1
|
Pijning AE, Hogg PJ. Disulfide bond control of platelet αIIbβ3 integrin. Thromb Res 2025; 250:109320. [PMID: 40300222 DOI: 10.1016/j.thromres.2025.109320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/25/2025] [Accepted: 04/15/2025] [Indexed: 05/01/2025]
Abstract
The platelet αIIbβ3 integrin is the most abundant platelet receptor, orchestrating platelet adhesion, activation, and mechano-sensing during hemostasis and thrombosis. Disulfide bonds are the covalent links between the sulfur atoms of two cysteine residues and their role in the functioning of αIIbβ3 has been a topic of investigation for over two decades. The advent of differential cysteine alkylation using isotopic alkylators and mass spectrometry has led to the identification of multiple partially disulfide-bonded states of αIIbβ3 that are constitutively produced by megakaryocytes and reside in the platelet surface membrane, and an allosteric disulfide that is cleaved in the mature receptor to control function. One of the disulfide-bonded integrin states has reduced capacity due to particular clustering, internalisation, and recycling dynamics and lower avidity for fibrinogen, suggesting that other states may also have specific properties. Cleavage of an allosteric disulfide bond in the activated integrin uncouples the receptor from its ligand, and it is likely that other allosteric disulfides are yet to be identified. This review presents the current knowledge of the role of specific disulfide bonds in the regulation of αIIbβ3 integrin and perspectives on the future.
Collapse
Affiliation(s)
- Aster E Pijning
- School of Life Sciences, University of Technology Sydney and Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Philip J Hogg
- School of Life Sciences, University of Technology Sydney and Centenary Institute, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Jiang L, Yuan C, Flaumenhaft R, Huang M. Recent advances in vascular thiol isomerases: insights into structures, functions in thrombosis and antithrombotic inhibitor development. Thromb J 2025; 23:16. [PMID: 39962537 PMCID: PMC11834194 DOI: 10.1186/s12959-025-00699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
Vascular thiol isomerases (VTIs) encompass proteins such as protein disulfide isomerase (PDI), endoplasmic reticulum protein 5 (ERp5), ERp46, ERp57, ERp72, thioredoxin-related transmembrane protein 1 (TMX1), and TMX4, and play pivotal functions in platelet aggregation and formation of thrombosis. Investigating vascular thiol isomerases, their substrates implicated in thrombosis, the underlying regulatory mechanisms, and the development of inhibitors targeting these enzymes represents a rapidly advancing frontier within vascular biology. In this review, we summarize the structural characteristics and functional attributes of VTIs, describe the associations between these enzymes and thrombosis, and outline the progress in developing inhibitors of VTIs for potential antithrombotic therapeutic applications.
Collapse
Affiliation(s)
- Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
- National and Local Joint Engineering Research Center On Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, 350116, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
- National and Local Joint Engineering Research Center On Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, 350116, China
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian, 350108, China.
- National and Local Joint Engineering Research Center On Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
3
|
Yang M, Hancco Zirena I, Kennedy QP, Patel A, Merrill-Skoloff G, Sack KD, Fulcidor E, Scartelli C, Guo S, Bekendam RH, Owegie OC, Xie H, Ghiran IC, Levy O, Lin L, Flaumenhaft R. Galloylated polyphenols represent a new class of antithrombotic agents with broad activity against thiol isomerases. J Thromb Haemost 2025:S1538-7836(25)00067-4. [PMID: 39952360 DOI: 10.1016/j.jtha.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Both protein disulfide isomerase (PDI) and SARS-CoV-2 main protease (Mpro) are reliant on active-site cysteines stabilized by adjacent amino acids. We reasoned that redox-active compounds might interfere with both enzymes by acting in the vicinity of these reactive sites thus interfering with viral replication and thrombus formation. Our previous screen of 1019 flavonoids identified several compounds that inhibit SARS-CoV-2 Mpro. OBJECTIVES Our goal was to identify phytochemical inhibitors of SARS-CoV-2 Mpro that block thiol isomerases and are antithrombotic. METHODS PDI, ERp57, ERp5, ERp46, isolated domains of PDI, and PDI mutants were used to evaluate the effects of galloylated polyphenols and their analogs on thiol isomerase reductase activity. Laser-injury and ferric chloride models of thrombus formation and a tail snip assay were used to assess the effects on thrombosis and hemostasis. RESULTS Pinocembrin 7-O-(3''-galloyl-4'',6''-(S)-hexahydroxydiphenoyl)-β-D-glucose (PGHG) inhibited both PDI and SARS-CoV-2 Mpro. Evaluation of isolated PDI fragments and active-site cysteine mutants showed that PGHG acts at the catalytic domains. Structure-function studies showed that PGHG interacts with histidines within the Cys53-Gly54-His55-Cys56 motifs of PDI. PGHG was equally active against other thiol isomerases, including ERp57, ERp5, ERp72, and ERp46. Screening numerous galloylated polyphenols demonstrated a class effect on thiol isomerase inhibition. Structure-activity relationships indicated that the galloyl moieties within large galloylated polyphenols were important for their inhibitory activity. PGHG and punicalagin were antithrombotic in murine models of thrombus formation. CONCLUSIONS Galloylated polyphenols represent a large class of antithrombotic compounds with broad activity against thiol isomerases. Many of these compounds also inhibit SARS-CoV-2 Mpro and viral replication.
Collapse
Affiliation(s)
- Moua Yang
- Bloodworks Northwest Research Institute, Seattle, Washington, USA; Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA; Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| | - Ivan Hancco Zirena
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Quinn P Kennedy
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Anika Patel
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kelsey D Sack
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Emmy Fulcidor
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Christina Scartelli
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Shihui Guo
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Roelof H Bekendam
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Osamede C Owegie
- Bloodworks Northwest Research Institute, Seattle, Washington, USA
| | - Huanzhang Xie
- College of Materials and Chemical Engineering, Minjiang University, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Fuzhou, China
| | - Ionita C Ghiran
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Oren Levy
- Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lin Lin
- College of Materials and Chemical Engineering, Minjiang University, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Fuzhou, China
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Chu JC, Tsai KC, Wang TY, Chen TY, Tsai JY, Lee T, Lin MH, Hsieh YSY, Wu CC, Huang WJ. Discovery and biological evaluation of potent 2-trifluoromethyl acrylamide warhead-containing inhibitors of protein disulfide isomerase. Eur J Med Chem 2025; 283:117169. [PMID: 39708767 DOI: 10.1016/j.ejmech.2024.117169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Protein disulfide isomerase (PDI) regulates multiple protein functions by catalyzing the oxidation, reduction, and isomerization of disulfide bonds. The enzyme is considered a potential target for treating thrombosis. We previously developed a potent PDI inhibitor, CPD, which contains the propiolamide as a warhead targeting cysteine residue in PDI. To address its issues with undesirable off-target effects and weak metabolic stability, we replaced the propiolamide group with various electrophiles. Among these, compound 2d, which contains 2-trifluoromethyl acrylamide exhibited potent PDI inhibition compared to the reference PACMA31. Further structural optimization of compound 2d led to a novel series of 2-trifluoromethyl acrylamide derivatives. Several of these compounds displayed substantially improved enzyme inhibition. Notably, compound 14d demonstrated the strongest inhibition against PDI, with an IC50 value of 0.48 ± 0.004 μM. Additionally, compound 14d was found to exhibit a reversible binding mode with PDI enzyme. Further biological evaluations show that 14d suppressed platelet aggregation and thrombus formation by attenuating GPIIb/IIIa activation without significantly causing cytotoxicity. Altogether, these findings suggest PDI inhibitors could be a potential strategy for anti-thrombosis.
Collapse
Affiliation(s)
- Jung-Chun Chu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Wang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Yin Chen
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ju-Ying Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tien Lee
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yves S Y Hsieh
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, SE-10691, Sweden
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Ponzar N, Chinnaraj M, Pagotto A, De Filippis V, Flaumenhaft R, Pozzi N. Mechanistic basis of activation and inhibition of protein disulfide isomerase by allosteric antithrombotic compounds. J Thromb Haemost 2025; 23:577-587. [PMID: 39454880 PMCID: PMC11786983 DOI: 10.1016/j.jtha.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Protein disulfide isomerase (PDI) is a promising target for combating thrombosis. Extensive research over the past decade has identified numerous PDI-targeting compounds. However, limited information exists regarding how these compounds control PDI activity, which complicates further development. OBJECTIVES To define the mechanism of action of 2 allosteric antithrombotic compounds of therapeutic interest, quercetin-3-O-rutinoside and bepristat-2a. METHODS A multipronged approach that integrates single-molecule spectroscopy, steady-state kinetics, single-turnover kinetics, and site-specific mutagenesis. RESULTS PDI is a thiol isomerase consisting of 2 catalytic a domains and 2 inactive b domains arranged in the order a-b-b'-a'. The active sites CGHC are located in the a and a' domains. The binding site of quercetin-3-O-rutinoside and bepristat-2a is in the b' domain. Using a library of 9 Förster resonance energy transfer sensors, we showed that quercetin-3-O-rutinoside and bepristat-2a globally alter PDI structure and dynamics, leading to ligand-specific modifications of its shape and reorientation of the active sites. Combined with enzyme kinetics and mutagenesis of the active sites, Förster resonance energy transfer data reveal that binding of quercetin-3-O-rutinoside results in a twisted enzyme with reduced affinity for the substrate. In contrast, bepristat-2a promotes a more compact conformation of PDI, in which a greater enzymatic activity is achieved by accelerating the nucleophilic step of the a domain, leading to faster formation of the covalent enzyme-substrate complex. CONCLUSION This work reveals the mechanistic basis underlying PDI regulation by antithrombotic compounds quercetin-3-O-rutinoside and bepristat-2a and points to novel strategies for furthering the development of PDI-targeting compounds into drugs.
Collapse
Affiliation(s)
- Nathan Ponzar
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Mathivanan Chinnaraj
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Anna Pagotto
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Padua, Italy
| | - Vincenzo De Filippis
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Padua, Italy
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
6
|
Nie Q, Yang J, Zhou X, Li N, Zhang J. The Role of Protein Disulfide Isomerase Inhibitors in Cancer Therapy. ChemMedChem 2025; 20:e202400590. [PMID: 39319369 DOI: 10.1002/cmdc.202400590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Protein disulfide isomerase (PDI) is a member of the mercaptan isomerase family, primarily located in the endoplasmic reticulum (ER). At least 21 PDI family members have been identified. PDI plays a key role in protein folding, correcting misfolded proteins, and catalyzing disulfide bond formation, rearrangement, and breaking. It also acts as a molecular chaperone. Dysregulation of PDI activity is thus linked to diseases such as cancer, infections, immune disorders, thrombosis, neurodegenerative diseases, and metabolic disorders. In particular, elevated intracellular PDI levels can enhance cancer cell proliferation, metastasis, and invasion, making it a potential cancer marker. Cancer cells require extensive protein synthesis, with disulfide bond formation by PDI being a critical producer. Thus, cancer cells have higher PDI levels than normal cells. Targeting PDI can induce ER stress and activate the Unfolded Protein Response (UPR) pathway, leading to cancer cell apoptosis. This review discusses the structure and function of PDI, PDI inhibitors in cancer therapy, and the limitations of current inhibitors, proposing especially future directions for developing new PDI inhibitors.
Collapse
Affiliation(s)
- Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Junwei Yang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Na Li
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
7
|
Gaspar RS, Silva França ÁR, Oliveira PVS, Silva Diniz-Filho JF, Teixeira L, Valadão IC, Debbas V, Costa Dos Santos C, Massafera MP, Bustos SO, Rebelo Alencar LM, Ronsein GE, Laurindo FRM. Endothelial protein disulfide isomerase A1 enhances membrane stiffness and platelet-endothelium interaction in hyperglycemia via SLC3A2 and LAMC1. J Thromb Haemost 2024; 22:3305-3321. [PMID: 39128656 DOI: 10.1016/j.jtha.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Diabetes carries an increased risk of cardiovascular disease and thromboembolic events. Upon endothelial dysfunction, platelets bind to endothelial cells to precipitate thrombus formation; however, it is unclear which surface proteins regulate platelet-endothelium interaction. We and others have shown that peri/epicellular protein disulfide isomerase A1 (pecPDI) influences the adhesion and migration of vascular cells. OBJECTIVES We investigated whether pecPDI regulates adhesion-related molecules on the surface of endothelial cells and platelets that influence the binding of these cells in hyperglycemia. METHODS Immunofluorescence was used to assess platelet-endothelium interaction in vitro, cytoskeleton reorganization, and focal adhesions. Hydrogen peroxide production was assessed via Amplex Red assays (ThermoFisher Scientific). Cell biophysics was assessed using atomic force microscopy. Secreted proteins of interest were identified through proteomics (secretomics), and targets were knocked down using small interfering RNA. Protein disulfide isomerase A1 (PDI) contribution was assessed using whole-cell PDI or pecPDI inhibitors or small interfering RNA. RESULTS Platelets of healthy donors adhered more onto hyperglycemic human umbilical vein endothelial cells (HUVECs). Endothelial, but not platelet, pecPDI regulated this effect. Hyperglycemic HUVECs showed marked cytoskeleton reorganization, increased H2O2 production, and elongated focal adhesions. Indeed, hyperglycemic HUVECs were stiffer compared with normoglycemic cells. PDI and pecPDI inhibition reversed the abovementioned processes in hyperglycemic cells. A secretomics analysis revealed 8 proteins secreted in a PDI-dependent manner by hyperglycemic cells. Among these, we showed that genetic deletion of LAMC1 and SLC3A2 decreased platelet-endothelium interaction and did not potentiate the effects of PDI inhibitors. CONCLUSION Endothelial pecPDI regulates platelet-endothelium interaction in hyperglycemia through adhesion-related proteins and alterations in endothelial membrane biophysics.
