katharina Sures
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Franziska Wimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Janey Lee
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Panagiotis S Adam
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Julia McGonigle
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Victoria Turzynski
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Indra Banas
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Katrin Schwank
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
- University of Regensburg, Biochemistry III, Regensburg, Germany
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Till L V Bornemann
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Perla Abigail Figueroa-Gonzalez
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Jessica Jarett
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thomas Rattei
- Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Yuki Amano
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai, Japan
| | - Ian K Blaby
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
- Medical faculty, University of Würzburg, Würzburg, Germany
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
- Centre of Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
21
|
Dedysh SN. Describing difficult-to-culture bacteria: Taking a shortcut or investing time to discover something new? Syst Appl Microbiol 2023; 46:126439. [PMID: 37413783 DOI: 10.1016/j.syapm.2023.126439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Despite the growing interest in isolating representatives of poorly studied and as-yet-uncultivated bacterial phylogenetic groups, these microorganisms remain difficult objects for taxonomic studies. The time required for describing one of these fastidious bacteria is commonly measured in several years. What is even more problematic, many routine laboratory tests, which were originally developed for fast-growing and fast-responding microorganisms, are not fully suitable for many environmentally relevant, slow-growing bacteria. Standard techniques used in chemotaxonomic analyses do not identify unique lipids produced by these bacteria. A common practice of preparing taxonomic descriptions that report a minimal set of features to name a newly isolated organism deepens a gap between microbial ecologists and taxonomists. By contrast, investing time in detailed analysis of cell biology and experimental verification of genome-encoded capabilities of newly isolated microorganisms opens a window for novel, unexpected findings, which may shape our ideas about the functional role of these microbes in the environment.
Collapse
Affiliation(s)
- Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
22
|
George C, Lim CXQ, Tong Y, Pointing SB. Community structure of thermophilic photosynthetic microbial mats and flocs at Sembawang Hot Spring, Singapore. Front Microbiol 2023; 14:1189468. [PMID: 37396374 PMCID: PMC10313338 DOI: 10.3389/fmicb.2023.1189468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
The Sembawang Hot Spring in Singapore lies at the foot of a major regional geological feature called the Bentong-Raub Suture Zone. Amid an extensively managed surface geothermal park, an undisturbed hot spring emerges with source water at 61°C, pH 6.8, and 1 mg/L dissolved sulfide. A small main pool at the source supported orange-green benthic flocs, whereas the outflow channel with gradually less extreme environmental stress supported extensive vivid green microbial mats. Microscopy revealed that cyanobacterial morphotypes were distinct in flocs and mats at several intervals along the environmental gradient, and we describe a spiraling pattern in the oscillatorian cyanobacteria that may reflect response to poly-extreme stress. Estimation of diversity using 16S rRNA gene sequencing revealed assemblages that were dominated by phototrophic bacteria. The most abundant taxa in flocs at 61°C/1 mg/L sulfide were Roseiflexus sp. and Thermosynechococcus elongatus, whilst the mats at 45.7-55.3°C/0-0.5 mg/L sulfide were dominated by Oscillatoriales cyanobacterium MTP1 and Chloroflexus sp. Occurrence of diverse chemoautotrophs and heterotrophs reflected known thermal ranges for taxa, and of note was the high abundance of thermophilic cellulolytic bacteria that likely reflected the large allochthonous leaf input. A clear shift in ASV-defined putative ecotypes occurred along the environmental stress gradient of the hot spring and overall diversity was inversely correlated to environmental stress. Significant correlations for abiotic variables with observed biotic diversity were identified for temperature, sulfide, and carbonate. A network analysis revealed three putative modules of biotic interactions that also reflected the taxonomic composition at intervals along the environmental gradient. Overall, the data indicated that three distinct microbial communities were supported within a small spatial scale along the poly-extreme environmental gradient. The findings add to the growing inventory of hot spring microbiomes and address an important biogeographic knowledge gap for the region.
Collapse
Affiliation(s)
- Christaline George
- Yale-NUS College, National University of Singapore, Singapore, Singapore
| | - Chloe Xue Qi Lim
- Yale-NUS College, National University of Singapore, Singapore, Singapore
| | - Yan Tong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Stephen Brian Pointing
- Yale-NUS College, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Kuppa Baskaran DK, Umale S, Zhou Z, Raman K, Anantharaman K. Metagenome-based metabolic modelling predicts unique microbial interactions in deep-sea hydrothermal plume microbiomes. ISME COMMUNICATIONS 2023; 3:42. [PMID: 37120693 PMCID: PMC10148797 DOI: 10.1038/s43705-023-00242-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Deep-sea hydrothermal vents are abundant on the ocean floor and play important roles in ocean biogeochemistry. In vent ecosystems such as hydrothermal plumes, microorganisms rely on reduced chemicals and gases in hydrothermal fluids to fuel primary production and form diverse and complex microbial communities. However, microbial interactions that drive these complex microbiomes remain poorly understood. Here, we use microbiomes from the Guaymas Basin hydrothermal system in the Pacific Ocean to shed more light on the key species in these communities and their interactions. We built metabolic models from metagenomically assembled genomes (MAGs) and infer possible metabolic exchanges and horizontal gene transfer (HGT) events within the community. We highlight possible archaea-archaea and archaea-bacteria interactions and their contributions to the robustness of the community. Cellobiose, D-Mannose 1-phosphate, O2, CO2, and H2S were among the most exchanged metabolites. These interactions enhanced the metabolic capabilities of the community by exchange of metabolites that cannot be produced by any other community member. Archaea from the DPANN group stood out as key microbes, benefiting significantly as acceptors in the community. Overall, our study provides key insights into the microbial interactions that drive community structure and organisation in complex hydrothermal plume microbiomes.
Collapse
Affiliation(s)
- Dinesh Kumar Kuppa Baskaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
| | - Shreyansh Umale
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India.
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India.
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.
| | | |
Collapse
|
24
|
Wan X, Yang Q, Wang X, Bai Y, Liu Z. Isolation and Cultivation of Human Gut Microorganisms: A Review. Microorganisms 2023; 11:1080. [PMID: 37110502 PMCID: PMC10141110 DOI: 10.3390/microorganisms11041080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Microbial resources from the human gut may find use in various applications, such as empirical research on the microbiome, the development of probiotic products, and bacteriotherapy. Due to the development of "culturomics", the number of pure bacterial cultures obtained from the human gut has significantly increased since 2012. However, there is still a considerable number of human gut microbes to be isolated and cultured. Thus, to improve the efficiency of obtaining microbial resources from the human gut, some constraints of the current methods, such as labor burden, culture condition, and microbial targetability, still need to be optimized. Here, we overview the general knowledge and recent development of culturomics for human gut microorganisms. Furthermore, we discuss the optimization of several parts of culturomics including sample collection, sample processing, isolation, and cultivation, which may improve the current strategies.
Collapse
Affiliation(s)
| | | | | | - Yun Bai
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.W.); (Q.Y.); (X.W.)
