1
|
Huebert DNG, Ghorbani A, Lam SYB, Larijani M. Coevolution of Lentiviral Vif with Host A3F and A3G: Insights from Computational Modelling and Ancestral Sequence Reconstruction. Viruses 2025; 17:393. [PMID: 40143321 PMCID: PMC11946711 DOI: 10.3390/v17030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The evolutionary arms race between host restriction factors and viral antagonists provides crucial insights into immune system evolution and viral adaptation. This study investigates the structural and evolutionary dynamics of the double-domain restriction factors A3F and A3G and their viral inhibitor, Vif, across diverse primate species. By constructing 3D structural homology models and integrating ancestral sequence reconstruction (ASR), we identified patterns of sequence diversity, structural conservation, and functional adaptation. Inactive CD1 (Catalytic Domain 1) domains displayed greater sequence diversity and more positive surface charges than active CD2 domains, aiding nucleotide chain binding and intersegmental transfer. Despite variability, the CD2 DNA-binding grooves remained structurally consistent with conserved residues maintaining critical functions. A3F and A3G diverged in loop 7' interaction strategies, utilising distinct molecular interactions to facilitate their roles. Vif exhibited charge variation linked to host species, reflecting its coevolution with A3 proteins. These findings illuminate how structural adaptations and charge dynamics enable both restriction factors and their viral antagonists to adapt to selective pressures. Our results emphasize the importance of studying structural evolution in host-virus interactions, with implications for understanding immune defense mechanisms, zoonotic risks, and viral evolution. This work establishes a foundation for further exploration of restriction factor diversity and coevolution across species.
Collapse
Affiliation(s)
- David Nicolas Giuseppe Huebert
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (D.N.G.H.); (A.G.)
- Structural Biology and Immunology Program, Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Atefeh Ghorbani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (D.N.G.H.); (A.G.)
| | - Shaw Yick Brian Lam
- Structural Biology and Immunology Program, Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (D.N.G.H.); (A.G.)
- Structural Biology and Immunology Program, Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| |
Collapse
|
2
|
Maiti A, Matsuo H. Affinity Tag-Free Purification of SARS-CoV-2 N Protein and Its Crystal Structure in Complex with ssDNA. Biomolecules 2024; 14:1538. [PMID: 39766245 PMCID: PMC11673995 DOI: 10.3390/biom14121538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
The nucleocapsid (N) protein is one of the four structural proteins in SARS-CoV-2, playing key roles in viral assembly, immune evasion, and stability. One of its primary functions is to protect viral RNA by forming the nucleocapsid. However, the precise mechanisms by which the N protein interacts with viral RNA and assembles into a nucleocapsid remain unclear. Compared to other SARS-CoV-2 components, targeting the N protein has several advantages: it exhibits higher sequence conservation, lower mutation rates, and stronger immunogenicity, making it an attractive target for antiviral drug development and diagnostics. Therefore, a detailed understanding of the N protein's structure is essential for deciphering its role in viral assembly and developing effective therapeutics. In this study, we report the expression and purification of a soluble recombinant N protein, along with a 1.55 Å resolution crystal structure of its nucleic acid-binding domain (N-NTD) in complex with ssDNA. Our structure revealed new insights into the conformation and interaction of the flexible N-arm, which could aid in understanding nucleocapsid assembly. Additionally, we identified residues that are critical for ssDNA interaction.
Collapse
Affiliation(s)
- Atanu Maiti
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Hiroshi Matsuo
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
3
|
Yang H, Pacheco J, Kim K, Bokani A, Ito F, Ebrahimi D, Chen XS. Molecular mechanism for regulating APOBEC3G DNA editing function by the non-catalytic domain. Nat Commun 2024; 15:8773. [PMID: 39389938 PMCID: PMC11467180 DOI: 10.1038/s41467-024-52671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
APOBEC3G, part of the AID/APOBEC cytidine deaminase family, is crucial for antiviral immunity. It has two zinc-coordinated cytidine-deaminase domains. The non-catalytic N-terminal domain strongly binds to nucleic acids, whereas the C-terminal domain catalyzes C-to-U editing in single-stranded DNA. The interplay between the two domains is not fully understood. Here, we show that DNA editing function of rhesus macaque APOBEC3G on linear and hairpin loop DNA is enhanced by AA or GA dinucleotide motifs present downstream in the 3'-direction of the target-C editing sites. The effective distance between AA/GA and the target-C sites is contingent on the local DNA secondary structure. We present two co-crystal structures of rhesus macaque APOBEC3G bound to ssDNA containing AA and GA, revealing the contribution of the non-catalytic domain in capturing AA/GA DNA. Our findings elucidate the molecular mechanism of APOBEC3G's cooperative function, which is critical for its antiviral role and its contribution to mutations in cancer genomes.
Collapse
Affiliation(s)
- Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Josue Pacheco
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ayub Bokani
- School of Engineering and Technology, CQUniversity, Sydney, NSW, 2000, Australia
| | - Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
4
|
Hu Y, Delviks-Frankenberry KA, Wu C, Arizaga F, Pathak VK, Xiong Y. Structural insights into PPP2R5A degradation by HIV-1 Vif. Nat Struct Mol Biol 2024; 31:1492-1501. [PMID: 38789685 DOI: 10.1038/s41594-024-01314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
HIV-1 Vif recruits host cullin-RING-E3 ubiquitin ligase and CBFβ to degrade the cellular APOBEC3 antiviral proteins through diverse interactions. Recent evidence has shown that Vif also degrades the regulatory subunits PPP2R5(A-E) of cellular protein phosphatase 2A to induce G2/M cell cycle arrest. As PPP2R5 proteins bear no functional or structural resemblance to A3s, it is unclear how Vif can recognize different sets of proteins. Here we report the cryogenic-electron microscopy structure of PPP2R5A in complex with HIV-1 Vif-CBFβ-elongin B-elongin C at 3.58 Å resolution. The structure shows PPP2R5A binds across the Vif molecule, with biochemical and cellular studies confirming a distinct Vif-PPP2R5A interface that partially overlaps with those for A3s. Vif also blocks a canonical PPP2R5A substrate-binding site, indicating that it suppresses the phosphatase activities through both degradation-dependent and degradation-independent mechanisms. Our work identifies critical Vif motifs regulating the recognition of diverse A3 and PPP2R5A substrates, whereby disruption of these host-virus protein interactions could serve as potential targets for HIV-1 therapeutics.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Krista A Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Fidel Arizaga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Sagendorf JM, Mitra R, Huang J, Chen XS, Rohs R. Structure-based prediction of protein-nucleic acid binding using graph neural networks. Biophys Rev 2024; 16:297-314. [PMID: 39345796 PMCID: PMC11427629 DOI: 10.1007/s12551-024-01201-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 10/01/2024] Open
Abstract
Protein-nucleic acid (PNA) binding plays critical roles in the transcription, translation, regulation, and three-dimensional organization of the genome. Structural models of proteins bound to nucleic acids (NA) provide insights into the chemical, electrostatic, and geometric properties of the protein structure that give rise to NA binding but are scarce relative to models of unbound proteins. We developed a deep learning approach for predicting PNA binding given the unbound structure of a protein that we call PNAbind. Our method utilizes graph neural networks to encode the spatial distribution of physicochemical and geometric properties of protein structures that are predictive of NA binding. Using global physicochemical encodings, our models predict the overall binding function of a protein, and using local encodings, they predict the location of individual NA binding residues. Our models can discriminate between specificity for DNA or RNA binding, and we show that predictions made on computationally derived protein structures can be used to gain mechanistic understanding of chemical and structural features that determine NA recognition. Binding site predictions were validated against benchmark datasets, achieving AUROC scores in the range of 0.92-0.95. We applied our models to the HIV-1 restriction factor APOBEC3G and showed that our model predictions are consistent with and help explain experimental RNA binding data. Supplementary information The online version contains supplementary material available at 10.1007/s12551-024-01201-w.
Collapse
Affiliation(s)
- Jared M. Sagendorf
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089 USA
- Present Address: Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158 USA
| | - Raktim Mitra
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089 USA
| | - Jiawei Huang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089 USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089 USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089 USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089 USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089 USA
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
6
|
Kvach MV, Harjes S, Kurup HM, Jameson GB, Harjes E, Filichev VV. Synthesis of 1,4-azaphosphinine nucleosides and evaluation as inhibitors of human cytidine deaminase and APOBEC3A. Beilstein J Org Chem 2024; 20:1088-1098. [PMID: 38774272 PMCID: PMC11106675 DOI: 10.3762/bjoc.20.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/26/2024] [Indexed: 05/24/2024] Open
Abstract
Nucleoside and polynucleotide cytidine deaminases (CDAs), such as CDA and APOBEC3, share a similar mechanism of cytosine to uracil conversion. In 1984, phosphapyrimidine riboside was characterised as the most potent inhibitor of human CDA, but the quick degradation in water limited the applicability as a potential therapeutic. To improve stability in water, we synthesised derivatives of phosphapyrimidine nucleoside having a CH2 group instead of the N3 atom in the nucleobase. A charge-neutral phosphinamide and a negatively charged phosphinic acid derivative had excellent stability in water at pH 7.4, but only the charge-neutral compound inhibited human CDA, similar to previously described 2'-deoxyzebularine (Ki = 8.0 ± 1.9 and 10.7 ± 0.5 µM, respectively). However, under basic conditions, the charge-neutral phosphinamide was unstable, which prevented the incorporation into DNA using conventional DNA chemistry. In contrast, the negatively charged phosphinic acid derivative was incorporated into DNA instead of the target 2'-deoxycytidine using an automated DNA synthesiser, but no inhibition of APOBEC3A was observed for modified DNAs. Although this shows that the negative charge is poorly accommodated in the active site of CDA and APOBEC3, the synthetic route reported here provides opportunities for the synthesis of other derivatives of phosphapyrimidine riboside for potential development of more potent CDA and APOBEC3 inhibitors.
Collapse
Affiliation(s)
- Maksim V Kvach
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Stefan Harjes
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Harikrishnan M Kurup
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| | - Geoffrey B Jameson
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| | - Elena Harjes
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| | - Vyacheslav V Filichev
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
7
|
Liu D, Hsieh CL, Lieber MR. The RNA tether model for human chromosomal translocation fragile zones. Trends Biochem Sci 2024; 49:391-400. [PMID: 38490833 PMCID: PMC11069435 DOI: 10.1016/j.tibs.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
One of the two chromosomal breakage events in recurring translocations in B cell neoplasms is often due to the recombination-activating gene complex (RAG complex) releasing DNA ends before end joining. The other break occurs in a fragile zone of 20-600 bp in a non-antigen receptor gene locus, with a more complex and intriguing set of mechanistic factors underlying such narrow fragile zones. These factors include activation-induced deaminase (AID), which acts only at regions of single-stranded DNA (ssDNA). Recent work leads to a model involving the tethering of AID to the nascent RNA as it emerges from the RNA polymerase. This mechanism may have relevance in class switch recombination (CSR) and somatic hypermutation (SHM), as well as broader relevance for other DNA enzymes.