Collapse
Affiliation(s)
- Renato S Gaspar
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | - Álefe Roger Silva França
- Federal University of Maranhão, Physics Department, Laboratory of Biophysics and Nanosystems, São Luís, Brazil
| | - Percillia Victoria Santos Oliveira
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Livia Teixeira
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Iuri Cordeiro Valadão
- Laboratorio de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Victor Debbas
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Clenilton Costa Dos Santos
- Federal University of Maranhão, Physics Department, Laboratory of Biophysics and Nanosystems, São Luís, Brazil
| | | | - Silvina Odete Bustos
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Francisco R M Laurindo
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Zhang B, Hong D, Qian H, Ma K, Zhu L, Jiang L, Ge J. Unveiling a new strategy for PDIA1 inhibition: Integration of activity-based probes profiling and targeted degradation. Bioorg Chem 2024; 150:107585. [PMID: 38917491 DOI: 10.1016/j.bioorg.2024.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
The overexpression of PDIA1 in cancer has spurred the quest for effective inhibitors. However, existing inhibitors often bind to only one active site, limiting their efficacy. In our study, we developed a PROTAC-mimetic probe dPA by combining PACMA31 (PA) analogs with cereblon-directed pomalidomide. Through protein profiling and analysis, we confirmed dPA's specific interaction with PDIA1's active site cysteines. We further synthesized PROTAC variants with a thiophene ring and various linkers to enhance degradation efficiency. Notably, H4, featuring a PEG linker, induced significant PDIA1 degradation and inhibited cancer cell proliferation similarly to PA. The biosafety profile of H4 is comparable to that of PA, highlighting its potential for further development in cancer therapy. Our findings highlight a novel strategy for PDIA1 inhibition via targeted degradation, offering promising prospects in cancer therapeutics. This approach may overcome limitations of conventional inhibitors, presenting new avenues for advancing anti-cancer interventions.
Collapse
Affiliation(s)
- Bei Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dawei Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hujuan Qian
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Keqing Ma
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liquan Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; General Surgery, Department of Breast Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Linye Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
9
|
Melo EP, El-Guendouz S, Correia C, Teodoro F, Lopes C, Martel PJ. A Conformational-Dependent Interdomain Redox Relay at the Core of Protein Disulfide Isomerase Activity. Antioxid Redox Signal 2024; 41:181-200. [PMID: 38497737 DOI: 10.1089/ars.2023.0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Aims: Protein disulfide isomerases (PDIs) are a family of chaperones resident in the endoplasmic reticulum (ER). In addition to holdase function, some members catalyze disulfide bond formation and isomerization, a crucial step for native folding and prevention of aggregation of misfolded proteins. PDIs are characterized by an arrangement of thioredoxin-like domains, with the canonical protein disulfide isomerase A1 (PDIA1) organized as four thioredoxin-like domains forming a horseshoe with two active sites, a and a', at the extremities. We aimed to clarify important aspects underlying the catalytic cycle of PDIA1 in the context of the full pathways of oxidative protein folding operating in the ER. Results: Using two fluorescent redox sensors, redox green fluorescent protein 2 (roGFP2) and HyPer (circularly permutated yellow fluorescent protein containing the regulatory domain of the H2O2-sensing protein OxyR), either unfolded or native, as client substrates, we identified the N-terminal a active site of PDIA1 as the main oxidant of thiols. From there, electrons can flow to the C-terminal a' active site, with the redox-dependent conformational flexibility of PDIA1 allowing the formation of an interdomain disulfide bond. The a' active site then acts as a crossing point to redirect electrons to ER downstream oxidases or back to client proteins to reduce scrambled disulfide bonds. Innovation and Conclusions: The two active sites of PDIA1 work cooperatively as an interdomain redox relay mechanism that explains PDIA1 oxidative activity to form native disulfides and PDIA1 reductase activity to resolve scrambled disulfides. This mechanism suggests a new rationale for shutting down oxidative protein folding under ER redox imbalance. Whether it applies to physiological substrates in cells remains to be shown.
Collapse
Affiliation(s)
- Eduardo P Melo
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | | | - Cátia Correia
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | - Fernando Teodoro
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | - Carlos Lopes
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | | |
Collapse
|
10
|
Kuramochi T, Yamashita Y, Arai K, Kanemura S, Muraoka T, Okumura M. Boosting the enzymatic activity of CxxC motif-containing PDI family members. Chem Commun (Camb) 2024; 60:6134-6137. [PMID: 38829522 DOI: 10.1039/d4cc01712a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Compounds harboring high acidity and oxidizability of thiol groups permit tuning the redox equilibrium constants of CxxC sites of members of the protein disulphide isomerase (PDI) family and thus can be used to accelerate folding processes and increase the production of native proteins by minimal loading in comparison to glutathione.
Collapse
Affiliation(s)
- Tsubura Kuramochi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Yukino Yamashita
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
- Institute of Advanced Biosciences, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakato, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
11
|
Khan A, Siddiqui U, Fatima S, Rehman A, Jairajpuri M. Protein disulfide isomerase uses thrombin-antithrombin complex as a template to bind its target protein and alter the blood coagulation rates. Biosci Rep 2024; 44:BSR20231540. [PMID: 38660763 PMCID: PMC11096647 DOI: 10.1042/bsr20231540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
During inflammation and situations of cellular stress protein disulfide isomerase (PDI) is released in the blood plasma from the platelet and endothelial cells to influence thrombosis. The addition of exogenous PDI makes the environment pro-thrombotic by inducing disulfide bond formation in specific plasma protein targets like vitronectin, factor V, and factor XI. However, the mechanistic details of PDI interaction with its target remain largely unknown. A decrease in the coagulation time was detected in activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) on addition of the purified recombinant PDI (175 nM). The coagulation time can be controlled using an activator (quercetin penta sulfate, QPS) or an inhibitor (quercetin 3-rutinoside, Q3R) of PDI activity. Likewise, the PDI variants that increase the PDI activity (H399R) decrease, and the variant with low activity (C53A) increases the blood coagulation time. An SDS-PAGE and Western blot analysis showed that the PDI does not form a stable complex with either thrombin or antithrombin (ATIII) but it uses the ATIII-thrombin complex as a template to bind and maintain its activity. A complete inhibition of thrombin activity on the formation of ATIII-thrombin-PDI complex, and the complex-bound PDI-catalyzed disulfide bond formation of the target proteins may control the pro- and anti-thrombotic role of PDI.
Collapse
Affiliation(s)
- Abdul Burhan Khan
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Urfi Siddiqui
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sana Fatima
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ahmed Abdur Rehman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | |
Collapse
|
12
|
Young N, Gui Z, Mustafa S, Papa K, Jessop E, Ruddell E, Bevington L, Quinlan RA, Benham AM, Goldberg MW, Obara B, Karakesisoglou I. Inhibition of PDIs Downregulates Core LINC Complex Proteins, Promoting the Invasiveness of MDA-MB-231 Breast Cancer Cells in Confined Spaces In Vitro. Cells 2024; 13:906. [PMID: 38891038 PMCID: PMC11172124 DOI: 10.3390/cells13110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Eukaryotic cells tether the nucleoskeleton to the cytoskeleton via a conserved molecular bridge, called the LINC complex. The core of the LINC complex comprises SUN-domain and KASH-domain proteins that directly associate within the nuclear envelope lumen. Intra- and inter-chain disulphide bonds, along with KASH-domain protein interactions, both contribute to the tertiary and quaternary structure of vertebrate SUN-domain proteins. The significance of these bonds and the role of PDIs (protein disulphide isomerases) in LINC complex biology remains unclear. Reducing and non-reducing SDS-PAGE analyses revealed a prevalence of SUN2 homodimers in non-tumorigenic breast epithelia MCF10A cells, but not in the invasive triple-negative breast cancer MDA-MB-231 cell line. Furthermore, super-resolution microscopy revealed SUN2 staining alterations in MCF10A, but not in MDA-MB-231 nuclei, upon reducing agent exposure. While PDIA1 levels were similar in both cell lines, pharmacological inhibition of PDI activity in MDA-MB-231 cells led to SUN-domain protein down-regulation, as well as Nesprin-2 displacement from the nucleus. This inhibition also caused changes in perinuclear cytoskeletal architecture and lamin downregulation, and increased the invasiveness of PDI-inhibited MDA-MB-231 cells in space-restrictive in vitro environments, compared to untreated cells. These results emphasise the key roles of PDIs in regulating LINC complex biology, cellular architecture, biomechanics, and invasion.
Collapse
Affiliation(s)
- Natalie Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Zizhao Gui
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Suleiman Mustafa
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK; (S.M.); (B.O.)
| | - Kleopatra Papa
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Emily Jessop
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Elizabeth Ruddell
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Laura Bevington
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Roy A. Quinlan
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Adam M. Benham
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Martin W. Goldberg
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| | - Boguslaw Obara
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK; (S.M.); (B.O.)
| | - Iakowos Karakesisoglou
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (N.Y.); (Z.G.); (K.P.); (E.J.); (E.R.); (L.B.); (R.A.Q.); (A.M.B.); (M.W.G.)
| |
Collapse
|
13
|
Lv K, Chen S, Xu X, Chiu J, Wang HJ, Han Y, Yang X, Bowley SR, Wang H, Tang Z, Tang N, Yang A, Yang S, Wang J, Jin S, Wu Y, Schmaier AH, Ju LA, Hogg PJ, Fang C. Protein disulfide isomerase cleaves allosteric disulfides in histidine-rich glycoprotein to regulate thrombosis. Nat Commun 2024; 15:3129. [PMID: 38605050 PMCID: PMC11009332 DOI: 10.1038/s41467-024-47493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
The essence of difference between hemostasis and thrombosis is that the clotting reaction is a highly fine-tuned process. Vascular protein disulfide isomerase (PDI) represents a critical mechanism regulating the functions of hemostatic proteins. Herein we show that histidine-rich glycoprotein (HRG) is a substrate of PDI. Reduction of HRG by PDI enhances the procoagulant and anticoagulant activities of HRG by neutralization of endothelial heparan sulfate (HS) and inhibition of factor XII (FXIIa) activity, respectively. Murine HRG deficiency (Hrg-/-) leads to delayed onset but enhanced formation of thrombus compared to WT. However, in the combined FXII deficiency (F12-/-) and HRG deficiency (by siRNA or Hrg-/-), there is further thrombosis reduction compared to F12-/- alone, confirming HRG's procoagulant activity independent of FXIIa. Mutation of target disulfides of PDI leads to a gain-of-function mutant of HRG that promotes its activities during coagulation. Thus, PDI-HRG pathway fine-tunes thrombosis by promoting its rapid initiation via neutralization of HS and preventing excessive propagation via inhibition of FXIIa.
Collapse
Affiliation(s)
- Keyu Lv
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shuai Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Pharmacology, School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Xulin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, Hubei, China
- Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Joyce Chiu
- The Centenary Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Haoqing J Wang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaodan Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Sheryl R Bowley
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Hao Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhaoming Tang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ning Tang
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Aizhen Yang
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical Collage, Huazhong University of Science and Technology, and the Key Laboratory of Oral and Maxillofacial Development and Regeneration of Hubei Province, Wuhan, 430030, Hubei, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yi Wu
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Alvin H Schmaier
- Department of Medicine, Hematology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lining A Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Philip J Hogg
- The Centenary Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, Hubei, China.
- Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
14
|
Kij A, Bar A, Czyzynska-Cichon I, Przyborowski K, Proniewski B, Mateuszuk L, Kurylowicz Z, Jasztal A, Buczek E, Kurpinska A, Suraj-Prazmowska J, Marczyk B, Matyjaszczyk-Gwarda K, Daiber A, Oelze M, Walczak M, Chlopicki S. Vascular protein disulfide isomerase A1 mediates endothelial dysfunction induced by angiotensin II in mice. Acta Physiol (Oxf) 2024; 240:e14116. [PMID: 38400621 DOI: 10.1111/apha.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
AIM Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice. METHODS Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat. Endothelial function was assessed in vivo with magnetic resonance imaging and ex vivo with a myography, while arterial stiffness was measured as pulse wave velocity. Nitric oxide (NO) bioavailability was measured in the aorta (spin-trapping electron paramagnetic resonance) and plasma (NO2 - and NO3 - levels). Oxidative stress, eNOS uncoupling (DHE-based aorta staining), and thrombin activity (thrombin-antithrombin complex; calibrated automated thrombography) were evaluated. RESULTS The inhibition of PDIA1 by bepristat in Ang II-treated mice prevented the impairment of NO-dependent vasodilation in the aorta as evidenced by the response to acetylcholine in vivo, increased systemic NO bioavailability and the aortic NO production, and decreased vascular stiffness. Bepristat's effect on NO-dependent function was recapitulated ex vivo in Ang II-induced endothelial dysfunction in isolated aorta. Furthermore, bepristat diminished the Ang II-induced eNOS uncoupling and overproduction of ROS without affecting thrombin activity. CONCLUSION In Ang II-treated mice, the inhibition of PDIA1 normalized the NO-ROS balance, prevented endothelial eNOS uncoupling, and, thereby, improved vascular function. These results indicate the importance of vascular PDIA1 in regulating endothelial function, but further studies are needed to elucidate the details of the mechanisms involved.
Collapse
Affiliation(s)
- Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | | | - Andreas Daiber
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Maria Walczak
- Department of Toxicology, Jagiellonian University Medical College, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
15
|
Xie X, Zhou Y, Tang Z, Yang X, Lian Q, Liu J, Yu B, Liu X. Mudanpioside C Discovered from Paeonia suffruticosa Andr. Acts as a Protein Disulfide Isomerase Inhibitor with Antithrombotic Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6265-6275. [PMID: 38487839 DOI: 10.1021/acs.jafc.3c08380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Paeonia suffruticosa Andr. is a well-known landscape plant worldwide and also holds significant importance in China due to its medicinal and dietary properties. Previous studies have found that Cortex Moutan (CM), the dried root bark of P. suffruticosa, showed antiplatelet and cardioprotective effects, although the underlying mechanism and active compounds remain to be revealed. In this study, protein disulfide isomerase (PDI) inhibitors in CM were identified using a ligand-fishing method combined with the UHPLC-Q-TOF-MS assay. Further, their binding sites and inhibitory activities toward PDI were validated. The antiplatelet aggregation and antithrombotic activity were investigated. The results showed that two structurally similar compounds in CM were identified as the inhibitor for PDI with IC50 at 3.22 μM and 16.73 μM; among them Mudanpioside C (MC) is the most effective PDI inhibitor. Molecular docking, site-directed mutagenesis, and MST assay unequivocally demonstrated the specific binding of MC to the b'-x domain of PDI (Kd = 3.9 μM), acting as a potent PDI inhibitor by interacting with key amino acids K263, D292, and N298 within the b'-x domain. Meanwhile, MC could dose-dependently suppress collagen-induced platelet aggregation and interfere with platelet activation, adhesion, and spreading. Administration of MC can significantly inhibit thrombosis formation without disturbing hemostasis in mice. These findings present a promising perspective on the antithrombotic properties of CM and highlight the potential application of MC as lead compounds for targeting PDI in thrombosis therapy.
Collapse
Affiliation(s)
- Xingrong Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yatong Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ziqi Tang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xinping Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qi Lian
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jihua Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, People's Republic of China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, People's Republic of China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xiufeng Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, People's Republic of China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
16
|
Zhu Y, Wang L, Li J, Zhao Y, Yu X, Liu P, Deng X, Liu J, Yang F, Zhang Y, Yu J, Lai L, Wang C, Li Z, Wang L, Luo T. Photoaffinity labeling coupled with proteomics identify PDI-ADAM17 module is targeted by (-)-vinigrol to induce TNFR1 shedding and ameliorate rheumatoid arthritis in mice. Cell Chem Biol 2024; 31:452-464.e10. [PMID: 37913771 DOI: 10.1016/j.chembiol.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Various biological agents have been developed to target tumor necrosis factor alpha (TNF-α) and its receptor TNFR1 for the rheumatoid arthritis (RA) treatment, whereas small molecules modulating such cytokine receptors are rarely reported in comparison to the biologicals. Here, by revealing the mechanism of action of vinigrol, a diterpenoid natural product, we show that inhibition of the protein disulfide isomerase (PDI, PDIA1) by small molecules activates A disintegrin and metalloprotease 17 (ADAM17) and then leads to the TNFR1 shedding on mouse and human cell membranes. This small-molecule-induced receptor shedding not only effectively blocks the inflammatory response caused by TNF-α in cells, but also reduces the arthritic score and joint damage in the collagen-induced arthritis mouse model. Our study indicates that targeting the PDI-ADAM17 signaling module to regulate the shedding of cytokine receptors by the chemical approach constitutes a promising strategy for alleviating RA.
Collapse
Affiliation(s)
- Yinhua Zhu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Yuan Zhao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xuerong Yu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ping Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Deng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jingjing Liu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Yang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Yini Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Luhua Lai
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Chu Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Zhanguo Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China.
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Tuoping Luo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
17
|
Moretti AIS, Baksheeva VE, Roman AY, De Bessa TC, Devred F, Kovacic H, Tsvetkov PO. Exploring the Influence of Zinc Ions on the Conformational Stability and Activity of Protein Disulfide Isomerase. Int J Mol Sci 2024; 25:2095. [PMID: 38396772 PMCID: PMC10889200 DOI: 10.3390/ijms25042095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The interplay between metal ion binding and the activity of thiol proteins, particularly within the protein disulfide isomerase family, remains an area of active investigation due to the critical role that these proteins play in many vital processes. This research investigates the interaction between recombinant human PDIA1 and zinc ions, focusing on the subsequent implications for PDIA1's conformational stability and enzymatic activity. Employing isothermal titration calorimetry and differential scanning calorimetry, we systematically compared the zinc binding capabilities of both oxidized and reduced forms of PDIA1 and assessed the structural consequences of this interaction. Our results demonstrate that PDIA1 can bind zinc both in reduced and oxidized states, but with significantly different stoichiometry and more pronounced conformational effects in the reduced form of PDIA1. Furthermore, zinc binding was observed to inhibit the catalytic activity of reduced-PDIA1, likely due to induced alterations in its conformation. These findings unveil a potential regulatory mechanism in PDIA1, wherein metal ion binding under reductive conditions modulates its activity. Our study highlights the potential role of zinc in regulating the catalytic function of PDIA1 through conformational modulation, suggesting a nuanced interplay between metal binding and protein stability in the broader context of cellular redox regulation.
Collapse
Affiliation(s)
- Ana Iochabel Soares Moretti
- Vascular Biology Laboratory (LIM64), School of Medicine, Heart Institute (InCor), Cardiopneumology Department, University of São Paulo, Campus Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Viktoria E. Baksheeva
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Andrei Yu. Roman
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Tiphany Coralie De Bessa
- Vascular Biology Laboratory (LIM64), School of Medicine, Heart Institute (InCor), Cardiopneumology Department, University of São Paulo, Campus Sao Paulo, Sao Paulo 05403-000, Brazil
| | - François Devred
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Hervé Kovacic
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Philipp O. Tsvetkov
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| |
Collapse
|
18
|
Gaspar RS, Laurindo FRM. Sulfenylation: an emerging element of the protein disulfide isomerase code for thrombosis. J Thromb Haemost 2023; 21:2054-2057. [PMID: 37468176 DOI: 10.1016/j.jtha.2023.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 07/21/2023]
Affiliation(s)
- Renato Simões Gaspar
- Laboratorio de Biologia Vascular, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Francisco Rafael Martins Laurindo
- Laboratorio de Biologia Vascular, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
19
|
Bekendam RH, Ravid K. Mechanisms of platelet activation in cancer-associated thrombosis: a focus on myeloproliferative neoplasms. Front Cell Dev Biol 2023; 11:1207395. [PMID: 37457287 PMCID: PMC10342211 DOI: 10.3389/fcell.2023.1207395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Platelets are anucleate blood cells that play key roles in thrombosis and hemostasis. Platelets are also effector cells in malignancy and are known to home into the microenvironment of cancers. As such, these cells provide central links between the hemostatic system, inflammation and cancer progression. Activation of platelets by cancers has been postulated to contribute to metastasis and progression of local tumor invasion. Similarly, cancer-activated platelets can increase the risk of development of both arterial and venous thrombosis; a major contributor to cancer-associated morbidity. Platelet granules secretion within the tumor environment or the plasma provide a rich source of potential biomarkers for prediction of thrombotic risk or tumor progression. In the case of myeloproliferative neoplasms (MPNs), which are characterized by clonal expansion of myeloid precursors and abnormal function and number of erythrocytes, leukocytes and platelets, patients suffer from thrombotic and hemorrhagic complications. The mechanisms driving this are likely multifactorial but remain poorly understood. Several mouse models developed to recapitulate MPN phenotype with one of the driving mutations, in JAK2 (JAK2V617F) or in calreticulin (CALR) or myeloproliferative leukemia virus oncogene receptor (MPL), have been studied for their thrombotic phenotype. Variability and discrepancies were identified within different disease models of MPN, emphasizing the complexity of increased risk of clotting and bleeding in these pathologies. Here, we review recent literature on the role of platelets in cancer-associated arterial and venous thrombosis and use MPN as case study to illustrate recent advances in experimental models of thrombosis in a malignant phenotype. We address major mechanisms of tumor-platelet communication leading to thrombosis and focus on the role of altered platelets in promoting thrombosis in MPN experimental models and patients with MPN. Recent identification of platelet-derived biomarkers of MPN-associated thrombosis is also reviewed, with potential therapeutic implications.
Collapse
Affiliation(s)
- Roelof H. Bekendam
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Katya Ravid
- Department of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
20
|
Luo S, Kong C, Zhao S, Tang X, Wang Y, Zhou X, Li R, Liu X, Tang X, Sun S, Xie W, Zhang ZR, Jing Q, Gu A, Chen F, Wang D, Wang H, Han Y, Xie L, Ji Y. Endothelial HDAC1-ZEB2-NuRD Complex Drives Aortic Aneurysm and Dissection Through Regulation of Protein S-Sulfhydration. Circulation 2023; 147:1382-1403. [PMID: 36951067 DOI: 10.1161/circulationaha.122.062743] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Aortic aneurysm and aortic dissection (AAD) are life-threatening vascular diseases, with endothelium being the primary target for AAD treatment. Protein S-sulfhydration is a newly discovered posttranslational modification whose role in AAD has not yet been defined. This study aims to investigate whether protein S-sulfhydration in the endothelium regulates AAD and its underlying mechanism. METHODS Protein S-sulfhydration in endothelial cells (ECs) during AAD was detected and hub genes regulating homeostasis of the endothelium were identified. Clinical data of patients with AAD and healthy controls were collected, and the level of the cystathionine γ lyase (CSE)/hydrogen sulfide (H2S) system in plasma and aortic tissue were determined. Mice with EC-specific CSE deletion or overexpression were generated, and the progression of AAD was determined. Unbiased proteomics and coimmunoprecipitation combined with mass spectrometry analysis were conducted to determine the upstream regulators of the CSE/H2S system and the findings were confirmed in transgenic mice. RESULTS Higher plasma H2S levels were associated with a lower risk of AAD, after adjustment for common risk factors. CSE was reduced in the endothelium of AAD mouse and aorta of patients with AAD. Protein S-sulfhydration was reduced in the endothelium during AAD and protein disulfide isomerase (PDI) was the main target. S-sulfhydration of PDI at Cys343 and Cys400 enhanced PDI activity and mitigated endoplasmic reticulum stress. EC-specific CSE deletion was exacerbated, and EC-specific overexpression of CSE alleviated the progression of AAD through regulating the S-sulfhydration of PDI. ZEB2 (zinc finger E-box binding homeobox 2) recruited the HDAC1-NuRD complex (histone deacetylase 1-nucleosome remodeling and deacetylase) to repress the transcription of CTH, the gene encoding CSE, and inhibited PDI S-sulfhydration. EC-specific HDAC1 deletion increased PDI S-sulfhydration and alleviated AAD. Increasing PDI S-sulfhydration with the H2S donor GYY4137 or pharmacologically inhibiting HDAC1 activity with entinostat alleviated the progression of AAD. CONCLUSIONS Decreased plasma H2S levels are associated with an increased risk of aortic dissection. The endothelial ZEB2-HDAC1-NuRD complex transcriptionally represses CTH, impairs PDI S-sulfhydration, and drives AAD. The regulation of this pathway effectively prevents AAD progression.