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (X.W.); (Q.Y.); (X.W.)
| |
Collapse
|
25
|
García-Maldonado JQ, Latisnere-Barragán H, Escobar-Zepeda A, Cadena S, Ramírez-Arenas PJ, Vázquez-Juárez R, Rojas-Contreras M, López-Cortés A. Revisiting Microbial Diversity in Hypersaline Microbial Mats from Guerrero Negro for a Better Understanding of Methanogenic Archaeal Communities. Microorganisms 2023; 11:microorganisms11030812. [PMID: 36985385 PMCID: PMC10059902 DOI: 10.3390/microorganisms11030812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Knowledge regarding the diversity of methanogenic archaeal communities in hypersaline environments is limited because of the lack of efficient cultivation efforts as well as their low abundance and metabolic activities. In this study, we explored the microbial communities in hypersaline microbial mats. Bioinformatic analyses showed significant differences among the archaeal community structures for each studied site. Taxonomic assignment based on 16S rRNA and methyl coenzyme-M reductase (mcrA) gene sequences, as well as metagenomic analysis, corroborated the presence of Methanosarcinales. Furthermore, this study also provided evidence for the presence of Methanobacteriales, Methanomicrobiales, Methanomassiliicoccales, Candidatus Methanofastidiosales, Methanocellales, Methanococcales and Methanopyrales, although some of these were found in extremely low relative abundances. Several mcrA environmental sequences were significantly different from those previously reported and did not match with any known methanogenic archaea, suggesting the presence of specific environmental clusters of methanogenic archaea in Guerrero Negro. Based on functional inference and the detection of specific genes in the metagenome, we hypothesised that all four methanogenic pathways were able to occur in these environments. This study allowed the detection of extremely low-abundance methanogenic archaea, which were highly diverse and with unknown physiology, evidencing the presence of all methanogenic metabolic pathways rather than the sheer existence of exclusively methylotrophic methanogenic archaea in hypersaline environments.
Collapse
Affiliation(s)
- José Q García-Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida 97310, Yucatán, Mexico
| | - Hever Latisnere-Barragán
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz 23205, Baja California Sur, Mexico
| | | | - Santiago Cadena
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Patricia J Ramírez-Arenas
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz 23205, Baja California Sur, Mexico
| | - Ricardo Vázquez-Juárez
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz 23205, Baja California Sur, Mexico
| | - Maurilia Rojas-Contreras
- Departamento de Agronomía, Universidad Autónoma de Baja California Sur, La Paz 23080, Baja California Sur, Mexico
| | - Alejandro López-Cortés
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz 23205, Baja California Sur, Mexico
| |
Collapse
|
26
|
Kapinusova G, Lopez Marin MA, Uhlik O. Reaching unreachables: Obstacles and successes of microbial cultivation and their reasons. Front Microbiol 2023; 14:1089630. [PMID: 36960281 PMCID: PMC10027941 DOI: 10.3389/fmicb.2023.1089630] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
In terms of the number and diversity of living units, the prokaryotic empire is the most represented form of life on Earth, and yet it is still to a significant degree shrouded in darkness. This microbial "dark matter" hides a great deal of potential in terms of phylogenetically or metabolically diverse microorganisms, and thus it is important to acquire them in pure culture. However, do we know what microorganisms really need for their growth, and what the obstacles are to the cultivation of previously unidentified taxa? Here we review common and sometimes unexpected requirements of environmental microorganisms, especially soil-harbored bacteria, needed for their replication and cultivation. These requirements include resuscitation stimuli, physical and chemical factors aiding cultivation, growth factors, and co-cultivation in a laboratory and natural microbial neighborhood.
Collapse
Affiliation(s)
| | | | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
27
|
Gios E, Mosley OE, Weaver L, Close M, Daughney C, Handley KM. Ultra-small bacteria and archaea exhibit genetic flexibility towards groundwater oxygen content, and adaptations for attached or planktonic lifestyles. ISME COMMUNICATIONS 2023; 3:13. [PMID: 36808147 PMCID: PMC9938205 DOI: 10.1038/s43705-023-00223-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/16/2023]
Abstract
Aquifers are populated by highly diverse microbial communities, including unusually small bacteria and archaea. The recently described Patescibacteria (or Candidate Phyla Radiation) and DPANN radiation are characterized by ultra-small cell and genomes sizes, resulting in limited metabolic capacities and probable dependency on other organisms to survive. We applied a multi-omics approach to characterize the ultra-small microbial communities over a wide range of aquifer groundwater chemistries. Results expand the known global range of these unusual organisms, demonstrate the wide geographical range of over 11,000 subsurface-adapted Patescibacteria, Dependentiae and DPANN archaea, and indicate that prokaryotes with ultra-small genomes and minimalistic metabolism are a characteristic feature of the terrestrial subsurface. Community composition and metabolic activities were largely shaped by water oxygen content, while highly site-specific relative abundance profiles were driven by a combination of groundwater physicochemistries (pH, nitrate-N, dissolved organic carbon). We provide insights into the activity of ultra-small prokaryotes with evidence that they are major contributors to groundwater community transcriptional activity. Ultra-small prokaryotes exhibited genetic flexibility with respect to groundwater oxygen content, and transcriptionally distinct responses, including proportionally greater transcription invested into amino acid and lipid metabolism and signal transduction in oxic groundwater, along with differences in taxa transcriptionally active. Those associated with sediments differed from planktonic counterparts in species composition and transcriptional activity, and exhibited metabolic adaptations reflecting a surface-associated lifestyle. Finally, results showed that groups of phylogenetically diverse ultra-small organisms co-occurred strongly across sites, indicating shared preferences for groundwater conditions.
Collapse
Affiliation(s)
- Emilie Gios
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- NINA, Norwegian Institute for Nature Research, Trondheim, Norway
| | - Olivia E Mosley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- NatureMetrics Ltd, Surrey Research Park, Guildford, UK
| | - Louise Weaver
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Murray Close
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Chris Daughney
- GNS Science, Lower Hutt, New Zealand
- NIWA, National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Kim M Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
28
|
Lalzar M, Zvi-Kedem T, Kroin Y, Martinez S, Tchernov D, Meron D. Sediment Microbiota as a Proxy of Environmental Health: Discovering Inter- and Intrakingdom Dynamics along the Eastern Mediterranean Continental Shelf. Microbiol Spectr 2023; 11:e0224222. [PMID: 36645271 PMCID: PMC9927165 DOI: 10.1128/spectrum.02242-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sedimentary marine habitats are the largest ecosystem on our planet in terms of area. Marine sediment microbiota govern most of the benthic biological processes and therefore are responsible for much of the global biogeochemical activity. Sediment microbiota respond, even rapidly, to natural change in environmental conditions as well as disturbances of anthropogenic sources. The latter greatly impact the continental shelf. Characterization and monitoring of the sediment microbiota may serve as an important tool for assessing environmental health and indicate changes in the marine ecosystem. This study examined the suitability of marine sediment microbiota as a bioindicator for environmental health in the eastern Mediterranean Sea. Integration of information from Bacteria, Archaea, and Eukaryota enabled robust assessment of environmental factors controlling sediment microbiota composition: seafloor-depth (here representing sediment grain size and total organic carbon), core depth, and season (11%, 4.2%, and 2.5% of the variance, respectively). Furthermore, inter- and intrakingdom cooccurrence patterns indicate that ecological filtration as well as stochastic processes may control sediment microbiota assembly. The results show that the sediment microbiota was robust over 3 years of sampling, in terms of both representation of region (outside the model sites) and robustness of microbial markers. Furthermore, anthropogenic disturbance was reflected by significant transformations in sediment microbiota. We therefore propose sediment microbiota analysis as a sensitive approach to detect disturbances, which is applicable for long-term monitoring of marine environmental health. IMPORTANCE Analysis of data, curated over 3 years of sediment sampling, improves our understanding of microbiota assembly in marine sediment. Furthermore, we demonstrate the importance of cross-kingdom integration of information in the study of microbial community ecology. Finally, the urgent need to propose an applicable approach for environmental health monitoring is addressed here by establishment of sediment microbiota as a robust and sensitive model.