Collapse
Affiliation(s)
- Di Liu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Chih-Lin Hsieh
- USC Norris Comprehensive Cancer Center, Department of Urology, University of Southern California, Los Angeles, CA 90089-9176, USA
| | - Michael R Lieber
- USC Norris Comprehensive Cancer Center, Departments of Pathology and Laboratory Medicine, of Molecular Microbiology and Immunology, of Biochemistry and Molecular Medicine, and in the Section of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-9176, USA.
| |
Collapse
|
8
|
Yang H, Pacheco J, Kim K, Ebrahimi D, Ito F, Chen XS. Molecular mechanism for regulating APOBEC3G DNA editing function by the non-catalytic domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584510. [PMID: 38559028 PMCID: PMC10980023 DOI: 10.1101/2024.03.11.584510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
APOBEC3G (A3G) belongs to the AID/APOBEC cytidine deaminase family and is essential for antiviral immunity. It contains two zinc-coordinated cytidine-deaminase (CD) domains. The N-terminal CD1 domain is non-catalytic but has a strong affinity for nucleic acids, whereas the C-terminal CD2 domain catalyzes C-to-U editing in single-stranded DNA. The interplay between the two domains in DNA binding and editing is not fully understood. Here, our studies on rhesus macaque A3G (rA3G) show that the DNA editing function in linear and hairpin loop DNA is greatly enhanced by AA or GA dinucleotide motifs present downstream (in the 3'-direction) but not upstream (in the 5'-direction) of the target-C editing sites. The effective distance between AA/GA and the target-C sites depends on the local DNA secondary structure. We present two co-crystal structures of rA3G bound to ssDNA containing AA and GA, revealing the contribution of the non-catalytic CD1 domain in capturing AA/GA DNA and explaining our biochemical observations. Our structural and biochemical findings elucidate the molecular mechanism underlying the cooperative function between the non-catalytic and the catalytic domains of A3G, which is critical for its antiviral role and its contribution to genome mutations in cancer.
Collapse
Affiliation(s)
- Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Josue Pacheco
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA90095, USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
9
|
Sagendorf JM, Mitra R, Huang J, Chen XS, Rohs R. PNAbind: Structure-based prediction of protein-nucleic acid binding using graph neural networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582387. [PMID: 38529493 PMCID: PMC10962711 DOI: 10.1101/2024.02.27.582387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The recognition and binding of nucleic acids (NAs) by proteins depends upon complementary chemical, electrostatic and geometric properties of the protein-NA binding interface. Structural models of protein-NA complexes provide insights into these properties but are scarce relative to models of unbound proteins. We present a deep learning approach for predicting protein-NA binding given the apo structure of a protein (PNAbind). Our method utilizes graph neural networks to encode spatial distributions of physicochemical and geometric properties of the protein molecular surface that are predictive of NA binding. Using global physicochemical encodings, our models predict the overall binding function of a protein and can discriminate between specificity for DNA or RNA binding. We show that such predictions made on protein structures modeled with AlphaFold2 can be used to gain mechanistic understanding of chemical and structural features that determine NA recognition. Using local encodings, our models predict the location of NA binding sites at the level of individual binding residues. Binding site predictions were validated against benchmark datasets, achieving AUROC scores in the range of 0.92-0.95. We applied our models to the HIV-1 restriction factor APOBEC3G and show that our predictions are consistent with experimental RNA binding data.
Collapse
|
10
|
Harjes S, Kurup HM, Rieffer AE, Bayarjargal M, Filitcheva J, Su Y, Hale TK, Filichev VV, Harjes E, Harris RS, Jameson GB. Structure-guided inhibition of the cancer DNA-mutating enzyme APOBEC3A. Nat Commun 2023; 14:6382. [PMID: 37821454 PMCID: PMC10567711 DOI: 10.1038/s41467-023-42174-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
The normally antiviral enzyme APOBEC3A is an endogenous mutagen in human cancer. Its single-stranded DNA C-to-U editing activity results in multiple mutagenic outcomes including signature single-base substitution mutations (isolated and clustered), DNA breakage, and larger-scale chromosomal aberrations. APOBEC3A inhibitors may therefore comprise a unique class of anti-cancer agents that work by blocking mutagenesis, slowing tumor evolvability, and preventing detrimental outcomes such as drug resistance and metastasis. Here we reveal the structural basis of competitive inhibition of wildtype APOBEC3A by hairpin DNA bearing 2'-deoxy-5-fluorozebularine in place of the cytidine in the TC substrate motif that is part of a 3-nucleotide loop. In addition, the structural basis of APOBEC3A's preference for YTCD motifs (Y = T, C; D = A, G, T) is explained. The nuclease-resistant phosphorothioated derivatives of these inhibitors have nanomolar potency in vitro and block APOBEC3A activity in human cells. These inhibitors may be useful probes for studying APOBEC3A activity in cellular systems and leading toward, potentially as conjuvants, next-generation, combinatorial anti-mutator and anti-cancer therapies.
Collapse
Affiliation(s)
- Stefan Harjes
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Amanda E Rieffer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Maitsetseg Bayarjargal
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jana Filitcheva
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yongdong Su
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Department of Pediatrics, Emory University School of Medicine, and the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Tracy K Hale
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Vyacheslav V Filichev
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Elena Harjes
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA.
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA.
| | - Geoffrey B Jameson
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
11
|
Kouno T, Shibata S, Shigematsu M, Hyun J, Kim TG, Matsuo H, Wolf M. Structural insights into RNA bridging between HIV-1 Vif and antiviral factor APOBEC3G. Nat Commun 2023; 14:4037. [PMID: 37419875 PMCID: PMC10328928 DOI: 10.1038/s41467-023-39796-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023] Open
Abstract
Great effort has been devoted to discovering the basis of A3G-Vif interaction, the key event of HIV's counteraction mechanism to evade antiviral innate immune response. Here we show reconstitution of the A3G-Vif complex and subsequent A3G ubiquitination in vitro and report the cryo-EM structure of the A3G-Vif complex at 2.8 Å resolution using solubility-enhanced variants of A3G and Vif. We present an atomic model of the A3G-Vif interface, which assembles via known amino acid determinants. This assembly is not achieved by protein-protein interaction alone, but also involves RNA. The cryo-EM structure and in vitro ubiquitination assays identify an adenine/guanine base preference for the interaction and a unique Vif-ribose contact. This establishes the biological significance of an RNA ligand. Further assessment of interactions between A3G, Vif, and RNA ligands show that the A3G-Vif assembly and subsequent ubiquitination can be controlled by amino acid mutations at the interface or by polynucleotide modification, suggesting that a specific chemical moiety would be a promising pharmacophore to inhibit the A3G-Vif interaction.
Collapse
Affiliation(s)
- Takahide Kouno
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Satoshi Shibata
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago-shi, Tottori, 683-8503, Japan
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jaekyung Hyun
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Tae Gyun Kim
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Department of Efficacy Evaluation, Innovation Center for Vaccine Industry, Gyeongbuk Institute for Bio Industry, Gyeongsanbuk-do, 36618, Republic of Korea
| | - Hiroshi Matsuo
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, 115, Taipei, Taiwan.
| |
Collapse
|
12
|
Harjes S, Kurup HM, Rieffer AE, Bayaijargal M, Filitcheva J, Su Y, Hale TK, Filichev VV, Harjes E, Harris RS, Jameson GB. Structure-guided inhibition of the cancer DNA-mutating enzyme APOBEC3A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528918. [PMID: 36824964 PMCID: PMC9949147 DOI: 10.1101/2023.02.17.528918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The normally antiviral enzyme APOBEC3A1-4 is an endogenous mutagen in many different human cancers5-7, where it becomes hijacked to fuel tumor evolvability. APOBEC3A's single-stranded DNA C-to-U editing activity1,8 results in multiple mutagenic outcomes including signature single-base substitution mutations (isolated and clustered), DNA breakage, and larger-scale chromosomal aberrations5-7. Transgenic expression in mice demonstrates its tumorigenic potential9. APOBEC3A inhibitors may therefore comprise a novel class of anti-cancer agents that work by blocking mutagenesis, preventing tumor evolvability, and lessening detrimental outcomes such as drug resistance and metastasis. Here we reveal the structural basis of competitive inhibition of wildtype APOBEC3A by hairpin DNA bearing 2'-deoxy-5-fluorozebularine in place of the cytidine in the TC recognition motif that is part of a three-nucleotide loop. The nuclease-resistant phosphorothioated derivatives of these inhibitors maintain nanomolar in vitro potency against APOBEC3A, localize to the cell nucleus, and block APOBEC3A activity in human cells. These results combine to suggest roles for these inhibitors to study A3A activity in living cells, potentially as conjuvants, leading toward next-generation, combinatorial anti-mutator and anti-cancer therapies.
Collapse
Affiliation(s)
- Stefan Harjes
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Amanda E. Rieffer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota–Twin Cities, Minneapolis, MN, USA
| | - Maitsetseg Bayaijargal
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Current address: Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jana Filitcheva
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yongdong Su
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Current address: Department of Pediatrics, Emory University School of Medicine, and the Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Tracy K. Hale
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Vyacheslav V. Filichev
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Elena Harjes
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Geoffrey B. Jameson
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Ito F, Alvarez-Cabrera AL, Liu S, Yang H, Shiriaeva A, Zhou ZH, Chen XS. Structural basis for HIV-1 antagonism of host APOBEC3G via Cullin E3 ligase. SCIENCE ADVANCES 2023; 9:eade3168. [PMID: 36598981 PMCID: PMC9812381 DOI: 10.1126/sciadv.ade3168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Human APOBEC3G (A3G) is a virus restriction factor that inhibits HIV-1 replication and triggers lethal hypermutation on viral reverse transcripts. HIV-1 viral infectivity factor (Vif) breaches this host A3G immunity by hijacking a cellular E3 ubiquitin ligase complex to target A3G for ubiquitination and degradation. The molecular mechanism of A3G targeting by Vif-E3 ligase is unknown, limiting the antiviral efforts targeting this host-pathogen interaction crucial for HIV-1 infection. Here, we report the cryo-electron microscopy structures of A3G bound to HIV-1 Vif in complex with T cell transcription cofactor CBF-β and multiple components of the Cullin-5 RING E3 ubiquitin ligase. The structures reveal unexpected RNA-mediated interactions of Vif with A3G primarily through A3G's noncatalytic domain, while A3G's catalytic domain is poised for ubiquitin transfer. These structures elucidate the molecular mechanism by which HIV-1 Vif hijacks the host ubiquitin ligase to specifically target A3G to establish infection and offer structural information for the rational development of antiretroviral therapeutics.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ana L. Alvarez-Cabrera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Anna Shiriaeva
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Genetic, Molecular, and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Yang H, Kim K, Li S, Pacheco J, Chen XS. Structural basis of sequence-specific RNA recognition by the antiviral factor APOBEC3G. Nat Commun 2022; 13:7498. [PMID: 36470880 PMCID: PMC9722718 DOI: 10.1038/s41467-022-35201-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
An essential step in restricting HIV infectivity by the antiviral factor APOBEC3G is its incorporation into progeny virions via binding to HIV RNA. However, the mechanism of APOBEC3G capturing viral RNA is unknown. Here, we report crystal structures of a primate APOBEC3G bound to different types of RNAs, revealing that APOBEC3G specifically recognizes unpaired 5'-AA-3' dinucleotides, and to a lesser extent, 5'-GA-3' dinucleotides. APOBEC3G binds to the common 3'A in the AA/GA motifs using an aromatic/hydrophobic pocket in the non-catalytic domain. It binds to the 5'A or 5'G in the AA/GA motifs using an aromatic/hydrophobic groove conformed between the non-catalytic and catalytic domains. APOBEC3G RNA binding property is distinct from that of the HIV nucleocapsid protein recognizing unpaired guanosines. Our findings suggest that the sequence-specific RNA recognition is critical for APOBEC3G virion packaging and restricting HIV infectivity.