Collapse
Affiliation(s)
- Shanshan Luo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Chuiyu Kong
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Shuang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Xin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Yu Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Xuechun Zhou
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Rui Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Xingeng Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Xinlong Tang
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (Xinlong Tang, W.X., D.W.)
| | - Shixiu Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Wei Xie
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (Xinlong Tang, W.X., D.W.)
| | - Zhi-Ren Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin Medical University, Heilongjiang, China (Z.-R.Z., Y.J.)
- NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China (Z.-R.Z., Y.J.)
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China (Q.J.)
| | - Aihua Gu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Feng Chen
- Department of Forensic Medicine (F.C.), Nanjing Medical University, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (Xinlong Tang, W.X., D.W.)
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA (H.W.)
| | - Yi Han
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, China (Y.H.)
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin Medical University, Heilongjiang, China (Z.-R.Z., Y.J.)
- NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China (Z.-R.Z., Y.J.)
| |
Collapse
|
21
|
Gelzinis JA, Szahaj MK, Bekendam RH, Wurl SE, Pantos MM, Verbetsky CA, Dufresne A, Shea M, Howard KC, Tsodikov OV, Garneau-Tsodikova S, Zwicker JI, Kennedy DR. Targeting thiol isomerase activity with zafirlukast to treat ovarian cancer from the bench to clinic. FASEB J 2023; 37:e22914. [PMID: 37043381 PMCID: PMC10360043 DOI: 10.1096/fj.202201952r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023]
Abstract
Thiol isomerases, including PDI, ERp57, ERp5, and ERp72, play important and distinct roles in cancer progression, cancer cell signaling, and metastasis. We recently discovered that zafirlukast, an FDA-approved medication for asthma, is a pan-thiol isomerase inhibitor. Zafirlukast inhibited the growth of multiple cancer cell lines with an IC50 in the low micromolar range, while also inhibiting cellular thiol isomerase activity, EGFR activation, and downstream phosphorylation of Gab1. Zafirlukast also blocked the procoagulant activity of OVCAR8 cells by inhibiting tissue factor-dependent Factor Xa generation. In an ovarian cancer xenograft model, statistically significant differences in tumor size between control vs treated groups were observed by Day 18. Zafirlukast also significantly reduced the number and size of metastatic tumors found within the lungs of the mock-treated controls. When added to a chemotherapeutic regimen, zafirlukast significantly reduced growth, by 38% compared with the mice receiving only the chemotherapeutic treatment, and by 83% over untreated controls. Finally, we conducted a pilot clinical trial in women with tumor marker-only (CA-125) relapsed ovarian cancer, where the rate of rise of CA-125 was significantly reduced following treatment with zafirlukast, while no severe adverse events were reported. Thiol isomerase inhibition with zafirlukast represents a novel, well-tolerated therapeutic in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Justine A. Gelzinis
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, UK
| | - Melanie K. Szahaj
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA
| | - Roelof H. Bekendam
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Sienna E. Wurl
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA
| | - Megan M. Pantos
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA
| | - Christina A. Verbetsky
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA
| | - Alexandre Dufresne
- Baystate Research Facility, Baystate Medical Center and UMass Chan Medical School, Springfield, MA
| | - Meghan Shea
- Division of Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Kaitlind C. Howard
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536
| | - Jeffrey I. Zwicker
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- These authors contributed equally
| | - Daniel R. Kennedy
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, UK
- Department of Medicine, UMass Chan Medical School-Baystate, Springfield, MA
- These authors contributed equally
| |
Collapse
|
22
|
Chetot T, Serfaty X, Carret L, Kriznik A, Sophie-Rahuel-Clermont, Grand L, Jacolot M, Popowycz F, Benoit E, Lambert V, Lattard V. Splice variants of protein disulfide isomerase - identification, distribution and functional characterization in the rat. Biochim Biophys Acta Gen Subj 2023; 1867:130280. [PMID: 36423740 DOI: 10.1016/j.bbagen.2022.130280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Protein Disulfide Isomerase (PDI) enzyme is an emerging therapeutic target in oncology and hematology. Although PDI reductase activity has been studied with isolated fragments of the protein, natural structural variations affecting reductase activity have not been addressed. METHODS In this study, we discovered four coding splice variants of the Pdi pre-mRNA in rats. In vitro Michaelis constants and apparent maximum steady-state rate constants after purification and distribution in different rat tissues were determined. RESULTS The consensus sequence was found to be the most expressed splice variant while the second most expressed variant represents 15 to 35% of total Pdi mRNA. The third variant shows a quasi-null expression profile and the fourth was not quantifiable. The consensus sequence splice variant and the second splice variant are widely expressed (transcription level) in the liver and even more present in males. Measurements of the reductase activity of recombinant PDI indicate that the consensus sequence and third splice variant are fully active variants. The second most expressed variant, differing by a lack of signal peptide, was found active but less than the consensus sequence. GENERAL SIGNIFICANCE Our work emphasizes the importance of taking splice variants into account when studying PDI-like proteins to understand the full biological functionalities of PDI.
Collapse
Affiliation(s)
- Thomas Chetot
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Xavier Serfaty
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Léna Carret
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | | | | | - Lucie Grand
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 69621 Villeurbanne Cedex, France
| | - Maïwenn Jacolot
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 69621 Villeurbanne Cedex, France
| | - Florence Popowycz
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 69621 Villeurbanne Cedex, France
| | - Etienne Benoit
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Véronique Lambert
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Virginie Lattard
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France.
| |
Collapse
|
23
|
Mouawad R, Neamati N. Inhibition of Protein Disulfide Isomerase (PDIA1) Leads to Proteasome-Mediated Degradation of Ubiquitin-like PHD and RING Finger Domain-Containing Protein 1 (UHRF1) and Increased Sensitivity of Glioblastoma Cells to Topoisomerase II Inhibitors. ACS Pharmacol Transl Sci 2022; 6:100-114. [PMID: 36654750 PMCID: PMC9841782 DOI: 10.1021/acsptsci.2c00186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, and the prognosis remains poor with current available treatments. PDIA1 is considered a promising therapeutic target in GBM. In this study, we demonstrate that targeting PDIA1 results in increased GBM cell death by topoisomerase II (Top-II) inhibitors resulting in proteasome-mediated degradation of the oncogenic protein UHRF1. Combination of the PDIA1 inhibitor, bepristat-2a, produces strong synergy with doxorubicin, etoposide, and mitoxantrone in GBM and other cancer cell lines. Our bioinformatics analysis of multiple datasets revealed downregulation of UHRF1, upon PDIA1 inhibition. In addition, PDIA1 inhibition results in proteasome-mediated degradation of UHRF1 protein. Interestingly, treatment of GBM cells with bepristat-2a results in increased apoptosis and resistance to ferroptosis. Our findings emphasize the importance of PDIA1 as a therapeutic target in GBM and present a promising new therapeutic approach using Top-II inhibitors for GBM treatment.
Collapse
|
24
|
Inhibition of protein disulfide isomerase with PACMA-31 regulates monocyte tissue factor through transcriptional and posttranscriptional mechanisms. Thromb Res 2022; 220:48-59. [DOI: 10.1016/j.thromres.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
|
25
|
Functions and mechanisms of protein disulfide isomerase family in cancer emergence. Cell Biosci 2022; 12:129. [PMID: 35965326 PMCID: PMC9375924 DOI: 10.1186/s13578-022-00868-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multi-layered organelle that is essential for the synthesis, folding, and structural maturation of almost one-third of the cellular proteome. It houses several resident proteins for these functions including the 21 members of the protein disulfide isomerase (PDI) family. The signature of proteins belonging to this family is the presence of the thioredoxin domain which mediates the formation, and rearrangement of disulfide bonds of substrate proteins in the ER. This process is crucial not only for the proper folding of ER substrates but also for maintaining a balanced ER proteostasis. The inclusion of new PDI members with a wide variety of structural determinants, size and enzymatic activity has brought additional epitomes of how PDI functions. Notably, some of them do not carry the thioredoxin domain and others have roles outside the ER. This also reflects that PDIs may have specialized functions and their functions are not limited within the ER. Large-scale expression datasets of human clinical samples have identified that the expression of PDI members is elevated in pathophysiological states like cancer. Subsequent functional interrogations using structural, molecular, cellular, and animal models suggest that some PDI members support the survival, progression, and metastasis of several cancer types. Herein, we review recent research advances on PDIs, vis-à-vis their expression, functions, and molecular mechanisms in supporting cancer growth with special emphasis on the anterior gradient (AGR) subfamily. Last, we posit the relevance and therapeutic strategies in targeting the PDIs in cancer.
Collapse
|
26
|
Huynh AT, Nguyen TTN, Villegas CA, Montemorso S, Strauss B, Pearson RA, Graham JG, Oribello J, Suresh R, Lustig B, Wang N. Prediction and confirmation of a switch-like region within the N-terminal domain of hSIRT1. Biochem Biophys Rep 2022; 30:101275. [PMID: 35592613 PMCID: PMC9112024 DOI: 10.1016/j.bbrep.2022.101275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
Many proteins display conformational changes resulting from allosteric regulation. Often only a few residues are crucial in conveying these structural and functional allosteric changes. These regions that undergo a significant change in structure upon receiving an input signal, such as molecular recognition, are defined as switch-like regions. Identifying these key residues within switch-like regions can help elucidate the mechanism of allosteric regulation and provide guidance for synthetic regulation. In this study, we combine a novel computational workflow with biochemical methods to identify a switch-like region in the N-terminal domain of human SIRT1 (hSIRT1), a lysine deacetylase that plays important roles in regulating cellular pathways. Based on primary sequence, computational methods predicted a region between residues 186-193 in hSIRT1 to exhibit switch-like behavior. Mutations were then introduced in this region and the resulting mutants were tested for allosteric reactions to resveratrol, a known hSIRT1 allosteric regulator. After fine-tuning the mutations based on comparison of known secondary structures, we were able to pinpoint M193 as the residue essential for allosteric regulation, likely by communicating the allosteric signal. Mutation of this residue maintained enzyme activity but abolished allosteric regulation by resveratrol. Our findings suggest a method to predict switch-like regions in allosterically regulated enzymes based on the primary sequence. If further validated, this could be an efficient way to identify key residues in enzymes for therapeutic drug targeting and other applications.
Collapse
Affiliation(s)
- Angelina T. Huynh
- Department of Chemistry, San José State University, San José, California, 95192, USA
| | - Thi-Tina N. Nguyen
- Department of Biological Sciences, San José State University, San José, California, 95192, USA
| | - Carina A. Villegas
- Department of Biological Sciences, San José State University, San José, California, 95192, USA
| | - Saira Montemorso
- Department of Chemistry, San José State University, San José, California, 95192, USA
| | - Benjamin Strauss
- Department of Computer Science, San José State University, San José, California, 95192, USA
| | - Richard A. Pearson
- Department of Chemistry, San José State University, San José, California, 95192, USA
| | - Jason G. Graham
- Department of Biomedical, Chemical, and Materials Engineering, San José State University, San José, California, 95192, USA
| | - Jonathan Oribello
- Department of Chemistry, San José State University, San José, California, 95192, USA
| | - Rohit Suresh
- Department of Chemistry, San José State University, San José, California, 95192, USA
| | - Brooke Lustig
- Department of Chemistry, San José State University, San José, California, 95192, USA
| | - Ningkun Wang
- Department of Chemistry, San José State University, San José, California, 95192, USA
| |
Collapse
|
27
|
Liang C, Cai M, Xu Y, Fu W, Wu J, Liu Y, Liao X, Ning J, Li J, Huang M, Yuan C. Identification of Antithrombotic Natural Products Targeting the Major Substrate Binding Pocket of Protein Disulfide Isomerase. JOURNAL OF NATURAL PRODUCTS 2022; 85:1332-1339. [PMID: 35471830 DOI: 10.1021/acs.jnatprod.2c00080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein disulfide isomerase (PDI) is a vital oxidoreductase. Extracellular PDI promotes thrombus formation but does not affect physiological blood hemostasis. Inhibition of extracellular PDI has been demonstrated as a promising strategy for antithrombotic treatment. Herein, we focused on the major substrate binding site, a unique pocket in the PDI b' domain, and identified four natural products binding to PDI by combining virtual screening with tryptophan fluorescence-based assays against a customized natural product library. These hits all directly bound to the PDI-b' domain and inhibited the reductase activity of PDI. Among them, galangin showed the most prominent potency (5.9 μM) against PDI and as a broad-spectrum inhibitor for vascular thiol isomerases. In vivo studies manifested that galangin delayed the time of blood vessel occlusion in an electricity-induced mouse thrombosis model. Molecular docking and dynamics simulation further revealed that the hydroxyl-substituted benzopyrone moiety of galangin deeply inserted into the interface between the PDI-b' substrate-binding pocket and the a' domain. Together, these findings provide a potential antithrombotic drug candidate and demonstrate that the PDI b' domain is a critical domain for inhibitor development. Besides, we also report an innovative high-throughput screening method for the rapid discovery of PDI b' targeted inhibitors.