Collapse
Affiliation(s)
- Maya Lalzar
- Bioinformatics Services Unit, University of Haifa, Haifa, Israel
| | - Tal Zvi-Kedem
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Yael Kroin
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Stephane Martinez
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dalit Meron
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
29
|
Bacterial, Archaeal, and Eukaryote Diversity in Planktonic and Sessile Communities Inside an Abandoned and Flooded Iron Mine (Quebec, Canada). Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abandoned and flooded ore mines are examples of hostile environments (cold, dark, oligotrophic, trace metal) with a potential vast diversity of microbial communities rarely characterized. This study aimed to understand the effects of depth, the source of water (surface or groundwater), and abiotic factors on the communities present in the old Forsyth iron mine in Quebec (Canada). Water and biofilm samples from the mine were sampled by a team of technical divers who followed a depth gradient (0 to 183 m deep) to study the planktonic and sessile communities’ diversity and structure. We used 16S/18S rRNA amplicon to characterize the taxonomic diversity of Bacteria, Archaea, and Eukaryotes. Our results show that depth was not a significant factor explaining the difference in community composition observed, but lifestyle (planktonic/sessile) was. We discovered a vast diversity of microbial taxa, with taxa involved in carbon- and sulfur-cycling. Sessile communities seem to be centered on C1-cycling with fungi and heterotrophs likely adapted to heavy-metal stress. Planktonic communities were dominated by ultra-small archaeal and bacterial taxa, highlighting harsh conditions in the mine waters. Microbial source tracking indicated sources of communities from surface to deeper layers and vice versa, suggesting the dispersion of organisms in the mine, although water connectivity remains unknown.
Collapse
|
30
|
Wang B, Ma B, Stirling E, He Z, Zhang H, Yan Q. Freshwater trophic status mediates microbial community assembly and interdomain network complexity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120690. [PMID: 36403871 DOI: 10.1016/j.envpol.2022.120690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Freshwater microorganisms and their interactions are important drivers of nutrient cycling that are in turn affected by nutrient status, causing shifts in microbial community diversity, composition, and interactions. However, the impact of water trophic status on bacterial-archaeal interdomain interactions remains poorly understood. This study focused on the impact of trophic status, as characterized by trophic state index (TSI), on the interdomain interactions of freshwater microbial communities from 45 ponds in Hangzhou. Our results showed that the mesotrophic wetland bordering on lightly eutrophic (Hemu: TSI of 49; lightly eutrophic is defined as 50 ≤ TSI <60) harbored a much more complex bacterial-archaeal interdomain network, which showed significantly (P < 0.05) higher connectivity than the wetlands with lower (TSI of 38) or higher (TSI of 57) trophic levels. Notably, light eutrophication strengthened the network modules' negative associations with organic carbon through some network hubs, which could trigger carbon loss in wetlands. We also detected a non-linear response of interdomain network complexity to the increasing of nutrients with a turning point of approximately TSI 50. Quantitative estimates of community assembly processes and structural equation modelling analysis indicated that chlorophyll-a, total nitrogen, and total phosphorus could regulate interdomain network complexity (50% of the variation explanation rate) by driving microbial community assembly. This study demonstrates that microbial interdomain network complexity could be used as a bioindicator for ecological changes, which would helpful for improving ecological assessment of the freshwater eutrophication.
Collapse
Affiliation(s)
- Binhao Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Erinne Stirling
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China; Acid Sulfate Soils Centre, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Du H, Pan J, Zou D, Huang Y, Liu Y, Li M. Microbial active functional modules derived from network analysis and metabolic interactions decipher the complex microbiome assembly in mangrove sediments. MICROBIOME 2022; 10:224. [PMID: 36510268 PMCID: PMC9746113 DOI: 10.1186/s40168-022-01421-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/09/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND The metabolic interactions of microbes significantly affect the assembly of microbial communities that play important roles in biogeochemical processes. However, most interspecies interactions between microorganisms in natural communities remain unknown, leading to a poor understanding of community assembly mechanisms. RESULTS Here, we used a genome-scale metabolic modeling-based approach to explore the potential interactions among bacteria and archaea in mangrove sediments. More than half of the assembled microbial species ([Formula: see text]) combined about 3000 pairwise metabolic interaction relationship with high potential. The examples of predicted interactions are consistent with the implications of studies based on microbial enrichment/culture, indicating the feasibility of our strategy for extracting diverse potential interactions from complex interspecies networks. Moreover, a substantial number of previously unknown microbial metabolic interactions were also predicted. We proposed a concept of microbial active functional module (mAFM), defined as a consortium constituted by a group of microbes possessing relatively high metabolic interactions via which they can actively realize certain dominant functions in element transformations. Based on the metabolic interactions and the transcript distribution of microorganisms, five mAFMs distributed in different layers of the sediments were identified. The whole group of mAFMs covered most of the principal pathways in the cycle of carbon, nitrogen, and sulfur, while each module possessed divergently dominant functions. According to thinctiis diston, we inferred that the mAFMs participated in the element cycles via their intra-cycle and the inter-exchange among them and the sediments. CONCLUSIONS The results of this study greatly expanded interaction potential of microbes in mangrove sediments, which could provide supports for prospective mutualistic system construction and microbial enrichment culture. Furthermore, the mAFMs can help to extract valuable microbial metabolic interactions from the whole community and to profile the functioning of the microbial community that promote biogeochemical cycling in mangrove sediments. Video Abstract.