Collapse
Affiliation(s)
- Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA
| | - Shuxing Li
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA ,grid.42505.360000 0001 2156 6853Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089 USA
| | - Josue Pacheco
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA ,grid.42505.360000 0001 2156 6853Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089 USA ,grid.42505.360000 0001 2156 6853Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033 USA
| |
Collapse
|
15
|
Chen Y, Luo L, Deng L, Tian X, Chen S, Xu A, Yuan S. New Insights Into the Lineage-Specific Expansion and Functional Diversification of Lamprey AID/APOBEC Family. Front Immunol 2022; 13:822616. [PMID: 35359986 PMCID: PMC8962628 DOI: 10.3389/fimmu.2022.822616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
The AID/APOBEC family which converts cytidine to uridine on RNA or DNA experienced dynamic expansion in primates in order to resist exogenous viruses and endogenous retrotransposons. Recently, expansion of AID/APOBEC-like homologs has also been observed in the extant jawless vertebrate lamprey. To reveal what causes such expansion and leads to the functional diversification of lamprey cytosine deaminases (CDAs), we reassessed the CDA genes in Lethenteron japonicum (Lj). We first confirmed the expansion of LjCDA1L1 (CDA1-like 1) genes and found the expression correlation of LjCDA2 and LjCDA1L2 with LjVLRs (variable lymphocyte receptors). Among up to 14 LjCDA1L1 proteins, LjCDA1L1_4a has an extremely high deamination activity on ssDNA and buDNA and, unexpectedly, on dsDNA. LjCDA1L1s can also restrict the infection of HSV-1 particles. Thus, the arms race between the host and pathogens along with the recruitment by VLR assembly may participate together to form a driving force in the expansion and diversification of the lamprey AID/APOBEC family.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingjie Luo
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lisi Deng
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxue Tian
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shangwu Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anlong Xu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shaochun Yuan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Liu Y, Lan W, Wang C, Cao C. Two different kinds of interaction modes of deaminase APOBEC3A with single-stranded DNA in solution detected by nuclear magnetic resonance. Protein Sci 2022; 31:443-453. [PMID: 34792260 PMCID: PMC8819843 DOI: 10.1002/pro.4242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
APOBEC3A (A3A) deaminates deoxycytidine in target motif TC in a single-stranded DNA (we termed it as TC DNA), which mortally mutates viral pathogens and immunoglobulins, and leads to the diversification and lethality of cancers. The crystal structure of A3A-DNA revealed a unique U-shaped recognition mode of target base dC0 . However, when TC DNA was titrated into 15 N-labeled A3A solution, we observed two sets of 1 H-15 N cross-peaks of A3A in HSQC spectra, and two sets of 1 H-1 H cross-peaks of DNA in two-dimensional 13 C,15 N-filtered TOCSY spectra, indicating two different kinds of conformers of either A3A or TC DNA existing in solution. Here, mainly by NMR, we demonstrated that one DNA conformer interacted with one A3A conformer, forming a specific complex A3AS -DNAS in a way almost similar to that observed in the reported crystal A3A-DNA structure, where dC0 inserted into zinc ion binding center. While the other DNA conformer bound with another A3A conformer, but dC0 did not extend into the zinc-binding pocket, forming a nonspecific A3ANS -DNANS complex. The NMR solution structure implied three sites Asn61 , His182 and Arg189 were necessary to DNA recognition. These observations indicate a distinctive way from that reported in X-ray crystal structure, suggesting an unexpected mode of deaminase APOBEC3A to identify target motif TC in DNA in solution.
Collapse
Affiliation(s)
- Yaping Liu
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of ScienceBeijingChina
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of ScienceBeijingChina
| |
Collapse
|
17
|
Balakrishnan K, Jaguva Vasudevan AA, Mohareer K, Luedde T, Münk C, Banerjee S. Encapsidation of Staufen-2 Enhances Infectivity of HIV-1. Viruses 2021; 13:v13122459. [PMID: 34960728 PMCID: PMC8703407 DOI: 10.3390/v13122459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Staufen, the RNA-binding family of proteins, affects various steps in the Human Immuno-Deficiency Virus (HIV-1) replication cycle. While our previous study established Staufen-2–HIV-1 Rev interaction and its role in augmenting nucleocytoplasmic export of RRE-containing viral RNA, viral incorporation of Staufen-2 and its effect on viral propagation were unknown. Here, we report that Staufen-2 interacts with HIV-1 Gag and is incorporated into virions and that encapsidated Staufen-2 boosted viral infectivity. Further, Staufen-2 gets co-packaged into virions, possibly by interacting with host factors Staufen-1 or antiviral protein APOBEC3G, which resulted in different outcomes on the infectivity of Staufen-2-encapsidated virions. These observations suggest that encapsidated host factors influence viral population dynamics and infectivity. With the explicit identification of the incorporation of Staufen proteins into HIV-1 and other retroviruses, such as Simian Immunodeficiency Virus (SIV), we propose that packaging of RNA binding proteins, such as Staufen, in budding virions of retroviruses is probably a general phenomenon that can drive or impact the viral population dynamics, infectivity, and evolution.
Collapse
Affiliation(s)
- Kannan Balakrishnan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India; (K.B.); (K.M.)
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (A.A.J.V.); (T.L.)
| | - Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (A.A.J.V.); (T.L.)
| | - Krishnaveni Mohareer
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India; (K.B.); (K.M.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (A.A.J.V.); (T.L.)
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (A.A.J.V.); (T.L.)
- Correspondence: (C.M.); (S.B.); Tel.: +49-021-1811-0887 (C.M.); +91-40-2313-4573 (S.B.)
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India; (K.B.); (K.M.)
- Correspondence: (C.M.); (S.B.); Tel.: +49-021-1811-0887 (C.M.); +91-40-2313-4573 (S.B.)
| |
Collapse
|
18
|
Kaake RM, Echeverria I, Kim SJ, Von Dollen J, Chesarino NM, Feng Y, Yu C, Ta H, Chelico L, Huang L, Gross J, Sali A, Krogan NJ. Characterization of an A3G-Vif HIV-1-CRL5-CBFβ Structure Using a Cross-linking Mass Spectrometry Pipeline for Integrative Modeling of Host-Pathogen Complexes. Mol Cell Proteomics 2021; 20:100132. [PMID: 34389466 PMCID: PMC8459920 DOI: 10.1016/j.mcpro.2021.100132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 10/24/2022] Open
Abstract
Structural analysis of host-pathogen protein complexes remains challenging, largely due to their structural heterogeneity. Here, we describe a pipeline for the structural characterization of these complexes using integrative structure modeling based on chemical cross-links and residue-protein contacts inferred from mutagenesis studies. We used this approach on the HIV-1 Vif protein bound to restriction factor APOBEC3G (A3G), the Cullin-5 E3 ring ligase (CRL5), and the cellular transcription factor Core Binding Factor Beta (CBFβ) to determine the structure of the (A3G-Vif-CRL5-CBFβ) complex. Using the MS-cleavable DSSO cross-linker to obtain a set of 132 cross-links within this reconstituted complex along with the atomic structures of the subunits and mutagenesis data, we computed an integrative structure model of the heptameric A3G-Vif-CRL5-CBFβ complex. The structure, which was validated using a series of tests, reveals that A3G is bound to Vif mostly through its N-terminal domain. Moreover, the model ensemble quantifies the dynamic heterogeneity of the A3G C-terminal domain and Cul5 positions. Finally, the model was used to rationalize previous structural, mutagenesis and functional data not used for modeling, including information related to the A3G-bound and unbound structures as well as mapping functional mutations to the A3G-Vif interface. The experimental and computational approach described here is generally applicable to other challenging host-pathogen protein complexes.
Collapse
Affiliation(s)
- Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - John Von Dollen
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas M Chesarino
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yuqing Feng
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - Hai Ta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Linda Chelico
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - John Gross
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA.
| |
Collapse
|
19
|
Hou S, Lee JM, Myint W, Matsuo H, Kurt Yilmaz N, Schiffer CA. Structural basis of substrate specificity in human cytidine deaminase family APOBEC3s. J Biol Chem 2021; 297:100909. [PMID: 34171358 PMCID: PMC8313598 DOI: 10.1016/j.jbc.2021.100909] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
The human cytidine deaminase family of APOBEC3s (A3s) plays critical roles in both innate immunity and the development of cancers. A3s comprise seven functionally overlapping but distinct members that can be exploited as nucleotide base editors for treating genetic diseases. Although overall structurally similar, A3s have vastly varying deamination activity and substrate preferences. Recent crystal structures of ssDNA-bound A3s together with experimental studies have provided some insights into distinct substrate specificities among the family members. However, the molecular interactions responsible for their distinct biological functions and how structure regulates substrate specificity are not clear. In this study, we identified the structural basis of substrate specificities in three catalytically active A3 domains whose crystal structures have been previously characterized: A3A, A3B- CTD, and A3G-CTD. Through molecular modeling and dynamic simulations, we found an interdependency between ssDNA substrate binding conformation and nucleotide sequence specificity. In addition to the U-shaped conformation seen in the crystal structure with the CTC0 motif, A3A can accommodate the CCC0 motif when ssDNA is in a more linear (L) conformation. A3B can also bind both U- and L-shaped ssDNA, unlike A3G, which can stably recognize only linear ssDNA. These varied conformations are stabilized by sequence-specific interactions with active site loops 1 and 7, which are highly variable among A3s. Our results explain the molecular basis of previously observed substrate specificities in A3s and have implications for designing A3-specific inhibitors for cancer therapy as well as engineering base-editing systems for gene therapy.