Collapse
Affiliation(s)
- Chenghui Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Meiqin Cai
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Yanyan Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Wei Fu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Yurong Liu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Xinyuan Liao
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Jiamin Ning
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| |
Collapse
|
28
|
Liao X, Zhuang X, Liang C, Li J, Flaumenhaft R, Yuan C, Huang M. Flavonoids as Protein Disulfide Isomerase Inhibitors: Key Molecular and Structural Features for the Interaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4475-4483. [PMID: 35377153 DOI: 10.1021/acs.jafc.1c07994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quercetin-3-rutinoside (rutin) is a bioflavonoid that is common in foods. The finding that quercetin-3-rutinoside inhibits protein disulfide isomerase (PDI) and potently blocks thrombosis in vivo has enabled the evaluation of PDI inhibition in multiple animal models of thrombus formation and has prompted clinical studies of PDI inhibition in thrombosis. Nonetheless, how quercetin-3-rutinoside blocks PDI activity remains an unanswered question. Combining NMR spectroscopy, site-directed mutagenesis, and biological assays, we identified H256 as the key residue for PDI interacting with quercetin-3-rutinoside. Quercetin-3-rutinoside inhibited the activity of PDI (WT) but not PDI (H256A). Molecular dynamic simulations indicated that the flavonoid skeleton, but not the rutinoside conjugate, is embedded in the major binding pocket on the b' domain. Among several quercetin-3-rutinoside analogues tested, only compounds with a phenoxyl group at position 7 showed direct binding to PDI, further supporting our molecular model. Studies using purified coagulation factors showed that quercetin-3-rutinoside inhibited the augmenting effects of PDI (WT), but not PDI (H256A), on tissue factor (TF) activity. Quercetin-3-rutinoside also inhibited chemotherapy-induced TF activity enhancement on endothelial cells. Together, our studies show that residue H256 in PDI and the phenoxyl group at position 7 in quercetin-3-rutinoside are essential for inhibition of PDI by quercetin-3-rutinoside. These results provide new insight into the molecular mechanism by which flavonoids block PDI activity.
Collapse
Affiliation(s)
- Xinyuan Liao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xingxing Zhuang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chenghui Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
29
|
Sachetto ATA, Miyamoto JG, Tashima AK, de Souza AO, Santoro ML. The Bioflavonoids Rutin and Rutin Succinate Neutralize the Toxins of B. jararaca Venom and Inhibit its Lethality. Front Pharmacol 2022; 13:828269. [PMID: 35264963 PMCID: PMC8899467 DOI: 10.3389/fphar.2022.828269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
The venom of the Brazilian pit viper Bothrops jararaca (BjV) is a complex mixture of molecules, and snake venom metalloproteinases (SVMP) and serine proteinases (SVSP) are the most abundant protein families found therein. Toxins present in BjV trigger most of the deleterious disturbances in hemostasis observed in snakebites, i.e., thrombocytopenia, hypofibrinogenemia and bleedings. The treatment of patients bitten by snakes still poses challenges and the bioflavonoid rutin has already been shown to improve hemostasis in an experimental model of snakebite envenomation. However, rutin is poorly soluble in water; in this study, it was succinylated to generate its water-soluble form, rutin succinate (RS), which was analyzed comparatively regarding the chemical structure and characteristic features of rutin. Biological activities of rutin and RS were compared on hemostatic parameters, and against toxic activities of crude BjV in vitro. In vivo, C57BL/6 mice were injected i.p. with either BjV alone or pre-incubated with rutin, RS or 1,10-phenanthroline (o-phe, an SVMP inhibitor), and the survival rates and hemostatic parameters were analyzed 48 h after envenomation. RS showed the characteristic activities described for rutin - i.e., antioxidant and inhibitor of protein disulfide isomerase - but also prolonged the clotting time of fibrinogen and plasma in vitro. Differently from rutin, RS inhibited typical proteolytic activities of SVMP, as well as the coagulant activity of BjV. Importantly, both rutin and RS completely abrogated the lethal activity of BjV, in the same degree as o-phe. BjV induced hemorrhages, falls in RBC counts, thrombocytopenia and hypofibrinogenemia in mice. Rutin and RS also improved the recovery of platelet counts and fibrinogen levels, and the development of hemorrhages was totally blocked in mice injected with BjV incubated with RS. In conclusion, RS has anticoagulant properties and is a novel SVMP inhibitor. Rutin and RS showed different mechanisms of action on hemostasis. Only RS inhibited directly BjV biological activities, even though both flavonoids neutralized B. jararaca toxicity in vivo. Our results showed clearly that rutin and RS show a great potential to be used as therapeutic compounds for snakebite envenomation.
Collapse
Affiliation(s)
- Ana Teresa Azevedo Sachetto
- Laboratory of Pathophysiology, Institute Butantan, São Paulo, Brazil
- Department of Medical Sciences, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Jackson Gabriel Miyamoto
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of São Paulo, (EPM/UNIFESP), São Paulo, Brazil
| | - Alexandre Keiji Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of São Paulo, (EPM/UNIFESP), São Paulo, Brazil
| | - Ana Olívia de Souza
- Laboratory of Development and Innovation, Institute Butantan, São Paulo, Brazil
| | - Marcelo Larami Santoro
- Laboratory of Pathophysiology, Institute Butantan, São Paulo, Brazil
- Department of Medical Sciences, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Yang S, Jackson C, Karapetyan E, Dutta P, Kermah D, Wu Y, Wu Y, Schloss J, Vadgama JV. Roles of Protein Disulfide Isomerase in Breast Cancer. Cancers (Basel) 2022; 14:745. [PMID: 35159012 PMCID: PMC8833603 DOI: 10.3390/cancers14030745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/08/2023] Open
Abstract
Protein disulfide isomerase (PDI) is the endoplasmic reticulum (ER)'s most abundant and essential enzyme and serves as the primary catalyst for protein folding. Due to its apparent role in supporting the rapid proliferation of cancer cells, the selective blockade of PDI results in apoptosis through sustained activation of UPR pathways. The functions of PDI, especially in cancers, have been extensively studied over a decade, and recent research has explored the use of PDI inhibitors in the treatment of cancers but with focus areas of other cancers, such as brain or ovarian cancer. In this review, we discuss the roles of PDI members in breast cancer and PDI inhibitors used in breast cancer research. Additionally, a few PDI members may be suggested as potential molecular targets for highly metastatic breast cancers, such as TNBC, that require more attention in future research.
Collapse
Affiliation(s)
- Suhui Yang
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
- School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| | - Chanel Jackson
- Post Baccalaureate Pre-Medical Program, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA;
| | - Eduard Karapetyan
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
| | - Pranabananda Dutta
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
| | - Dulcie Kermah
- Urban Health Institute, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA;
| | - Yong Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, CA 90059, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, CA 90059, USA
| | - John Schloss
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
- School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, CA 90059, USA
| |
Collapse
|
31
|
Przyborowski K, Kurpinska A, Wojkowska D, Kaczara P, Suraj‐Prazmowska J, Karolczak K, Malinowska A, Pelesz A, Kij A, Kalvins I, Watala C, Chlopicki S. Protein disulfide isomerase-A1 regulates intraplatelet reactive oxygen species-thromboxane A 2 -dependent pathway in human platelets. J Thromb Haemost 2022; 20:157-169. [PMID: 34592041 PMCID: PMC9292974 DOI: 10.1111/jth.15539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Platelet-derived protein disulfide isomerase 1 (PDIA1) regulates thrombus formation, but its role in the regulation of platelet function is not fully understood. AIMS The aim of this study was to characterize the role of PDIA1 in human platelets. METHODS Proteomic analysis of PDI isoforms in platelets was performed using liquid chromatography tandem mass spectometry, and the expression of PDIs on platelets in response to collagen, TRAP-14, or ADP was measured with flow cytometry. The effects of bepristat, a selective PDIA1 inhibitor, on platelet aggregation, expression of platelet surface activation markers, thromboxane A2 (TxA2 ), and reactive oxygen species (ROS) generation were evaluated by optical aggregometry, flow cytometry, ELISA, and dihydrodichlorofluorescein diacetate-based fluorescent assay, respectively. RESULTS PDIA1 was less abundant compared with PDIA3 in resting platelets and platelets stimulated with TRAP-14, collagen, or ADP. Collagen, but not ADP, induced a significant increase in PDIA1 expression. Bepristat potently inhibited the aggregation of washed platelets induced by collagen or convulxin, but only weakly inhibited platelet aggregation induced by TRAP-14 or thrombin, and had the negligible effect on platelet aggregation induced by arachidonic acid. Inhibition of PDIA1 by bepristat resulted in the reduction of TxA2 and ROS production in collagen- or thrombin-stimulated platelets. Furthermore, bepristat reduced the activation of αIIbβ3 integrin and expression of P-selectin. CONCLUSIONS PDIA1 acts as an intraplatelet regulator of the ROS-TxA2 pathway in collagen-GP VI receptor-mediated platelet activation that is a mechanistically distinct pathway from extracellular regulation of αIIbβ3 integrin by PDIA3.
Collapse
Affiliation(s)
- Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Dagmara Wojkowska
- Department of Haemostasis and Haemostatic DisordersMedical University of LodzLodzPoland
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | | | - Kamil Karolczak
- Department of Haemostasis and Haemostatic DisordersMedical University of LodzLodzPoland
| | - Agata Malinowska
- Mass Spectrometry LaboratoryInstitute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| | - Agnieszka Pelesz
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Ivars Kalvins
- Laboratory of Carbocyclic CompoundsLatvian Institute of Organic SynthesisRigaLatvia
| | - Cezary Watala
- Department of Haemostasis and Haemostatic DisordersMedical University of LodzLodzPoland
- Chair of Biomedical SciencesMedical University of LodzLodzPoland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
- Chair of PharmacologyJagiellonian University Medical CollegeKrakowPoland
| |
Collapse
|
32
|
Wang L, Wang X, Lv X, Jin Q, Shang H, Wang CC, Wang L. The extracellular Ero1α/PDI electron transport system regulates platelet function by increasing glutathione reduction potential. Redox Biol 2022; 50:102244. [PMID: 35077997 PMCID: PMC8792282 DOI: 10.1016/j.redox.2022.102244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/18/2023] Open
Abstract
Protein disulfide isomerase (PDI), an oxidoreductase, possesses two vicinal cysteines in the -Cys-Gly-His-Cys-motif that either form a disulfide bridge (S–S) or exist in a sulfhydryl form (-SH), forming oxidized or reduced PDI, respectively. PDI has been proven to be critical for platelet aggregation, thrombosis, and hemostasis, and PDI inhibition is being evaluated as a novel antithrombotic strategy. The redox states of functional PDI during the regulation of platelet aggregation, however, remain to be elucidated. Endoplasmic reticulum (ER) oxidoreductin-1α (Ero1α) and PDI constitute the pivotal oxidative folding pathway in the ER and play an important role in ER redox homeostasis. Whether Ero1α and PDI constitute an extracellular electron transport pathway to mediate platelet aggregation is an open question. Here, we found that oxidized but not reduced PDI promotes platelet aggregation. On the platelet surface, Ero1α constitutively oxidizes PDI and further regulates platelet aggregation in a glutathione-dependent manner. The Ero1α/PDI system oxidizes reduced glutathione (GSH) and establishes a reduction potential optimal for platelet aggregation. Therefore, platelet aggregation is mediated by the Ero1α-PDI-GSH electron transport system on the platelet surface. We further showed that targeting the functional interplay between PDI and Ero1α by small molecule inhibitors may be a novel strategy for antithrombotic therapy. Oxidized but not reduced PDI promotes platelet aggregation. Ero1α and PDI constitute an electron transport pathway on platelet surface. Ero1α and PDI provide a redox environment optimal for platelet aggregation. The functional interplay between Ero1α and PDI can be a new target for antiplatelet therapy.