Collapse
Affiliation(s)
- Huan Du
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Dayu Zou
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Yuhan Huang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| |
Collapse
|
32
|
Pavloudi C, Zafeiropoulos H. Deciphering the community structure and the functional potential of a hypersaline marsh microbial mat community. FEMS Microbiol Ecol 2022; 98:6843573. [PMID: 36416806 DOI: 10.1093/femsec/fiac141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Microbial mats are vertically stratified communities of microorganisms characterized by pronounced physiochemical gradients allowing for high species diversity and a wide range of metabolic capabilities. High Throughput Sequencing has the potential to reveal the biodiversity and function of such ecosystems in the cycling of elements. The present study combines 16S rRNA amplicon sequencing and shotgun metagenomics on a hypersaline marsh in Tristomo bay (Karpathos, Greece). Samples were collected in July 2018 and November 2019 from microbial mats, deeper sediment, aggregates observed in the water overlying the sediment, as well as sediment samples with no apparent layering. Metagenomic samples' coassembly and binning revealed 250 bacterial and 39 archaeal metagenome-assembled genomes, with completeness estimates higher than 70% and contamination less than 5%. All MAGs had KEGG Orthology terms related to osmoadaptation, with the 'salt in' strategy ones being prominent. Halobacteria and Bacteroidetes were the most abundant taxa in the mats. Photosynthesis was most likely performed by purple sulphur and nonsulphur bacteria. All samples had the capacity for sulphate reduction, dissimilatory arsenic reduction, and conversion of pyruvate to oxaloacetate. Overall, both sequencing methodologies resulted in similar taxonomic compositions and revealed that the formation of the microbial mat in this marsh exhibits seasonal variation.
Collapse
Affiliation(s)
- Christina Pavloudi
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003, Heraklion, Crete, Greece.,Department of Biological Sciences, The George Washington University, 2029 G St NW, Bell Hall 302, Washington DC 20052, United States
| | - Haris Zafeiropoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003, Heraklion, Crete, Greece.,Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, 70013, Heraklion, Crete, Greece.,Laboratory of Molecular Bacteriology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, box 1028, 3000 Leuven, Belgium
| |
Collapse
|
33
|
Selak L, Marković T, Pjevac P, Orlić S. Microbial marker for seawater intrusion in a coastal Mediterranean shallow Lake, Lake Vrana, Croatia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157859. [PMID: 35940271 DOI: 10.1016/j.scitotenv.2022.157859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 05/13/2023]
Abstract
Climate change-induced rising sea levels and prolonged dry periods impose a global threat to the freshwater scarcity on the coastline: salinization. Lake Vrana is the largest surface freshwater resource in mid-Dalmatia, while the local springs are heavily used in agriculture. The karstified carbonate ridge that separates this shallow lake from the Adriatic Sea enables seawater intrusion if the lakes' precipitation-evaporation balance is disturbed. In this study, the impact of anthropogenic activities and drought exuberated salinization on microbial communities was tracked in Lake Vrana and its inlets, using 16S rRNA gene sequencing. The lack of precipitation and high water temperatures in summer months introduced an imbalance in the water regime of the lake, allowing for seawater intrusion, mainly via the karst conduit Jugovir. The determined microbial community spatial differences in the lake itself and the main drainage canals were driven by salinity, drought, and nutrient loading. Particle-associated and free-living microorganisms both strongly responded to the ecosystem perturbations, and their co-occurrence was driven by the salinization event. Notably, a bloom of halotolerant taxa, predominant the sulfur-oxidizing genus Sulfurovum, emerged with increased salinity and sulfate concentrations, having the potential to be used as an indicator for salinization of shallow coastal lakes. Following summer salinization, lake water column homogenization took from a couple of weeks up to a few months, while the entire system displayed increased salinity despite increased precipitation. This study represents a valuable contribution to understanding the impact of the Freshwater Salinization Syndrome on Mediterranean lakes' microbial communities and the ecosystem resilience.
Collapse
Affiliation(s)
- Lorena Selak
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Tamara Marković
- Croatian Geological Survey, Milan Sachs 2 Street, 10000 Zagreb, Croatia
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; University of Vienna, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Sandi Orlić
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia.
| |
Collapse
|
34
|
van Wolferen M, Pulschen AA, Baum B, Gribaldo S, Albers SV. The cell biology of archaea. Nat Microbiol 2022; 7:1744-1755. [PMID: 36253512 PMCID: PMC7613921 DOI: 10.1038/s41564-022-01215-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
The past decade has revealed the diversity and ubiquity of archaea in nature, with a growing number of studies highlighting their importance in ecology, biotechnology and even human health. Myriad lineages have been discovered, which expanded the phylogenetic breadth of archaea and revealed their central role in the evolutionary origins of eukaryotes. These discoveries, coupled with advances that enable the culturing and live imaging of archaeal cells under extreme environments, have underpinned a better understanding of their biology. In this Review we focus on the shape, internal organization and surface structures that are characteristic of archaeal cells as well as membrane remodelling, cell growth and division. We also highlight some of the technical challenges faced and discuss how new and improved technologies will help address many of the key unanswered questions.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Buzz Baum
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institute Pasteur, Paris, France.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
35
|
Kapinusova G, Jani K, Smrhova T, Pajer P, Jarosova I, Suman J, Strejcek M, Uhlik O. Culturomics of Bacteria from Radon-Saturated Water of the World's Oldest Radium Mine. Microbiol Spectr 2022; 10:e0199522. [PMID: 36000901 PMCID: PMC9602452 DOI: 10.1128/spectrum.01995-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/04/2022] [Indexed: 12/31/2022] Open
Abstract
Balneotherapeutic water springs, such as those with thermal, saline, sulfur, or any other characteristics, have recently been the subject of phylogenetic studies with a closer focus on the description and/or isolation of phylogenetically novel or biotechnologically interesting microorganisms. Generally, however, most such microorganisms are rarely obtained in pure culture or are even, for now, unculturable under laboratory conditions. In this culture-dependent study of radioactive water springs of Jáchymov (Joachimstahl), Czech Republic, we investigated a combination of classical cultivation approaches with those imitating sampling source conditions. Using these environmentally relevant cultivation approaches, over 1,000 pure cultures were successfully isolated from 4 radioactive springs. Subsequent dereplication yielded 121 unique taxonomic units spanning 44 genera and 9 taxonomic classes, ~10% of which were identified as hitherto undescribed taxa. Genomes of the latter were sequenced and analyzed, with a special focus on endogenous defense systems to withstand oxidative stress and aid in radiotolerance. Due to their origin from radioactive waters, we determined the resistance of the isolates to oxidative stress. Most of the isolates were more resistant to menadione than the model strain Deinococcus radiodurans DSM 20539T. Moreover, isolates of the Deinococcacecae, Micrococcaceae, Bacillaceae, Moraxellaceae, and Pseudomonadaceae families even exhibited higher resistance in the presence of hydrogen peroxide. In summary, our culturomic analysis shows that subsurface water springs contain diverse bacterial populations, including as-yet-undescribed taxa and strains with promising biotechnological potential. Furthermore, this study suggests that environmentally relevant cultivation techniques increase the efficiency of cultivation, thus enhancing the chance of isolating hitherto uncultured microorganisms. IMPORTANCE The mine Svornost in Jáchymov (Joachimstahl), Czech Republic is a former silver-uranium mine and the world's first and for a long time only radium mine, nowadays the deepest mine devoted to the extraction of water which is saturated with radon and has therapeutic benefits given its chemical properties. This healing water, which is approximately 13 thousand years old, is used under medical supervision for the treatment of patients with neurological and rheumatic disorders. Our culturomic approach using low concentrations of growth substrates or the environmental matrix itself (i.e., water filtrate) in culturing media combined with prolonged cultivation time resulted in the isolation of a broad spectrum of microorganisms from 4 radioactive springs of Jáchymov which are phylogenetically novel and/or bear various adaptive or coping mechanisms to thrive under selective pressure and can thus provide a wide spectrum of capabilities potentially exploitable in diverse scientific, biotechnological, or medical disciplines.