Collapse
Affiliation(s)
- Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jeong Min Lee
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Wazo Myint
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Hiroshi Matsuo
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
20
|
Hu Y, Knecht KM, Shen Q, Xiong Y. Multifaceted HIV-1 Vif interactions with human E3 ubiquitin ligase and APOBEC3s. FEBS J 2021; 288:3407-3417. [PMID: 32893454 PMCID: PMC8172064 DOI: 10.1111/febs.15550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
APOBEC3 (A3) proteins are a family of host antiviral restriction factors that potently inhibit various retroviral infections, including human immunodeficiency virus (HIV)-1. To overcome this restriction, HIV-1 virion infectivity factor (Vif) recruits the cellular cofactor CBFβ to assist in targeting A3 proteins to a host E3 ligase complex for polyubiquitination and subsequent proteasomal degradation. Intervention of the Vif-A3 interactions could be a promising therapeutic strategy to facilitate A3-mediated suppression of HIV-1 in patients. In this structural snapshot, we review the structural features of the recently determined structure of human A3F in complex with HIV-1 Vif and its cofactor CBFβ, discuss insights into the molecular principles of Vif-A3 interplay during the arms race between the virus and host, and highlight the therapeutic implications.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kirsten M. Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Qi Shen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
21
|
Insights into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions. Viruses 2021; 13:v13030497. [PMID: 33802945 PMCID: PMC8002816 DOI: 10.3390/v13030497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single-stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is more complicated than others, due to the associated complex RNA binding modes.
Collapse
|
22
|
Yu W, Li J, Huang S, Li X, Li P, Li G, Liang A, Chi T, Huang X. Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences. BMC Biol 2021; 19:34. [PMID: 33602235 PMCID: PMC7893952 DOI: 10.1186/s12915-020-00879-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Site-specific C>T DNA base editing has been achieved by recruiting cytidine deaminases to the target C using catalytically impaired Cas proteins; the target C is typically located within 5-nt editing window specified by the guide RNAs. The prototypical cytidine base editor BE3, comprising rat APOBEC1 (rA1) fused to nCas9, can indiscriminately deaminate multiple C's within the editing window and also create substantial off-target edits on the transcriptome. A powerful countermeasure for the DNA off-target editing is to replace rA1 with APOBEC proteins which selectively edit C's in the context of specific motifs, as illustrated in eA3A-BE3 which targets TC. However, analogous editors selective for other motifs have not been described. In particular, it has been challenging to target a particular C in C-rich sequences. Here, we sought to confront this challenge and also to overcome the RNA off-target effects seen in BE3. RESULTS By replacing rA1 with an optimized human A3G (oA3G), we developed oA3G-BE3, which selectively targets CC and CCC and is also free of global off-target effects on the transcriptome. Furthermore, we created oA3G-BE4max, an upgraded version of oA3G-BE3 with robust on-target editing. Finally, we showed that oA3G-BE4max has negligible Cas9-independent off-target effects at the genome. CONCLUSIONS oA3G-BE4max can edit C(C)C with high efficiency and selectivity, which complements eA3A-editors to broaden the collective editing scope of motif selective editors, thus filling a void in the base editing tool box.
Collapse
Affiliation(s)
- Wenxia Yu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Li
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200092, China
| | - Guanglei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200092, China
| | - Tian Chi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
23
|
Maiti A, Hou S, Schiffer CA, Matsuo H. Interactions of APOBEC3s with DNA and RNA. Curr Opin Struct Biol 2021; 67:195-204. [PMID: 33486429 DOI: 10.1016/j.sbi.2020.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
APOBEC3 enzymes are key enzymes in our innate immune system regulating antiviral response in HIV and unfortunately adding diversity in cancer as they deaminate cytosine. Seven unique single and double domain APOBEC3s provide them with unique activity and specificity profiles for this deamination. Recent crystal and NMR structures of APOBEC3 complexes are unraveling the variety of epitopes involved in binding nucleic acids, including at the catalytic site, elsewhere on the catalytic domain and in the inactive N-terminal domain. The interplay between these diverse interactions is critical to uncovering the mechanisms by which APOBEC3s recognize and process their substrates.
Collapse
Affiliation(s)
- Atanu Maiti
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Hiroshi Matsuo
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
24
|
Zhang Z, Perković M, Gu Q, Balakrishnan K, Sangwiman A, Häussinger D, Lindemann D, Münk C. HIV-2 Vif and foamy virus Bet antagonize APOBEC3B by different mechanisms. Virology 2020; 554:17-27. [PMID: 33333348 DOI: 10.1016/j.virol.2020.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
The family of human APOBEC3 (A3) restriction factors is formed by seven different proteins, A3A-D and A3F-H. Among these A3s, A3B harbors strong restriction activity against several retroviruses, such as SIV, and MLV. How lentiviruses and other retroviruses, prevalent in many primate species, counteract A3B is poorly understood. In this study, we found that A3B strongly inhibited SIVmac and HIV-2 infectivity, which was antagonized by their Vif proteins. Both SIVmac and HIV-2 Vifs diminished the protein level of A3B in viral producer cells, and hindered A3B incorporation into viral particles. We observed that HIV-2 Vif binds A3B and induces its degradation by assembly of an A3-Vif-CUL5-ElonginB/C E3-ligase complex. A3B and HIV-2 Vif localize and interact in the nucleus. In addition, we also found that the accessory protein Bet of prototype foamy virus (PFV) significantly antagonized the anti-SIVmac activity of A3B. Like Vif, Bet prevented the incorporation of A3B into viral particles. However, in contrast to Vif Bet did not induce the degradation of A3B. Rather, Bet binds A3B to block formation of high molecular weight A3B complexes and induces A3B cytoplasmic trapping. In summary, these findings indicate that A3B is recognized by diverse retroviruses and counteracted by virus-specific pathways that could be targeted to inhibit A3B mutating activity in cancers.
Collapse
Affiliation(s)
- Zeli Zhang
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Mario Perković
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Qinyong Gu
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kannan Balakrishnan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anucha Sangwiman
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, 01307, Dresden, Germany; CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, 01307, Dresden, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
25
|
The Role of APOBECs in Viral Replication. Microorganisms 2020; 8:microorganisms8121899. [PMID: 33266042 PMCID: PMC7760323 DOI: 10.3390/microorganisms8121899] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) proteins are a diverse and evolutionarily conserved family of cytidine deaminases that provide a variety of functions from tissue-specific gene expression and immunoglobulin diversity to control of viruses and retrotransposons. APOBEC family expansion has been documented among mammalian species, suggesting a powerful selection for their activity. Enzymes with a duplicated zinc-binding domain often have catalytically active and inactive domains, yet both have antiviral function. Although APOBEC antiviral function was discovered through hypermutation of HIV-1 genomes lacking an active Vif protein, much evidence indicates that APOBECs also inhibit virus replication through mechanisms other than mutagenesis. Multiple steps of the viral replication cycle may be affected, although nucleic acid replication is a primary target. Packaging of APOBECs into virions was first noted with HIV-1, yet is not a prerequisite for viral inhibition. APOBEC antagonism may occur in viral producer and recipient cells. Signatures of APOBEC activity include G-to-A and C-to-T mutations in a particular sequence context. The importance of APOBEC activity for viral inhibition is reflected in the identification of numerous viral factors, including HIV-1 Vif, which are dedicated to antagonism of these deaminases. Such viral antagonists often are only partially successful, leading to APOBEC selection for viral variants that enhance replication or avoid immune elimination.
Collapse
|
26
|
Maiti A, Myint W, Delviks-Frankenberry KA, Hou S, Kanai T, Balachandran V, Sierra Rodriguez C, Tripathi R, Kurt Yilmaz N, Pathak VK, Schiffer CA, Matsuo H. Crystal Structure of a Soluble APOBEC3G Variant Suggests ssDNA to Bind in a Channel that Extends between the Two Domains. J Mol Biol 2020; 432:6042-6060. [PMID: 33098858 DOI: 10.1016/j.jmb.2020.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Abstract
APOBEC3G (A3G) is a single-stranded DNA (ssDNA) cytosine deaminase that can restrict HIV-1 infection by mutating the viral genome. A3G consists of a non-catalytic N-terminal domain (NTD) and a catalytic C-terminal domain (CTD) connected by a short linker. While the CTD catalyzes cytosine deamination, the NTD is believed to provide additional affinity for ssDNA. Structures of both A3G domains have been solved individually; however, a full-length A3G structure has been challenging. Recently, crystal structures of full-length rhesus macaque A3G variants were solved which suggested dimerization mechanisms and RNA binding surfaces, whereas the dimerization appeared to compromise catalytic activity. We determined the crystal structure of a soluble variant of human A3G (sA3G) at 2.5 Å and from these data generated a model structure of wild-type A3G. This model demonstrated that the NTD was rotated 90° relative to the CTD along the major axis of the molecule, an orientation that forms a positively charged channel connected to the CTD catalytic site, consisting of NTD loop-1 and CTD loop-3. Structure-based mutations, in vitro deamination and DNA binding assays, and HIV-1 restriction assays identify R24, located in the NTD loop-1, as essential to a critical interaction with ssDNA. Furthermore, sA3G was shown to bind a deoxy-cytidine dinucleotide near the catalytic Zn2+, yet not in the catalytic position, where the interactions between deoxy-cytidines and CTD loop-1 and loop-7 residues were different from those formed with substrate. These new interactions suggest a mechanism explaining why A3G exhibits a 3' to 5' directional preference in processive deamination.