Collapse
Affiliation(s)
- Lu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiying Lv
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qiushuo Jin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Yang M, Flaumenhaft R. Oxidative Cysteine Modification of Thiol Isomerases in Thrombotic Disease: A Hypothesis. Antioxid Redox Signal 2021; 35:1134-1155. [PMID: 34121445 PMCID: PMC8817710 DOI: 10.1089/ars.2021.0108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Oxidative stress is a characteristic of many systemic diseases associated with thrombosis. Thiol isomerases are a family of oxidoreductases important in protein folding and are exquisitely sensitive to the redox environment. They are essential for thrombus formation and represent a previously unrecognized layer of control of the thrombotic process. Yet, the mechanisms by which thiol isomerases function in thrombus formation are unknown. Recent Advances: The oxidoreductase activity of thiol isomerases in thrombus formation is controlled by the redox environment via oxidative changes to active site cysteines. Specific alterations can now be detected owing to advances in the chemical biology of oxidative cysteine modifications. Critical Issues: Understanding of the role of thiol isomerases in thrombus formation has focused largely on identifying single disulfide bond modifications in isolated proteins (e.g., αIIbβ3, tissue factor, vitronectin, or glycoprotein Ibα [GPIbα]). An alternative approach is to conceptualize thiol isomerases as effectors in redox signaling pathways that control thrombotic potential by modifying substrate networks. Future Directions: Cysteine-based chemical biology will be employed to study thiol-dependent dynamics mediated by the redox state of thiol isomerases at the systems level. This approach could identify thiol isomerase-dependent modifications of the disulfide landscape that are prothrombotic.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Abstract
Significance: Since protein disulfide isomerase (PDI) was first described in 1963, researchers have shown conclusively that PDI and sibling proteins are quintessential for thrombus formation. PDI, endoplasmic reticulum protein (ERp)5, ERp57, and ERp72 are released from platelets and vascular cells and interact with integrin αIIbβ3 on the outer surface of platelets. Recent Advances: At the cell surface they influence protein folding and function, propagating thrombosis and maintaining hemostasis. TMX1, which is a transmembrane thiol isomerase, is the first family member shown to negatively regulate platelets. Targets of thiol isomerases have been identified, including integrin α2β1, Von Willebrand Factor, GpIbα, nicotinamide adenine dinucleotide phosphate oxidase (Nox)-1, Nox-2, and tissue factor, all of which are pro-thrombotic, and several of which are on the cell surface. In spite of this, PDI can paradoxically catalyze the delivery of nitric oxide to platelets, which decrease thrombus formation. Critical Issues: Although the overall effect of PDI is to positively regulate platelet activation, it is still unclear how thiol isomerases function in pro-thrombotic states, such as obesity, diabetes, and cancer. In parallel, there has been a surge in the development of novel thiol isomerase inhibitors, which display selectivity, potency and modulate thrombosis and hemostasis. The availability of selective thiol isomerase inhibitors has culminated in clinical trials, with promising outcomes for the prevention of cancer-associated thrombosis. Future Directions: Altogether, thiol isomerases are perceived as an orchestrating force that regulates thrombus development. In the current review, we will explore the history of PDI in cardiovascular biology, detail known mechanisms of action, and summarize known thiol isomerase inhibitors.
Collapse
Affiliation(s)
- Renato Simões Gaspar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
35
|
Flórido M, Chiu J, Hogg PJ. Influenza A Virus Hemagglutinin Is Produced in Different Disulfide-Bonded States. Antioxid Redox Signal 2021; 35:1081-1092. [PMID: 33985344 DOI: 10.1089/ars.2021.0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aims: Influenza A virus hemagglutinin (HA) binding to sialic acid on lung epithelial cells triggers membrane fusion and infection. Host thiol isomerases have been shown to play a role in influenza A virus infection, and we hypothesized that this role involved manipulation of disulfide bonds in HA. Results: Analysis of HA crystal structures revealed that three of the six HA disulfides occur in high-energy conformations and four of the six bonds can exist in unformed states, suggesting that the disulfide landscape of HA is generally strained and the bonds may be labile. We measured the redox state of influenza A virus HA disulfide bonds and their susceptibility to cleavage by vascular thiol isomerases. Using differential cysteine alkylation and mass spectrometry, we show that all six HA disulfide bonds exist in unformed states in ∼1 in 10 recombinant and viral surface HA molecules. Four of the six H1 and H3 HA bonds are cleaved by the vascular thiol isomerases, thioredoxin and protein disulphide isomerase, in recombinant proteins, which correlated with surface exposure of the disulfides in crystal structures. In contrast, viral surface HA disulfide bonds are impervious to five different vascular thiol isomerases. Innovation: It has been assumed that the disulfide bonds in mature HA protein are intact and inert. We show that all six HA disulfide bonds can exist in unformed states. Conclusion: These findings indicate that influenza A virus HA disulfides are naturally labile but not substrates for thiol isomerases when expressed on the viral surface.
Collapse
Affiliation(s)
- Manuela Flórido
- ACRF Centenary Cancer Research Centre, The Centenary Institute, Camperdown, New South Wales, Australia
| | - Joyce Chiu
- ACRF Centenary Cancer Research Centre, The Centenary Institute, Camperdown, New South Wales, Australia
| | - Philip J Hogg
- ACRF Centenary Cancer Research Centre, The Centenary Institute, Camperdown, New South Wales, Australia.,NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Jha V, Kumari T, Manickam V, Assar Z, Olson KL, Min JK, Cho J. ERO1-PDI Redox Signaling in Health and Disease. Antioxid Redox Signal 2021; 35:1093-1115. [PMID: 34074138 PMCID: PMC8817699 DOI: 10.1089/ars.2021.0018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Significance: Protein disulfide isomerase (PDI) and endoplasmic reticulum oxidoreductase 1 (ERO1) are crucial for oxidative protein folding in the endoplasmic reticulum (ER). These enzymes are frequently overexpressed and secreted, and they contribute to the pathology of neurodegenerative, cardiovascular, and metabolic diseases. Recent Advances: Tissue-specific knockout mouse models and pharmacologic inhibitors have been developed to advance our understanding of the cell-specific functions of PDI and ERO1. In addition to their roles in protecting cells from the unfolded protein response and oxidative stress, recent studies have revealed that PDI and ERO1 also function outside of the cells. Critical Issues: Despite the well-known contributions of PDI and ERO1 to specific disease pathology, the detailed molecular and cellular mechanisms underlying these activities remain to be elucidated. Further, although PDI and ERO1 inhibitors have been identified, the results from previous studies require careful evaluation, as many of these agents are not selective and may have significant cytotoxicity. Future Directions: The functions of PDI and ERO1 in the ER have been extensively studied. Additional studies will be required to define their functions outside the ER.
Collapse
Affiliation(s)
- Vishwanath Jha
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tripti Kumari
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vijayprakash Manickam
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zahra Assar
- Cayman Chemical Company, Inc., Ann Arbor, Michigan, USA
| | - Kirk L Olson
- Cayman Chemical Company, Inc., Ann Arbor, Michigan, USA
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
37
|
Vascular thiol isomerases: Structures, regulatory mechanisms, and inhibitor development. Drug Discov Today 2021; 27:626-635. [PMID: 34757205 DOI: 10.1016/j.drudis.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Vascular thiol isomerases (VTIs), including PDI, ERp5, ERp57, ERp72, and thioredoxin-related transmembrane protein 1 (TMX1), have important roles in platelet aggregation and thrombosis. Research on VTIs, their substrates in thrombosis, their regulatory mechanisms, and inhibitor development is an emerging and rapidly evolving area in vascular biology. Here, we describe the structures and functions of VTIs, summarize the relationship between the vascular TIs and thrombosis, and focus on the development of VTI inhibitors for antithrombotic applications.
Collapse
|
38
|
Gaspar RS, Mansilla S, Vieira VA, da Silva LB, Gibbins JM, Castro L, Trostchansky A, Paes AMDA. The protein disulphide isomerase inhibitor CxxCpep modulates oxidative burst and mitochondrial function in platelets. Free Radic Biol Med 2021; 172:668-674. [PMID: 34252541 DOI: 10.1016/j.freeradbiomed.2021.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND We have previously described CxxCpep, a peptide with anti-platelet properties that inhibits peri/epicellular protein disulphide isomerase (pecPDI) by forming a mixed disulfide bond with Cys400 within the pecPDI active site. OBJECTIVES Here we sought to determine if pecPDI targeted by CxxCpep is relevant to redox mechanisms downstream of the collagen receptor GPVI in platelets. METHODS AND RESULTS Restriction of effects of CxxCpep to the platelet surface was confirmed by LC-MS/MS following cell fractionation. Platelet aggregation was measured in platelet-rich plasma (PRP) incubated with 30 μM CxxCpep or vehicle. CxxCpep inhibited collagen-induced platelet aggregation but exerted no effect in TRAP-6-stimulated platelets. PRP was incubated with DCFDA to measure oxidative burst upon platelet adhesion to collagen. Results showed that CxxCpep decreased oxidative burst in platelets adhered to immobilized collagen while the number of adherent cells was unaffected. Furthermore, flow cytometry studies using a FITC-maleimide showed that the GPVI agonist CRP stimulated an increase in free thiols on the platelet outer membrane, which was inhibited by CxxCpep. Finally, CxxCpep inhibited platelet mitochondrial respiration upon activation with collagen, but not with thrombin. CONCLUSIONS Our data suggest that pecPDI is a potential modulator of GPVI-mediated redox regulation mechanisms and that CxxCpep can be further exploited as a template for new antiplatelet compounds.
Collapse
Affiliation(s)
- Renato S Gaspar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK; Laboratory of Experimental Physiology, Department of Physiology, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil; Laboratory of Vascular Biology, Health Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Santiago Mansilla
- Departamento de Métodos Cuantitativos y Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Departamento de Bioquímica y Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Victor A Vieira
- Laboratory of Experimental Physiology, Department of Physiology, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Ludmila B da Silva
- Laboratory of Experimental Physiology, Department of Physiology, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil; Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Laura Castro
- Departamento de Bioquímica y Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica y Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Antonio Marcus de A Paes
- Laboratory of Experimental Physiology, Department of Physiology, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil; Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil.
| |
Collapse
|
39
|
Bacitracin and Rutin Regulate Tissue Factor Production in Inflammatory Monocytes and Acute Myeloid Leukemia Blasts. Cancers (Basel) 2021; 13:cancers13163941. [PMID: 34439096 PMCID: PMC8393688 DOI: 10.3390/cancers13163941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Aberrant tissue factor (TF) expression by transformed myeloblasts and inflammatory monocytes contributes to coagulation activation in acute myeloid leukemia (AML). TF procoagulant activity (PCA) is regulated by protein disulfide isomerase (PDI), an oxidoreductase with chaperone activity, but its specific role in AML-associated TF biology is unclear. Here, we provide novel mechanistic insights into this interrelation. We show that bacitracin and rutin, two pan-inhibitors of the PDI family, prevent lipopolysaccharide (LPS)-induced monocyte TF production under inflammatory conditions and constitutive TF expression by THP1 cells and AML blasts, thus exerting promising anticoagulant activity. Downregulation of the TF protein was mainly restricted to its non-coagulant, cryptic pool and was at least partially regulated on the mRNA level in LPS-stimulated monocytes. Collectively, our study indicates a complex role of thiol isomerases in the regulation of myeloid TF PCA, with the most abundant PDI being a promising therapeutic target in the management of AML-associated coagulopathies. Abstract Aberrant expression of tissue factor (TF) by transformed myeloblasts and inflammatory monocytes drives coagulation activation in acute myeloid leukemia (AML). Although regulation of TF procoagulant activity (PCA) involves thiol-disulfide exchange reactions, the specific role of protein disulfide isomerase (PDI) and other thiol isomerases in AML-associated TF biology is unclear. THP1 cells and peripheral blood mononuclear cells (PBMCs) from healthy controls or AML patients were analyzed for thiol isomerase-dependent TF production under various experimental conditions. Total cellular and membrane TF antigen, TF PCA and TF mRNA were analyzed by ELISA, flow cytometry, clotting or Xa generation assay and qPCR, respectively. PBMCs and THP1 cells showed significant insulin reductase activity, which was inhibited by bacitracin or rutin. Co-incubation with these thiol isomerase inhibitors prevented LPS-induced TF production by CD14-positive monocytes and constitutive TF expression by THP1 cells and AML blasts. Downregulation of the TF antigen was mainly restricted to the cryptic pool of TF, efficiently preventing phosphatidylserine-dependent TF activation by daunorubicin, and at least partially regulated on the mRNA level in LPS-stimulated monocytes. Our study thus delineates a complex role of thiol isomerases in the regulation of myeloid TF PCA, with PDI being a promising therapeutic target in the management of AML-associated coagulopathies.