Collapse
Affiliation(s)
- Gabriela Kapinusova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Kunal Jani
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Tereza Smrhova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Ministry of Defence of the Czech Republic, Prague, Czech Republic
| | - Irena Jarosova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biotechnology, Prague, Czech Republic
| | - Jachym Suman
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Michal Strejcek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Ondrej Uhlik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| |
Collapse
|
36
|
Kato S, Ogasawara A, Itoh T, Sakai HD, Shimizu M, Yuki M, Kaneko M, Takashina T, Ohkuma M. Nanobdella aerobiophila gen. nov., sp. nov., a thermoacidophilic, obligate ectosymbiotic archaeon, and proposal of Nanobdellaceae fam. nov., Nanobdellales ord. nov. and Nanobdellia class. nov. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A co-culture of a novel thermoacidophilic, obligate symbiotic archaeon, designated as strain MJ1T, with its specific host archaeon
Metallosphaera sedula
strain MJ1HA was obtained from a terrestrial hot spring in Japan. Strain MJ1T grew in the co-culture under aerobic conditions. Coccoid cells of strain MJ1T were 200–500 nm in diameter, and attached to the MJ1HA cells in the co-culture. The ranges and optima of the growth temperature and pH of strain MJ1T in the co-culture were 60–75 °C (optimum, 65–70 °C) and pH 1.0–4.0 (optimum, pH 2.5), respectively. Core lipids of dialkyl glycerol tetraethers (GDGT)−3 and GDGT-4 were highly abundant in MJ1T cells concentrated from the co-culture. Strain MJ1T has a small genome (0.67 Mbp) lacking genes for biosynthesis of essential biomolecules, such as nucleotides, lipids and ATP. The genomic DNA G+C content was 24.9 mol%. The 16S rRNA gene sequence of strain MJ1T was most closely related to that of the cultivated species, ‘Nanopusillus acidilobi’ strain N7A (85.8 % similarity). Based on phylogenetic and physiological characteristics, we propose the name Nanobdella aerobiophila gen. nov., sp. nov. to accommodate the strain MJ1T (=JCM 33616T=DSM 111728T). In addition, we propose the names Nanobdellaceae fam. nov., Nanobdellales ord. nov., and Nanobdellia class. nov. to accommodate the novel genus.
Collapse
Affiliation(s)
- Shingo Kato
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ayaka Ogasawara
- Graduate School of Life Sciences, Toyo University, Oura, Gunma 374-0193, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Takashi Itoh
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Hiroyuki D. Sakai
- Present address: Faculty of Science and Engineering, Soka University, Tokyo 192-8577, Hachioji, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Michiru Shimizu
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Masahiro Yuki
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Masanori Kaneko
- Research Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan
| | - Tomonori Takashina
- Graduate School of Life Sciences, Toyo University, Oura, Gunma 374-0193, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
37
|
Spang A, Mahendrarajah TA, Offre P, Stairs CW. Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere. Genome Biol Evol 2022; 14:evac034. [PMID: 35218347 PMCID: PMC9169541 DOI: 10.1093/gbe/evac034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
The tree of life (TOL) is a powerful framework to depict the evolutionary history of cellular organisms through time, from our microbial origins to the diversification of multicellular eukaryotes that shape the visible biosphere today. During the past decades, our perception of the TOL has fundamentally changed, in part, due to profound methodological advances, which allowed a more objective approach to studying organismal and viral diversity and led to the discovery of major new branches in the TOL as well as viral lineages. Phylogenetic and comparative genomics analyses of these data have, among others, revolutionized our understanding of the deep roots and diversity of microbial life, the origin of the eukaryotic cell, eukaryotic diversity, as well as the origin, and diversification of viruses. In this review, we provide an overview of some of the recent discoveries on the evolutionary history of cellular organisms and their viruses and discuss a variety of complementary techniques that we consider crucial for making further progress in our understanding of the TOL and its interconnection with the virosphere.
Collapse
Affiliation(s)
- Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Courtney W Stairs
- Department of Biology, Microbiology research group, Lund University, Lund, Sweden
| |
Collapse
|
38
|
Liu S, Moon CD, Zheng N, Huws S, Zhao S, Wang J. Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation. MICROBIOME 2022; 10:76. [PMID: 35546409 PMCID: PMC9097414 DOI: 10.1186/s40168-022-01272-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/10/2022] [Indexed: 05/12/2023]
Abstract
Although there is now an extensive understanding of the diversity of microbial life on earth through culture-independent metagenomic DNA sequence analyses, the isolation and cultivation of microbes remains critical to directly study them and confirm their metabolic and physiological functions, and their ecological roles. The majority of environmental microbes are as yet uncultured however; therefore, bringing these rare or poorly characterized groups into culture is a priority to further understand microbiome functions. Moreover, cultivated isolates may find utility in a range of applications, such as new probiotics, biocontrol agents, and agents for industrial processes. The growing abundance of metagenomic and meta-transcriptomic sequence information from a wide range of environments provides more opportunities to guide the isolation and cultivation of microbes of interest. In this paper, we discuss a range of successful methodologies and applications that have underpinned recent metagenome-guided isolation and cultivation of microbe efforts. These approaches include determining specific culture conditions to enrich for taxa of interest, to more complex strategies that specifically target the capture of microbial species through antibody engineering and genome editing strategies. With the greater degree of genomic information now available from uncultivated members, such as via metagenome-assembled genomes, the theoretical understanding of their cultivation requirements will enable greater possibilities to capture these and ultimately gain a more comprehensive understanding of the microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Christina D Moon
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Sharon Huws
- School of Biological Sciences and Institute for Global Food Security, 19 Chlorine Gardens, Queen's University Belfast, Belfast, UK
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| |
Collapse
|
39
|
Solchaga JI, Busalmen JP, Nercessian D. Unraveling Anaerobic Metabolisms in a Hypersaline Sediment. Front Microbiol 2022; 13:811432. [PMID: 35369499 PMCID: PMC8966722 DOI: 10.3389/fmicb.2022.811432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The knowledge on the microbial diversity inhabiting hypersaline sediments is still limited. In particular, existing data about anaerobic hypersaline archaea and bacteria are scarce and refer to a limited number of genera. The approach to obtain existing information has been almost exclusively attempting to grow every organism in axenic culture on the selected electron acceptor with a variety of electron donors. Here, a different approach has been used to interrogate the microbial community of submerged hypersaline sediment of Salitral Negro, Argentina, aiming at enriching consortia performing anaerobic respiration of different electron acceptor compounds, in which ecological associations can maximize the possibilities of successful growth. Growth of consortia was demonstrated on all offered electron acceptors, including fumarate, nitrate, sulfate, thiosulfate, dimethyl sulfoxide, and a polarized electrode. Halorubrum and Haloarcula representatives are here shown for the first time growing on lactate, using fumarate or a polarized electrode as the electron acceptor; in addition, they are shown also growing in sulfate-reducing consortia. Halorubrum representatives are for the first time shown to be growing in nitrate-reducing consortia, probably thanks to reduction of N2O produced by other consortium members. Fumarate respiration is indeed shown for the first time supporting growth of Halanaeroarchaeum and Halorhabdus belonging to the archaea, as well as growth of Halanaerobium, Halanaerobaculum, Sporohalobacter, and Acetohalobium belonging to the bacteria. Finally, evidence is presented suggesting growth of nanohaloarchaea in anaerobic conditions.