Collapse
Affiliation(s)
- Atanu Maiti
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Wazo Myint
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Krista A Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tapan Kanai
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Chemistry, Banasthali University, Banasthali 304022, Rajasthan, India
| | | | | | - Rashmi Tripathi
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali 304022, Rajasthan, India
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hiroshi Matsuo
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
27
|
Jaguva Vasudevan AA, Balakrishnan K, Gertzen CGW, Borvető F, Zhang Z, Sangwiman A, Held U, Küstermann C, Banerjee S, Schumann GG, Häussinger D, Bravo IG, Gohlke H, Münk C. Loop 1 of APOBEC3C Regulates its Antiviral Activity against HIV-1. J Mol Biol 2020; 432:6200-6227. [PMID: 33068636 DOI: 10.1016/j.jmb.2020.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 01/10/2023]
Abstract
APOBEC3 deaminases (A3s) provide mammals with an anti-retroviral barrier by catalyzing dC-to-dU deamination on viral ssDNA. Within primates, A3s have undergone a complex evolution via gene duplications, fusions, arms race, and selection. Human APOBEC3C (hA3C) efficiently restricts the replication of viral infectivity factor (vif)-deficient Simian immunodeficiency virus (SIVΔvif), but for unknown reasons, it inhibits HIV-1Δvif only weakly. In catarrhines (Old World monkeys and apes), the A3C loop 1 displays the conserved amino acid pair WE, while the corresponding consensus sequence in A3F and A3D is the largely divergent pair RK, which is also the inferred ancestral sequence for the last common ancestor of A3C and of the C-terminal domains of A3D and A3F in primates. Here, we report that modifying the WE residues in hA3C loop 1 to RK leads to stronger interactions with substrate ssDNA, facilitating catalytic function, which results in a drastic increase in both deamination activity and in the ability to restrict HIV-1 and LINE-1 replication. Conversely, the modification hA3F_WE resulted only in a marginal decrease in HIV-1Δvif inhibition. We propose that the two series of ancestral gene duplications that generated A3C, A3D-CTD and A3F-CTD allowed neo/subfunctionalization: A3F-CTD maintained the ancestral RK residues in loop 1, while diversifying selection resulted in the RK → WE modification in Old World anthropoids' A3C, possibly allowing for novel substrate specificity and function.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Kannan Balakrishnan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany; Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fanni Borvető
- Centre National de la Recherche Scientifique, Laboratory MIVEGEC (CNRS, IRD, Uni Montpellier), Montpellier, France
| | - Zeli Zhang
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anucha Sangwiman
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Held
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ignacio G Bravo
- Centre National de la Recherche Scientifique, Laboratory MIVEGEC (CNRS, IRD, Uni Montpellier), Montpellier, France
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
28
|
Delviks-Frankenberry KA, Desimmie BA, Pathak VK. Structural Insights into APOBEC3-Mediated Lentiviral Restriction. Viruses 2020; 12:E587. [PMID: 32471198 PMCID: PMC7354603 DOI: 10.3390/v12060587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 01/18/2023] Open
Abstract
Mammals have developed clever adaptive and innate immune defense mechanisms to protect against invading bacterial and viral pathogens. Human innate immunity is continuously evolving to expand the repertoire of restriction factors and one such family of intrinsic restriction factors is the APOBEC3 (A3) family of cytidine deaminases. The coordinated expression of seven members of the A3 family of cytidine deaminases provides intrinsic immunity against numerous foreign infectious agents and protects the host from exogenous retroviruses and endogenous retroelements. Four members of the A3 proteins-A3G, A3F, A3H, and A3D-restrict HIV-1 in the absence of virion infectivity factor (Vif); their incorporation into progeny virions is a prerequisite for cytidine deaminase-dependent and -independent activities that inhibit viral replication in the host target cell. HIV-1 encodes Vif, an accessory protein that antagonizes A3 proteins by targeting them for polyubiquitination and subsequent proteasomal degradation in the virus producing cells. In this review, we summarize our current understanding of the role of human A3 proteins as barriers against HIV-1 infection, how Vif overcomes their antiviral activity, and highlight recent structural and functional insights into A3-mediated restriction of lentiviruses.
Collapse
Affiliation(s)
| | | | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; (K.A.D.-F.); (B.A.D.)
| |
Collapse
|
29
|
McDaniel YZ, Wang D, Love RP, Adolph MB, Mohammadzadeh N, Chelico L, Mansky LM. Deamination hotspots among APOBEC3 family members are defined by both target site sequence context and ssDNA secondary structure. Nucleic Acids Res 2020; 48:1353-1371. [PMID: 31943071 PMCID: PMC7026630 DOI: 10.1093/nar/gkz1164] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022] Open
Abstract
The human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3, A3) family member proteins can deaminate cytosines in single-strand (ss) DNA, which restricts human immunodeficiency virus type 1 (HIV-1), retrotransposons, and other viruses such as hepatitis B virus, but can cause a mutator phenotype in many cancers. While structural information exists for several A3 proteins, the precise details regarding deamination target selection are not fully understood. Here, we report the first parallel, comparative analysis of site selection of A3 deamination using six of the seven purified A3 member enzymes, oligonucleotides having 5'TC3' or 5'CT3' dinucleotide target sites, and different flanking bases within diverse DNA secondary structures. A3A, A3F and A3H were observed to have strong preferences toward the TC target flanked by A or T, while all examined A3 proteins did not show a preference for a TC target flanked by a G. We observed that the TC target was strongly preferred in ssDNA regions rather than dsDNA, loop or bulge regions, with flanking bases influencing the degree of preference. CT was also shown to be a potential deamination target. Taken together, our observations provide new insights into A3 enzyme target site selection and how A3 mutagenesis impacts mutation rates.
Collapse
Affiliation(s)
- Yumeng Z McDaniel
- Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Dake Wang
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455 USA
- Pharmacology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
| | - Robin P Love
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Madison B Adolph
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Nazanin Mohammadzadeh
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Louis M Mansky
- Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455 USA
- Pharmacology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455 USA
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
30
|
Azimi FC, Lee JE. Structural perspectives on HIV-1 Vif and APOBEC3 restriction factor interactions. Protein Sci 2020; 29:391-406. [PMID: 31518043 PMCID: PMC6954718 DOI: 10.1002/pro.3729] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 11/06/2022]
Abstract
Human immunodeficiency virus (HIV) is a retroviral pathogen that targets human immune cells such as CD4+ T cells, macrophages, and dendritic cells. The human apolipoprotein B mRNA- editing catalytic polypeptide 3 (APOBEC3 or A3) cytidine deaminases are a key class of intrinsic restriction factors that inhibit replication of HIV. When HIV-1 enters the cell, the immune system responds by inducing the activation of the A3 family proteins, which convert cytosines to uracils in single-stranded DNA replication intermediates, neutralizing the virus. HIV counteracts this intrinsic immune response by encoding a protein termed viral infectivity factor (Vif). Vif targets A3 to an E3 ubiquitin ligase complex for poly-ubiquitination and proteasomal degradation. Vif is unique in that it can recognize and counteract multiple A3 restriction factor substrates. Structural biology studies have provided significant insights into the overall architectures and functions of Vif and A3 proteins; however, a structure of the Vif-A3 complex has remained elusive. In this review, we summarize and reanalyze experimental data from recent structural, biochemical, and functional studies to provide key perspectives on the residues involved in Vif-A3 protein-protein interactions.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Laboratory Medicine and Pathobiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
31
|
Yang H, Ito F, Wolfe AD, Li S, Mohammadzadeh N, Love RP, Yan M, Zirkle B, Gaba A, Chelico L, Chen XS. Understanding the structural basis of HIV-1 restriction by the full length double-domain APOBEC3G. Nat Commun 2020; 11:632. [PMID: 32005813 PMCID: PMC6994475 DOI: 10.1038/s41467-020-14377-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
APOBEC3G, a member of the double-domain cytidine deaminase (CD) APOBEC, binds RNA to package into virions and restrict HIV-1 through deamination-dependent or deamination-independent inhibition. Mainly due to lack of a full-length double-domain APOBEC structure, it is unknown how CD1/CD2 domains connect and how dimerization/multimerization is linked to RNA binding and virion packaging for HIV-1 restriction. We report rhesus macaque A3G structures that show different inter-domain packing through a short linker and refolding of CD2. The A3G dimer structure has a hydrophobic dimer-interface matching with that of the previously reported CD1 structure. A3G dimerization generates a surface with intensified positive electrostatic potentials (PEP) for RNA binding and dimer stabilization. Unexpectedly, mutating the PEP surface and the hydrophobic interface of A3G does not abolish virion packaging and HIV-1 restriction. The data support a model in which only one RNA-binding mode is critical for virion packaging and restriction of HIV-1 by A3G. APOBEC3G (A3G) belongs to the DNA/RNA cytosine deaminase family that plays important roles in innate immunity against HIV and internal retroelements. Here the authors report the structures of two full-length A3G variants that provides insight into domain organization, multimerization, RNA binding, and viral restriction.
Collapse
Affiliation(s)
- Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Aaron D Wolfe
- Molecular and Computational Biology, Departments of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shuxing Li
- Molecular and Computational Biology, Departments of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nazanin Mohammadzadeh
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Robin P Love
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Maocai Yan
- Molecular and Computational Biology, Departments of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,School of Pharmacy, Jining Medical University, 276800, Rizhao, Shandong, China
| | - Brett Zirkle
- Molecular and Computational Biology, Departments of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Amit Gaba
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA, 90089, USA. .,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA. .,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA. .,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
32
|
Bohn JA, DaSilva J, Kharytonchyk S, Mercedes M, Vosters J, Telesnitsky A, Hatziioannou T, Smith JL. Flexibility in Nucleic Acid Binding Is Central to APOBEC3H Antiviral Activity. J Virol 2019; 93:e01275-19. [PMID: 31578294 PMCID: PMC6880157 DOI: 10.1128/jvi.01275-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022] Open
Abstract
APOBEC3 proteins APOBEC3F (A3F), APOBEC3G (A3G), and APOBEC3H (A3H) are host restriction factors that inhibit HIV-1 through DNA cytidine deaminase-dependent and -independent mechanisms and have either one (A3H) or two (A3F and A3G) zinc-binding domains. A3H antiviral activity encompasses multiple molecular functions, all of which depend on recognition of RNA or DNA. A3H crystal structures revealed an unusual interaction with RNA wherein an RNA duplex mediates dimerization of two A3H proteins. In this study, we sought to determine the importance of RNA-binding amino acids in the antiviral and biochemical properties of A3H. We show that the wild-type A3H-RNA interaction is essential for A3H antiviral activity and for two deaminase-independent processes: encapsidation into viral particles and inhibition of reverse transcription. Furthermore, an extensive mutagenesis campaign revealed distinct roles for two groups of amino acids at the RNA binding interface. C-terminal helix residues exclusively bind RNA, and loop 1 residues play a dual role in recognition of DNA substrates and in RNA binding. Weakening the interface between A3H and RNA allows DNA substrates to bind with greater affinity and enhances deamination rates, suggesting that RNA binding must be disrupted to accommodate DNA. Intriguingly, we demonstrate that A3H can deaminate overhanging DNA strands of RNA/DNA heteroduplexes, which are early intermediates during reverse transcription and may represent natural A3H substrates. Overall, we present a mechanistic model of A3H restriction and a step-by-step elucidation of the roles of RNA-binding residues in A3H activity, particle incorporation, inhibition of reverse transcriptase inhibition, and DNA cytidine deamination.IMPORTANCE APOBEC3 proteins are host factors that protect the integrity of the host genome by inhibiting retroelements as well as retroviruses, such as HIV-1. To do this, the APOBEC3H protein has evolved unique interactions with structured RNAs. Here, we studied the importance of these interactions in driving antiviral activity of APOBEC3H. Our results provide a clear picture of how RNA binding drives the ability of APOBEC3H to infiltrate new viruses and prevent synthesis of viral DNA. We also explore how RNA binding by APOBEC3H influences recognition and deamination of viral DNA and describe two possible routes by which APOBEC3H might hypermutate the HIV-1 genome. These results highlight how one protein can sense many nucleic acid species for a variety of antiviral activities.