Collapse
|
40
|
Meirson T, Bomze D, Markel G. Structural basis of SARS-CoV-2 spike protein induced by ACE2. Bioinformatics 2021; 37:929-936. [PMID: 32818261 PMCID: PMC7558967 DOI: 10.1093/bioinformatics/btaa744] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/20/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
Motivation The recent emergence of the novel SARS-coronavirus 2 (SARS-CoV-2) and its international
spread pose a global health emergency. The spike (S) glycoprotein binds ACE2 and
promotes SARS-CoV-2 entry into host cells. The trimeric S protein binds the receptor
using the receptor-binding domain (RBD) causing conformational changes in S protein that
allow priming by host cell proteases. Unraveling the dynamic structural features used by
SARS-CoV-2 for entry might provide insights into viral transmission and reveal novel
therapeutic targets. Using structures determined by X-ray crystallography and cryo-EM,
we performed structural analysis and atomic comparisons of the different conformational
states adopted by the SARS-CoV-2-RBD. Results Here, we determined the key structural components induced by the receptor and
characterized their intramolecular interactions. We show that κ-helix (polyproline-II)
is a predominant structure in the binding interface and in facilitating the conversion
to the active form of the S protein. We demonstrate a series of conversions between
switch-like κ-helix and β-strand, and conformational variations in a set of short
α-helices which affect the hinge region. These conformational changes lead to an
alternating pattern in conserved disulfide bond configurations positioned at the hinge,
indicating a possible disulfide exchange, an important allosteric switch implicated in
viral entry of various viruses, including HIV and murine coronavirus. The structural
information presented herein enables to inspect and understand the important dynamic
features of SARS-CoV-2-RBD and propose a novel potential therapeutic strategy to block
viral entry. Overall, this study provides guidance for the design and optimization of
structure-based intervention strategies that target SARS-CoV-2. Availability We have implemented the proposed methods in an R package freely available at https://github.com/Grantlab/bio3d Supplementary information Supplementary data are
available at Bioinformatics online.
Collapse
Affiliation(s)
- Tomer Meirson
- Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Ramat-Gan 526260, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | | | - Gal Markel
- Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Ramat-Gan 526260, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
41
|
Impairment of cell adhesion and migration by inhibition of protein disulphide isomerases in three breast cancer cell lines. Biosci Rep 2021; 40:226652. [PMID: 33095243 PMCID: PMC7584814 DOI: 10.1042/bsr20193271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/30/2022] Open
Abstract
Protein disulphide isomerase A3 (PDIA3) is an endoplasmic reticulum (ER)-resident disulphide isomerase and oxidoreductase with known substrates that include some extracellular matrix (ECM) proteins. PDIA3 is up-regulated in invasive breast cancers and correlates in a mouse orthotopic xenograft model with breast cancer metastasis to bone. However, the underlying cellular mechanisms remain unclear. Here we investigated the function of protein disulphide isomerases in attachment, spreading and migration of three human breast cancer lines representative of luminal (MCF-7) or basal (MDA-MB-231 and HCC1937) tumour phenotypes. Pharmacological inhibition by 16F16 decreased initial cell spreading more effectively than inhibition by PACMA-31. Cells displayed diminished cortical F-actin projections, stress fibres and focal adhesions. Cell migration was reduced in a quantified ‘scratch wound’ assay. To examine whether these effects might result from alterations to secreted proteins in the absence of functional PDIA3, adhesion and migration were quantified in the above cells exposed to media conditioned by wildtype (WT) or Pdia3−/− mouse embryonic fibroblasts (MEFs). The conditioned medium (CM) of Pdia3−/− MEFs was less effective in promoting cell spreading and F-actin organisation or supporting ‘scratch wound’ closure. Similarly, ECM prepared from HCC1937 cells after 16F16 inhibition was less effective than control ECM to support spreading of untreated HCC1937 cells. Overall, these results advance the concept that protein disulphide isomerases including PDIA3 drive the production of secreted proteins that promote a microenvironment favourable to breast cancer cell adhesion and motility, characteristics that are integral to tumour invasion and metastasis. Inhibition of PDIA3 or related isomerases may have potential for anti-metastatic therapies.
Collapse
|
42
|
Protein Disulphide Isomerase and NADPH Oxidase 1 Cooperate to Control Platelet Function and Are Associated with Cardiometabolic Disease Risk Factors. Antioxidants (Basel) 2021; 10:antiox10030497. [PMID: 33806982 PMCID: PMC8004975 DOI: 10.3390/antiox10030497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Protein disulphide isomerase (PDI) and NADPH oxidase 1 (Nox-1) regulate platelet function and reactive oxygen species (ROS) generation, suggesting potentially interdependent roles. Increased platelet reactivity and ROS production have been correlated with cardiometabolic disease risk factors. Objectives: To establish whether PDI and Nox-1 cooperate to control platelet function. Methods: Immunofluorescence microscopy was utilised to determine expression and localisation of PDI and Nox-1. Platelet aggregation, fibrinogen binding, P-selectin exposure, spreading and calcium mobilization were measured as markers of platelet function. A cross-sectional population study (n = 136) was conducted to assess the relationship between platelet PDI and Nox-1 levels and cardiometabolic risk factors. Results: PDI and Nox-1 co-localized upon activation induced by the collagen receptor GPVI. Co-inhibition of PDI and Nox-1 led to additive inhibition of GPVI-mediated platelet aggregation, activation and calcium flux. This was confirmed in murine Nox-1−/− platelets treated with PDI inhibitor bepristat, without affecting bleeding. PDI and Nox-1 together contributed to GPVI signalling that involved the phosphorylation of p38 MAPK, p47phox, PKC and Akt. Platelet PDI and Nox-1 levels were upregulated in obesity, with platelet Nox-1 also elevated in hypertensive individuals. Conclusions: We show that PDI and Nox-1 cooperate to control platelet function and are associated with cardiometabolic risk factors.
Collapse
|
43
|
Hirayama C, Machida K, Noi K, Murakawa T, Okumura M, Ogura T, Imataka H, Inaba K. Distinct roles and actions of protein disulfide isomerase family enzymes in catalysis of nascent-chain disulfide bond formation. iScience 2021; 24:102296. [PMID: 33855279 PMCID: PMC8024706 DOI: 10.1016/j.isci.2021.102296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/13/2021] [Accepted: 03/05/2021] [Indexed: 12/04/2022] Open
Abstract
The mammalian endoplasmic reticulum (ER) harbors more than 20 members of the protein disulfide isomerase (PDI) family that act to maintain proteostasis. Herein, we developed an in vitro system for directly monitoring PDI- or ERp46-catalyzed disulfide bond formation in ribosome-associated nascent chains of human serum albumin. The results indicated that ERp46 more efficiently introduced disulfide bonds into nascent chains with a short segment exposed outside the ribosome exit site than PDI. Single-molecule analysis by high-speed atomic force microscopy further revealed that PDI binds nascent chains persistently, forming a stable face-to-face homodimer, whereas ERp46 binds for a shorter time in monomeric form, indicating their different mechanisms for substrate recognition and disulfide bond introduction. Thus, ERp46 serves as a more potent disulfide introducer especially during the early stages of translation, whereas PDI can catalyze disulfide formation when longer nascent chains emerge out from ribosome. We developed an in vitro system for monitoring nascent-chain disulfide formation High-speed AFM visualized PDI and ERp46 molecules acting on nascent chains PDI persistently holds nascent chains via dimerization for disulfide introduction ERp46 rapidly introduces disulfide bonds to nascent chains via short-time binding
Collapse
Affiliation(s)
- Chihiro Hirayama
- Institute of Multidisciplinary Research for Advanced Materials, Katahira 2-1-1, Aoba-ku, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kodai Machida
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Kentaro Noi
- Institute for NanoScience Design, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Tadayoshi Murakawa
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| | - Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Katahira 2-1-1, Aoba-ku, Tohoku University, Sendai, Miyagi 980-8577, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Teru Ogura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan.,Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 862-0973, Japan
| | - Hiroaki Imataka
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Katahira 2-1-1, Aoba-ku, Tohoku University, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
44
|
Holbrook L, Keeton SJ, Sasikumar P, Nock S, Gelzinis J, Brunt E, Ryan S, Pantos MM, Verbetsky CA, Gibbins JM, Kennedy DR. Zafirlukast is a broad-spectrum thiol isomerase inhibitor that inhibits thrombosis without altering bleeding times. Br J Pharmacol 2021; 178:550-563. [PMID: 33080041 PMCID: PMC9328650 DOI: 10.1111/bph.15291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/14/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Multiple members of the thiol isomerase (TI) family of enzymes are present in and released by platelets. Inhibition of these enzymes results in diminished platelet responses, aggregation, adhesion and thrombus formation. Recently, the therapeutic potential of TI inhibition has been recognised and drug-development technologies were used to identify selective small molecule inhibitors. To date, few pan-TI inhibitors have been characterised and the most studied, bacitracin, is known to be nephrotoxic, which prohibits its systemic therapeutic usage. EXPERIMENTAL APPROACH We therefore sought to identify novel broad-spectrum inhibitors of these enzymes and test their effects in vivo. A total of 3,641 compounds were screened for inhibitory effects on the redox activity of ERp5, protein disulphide isomerase (PDI), ERp57, ERp72 and thioredoxin in an insulin turbidity assay. Of the lead compounds identified, zafirlukast was selected for further investigation. KEY RESULTS When applied to platelets, zafirlukast diminished platelet responses in vitro. Zafirlukast was antithrombotic in murine models of thrombosis but did not impair responses in a model of haemostasis. Since TIs are known to modulate adhesion receptor function, we explored the effects of zafirlukast on cell migration. This was inhibited independently of cysteinyl LT receptor expression and was associated with modulation of cell-surface free thiol levels consistent with alterations in redox activity on the cell surface. CONCLUSION AND IMPLICATIONS We identify zafirlukast to be a novel, potent, broad-spectrum TI inhibitor, with wide-ranging effects on platelet function, thrombosis and integrin-mediated cell migration. Zafirlukast is antithrombotic but does not cause bleeding.
Collapse
Affiliation(s)
- Lisa‐Marie Holbrook
- Institute for Cardiovascular and Metabolic Research, School of Biological SciencesUniversity of ReadingReadingUK
- School of Cardiovascular Medicine and SciencesKing's College LondonLondonUK
| | - Shirley J. Keeton
- Institute for Cardiovascular and Metabolic Research, School of Biological SciencesUniversity of ReadingReadingUK
| | - Parvathy Sasikumar
- Institute for Cardiovascular and Metabolic Research, School of Biological SciencesUniversity of ReadingReadingUK
- Centre for HaematologyImperial College LondonLondonUK
| | - Sophie Nock
- Institute for Cardiovascular and Metabolic Research, School of Biological SciencesUniversity of ReadingReadingUK
| | - Justine Gelzinis
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMassachusettsUSA
| | - Elizabeth Brunt
- Institute for Cardiovascular and Metabolic Research, School of Biological SciencesUniversity of ReadingReadingUK
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMassachusettsUSA
| | - Sarah Ryan
- Institute for Cardiovascular and Metabolic Research, School of Biological SciencesUniversity of ReadingReadingUK
| | - Megan M. Pantos
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMassachusettsUSA
| | - Christina A. Verbetsky
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMassachusettsUSA
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological SciencesUniversity of ReadingReadingUK
| | - Daniel R. Kennedy
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMassachusettsUSA
| |
Collapse
|
45
|
Vella P, Rudraraju RS, Lundbäck T, Axelsson H, Almqvist H, Vallin M, Schneider G, Schnell R. A FabG inhibitor targeting an allosteric binding site inhibits several orthologs from Gram-negative ESKAPE pathogens. Bioorg Med Chem 2021; 30:115898. [PMID: 33388594 DOI: 10.1016/j.bmc.2020.115898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/22/2020] [Indexed: 11/26/2022]
Abstract
The spread of antibiotic resistance within the ESKAPE group of human pathogenic bacteria poses severe challenges in the treatment of infections and maintenance of safe hospital environments. This motivates efforts to validate novel target proteins within these species that could be pursued as potential targets for antibiotic development. Genetic data suggest that the enzyme FabG, which is part of the bacterial fatty acid biosynthetic system FAS-II, is essential in several ESKAPE pathogens. FabG catalyzes the NADPH dependent reduction of 3-keto-acyl-ACP during fatty acid elongation, thus enabling lipid supply for production and maintenance of the cell envelope. Here we report on small-molecule screening on the FabG enzymes from A. baumannii and S. typhimurium to identify a set of µM inhibitors, with the most potent representative (1) demonstrating activity against six FabG-orthologues. A co-crystal structure with FabG from A. baumannii (PDB:6T65) confirms inhibitor binding at an allosteric site located in the subunit interface, as previously demonstrated for other sub-µM inhibitors of FabG from P. aeruginosa. We show that inhibitor binding distorts the oligomerization interface in the FabG tetramer and displaces crucial residues involved in the interaction with the co-substrate NADPH. These observations suggest a conserved allosteric site across the FabG family, which can be potentially targeted for interference with fatty acid biosynthesis in clinically relevant ESKAPE pathogens.