Collapse
Affiliation(s)
- Juan Ignacio Solchaga
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - CONICET, Mar del Plata, Argentina
| | - Juan Pablo Busalmen
- Laboratorio de Bioelectroquímica, INTEMA - CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Débora Nercessian
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - CONICET, Mar del Plata, Argentina
| |
Collapse
|
40
|
Krause S, Gfrerer S, von Kügelgen A, Reuse C, Dombrowski N, Villanueva L, Bunk B, Spröer C, Neu TR, Kuhlicke U, Schmidt-Hohagen K, Hiller K, Bharat TAM, Rachel R, Spang A, Gescher J. The importance of biofilm formation for cultivation of a Micrarchaeon and its interactions with its Thermoplasmatales host. Nat Commun 2022; 13:1735. [PMID: 35365607 PMCID: PMC8975820 DOI: 10.1038/s41467-022-29263-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/28/2022] [Indexed: 01/05/2023] Open
Abstract
Micrarchaeota is a distinctive lineage assigned to the DPANN archaea, which includes poorly characterised microorganisms with reduced genomes that likely depend on interactions with hosts for growth and survival. Here, we report the enrichment of a stable co-culture of a member of the Micrarchaeota (Ca. Micrarchaeum harzensis) together with its Thermoplasmatales host (Ca. Scheffleriplasma hospitalis), as well as the isolation of the latter. We show that symbiont-host interactions depend on biofilm formation as evidenced by growth experiments, comparative transcriptomic analyses and electron microscopy. In addition, genomic, metabolomic, extracellular polymeric substances and lipid content analyses indicate that the Micrarchaeon symbiont relies on the acquisition of metabolites from its host. Our study of the cell biology and physiology of a Micrarchaeon and its host adds to our limited knowledge of archaeal symbioses. The Micrarchaeota lineage includes poorly characterized archaea with reduced genomes that likely depend on host interactions for survival. Here, the authors report a stable co-culture of a member of the Micrarchaeota and its host, and use multi-omic and physiological analyses to shed light on this symbiosis.
Collapse
Affiliation(s)
- Susanne Krause
- Department of Applied Biology, Karlsruhe, Institute of Technology (KIT), Karlsruhe, Germany
| | - Sabrina Gfrerer
- Department of Applied Biology, Karlsruhe, Institute of Technology (KIT), Karlsruhe, Germany.,Institute for Biological Interfaces, Karlsruhe, Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Carsten Reuse
- Bioinformatics & Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre for Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Boyke Bunk
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Thomas R Neu
- Helmholtz-Centre for Environmental, Research UFZ, Magdeburg, Germany
| | - Ute Kuhlicke
- Helmholtz-Centre for Environmental, Research UFZ, Magdeburg, Germany
| | - Kerstin Schmidt-Hohagen
- Bioinformatics & Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre for Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Karsten Hiller
- Bioinformatics & Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre for Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom.,Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Reinhard Rachel
- Center for Electron Microscopy, University of Regensburg, Regensburg, Germany
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands.,Department of Cell- and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johannes Gescher
- Department of Applied Biology, Karlsruhe, Institute of Technology (KIT), Karlsruhe, Germany. .,Institute for Biological Interfaces, Karlsruhe, Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany. .,Institute of Technical Microbiology, Technical University of Hamburg, Hamburg, Germany.
| |
Collapse
|
41
|
Shu WS, Huang LN. Microbial diversity in extreme environments. Nat Rev Microbiol 2022; 20:219-235. [PMID: 34754082 DOI: 10.1038/s41579-021-00648-y] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 01/02/2023]
Abstract
A wide array of microorganisms, including many novel, phylogenetically deeply rooted taxa, survive and thrive in extreme environments. These unique and reduced-complexity ecosystems offer a tremendous opportunity for studying the structure, function and evolution of natural microbial communities. Marker gene surveys have resolved patterns and ecological drivers of these extremophile assemblages, revealing a vast uncultured microbial diversity and the often predominance of archaea in the most extreme conditions. New omics studies have uncovered linkages between community function and environmental variables, and have enabled discovery and genomic characterization of major new lineages that substantially expand microbial diversity and change the structure of the tree of life. These efforts have significantly advanced our understanding of the diversity, ecology and evolution of microorganisms populating Earth's extreme environments, and have facilitated the exploration of microbiota and processes in more complex ecosystems.
Collapse
Affiliation(s)
- Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China.
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
42
|
Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and genome analyses. Proc Natl Acad Sci U S A 2022; 119:2115449119. [PMID: 35022241 PMCID: PMC8784108 DOI: 10.1073/pnas.2115449119] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
Decades of culture-independent analyses have resulted in proposals of many tentative archaeal phyla with no cultivable representative. Members of DPANN (an acronym of the names of the first included phyla Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanohaloarchaeota, and Nanoarchaeota), an archaeal superphylum composed of at least 10 of these tentative phyla, are generally considered obligate symbionts dependent on other microorganisms. While many draft/complete genome sequences of DPANN archaea are available and their biological functions have been considerably predicted, only a few examples of their successful laboratory cultivation have been reported, limiting our knowledge of their symbiotic lifestyles. Here, we investigated physiology, morphology, and host specificity of an archaeon of the phylum "Candidatus Micrarchaeota" (ARM-1) belonging to the DPANN superphylum by cultivation. We constructed a stable coculture system composed of ARM-1 and its original host Metallosphaera sp. AS-7 belonging to the order Sulfolobales Further host-switching experiments confirmed that ARM-1 grew on five different archaeal species from three genera-Metallosphaera, Acidianus, and Saccharolobus-originating from geologically distinct hot, acidic environments. The results suggested the existence of DPANN archaea that can grow by relying on a range of hosts. Genomic analyses showed inferred metabolic capabilities, common/unique genetic contents of ARM-1 among cultivated micrarchaeal representatives, and the possibility of horizontal gene transfer between ARM-1 and members of the order Sulfolobales Our report sheds light on the symbiotic lifestyles of DPANN archaea and will contribute to the elucidation of their biological/ecological functions.