Collapse
Affiliation(s)
- Jennifer A Bohn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA
| | - Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Maria Mercedes
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA
| | - Jennifer Vosters
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Janet L Smith
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Solomon WC, Myint W, Hou S, Kanai T, Tripathi R, Kurt Yilmaz N, Schiffer CA, Matsuo H. Mechanism for APOBEC3G catalytic exclusion of RNA and non-substrate DNA. Nucleic Acids Res 2019; 47:7676-7689. [PMID: 31424549 PMCID: PMC6698744 DOI: 10.1093/nar/gkz550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
The potent antiretroviral protein APOBEC3G (A3G) specifically targets and deaminates deoxycytidine nucleotides, generating deoxyuridine, in single stranded DNA (ssDNA) intermediates produced during HIV replication. A non-catalytic domain in A3G binds strongly to RNA, an interaction crucial for recruitment of A3G to the virion; yet, A3G displays no deamination activity for cytidines in viral RNA. Here, we report NMR and molecular dynamics (MD) simulation analysis for interactions between A3Gctd and multiple substrate or non-substrate DNA and RNA, in combination with deamination assays. NMR ssDNA-binding experiments revealed that the interaction with residues in helix1 and loop1 (T201-L220) distinguishes the binding mode of substrate ssDNA from non-substrate. Using 2′-deoxy-2′-fluorine substituted cytidines, we show that a 2′-endo sugar conformation of the target deoxycytidine is favored for substrate binding and deamination. Trajectories of the MD simulation indicate that a ribose 2′-hydroxyl group destabilizes the π-π stacking of the target cytosine and H257, resulting in dislocation of the target cytosine base from the catalytic position. Interestingly, APOBEC3A, which can deaminate ribocytidines, retains the ribocytidine in the catalytic position throughout the MD simulation. Our results indicate that A3Gctd catalytic selectivity against RNA is dictated by both the sugar conformation and 2′-hydroxyl group.
Collapse
Affiliation(s)
- William C Solomon
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wazo Myint
- Basic Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tapan Kanai
- Basic Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.,Department of Chemistry, Banasthali University, Banasthali-304022, Rajasthan, India
| | - Rashmi Tripathi
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali-304022, Rajasthan, India
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hiroshi Matsuo
- Basic Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
34
|
Hu Y, Desimmie BA, Nguyen HC, Ziegler SJ, Cheng TC, Chen J, Wang J, Wang H, Zhang K, Pathak VK, Xiong Y. Structural basis of antagonism of human APOBEC3F by HIV-1 Vif. Nat Struct Mol Biol 2019; 26:1176-1183. [PMID: 31792451 PMCID: PMC6899190 DOI: 10.1038/s41594-019-0343-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/28/2019] [Indexed: 01/15/2023]
Abstract
HIV-1 Vif promotes degradation of the antiviral APOBEC3 (A3) proteins through the host ubiquitin-proteasome pathway to enable viral immune evasion. Disrupting Vif-A3 interactions to reinstate the A3-catalyzed suppression of HIV-1 replication is a potential approach for antiviral therapeutics. However, the molecular mechanisms by which Vif recognizes A3 proteins remain elusive. Here we report a cryo-EM structure of the Vif-targeted C-terminal domain of human A3F in complex with HIV-1 Vif and its cellular cofactor CBFβ, at 3.9 Å resolution. The structure shows that Vif and CBFβ form a platform to recruit A3F, revealing a direct A3F-recruiting role of CBFβ beyond Vif stabilization, and captures multiple independent A3F-Vif interfaces. Together with our biochemical and cellular studies, our structural findings establish the molecular determinants that are critical for Vif-mediated neutralization of A3F and provide a comprehensive framework of how HIV-1 Vif hijacks the host protein degradation machinery to counteract viral restriction by A3F.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Belete A Desimmie
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Henry C Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Samantha J Ziegler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Tat Cheung Cheng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,IGBMC, CNRS, Illkirch, France
| | - John Chen
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Jia Wang
- School of Life Sciences, Tsinghua University, Haidian District, Beijing, China
| | - Hongwei Wang
- School of Life Sciences, Tsinghua University, Haidian District, Beijing, China
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
35
|
Pan Y, Shlyakhtenko LS, Lyubchenko YL. Insight into dynamics of APOBEC3G protein in complexes with DNA assessed by high speed AFM. NANOSCALE ADVANCES 2019; 1:4016-4024. [PMID: 33313478 PMCID: PMC7731963 DOI: 10.1039/c9na00457b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/03/2019] [Indexed: 06/12/2023]
Abstract
APOBEC3G (A3G) is a single-stranded DNA (ssDNA) binding protein that restricts the HIV virus by deamination of dC to dU during reverse transcription of the viral genome. A3G has two zing-binding domains: the N-terminal domain (NTD), which efficiently binds ssDNA, and the C-terminal catalytic domain (CTD), which supports deaminase activity of A3G. Until now, structural information on A3G has lacked, preventing elucidation of the molecular mechanisms underlying its interaction with ssDNA and deaminase activity. We have recently built a computational model for the full-length A3G monomer and validated its structure by data obtained from time-lapse High-Speed Atomic Force Microscopy (HS AFM). Here time-lapse HS AFM was applied to directly visualize the structure and dynamics of A3G in complexes with ssDNA. Our results demonstrate a highly dynamic structure of A3G, where two domains of the protein fluctuate between compact globular and extended dumbbell structures. Quantitative analysis of our data revealed a substantial increase in the number of A3G dumbbell structures in the presence of the DNA substrate, suggesting the interaction of A3G with the ssDNA substrate stabilizes this dumbbell structure. Based on these data, we proposed a model explaining the interaction of globular and dumbbell structures of A3G with ssDNA and suggested a possible role of the dumbbell structure in A3G function.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, WSH, University of Nebraska Medical CenterOmahaNebraska 68198-6025USA
| | - Luda S. Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, WSH, University of Nebraska Medical CenterOmahaNebraska 68198-6025USA
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, WSH, University of Nebraska Medical CenterOmahaNebraska 68198-6025USA
| |
Collapse
|
36
|
AID, APOBEC3A and APOBEC3B efficiently deaminate deoxycytidines neighboring DNA damage induced by oxidation or alkylation. Biochim Biophys Acta Gen Subj 2019; 1863:129415. [PMID: 31404619 DOI: 10.1016/j.bbagen.2019.129415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND AID/APOBEC3 (A3) enzymes instigate genomic mutations that are involved in immunity and cancer. Although they can deaminate any deoxycytidine (dC) to deoxyuridine (dU), each family member has a signature preference determined by nucleotides surrounding the target dC. This WRC (W = A/T, R = A/G) and YC (Y = T/C) hotspot preference is established for AID and A3A/A3B, respectively. Base alkylation and oxidation are two of the most common types of DNA damage induced environmentally or by chemotherapy. Here we examined the activity of AID, A3A and A3B on dCs neighboring such damaged bases. METHODS Substrates were designed to contain target dCs either in normal WRC/YC hotspots, or in oxidized/alkylated DNA motifs. AID, A3A and A3B were purified and deamination kinetics of each were compared between substrates containing damaged vs. normal motifs. RESULTS All three enzymes efficiently deaminated dC when common damaged bases were present in the -2 or -1 positions. Strikingly, some damaged motifs supported comparable or higher catalytic efficiencies by AID, A3A and A3B than the WRC/YC motifs which are their most favored normal sequences. Based on the resolved interactions of AID, A3A and A3B with DNA, we modeled interactions with alkylated or oxidized bases. Corroborating the enzyme assay data, the surface regions that recognize normal bases are predicted to also interact robustly with oxidized and alkylated bases. CONCLUSIONS AID, A3A and A3B can efficiently recognize and deaminate dC whose neighbouring nucleotides are damaged. GENERAL SIGNIFICANCE Beyond AID/A3s initiating DNA damage, some forms of pre-existing damaged DNA can constitute favored targets of AID/A3s if encountered.
Collapse
|
37
|
Matsuoka T, Nagae T, Ode H, Awazu H, Kurosawa T, Hamano A, Matsuoka K, Hachiya A, Imahashi M, Yokomaku Y, Watanabe N, Iwatani Y. Structural basis of chimpanzee APOBEC3H dimerization stabilized by double-stranded RNA. Nucleic Acids Res 2019; 46:10368-10379. [PMID: 30060196 PMCID: PMC6212771 DOI: 10.1093/nar/gky676] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
APOBEC3H (A3H) is a mammal-specific cytidine deaminase that potently restricts the replication of retroviruses. Primate A3Hs are known to exert key selective pressures against the cross-species transmission of primate immunodeficiency viruses from chimpanzees to humans. Despite recent advances, the molecular structures underlying the functional mechanisms of primate A3Hs have not been fully understood. Here, we reveal the 2.20-Å crystal structure of the chimpanzee A3H (cpzA3H) dimer bound to a short double-stranded RNA (dsRNA), which appears to be similar to two recently reported structures of pig-tailed macaque A3H and human A3H. In the structure, the dsRNA-binding interface forms a specialized architecture with unique features. The analysis of the dsRNA nucleotides in the cpzA3H complex revealed the GC-rich palindrome-like sequence preference for dsRNA interaction, which is largely determined by arginine residues in loop 1. In cells, alterations of the cpzA3H residues critical for the dsRNA interaction severely reduce intracellular protein stability due to proteasomal degradation. This suggests that cpzA3H stability is regulated by the dsRNA-mediated dimerization as well as by unknown cellular machinery through proteasomal degradation in cells. Taken together, these findings highlight unique structural features of primate A3Hs that are important to further understand their cellular functions and regulation.
Collapse
Affiliation(s)
- Tatsuya Matsuoka
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan.,Department of Biotechnology, Nagoya University Graduate School of Engineering, Nagoya, Aichi 464-8603, Japan
| | - Takayuki Nagae
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Hiroaki Awazu
- Department of Biotechnology, Nagoya University Graduate School of Engineering, Nagoya, Aichi 464-8603, Japan
| | - Teppei Kurosawa
- Department of Biotechnology, Nagoya University Graduate School of Engineering, Nagoya, Aichi 464-8603, Japan
| | - Akiko Hamano
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Kazuhiro Matsuoka
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Atsuko Hachiya
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Mayumi Imahashi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Yoshiyuki Yokomaku
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Nobuhisa Watanabe
- Department of Biotechnology, Nagoya University Graduate School of Engineering, Nagoya, Aichi 464-8603, Japan.,Synchrotron Radiation Research Center, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan.,Program in Integrated Molecular Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
38
|
Yan X, Lan W, Wang C, Cao C. Structural Investigations on the Interactions between Cytidine Deaminase Human APOBEC3G and DNA. Chem Asian J 2019; 14:2235-2241. [PMID: 31116511 DOI: 10.1002/asia.201900480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/20/2019] [Indexed: 02/05/2023]
Abstract
Human APOBEC3G (A3G) inhibits the replication of human immunodeficiency virus-1 by deaminating cytidine at the 3'-end in the target motif 5'-CCC-3' in viral cDNA during reverse transcription. It in vitro deaminates two consecutive cytidines in a 3'->5' order. Although a crystal structure of the A3G catalytic domain (A3G-CD2) with DNA was reported, it is unknown why residues involved in enzymatic reaction are distributed widely. Here, we introduced an iodine atom into the C-5 position of cytidine (dC6 I ) in DNA 5'-ATTC4 C5 C6 I A7 ATT-3' (TCCC6 I ). It switches the deamination sequence preference from CCC to TCC, although small dC6 I deamination was observed. Solution structures of A3G-CD2 in complexes with products DNA TCUC6 I and TCUU6 I indicate that the substrate DNA binds A3G-CD2 in TCC and CCC modes. The dC6 deamination correlates with the 4th base type. The CCC mode favours dC6 deamination, while the TCC mode results in dC5 deamination. These studies present an extensive basis to design inhibitors to impede viral evolvability.