Collapse
Affiliation(s)
- Peter Vella
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 165 Stockholm, Sweden
| | | | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Hanna Axelsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Helena Almqvist
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Michaela Vallin
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 165 Stockholm, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 165 Stockholm, Sweden.
| |
Collapse
|
46
|
Lin L, Zou H, Li W, Xu LY, Li EM, Dong G. Redox Potentials of Disulfide Bonds in LOXL2 Studied by Nonequilibrium Alchemical Simulation. Front Chem 2021; 9:797036. [PMID: 34970534 PMCID: PMC8713139 DOI: 10.3389/fchem.2021.797036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) is a metalloenzyme that catalyzes the oxidative deamination ε-amino group of lysine. It is found that LOXL2 is a promotor for the metastasis and invasion of cancer cells. Disulfide bonds are important components in LOXL2, and they play a stabilizing role for protein structure or a functional role for regulating protein bioactivity. The redox potential of disulfide bond is one important property to determine the functional role of disulfide bond. In this study, we have calculated the reduction potential of all the disulfide bonds in LOXL2 by non-equilibrium alchemical simulations. Our results show that seven of seventeen disulfide bonds have high redox potentials between -182 and -298 mV and could have a functional role, viz., Cys573-Cys625, Cys579-Cys695, Cys657-Cys673, and Cys663-Cys685 in the catalytic domain, Cys351-Cys414, Cys464-Cys530, and Cys477-Cys543 in the scavenger receptor cysteine-rich (SRCR) domains. The disulfide bond of Cys351-Cys414 is predicted to play an allosteric function role, which could affect the metastasis and invasion of cancer cells. Other functional bonds have a catalytic role related to enzyme activity. The rest of disulfide bonds are predicted to play a structural role. Our study provides an important insight for the classification of disulfide bonds in LOXL2 and can be utilized for the drug design that targets the cysteine residues in LOXL2.
Collapse
Affiliation(s)
- Lirui Lin
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, China
| | - Haiying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Cancer Research Center, Shantou University Medical College, Shantou, China
- *Correspondence: Li-Yan Xu, ; En-Min Li, ; Geng Dong,
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- *Correspondence: Li-Yan Xu, ; En-Min Li, ; Geng Dong,
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, China
- *Correspondence: Li-Yan Xu, ; En-Min Li, ; Geng Dong,
| |
Collapse
|
47
|
Wang L, Yu J, Wang CC. Protein disulfide isomerase is regulated in multiple ways: Consequences for conformation, activities, and pathophysiological functions. Bioessays 2020; 43:e2000147. [PMID: 33155310 DOI: 10.1002/bies.202000147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Protein disulfide isomerase (PDI) is one of the most abundant and critical protein folding catalysts in the endoplasmic reticulum of eukaryotic cells. PDI consists of four thioredoxin domains and interacts with a wide range of substrate and partner proteins due to its intrinsic conformational flexibility. PDI plays multifunctional roles in a variety of pathophysiological events, both as an oxidoreductase and a molecular chaperone. Recent studies have revealed that the conformation and activity of PDI can be regulated in multiple ways, including posttranslational modification and substrate/ligand binding. Here, we summarize recent advances in understanding the function and regulation of PDI in different pathological and physiological events. We propose that the multifunctional roles of PDI are regulated by multiple mechanisms. Furthermore, we discuss future directions for the study of PDI, emphasizing how different regulatory modes are linked to the conformational changes and biological functions of PDI in the context of diverse pathophysiologies.
Collapse
Affiliation(s)
- Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Ren L, You T, Li Q, Chen G, Liu Z, Zhao X, Wang Y, Wang L, Wu Y, Tang C, Zhu L. Molecular docking-assisted screening reveals tannic acid as a natural protein disulphide isomerase inhibitor with antiplatelet and antithrombotic activities. J Cell Mol Med 2020; 24:14257-14269. [PMID: 33128352 PMCID: PMC7753999 DOI: 10.1111/jcmm.16043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Protein disulphide isomerase (PDI) promotes platelet activation and constitutes a novel antithrombotic target. In this study, we reported that a PDI‐binding plant polyphenol, tannic acid (TA), inhibits PDI activity, platelet activation and thrombus formation. Molecular docking using plant polyphenols from dietary sources with cardiovascular benefits revealed TA as the most potent binding molecule with PDI active centre. Surface plasmon resonance demonstrated that TA bound PDI with high affinity. Using Di‐eosin‐glutathione disulphide fluorescence assay and PDI assay kit, we showed that TA inhibited PDI activity. In isolated platelets, TA inhibited platelet aggregation stimulated by either GPVI or ITAM pathway agonists. Flow cytometry showed that TA inhibited thrombin‐ or CRP‐stimulated platelet activation, as reflected by reduced granule secretion and integrin activation. TA also reduced platelet spreading on immobilized fibrinogen and platelet adhesion under flow conditions. In a laser‐induced vascular injury mouse model, intraperitoneal injection of TA significantly decreased the size of cremaster arteriole thrombi. No prolongation of mouse jugular vein and tail‐bleeding time was observed after TA administration. Therefore, we identified TA from natural polyphenols as a novel inhibitor of PDI function. TA inhibits platelet activation and thrombus formation, suggesting it as a potential antithrombotic agent.
Collapse
Affiliation(s)
- Lijie Ren
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tao You
- Jiangsu Institute of HematologyKey Laboratory of Thrombosis and Hemostasis of Ministry of HealthThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of CardiologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qing Li
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Guona Chen
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Ziting Liu
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Xuefei Zhao
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Yinyan Wang
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Lei Wang
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Yi Wu
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chaojun Tang
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Li Zhu
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
49
|
Weaver JC, Ullah I, Qi M, Giannakopoulos B, Rye KA, Kockx M, Kritharides L, Krilis SA. Free Thiol β2-GPI (β-2-Glycoprotein-I) Provides a Link Between Inflammation and Oxidative Stress in Atherosclerotic Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2020; 40:2794-2804. [DOI: 10.1161/atvbaha.120.315156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective:
Atherosclerotic coronary artery disease is well recognised as an inflammatory disorder that is also influenced by oxidative stress. β2-GPI (β-2-glycoprotein-I) is a circulating plasma protein that undergoes post-translational modification and exists in free thiol as well as oxidized forms. The aim of this study was to assess the association between these 2 post-translational redox forms of β2-GPI and atherosclerotic coronary artery disease.
Approach and Results:
Stable patients presenting for elective coronary angiography or CT coronary angiography were prospectively recruited. A separate group of patients after reperfused ST-segment–elevation myocardial infarction formed an acute coronary syndrome subgroup. All patients had collection of fasting serum and plasma for quantification of total and free thiol β2-GPI. Coronary artery disease extent was quantified by the Syntax and Gensini scores. A total of 552 patients with stable disease and 44 with acute coronary syndrome were recruited. While total β2-GPI was not associated with stable coronary artery disease, a higher free thiol β2-GPI was associated with its presence and extent. This finding remained significant after correcting for confounding variables, and free thiol β2-GPI was a better predictor of stable coronary artery disease than hs-CRP (high-sensitivity C-reactive protein). Paradoxically, there were lower levels of free thiol β2-GPI after ST-segment–elevation myocardial infarction.
Conclusions:
Free thiol β2-GPI is a predictor of coronary artery disease presence and extent in stable patients. Free thiol β2-GPI was a better predictor than high-sensitivity C-reactive protein.
Collapse
Affiliation(s)
- James C. Weaver
- University of NSW, Sydney, Australia (J.C.W., I.U., M.Q., B.G., K.A.R., S.A.K.)
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, Sydney, Australia (J.C.W.)
| | - Inaam Ullah
- University of NSW, Sydney, Australia (J.C.W., I.U., M.Q., B.G., K.A.R., S.A.K.)
- Department of Cardiology, St George Hospital, Kogarah, Sydney, Australia (I.U.)
| | - Miao Qi
- University of NSW, Sydney, Australia (J.C.W., I.U., M.Q., B.G., K.A.R., S.A.K.)
- Department of Infectious Disease, Immunology and Sexual Health, St George Hospital, Kogarah, Sydney, Australia (M.Q., B.G., S.A.K.)
| | - Bill Giannakopoulos
- University of NSW, Sydney, Australia (J.C.W., I.U., M.Q., B.G., K.A.R., S.A.K.)
- Department of Infectious Disease, Immunology and Sexual Health, St George Hospital, Kogarah, Sydney, Australia (M.Q., B.G., S.A.K.)
- Department of Rheumatology, St George Hospital, Kogarah, Sydney, Australia (B.G.)
| | - Kerry Anne Rye
- University of NSW, Sydney, Australia (J.C.W., I.U., M.Q., B.G., K.A.R., S.A.K.)
| | - Maaike Kockx
- ANZAC Research Institute, University of Sydney, Concord, Australia (M.K., L.K.)
| | - Leonard Kritharides
- ANZAC Research Institute, University of Sydney, Concord, Australia (M.K., L.K.)
- Department of Cardiology, Concord Hospital, Sydney, Australia (L.K.)
| | - Steven A. Krilis
- University of NSW, Sydney, Australia (J.C.W., I.U., M.Q., B.G., K.A.R., S.A.K.)
- Department of Infectious Disease, Immunology and Sexual Health, St George Hospital, Kogarah, Sydney, Australia (M.Q., B.G., S.A.K.)
| |
Collapse
|
50
|
Grover SP, Bendapudi PK, Yang M, Merrill-Skoloff G, Govindarajan V, Mitrophanov AY, Flaumenhaft R. Injury measurements improve interpretation of thrombus formation data in the cremaster arteriole laser-induced injury model of thrombosis. J Thromb Haemost 2020; 18:3078-3085. [PMID: 33456401 PMCID: PMC7805486 DOI: 10.1111/jth.15059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background The cremaster arteriole laser-induced injury model is a powerful technique with which to investigate the molecular mechanisms that drive thrombus formation. This model is capable of direct visualization and quantification of accumulation of thrombus constituents, including both platelets and fibrin. However, a large degree of variability in platelet accumulation and fibrin formation is observed between thrombi. Strategies to understand this variability will enhance performance and standardization of the model. We determined whether ablation injury size contributes to variation in platelet accumulation and fibrin formation and, if so, whether incorporating ablation injury size into measurements reduces variation. Methods Thrombus formation was initiated by laser-induced injury of cremaster arterioles of mice (n=59 injuries). Ablation injuries within the vessel wall were consistently identified and quantified by measuring the length of vessel wall injury observed immediately following laser-induced disruption. Platelet accumulation and fibrin formation as detected by fluorescently-labeled antibodies were captured by digital intra-vital microscopy. Results Laser-induced disruption of the vessel wall resulted in ablation injuries of variable length (18-95 μm) enabling interrogation of the relationship between injury severity and thrombus dynamics. Strong positive correlations were observed between vessel injury length and both platelet and fibrin when the data are transformed as area under the curve (Spearman r = 0.80 and 0.76 respectively). Normalization of area under the curve measurements by injury length reduced intraclass coefficients of variation among thrombi and improved hypothesis testing when comparing different data sets. Conclusions Measurement of vessel wall injury length provides a reliable and robust marker of injury severity. Injury length can effectively normalize measurements of platelet accumulation and fibrin formation improving data interpretation and standardization.
Collapse
Affiliation(s)
- Steven P Grover
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Oncology and Hematology and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pavan K Bendapudi
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Moua Yang
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Vijay Govindarajan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Alexander Y Mitrophanov
- Department of Defense Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|