Collapse
|
43
|
Abstract
In previous publications, it was hypothesized that Micrarchaeota cells are covered by two individual membrane systems. This study proves that at least the recently cultivated "Candidatus Micrarchaeum harzensis A_DKE" possesses an S-layer covering its cytoplasmic membrane. The potential S-layer protein was found to be among the proteins with the highest abundance in "Ca. Micrarchaeum harzensis A_DKE" and in silico characterisation of its primary structure indicated homologies to other known S-layer proteins. Homologues of this protein were found in other Micrarchaeota genomes, which raises the question of whether the ability to form an S-layer is a common trait within this phylum. The S-layer protein seems to be glycosylated and the Micrarchaeon expresses genes for N-glycosylation under cultivation conditions, despite not being able to synthesize carbohydrates. Electron micrographs of freeze-etched samples of a previously described co-culture, containing Micrarchaeum A_DKE and a Thermoplasmatales member as its host organism, verified the hypothesis of an S-layer on the surface of "Ca. Micrarchaeum harzensis A_DKE". Both organisms are clearly distinguishable by cell size, shape and surface structure. Importance Our knowledge about the DPANN superphylum, which comprises several archaeal phyla with limited metabolic capacities, is mostly based on genomic data derived from cultivation-independent approaches. This study examined the surface structure of a recently cultivated member "Candidatus Micrarchaeum harzensis A_DKE", an archaeal symbiont dependent on an interaction with a host organism for growth. The interaction requires direct cell contact between interaction partners, a mechanism which is also described for other DPANN archaea. Investigating the surface structure of "Ca. Micrarchaeum harzensis A_DKE" is an important step towards understanding the interaction between Micrarchaeota and their host organisms and living with limited metabolic capabilities, a trait shared by several DPANN archaea.
Collapse
|
44
|
Hassani Y, Saad J, Terrer E, Aboudharam G, Giancarlo B, Silvestri F, Raoult D, Drancourt M, Grine G. Introducing clinical nanorachaeaology: Isolation by co-culture of Nanopusillus massiliensis sp. nov. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100100. [PMID: 35005659 PMCID: PMC8718826 DOI: 10.1016/j.crmicr.2021.100100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
The first ever detection in human microbiota of nanoarchaea. Detection and co-isolation of nanoarchaea new species in human oral microbiota. These data suggest the contribution of methanogens to the perinatal development of intestinal microbiota and physiology. Extended our knowledge of human microbiota diversity. Opening a new field of research in clinical microbiology here referred to as clinical nanoarchaeology.
Background Nanoarchaeota, obligate symbiont of some environmental archaea with reduced genomes, have been described in marine thermal vent environments, yet never detected in hosts, including humans. Methods Here, using laboratory tools geared towards the detection of nanoarchaea including PCR-sequencing, WGS, microscopy and culture. Results We discovered a novel nanoarchaea, Nanopusillus massiliensis, detected in dental plate samples by specific PCR-based assays. Combining fluorescent in situ hybridization (FISH) with scanning electron microscopy disclosed close contacts between N. massiliensis and the archaea Methanobrevibacter oralis in these samples. Culturing one sample yielded co-isolation of M. oralis and N. massiliensis with a 606,935-bp genome, with 23.6% GC encoded 16 tRNA, 3 rRNA and 942 coding DNA sequences, of which 400 were assigned to clusters of orthologous groups. Conclusion The discovery of N. massiliensis, made publicly available in collection, extended our knowledge of human microbiota diversity, opening a new field of research in clinical microbiology here referred to as clinical nanoarchaeology.
Collapse
Affiliation(s)
- Y. Hassani
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - J. Saad
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - E. Terrer
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France
| | - G. Aboudharam
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France
| | - B Giancarlo
- Private practice Marseille France, Marseille, France
| | - F. Silvestri
- Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France
| | - D. Raoult
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - M. Drancourt
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - G. Grine
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France
- Corresponding author at: Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France.
| |
Collapse
|
45
|
Adam PS, Bornemann TLV, Probst AJ. Progress and Challenges in Studying the Ecophysiology of Archaea. Methods Mol Biol 2022; 2522:469-486. [PMID: 36125771 DOI: 10.1007/978-1-0716-2445-6_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It has been less than two decades since the study of archaeal ecophysiology has become unshackled from the limitations of cultivation and amplicon sequencing through the advent of metagenomics. As a primer to the guide on producing archaeal genomes from metagenomes, we briefly summarize here how different meta'omics, imaging, and wet lab methods have contributed to progress in understanding the ecophysiology of Archaea. We then peer into the history of how our knowledge on two particularly important lineages was assembled: the anaerobic methane and alkane oxidizers, encountered primarily among Euryarchaeota, and the nanosized, mainly parasitic, members of the DPANN superphylum.
Collapse
Affiliation(s)
- Panagiotis S Adam
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
| | - Till L V Bornemann
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany
| | - Alexander J Probst
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
| |
Collapse
|
46
|
Podar NA, Klingeman D, Miranda-Sanchez F, Dewhirst FE, Podar M. Draft Genome Sequence of Schaalia odontolytica Strain ORNL0103, a Basibiont of " Candidatus Saccharibacteria" HMT352. Microbiol Resour Announc 2021; 10:e0079321. [PMID: 34734770 PMCID: PMC8567789 DOI: 10.1128/mra.00793-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Here, we report the draft, nearly complete genome sequence of the human oral actinobacterium Schaalia odontolytica strain ORNL0103, which was isolated in association with "Candidatus Saccharibacteria" HMT352 strain ORNL0105. The genome was sequenced using a combination of Pacific Biosciences and Illumina platforms and encodes 1,948 proteins and 60 RNAs.
Collapse
Affiliation(s)
| | - Dawn Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Floyd E. Dewhirst
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
47
|
Li YX, Rao YZ, Qi YL, Qu YN, Chen YT, Jiao JY, Shu WS, Jiang H, Hedlund BP, Hua ZS, Li WJ. Deciphering Symbiotic Interactions of " Candidatus Aenigmarchaeota" with Inferred Horizontal Gene Transfers and Co-occurrence Networks. mSystems 2021; 6:e0060621. [PMID: 34313464 PMCID: PMC8407114 DOI: 10.1128/msystems.00606-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
"Candidatus Aenigmarchaeota" ("Ca. Aenigmarchaeota") represents one of the earliest proposed evolutionary branches within the Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota (DPANN) superphylum. However, their ecological roles and potential host-symbiont interactions are still poorly understood. Here, eight metagenome-assembled genomes (MAGs) were reconstructed from hot spring ecosystems, and further in-depth comparative and evolutionary genomic analyses were conducted on these MAGs and other genomes downloaded from public databases. Although with limited metabolic capacities, we reported that "Ca. Aenigmarchaeota" in thermal environments harbor more genes related to carbohydrate metabolism than "Ca. Aenigmarchaeota" in nonthermal environments. Evolutionary analyses suggested that members from the Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota (TACK) superphylum and Euryarchaeota contribute substantially to the niche expansion of "Ca. Aenigmarchaeota" via horizontal gene transfer (HGT), especially genes related to virus defense and stress responses. Based on co-occurrence network results and recent genetic exchanges among community members, we conjectured that "Ca. Aenigmarchaeota" may be symbionts associated with one MAG affiliated with the genus Pyrobaculum, though host specificity might be wide and variable across different "Ca. Aenigmarchaeota" organisms. This study provides significant insight into possible DPANN-host interactions and ecological roles of "Ca. Aenigmarchaeota." IMPORTANCE Recent advances in sequencing technology promoted the blowout discovery of super tiny microbes in the Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota (DPANN) superphylum. However, the unculturable properties of the majority of microbes impeded our investigation of their behavior and symbiotic lifestyle in the corresponding community. By integrating horizontal gene transfer (HGT) detection and co-occurrence network analysis on "Candidatus Aenigmarchaeota" ("Ca. Aenigmarchaeota"), we made one of the first attempts to infer their putative interaction partners and further decipher the potential functional and genetic interactions between the symbionts. We revealed that HGTs contributed by members from the Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota (TACK) superphylum and Euryarchaeota conferred "Ca. Aenigmarchaeota" with the ability to survive under different environmental stresses, such as virus infection, high temperature, and oxidative stress. This study demonstrates that the interaction partners might be inferable by applying informatics analyses on metagenomic sequencing data.