Collapse
Affiliation(s)
- Xiaoxuan Yan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
39
|
Fukuda H, Li S, Sardo L, Smith JL, Yamashita K, Sarca AD, Shirakawa K, Standley DM, Takaori-Kondo A, Izumi T. Structural Determinants of the APOBEC3G N-Terminal Domain for HIV-1 RNA Association. Front Cell Infect Microbiol 2019; 9:129. [PMID: 31165049 PMCID: PMC6536580 DOI: 10.3389/fcimb.2019.00129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023] Open
Abstract
APOBEC3G (A3G) is a cellular protein that inhibits HIV-1 infection through virion incorporation. The interaction of the A3G N-terminal domain (NTD) with RNA is essential for A3G incorporation in the HIV-1 virion. The interaction between A3G-NTD and RNA is not completely understood. The A3G-NTD is also recognized by HIV-1 Viral infectivity factor (Vif) and A3G-Vif binding leads to A3G degradation. Therefore, the A3G-Vif interaction is a target for the development of antiviral therapies that block HIV-1 replication. However, targeting the A3G-Vif interactions could disrupt the A3G-RNA interactions that are required for A3G's antiviral activity. To better understand A3G-RNA binding, we generated in silico docking models to simulate the RNA-binding propensity of A3G-NTD. We simulated the A3G-NTD residues with high RNA-binding propensity, experimentally validated our prediction by testing A3G-NTD mutations, and identified structural determinants of A3G-RNA binding. In addition, we found a novel amino acid residue, I26 responsible for RNA interaction. The new structural insights provided here will facilitate the design of pharmaceuticals that inhibit A3G-Vif interactions without negatively impacting A3G-RNA interactions.
Collapse
Affiliation(s)
- Hirofumi Fukuda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Songling Li
- Systems Immunology Laboratory, WPI Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Genome Informatics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Luca Sardo
- Department of Biological Sciences, McNeil Science and Technology Center, University of the Sciences, Philadelphia, PA, United States
| | - Jessica L Smith
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Kazuo Yamashita
- Systems Immunology Laboratory, WPI Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Anamaria D Sarca
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daron M Standley
- Systems Immunology Laboratory, WPI Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Genome Informatics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taisuke Izumi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
40
|
Abstract
Although antiretroviral therapy can suppress HIV-1 replication effectively, virus reservoirs persist in infected individuals and virus replication rapidly rebounds if therapy is interrupted. Currently, there is a need for therapeutic approaches that eliminate, reduce, or control persistent viral reservoirs if a cure is to be realized. This work focuses on the preclinical development of novel, small-molecule inhibitors of the HIV-1 Vif protein. Vif inhibitors represent a new class of antiretroviral drugs that may expand treatment options to more effectively suppress virus replication or to drive HIV-1 reservoirs to a nonfunctional state by harnessing the activity of the DNA-editing cytidine deaminase A3G, a potent, intrinsic restriction factor expressed in macrophage and CD4+ T cells. In this study, we derived inhibitor escape variants to characterize the mechanism by which these novel agents inhibit virus replication and to provide evidence for target validation. The HIV-1 accessory protein Vif, which counteracts the antiviral action of the DNA-editing cytidine deaminase APOBEC3G (A3G), is an attractive and yet unexploited therapeutic target. Vif reduces the virion incorporation of A3G by targeting the restriction factor for proteasomal degradation in the virus-producing cell. Compounds that inhibit Vif-mediated degradation of A3G in cells targeted by HIV-1 would represent a novel antiviral therapeutic. We previously described small molecules with activity consistent with Vif antagonism. In this study, we derived inhibitor escape HIV-1 variants to characterize the mechanism by which these novel agents inhibit virus replication. Here we show that resistance to these agents is dependent on an amino acid substitution in Vif (V142I) and on a point mutation that likely upregulates transcription by modifying the lymphocyte enhancing factor 1 (LEF-1) binding site. Molecular modeling demonstrated a docking site in the Vif-Elongin C complex that is disrupted by these inhibitors. This docking site is lost when Vif acquires the V142I mutation that leads to inhibitor resistance. Competitive fitness experiments indicated that the V142I Vif and LEF-1 binding site mutations created a virus that is better adapted to growing in the presence of A3G than the wild-type virus.
Collapse
|
41
|
A panel of eGFP reporters for single base editing by APOBEC-Cas9 editosome complexes. Sci Rep 2019; 9:497. [PMID: 30679582 PMCID: PMC6345908 DOI: 10.1038/s41598-018-36739-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/26/2018] [Indexed: 01/16/2023] Open
Abstract
The prospect of introducing a single C-to-T change at a specific genomic location has become feasible with APOBEC-Cas9 editing technologies. We present a panel of eGFP reporters for quantification and optimization of single base editing by APOBEC-Cas9 editosomes. Reporter utility is demonstrated by comparing activities of seven human APOBEC3 enzymes and rat APOBEC1 (BE3). APOBEC3A and RNA binding-defective variants of APOBEC3B and APOBEC3H display the highest single base editing efficiencies. APOBEC3B catalytic domain complexes also elicit the lowest frequencies of adjacent off-target events. However, unbiased deep-sequencing of edited reporters shows that all editosomes have some degree of local off-target editing. Thus, further optimization is required to generate true single base editors and the eGFP reporters described here have the potential to facilitate this process.
Collapse
|
42
|
Salter JD, Polevoda B, Bennett RP, Smith HC. Regulation of Antiviral Innate Immunity Through APOBEC Ribonucleoprotein Complexes. Subcell Biochem 2019; 93:193-219. [PMID: 31939152 DOI: 10.1007/978-3-030-28151-9_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The DNA mutagenic enzyme known as APOBEC3G (A3G) plays a critical role in innate immunity to Human Immunodeficiency Virus-1 (HIV-1 ). A3G is a zinc-dependent enzyme that mutates select deoxycytidines (dC) to deoxyuridine (dU) through deamination within nascent single stranded DNA (ssDNA) during HIV reverse transcription. This activity requires that the enzyme be delivered to viral replication complexes by redistributing from the cytoplasm of infected cells to budding virions through what appears to be an RNA-dependent process. Once inside infected cells, A3G must bind to nascent ssDNA reverse transcripts for dC to dU base modification gene editing. In this chapter we will discuss data indicating that ssDNA deaminase activity of A3G is regulated by RNA binding to A3G and ribonucleoprotein complex formation along with evidence suggesting that RNA-selective interactions with A3G are temporally and mechanistically important in this process.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY, 14623, USA
| | - Bogdan Polevoda
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Ryan P Bennett
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY, 14623, USA
| | - Harold C Smith
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY, 14623, USA. .,Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| |
Collapse
|
43
|
Hou S, Silvas TV, Leidner F, Nalivaika EA, Matsuo H, Kurt Yilmaz N, Schiffer CA. Structural Analysis of the Active Site and DNA Binding of Human Cytidine Deaminase APOBEC3B. J Chem Theory Comput 2018; 15:637-647. [PMID: 30457868 DOI: 10.1021/acs.jctc.8b00545] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
APOBEC3 (A3) proteins, a family of human cytidine deaminases, protect the host from endogenous retro-elements and exogenous viral infections by introducing hypermutations. However, overexpressed A3s can modify genomic DNA to promote tumorigenesis, especially A3B. Despite their overall similarity, A3 proteins have distinct deamination activity. Recently determined A3 structures have revealed the molecular determinants of nucleotide specificity and DNA binding. However, for A3B, the structural basis for regulation of deamination activity and the role of active site loops in coordinating DNA had remained unknown. Using advanced molecular modeling followed by experimental mutational analysis and dynamics simulations, we investigated the molecular mechanism of DNA binding by A3B-CTD. We modeled fully native A3B-DNA structure, and we identified Arg211 in loop 1 as the gatekeeper coordinating DNA and critical residue for nucleotide specificity. We also identified a unique autoinhibited conformation in A3B-CTD that restricts access and binding of DNA to the active site. Our results reveal the structural basis for DNA binding and relatively lower catalytic activity of A3B and provide opportunities for rational design of specific inhibitors to benefit cancer therapeutics.
Collapse
Affiliation(s)
- Shurong Hou
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - Tania V Silvas
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - Ellen A Nalivaika
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - Hiroshi Matsuo
- Basic Research Laboratory, Leidos Biomedical Research, Inc. , Frederick National Laboratory for Cancer Research , Frederick , Maryland 21702 , United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| |
Collapse
|
44
|
Crystal Structure of Cytidine Deaminase Human APOBEC3F Chimeric Catalytic Domain in Complex with DNA. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Maiti A, Myint W, Kanai T, Delviks-Frankenberry K, Sierra Rodriguez C, Pathak VK, Schiffer CA, Matsuo H. Crystal structure of the catalytic domain of HIV-1 restriction factor APOBEC3G in complex with ssDNA. Nat Commun 2018; 9:2460. [PMID: 29941968 PMCID: PMC6018426 DOI: 10.1038/s41467-018-04872-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/29/2018] [Indexed: 12/03/2022] Open
Abstract
The human APOBEC3G protein is a cytidine deaminase that generates cytidine to deoxy-uridine mutations in single-stranded DNA (ssDNA), and capable of restricting replication of HIV-1 by generating mutations in viral genome. The mechanism by which APOBEC3G specifically deaminates 5′-CC motifs has remained elusive since structural studies have been hampered due to apparently weak ssDNA binding of the catalytic domain of APOBEC3G. We overcame the problem by generating a highly active variant with higher ssDNA affinity. Here, we present the crystal structure of this variant complexed with a ssDNA substrate at 1.86 Å resolution. This structure reveals atomic-level interactions by which APOBEC3G recognizes a functionally-relevant 5′-TCCCA sequence. This complex also reveals a key role of W211 in substrate recognition, implicating a similar recognition in activation-induced cytidine deaminase (AID) with a conserved tryptophan. APOBEC3G (A3G) is a single-stranded DNA (ssDNA) cytidine deaminase that restricts HIV-1. Here the authors provide molecular insights into A3G substrate recognition by determining the 1.86 Å resolution crystal structure of its catalytic domain bound to ssDNA.