Collapse
Affiliation(s)
- Yu-Xian Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yang-Zhi Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yan-Ling Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Ya-Ting Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People’s Republic of China
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People’s Republic of China
| |
Collapse
|
48
|
Tahon G, Patricia Geesink, Ettema TJG. Expanding Archaeal Diversity and Phylogeny: Past, Present, and Future. Annu Rev Microbiol 2021; 75:359-381. [PMID: 34351791 DOI: 10.1146/annurev-micro-040921-050212] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of the Archaea is a major scientific hallmark of the twentieth century. Since then, important features of their cell biology, physiology, ecology, and diversity have been revealed. Over the course of some 40 years, the diversity of known archaea has expanded from 2 to about 30 phyla comprising over 20,000 species. Most of this archaeal diversity has been revealed by environmental 16S rRNA amplicon sequencing surveys using a broad range of universal and targeted primers. Of the few primers that target a large fraction of known archaeal diversity, all display a bias against recently discovered lineages, which limits studies aiming to survey overall archaeal diversity. Induced by genomic exploration of archaeal diversity, and improved phylogenomics approaches, archaeal taxonomic classification has been frequently revised. Due to computational limitations and continued discovery of new lineages, a stable archaeal phylogeny is not yet within reach. Obtaining phylogenetic and taxonomic consensus of archaea should be a high priority for the archaeal research community. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Guillaume Tahon
- Laboratory of Microbiology, Wageningen University and Research, 6700 EH Wageningen, The Netherlands; , ,
| | - Patricia Geesink
- Laboratory of Microbiology, Wageningen University and Research, 6700 EH Wageningen, The Netherlands; , ,
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University and Research, 6700 EH Wageningen, The Netherlands; , ,
| |
Collapse
|
49
|
Feng Y, Neri U, Gosselin S, Louyakis AS, Papke RT, Gophna U, Gogarten JP. The Evolutionary Origins of Extreme Halophilic Archaeal Lineages. Genome Biol Evol 2021; 13:6320066. [PMID: 34255041 PMCID: PMC8350355 DOI: 10.1093/gbe/evab166] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
Interest and controversy surrounding the evolutionary origins of extremely halophilic Archaea has increased in recent years, due to the discovery and characterization of the Nanohaloarchaea and the Methanonatronarchaeia. Initial attempts in explaining the evolutionary placement of the two new lineages in relation to the classical Halobacteria (also referred to as Haloarchaea) resulted in hypotheses that imply the new groups share a common ancestor with the Haloarchaea. However, more recent analyses have led to a shift: the Nanohaloarchaea have been largely accepted as being a member of the DPANN superphylum, outside of the euryarchaeota; whereas the Methanonatronarchaeia have been placed near the base of the Methanotecta (composed of the class II methanogens, the Halobacteriales, and Archaeoglobales). These opposing hypotheses have far-reaching implications on the concepts of convergent evolution (distantly related groups evolve similar strategies for survival), genome reduction, and gene transfer. In this work, we attempt to resolve these conflicts with phylogenetic and phylogenomic data. We provide a robust taxonomic sampling of Archaeal genomes that spans the Asgardarchaea, TACK Group, euryarchaeota, and the DPANN superphylum. In addition, we assembled draft genomes from seven new representatives of the Nanohaloarchaea from distinct geographic locations. Phylogenies derived from these data imply that the highly conserved ATP synthase catalytic/noncatalytic subunits of Nanohaloarchaea share a sisterhood relationship with the Haloarchaea. We also employ a novel gene family distance clustering strategy which shows this sisterhood relationship is not likely the result of a recent gene transfer. In addition, we present and evaluate data that argue for and against the monophyly of the DPANN superphylum, in particular, the inclusion of the Nanohaloarchaea in DPANN.
Collapse
Affiliation(s)
- Yutian Feng
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Uri Neri
- Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Sean Gosselin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Artemis S Louyakis
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Uri Gophna
- Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
50
|
Abstract
DPANN is known as highly diverse, globally widespread, and mostly ectosymbiotic archaeal superphylum. However, this group of archaea was overlooked for a long time, and there were limited in-depth studies reported. In this investigation, 41 metagenome-assembled genomes (MAGs) belonging to the DPANN superphylum were recovered (18 MAGs had average nucleotide identity [ANI] values of <95% and a percentage of conserved proteins [POCP] of >50%, while 14 MAGs showed a POCP of <50%), which were analyzed comparatively with 515 other published DPANN genomes. Mismatches to known 16S rRNA gene primers were identified among 16S rRNA genes of DPANN archaea. Numbers of gene families lost (mostly related to energy and amino acid metabolism) were over three times greater than those gained in the evolution of DPANN archaea. Lateral gene transfer (LGT; ∼45.5% was cross-domain) had facilitated niche adaption of the DPANN archaea, ensuring a delicate equilibrium of streamlined genomes with efficient niche-adaptive strategies. For instance, LGT-derived cytochrome bd ubiquinol oxidase and arginine deiminase in the genomes of “Candidatus Micrarchaeota” could help them better adapt to aerobic acidic mine drainage habitats. In addition, most DPANN archaea acquired enzymes for biosynthesis of extracellular polymeric substances (EPS) and transketolase/transaldolase for the pentose phosphate pathway from Bacteria. IMPORTANCE The domain Archaea is a key research model for gaining insights into the origin and evolution of life, as well as the relevant biogeochemical processes. The discovery of nanosized DPANN archaea has overthrown many aspects of microbiology. However, the DPANN superphylum still contains a vast genetic novelty and diversity that need to be explored. Comprehensively comparative genomic analysis on the DPANN superphylum was performed in this study, with an attempt to illuminate its metabolic potential, ecological distribution and evolutionary history. Many interphylum differences within the DPANN superphylum were found. For example, Altiarchaeota had the biggest genome among DPANN phyla, possessing many pathways missing in other phyla, such as formaldehyde assimilation and the Wood-Ljungdahl pathway. In addition, LGT acted as an important force to provide DPANN archaeal genetic flexibility that permitted the occupation of diverse niches. This study has advanced our understanding of the diversity and genome evolution of archaea.
Collapse
|