Collapse
Affiliation(s)
- Atanu Maiti
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Wazo Myint
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Tapan Kanai
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Krista Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Christina Sierra Rodriguez
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Hiroshi Matsuo
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
46
|
Simian Immunodeficiency Virus Vif and Human APOBEC3B Interactions Resemble Those between HIV-1 Vif and Human APOBEC3G. J Virol 2018; 92:JVI.00447-18. [PMID: 29618650 DOI: 10.1128/jvi.00447-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/30/2018] [Indexed: 01/10/2023] Open
Abstract
Several members of the APOBEC3 DNA cytosine deaminase family can potently inhibit Vif-deficient human immunodeficiency virus type 1 (HIV-1) by catalyzing cytosine deamination in viral cDNA and impeding reverse transcription. HIV-1 counteracts restriction with the virally encoded Vif protein, which targets relevant APOBEC3 proteins for proteasomal degradation. HIV-1 Vif is optimized for degrading the restrictive human APOBEC3 repertoire, and, in general, lentiviral Vif proteins specifically target the restricting APOBEC3 enzymes of each host species. However, simian immunodeficiency virus SIVmac239 Vif elicits a curiously wide range of APOBEC3 degradation capabilities that include degradation of several human APOBEC3s and even human APOBEC3B, a non-HIV-1-restricting APOBEC3 enzyme. To better understand the molecular determinants of the interaction between SIVmac239 Vif and human APOBEC3B, we analyzed an extensive series of mutants. We found that SIVmac239 Vif interacts with the N-terminal domain of human APOBEC3B and, interestingly, that this occurs within a structural region homologous to the HIV-1 Vif interaction surface of human APOBEC3G. An alanine scan of SIVmac239 Vif revealed several residues required for human APOBEC3B degradation activity. These residues overlap HIV-1 Vif surface residues that interact with human APOBEC3G and are distinct from those that engage APOBEC3F or APOBEC3H. Overall, these studies indicate that the molecular determinants of the functional interaction between human APOBEC3B and SIVmac239 Vif resemble those between human APOBEC3G and HIV-1 Vif. These studies contribute to the growing knowledge of the APOBEC-Vif interaction and may help guide future efforts to disrupt this interaction as an antiviral therapy or exploit the interaction as a novel strategy to inhibit APOBEC3B-dependent tumor evolution.IMPORTANCE Primate APOBEC3 proteins provide innate immunity against retroviruses such as HIV and SIV. HIV-1, the primary cause of AIDS, utilizes its Vif protein to specifically counteract restrictive human APOBEC3 enzymes. SIVmac239 Vif exhibits a much wider range of anti-APOBEC3 activities that includes several rhesus macaque enzymes and extends to multiple proteins in the human APOBEC3 repertoire, including APOBEC3B. Understanding the molecular determinants of the interaction between SIVmac239 Vif and human APOBEC3B adds to existing knowledge on the APOBEC3-Vif interaction and has potential to shed light on what processes may have shaped Vif functionality over evolutionary time. An intimate understanding of this interaction may also lead to a novel cancer therapy because, for instance, creating a derivative of SIVmac239 Vif that specifically targets human APOBEC3B could be used to suppress tumor genomic DNA mutagenesis by this enzyme, slow ongoing tumor evolution, and help prevent poor clinical outcomes.
Collapse
|
47
|
Salter JD, Smith HC. Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands. Trends Biochem Sci 2018; 43:606-622. [PMID: 29803538 PMCID: PMC6073885 DOI: 10.1016/j.tibs.2018.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022]
Abstract
The 11-member APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of zinc-dependent cytidine deaminases bind to RNA and single-stranded DNA (ssDNA) and, in specific contexts, modify select (deoxy)cytidines to (deoxy)uridines. In this review, we describe advances made through high-resolution co-crystal structures of APOBECs bound to mono- or oligonucleotides that reveal potential substrate-specific binding sites at the active site and non-sequence-specific nucleic acid binding sites distal to the active site. We also discuss the effect of APOBEC oligomerization on functionality. Future structural studies will need to address how ssDNA binding away from the active site may enhance catalysis and the mechanism by which RNA binding may modulate catalytic activity on ssDNA. APOBEC proteins catalyze deamination of cytidine or deoxycytidine in either a sequence-specific or semi-specific manner on either DNA or RNA. APOBECs each possess the cytidine deaminase core fold, but sequence and structural differences among loops surrounding the zinc-dependent active site impart differences in sequence-dependent target preferences, binding affinity, catalytic rate, and regulation of substrate access to the active site among the 11 family members. APOBECs also regulate the deamination reaction through additional nucleic acid substrate binding sites located within surface grooves or patches of positive electrostatic potential that are distal to the active site but may do so nonspecifically. Binding of nonsubstrate RNA and RNA-mediated oligomerization by APOBECs that deaminate ssDNA downregulates catalytic activity but also controls APOBEC subcellular or virion localization. The presence of a second, though noncatalytic, cytidine deaminase domain for some APOBECs and the ability of some APOBECs to oligomerize add additional molecular surfaces for positive or negative regulation of catalysis through nucleic acid binding.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA.
| | - Harold C Smith
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
48
|
Ziegler SJ, Liu C, Landau M, Buzovetsky O, Desimmie BA, Zhao Q, Sasaki T, Burdick RC, Pathak VK, Anderson KS, Xiong Y. Insights into DNA substrate selection by APOBEC3G from structural, biochemical, and functional studies. PLoS One 2018; 13:e0195048. [PMID: 29596531 PMCID: PMC5875850 DOI: 10.1371/journal.pone.0195048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/15/2018] [Indexed: 01/27/2023] Open
Abstract
Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3 (A3) proteins are a family of cytidine deaminases that catalyze the conversion of deoxycytidine (dC) to deoxyuridine (dU) in single-stranded DNA (ssDNA). A3 proteins act in the innate immune response to viral infection by mutating the viral ssDNA. One of the most well-studied human A3 family members is A3G, which is a potent inhibitor of HIV-1. Each A3 protein prefers a specific substrate sequence for catalysis-for example, A3G deaminates the third dC in the CCCA sequence motif. However, the interaction between A3G and ssDNA is difficult to characterize due to poor solution behavior of the full-length protein and loss of DNA affinity of the truncated protein. Here, we present a novel DNA-anchoring fusion strategy using the protection of telomeres protein 1 (Pot1) which has nanomolar affinity for ssDNA, with which we captured an A3G-ssDNA interaction. We crystallized a non-preferred adenine in the -1 nucleotide-binding pocket of A3G. The structure reveals a unique conformation of the catalytic site loops that sheds light onto how the enzyme scans substrate in the -1 pocket. Furthermore, our biochemistry and virology studies provide evidence that the nucleotide-binding pockets on A3G influence each other in selecting the preferred DNA substrate. Together, the results provide insights into the mechanism by which A3G selects and deaminates its preferred substrates and help define how A3 proteins are tailored to recognize specific DNA sequences. This knowledge contributes to a better understanding of the mechanism of DNA substrate selection by A3G, as well as A3G antiviral activity against HIV-1.
Collapse
Affiliation(s)
- Samantha J. Ziegler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Chang Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Mark Landau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Olga Buzovetsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Belete A. Desimmie
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Qi Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Tomoaki Sasaki
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ryan C. Burdick
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Karen S. Anderson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
49
|
Ito F, Yang H, Xiao X, Li SX, Wolfe A, Zirkle B, Arutiunian V, Chen XS. Understanding the Structure, Multimerization, Subcellular Localization and mC Selectivity of a Genomic Mutator and Anti-HIV Factor APOBEC3H. Sci Rep 2018; 8:3763. [PMID: 29491387 PMCID: PMC5830531 DOI: 10.1038/s41598-018-21955-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/27/2022] Open
Abstract
APOBEC3H (A3H) is a member of the APOBEC3 subfamily of DNA cytosine deaminases that are important for innate immune defense and have been implicated in cancer biogenesis. To understand the structural basis for A3H biochemical function, we determined a high-resolution structure of human A3H and performed extensive biochemical analysis. The 2.49 Å crystal structure reveals a uniquely long C-terminal helix 6 (h6), a disrupted β5 strand of the canonical five-stranded β-sheet core, and a long loop 1 around the Zn-active center. Mutation of a loop 7 residue, W115, disrupted the RNA-mediated dimerization of A3H yielding an RNA-free monomeric form that still possessed nucleic acid binding and deaminase activity. A3H expressed in HEK293T cells showed RNA dependent HMW complex formation and RNase A-dependent deaminase activity. A3H has a highly positively charged surface surrounding the Zn-active center, and multiple positively charged residues within this charged surface play an important role in the RNA-mediated HMW formation and deaminase inhibition. Furthermore, these positively charged residues affect subcellular localization of A3H between the nucleus and cytosol. Finally, we have identified multiple residues of loop 1 and 7 that contribute to the overall deaminase activity and the methylcytosine selectivity.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xiao Xiao
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck & Co., Inc, West Point, PA, USA
| | - Shu-Xing Li
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA
| | - Aaron Wolfe
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Brett Zirkle
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Vagan Arutiunian
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA. .,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA. .,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA. .,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
50
|
Pollpeter D, Parsons M, Sobala AE, Coxhead S, Lang RD, Bruns AM, Papaioannou S, McDonnell JM, Apolonia L, Chowdhury JA, Horvath CM, Malim MH. Deep sequencing of HIV-1 reverse transcripts reveals the multifaceted antiviral functions of APOBEC3G. Nat Microbiol 2018; 3:220-233. [PMID: 29158605 PMCID: PMC6014619 DOI: 10.1038/s41564-017-0063-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022]
Abstract
Following cell entry, the RNA genome of HIV-1 is reverse transcribed into double-stranded DNA that ultimately integrates into the host-cell genome to establish the provirus. These early phases of infection are notably vulnerable to suppression by a collection of cellular antiviral effectors, called restriction or resistance factors. The host antiviral protein APOBEC3G (A3G) antagonizes the early steps of HIV-1 infection through the combined effects of inhibiting viral cDNA production and cytidine-to-uridine-driven hypermutation of this cDNA. In seeking to address the underlying molecular mechanism for inhibited cDNA synthesis, we developed a deep sequencing strategy to characterize nascent reverse transcription products and their precise 3'-termini in HIV-1 infected T cells. Our results demonstrate site- and sequence-independent interference with reverse transcription, which requires the specific interaction of A3G with reverse transcriptase itself. This approach also established, contrary to current ideas, that cellular uracil base excision repair (UBER) enzymes target and cleave A3G-edited uridine-containing viral cDNA. Together, these findings yield further insights into the regulatory interplay between reverse transcriptase, A3G and cellular DNA repair machinery, and identify the suppression of HIV-1 reverse transcriptase by a directly interacting host protein as a new cell-mediated antiviral mechanism.
Collapse
Affiliation(s)
- Darja Pollpeter
- Department of Infectious Diseases, King's College London, London, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Andrew E Sobala
- Department of Infectious Diseases, King's College London, London, UK
| | - Sashika Coxhead
- Department of Infectious Diseases, King's College London, London, UK
| | - Rupert D Lang
- Department of Infectious Diseases, King's College London, London, UK
| | - Annie M Bruns
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - James M McDonnell
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Luis Apolonia
- Department of Infectious Diseases, King's College London, London, UK
| | - Jamil A Chowdhury
- Department of Infectious Diseases, King's College London, London, UK
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Michael H Malim
- Department of Infectious Diseases, King's College London, London, UK.
| |
Collapse
|