1
|
Zhang J, Liu Z, Ma X, Shi Z, Zhao J, Xie Y, Shang X, Zhang X. Deciphering the interaction between the expression of LRP2 served as a mitochondrial metabolism-related gene and prognosis in colon cancer integrating multi-omics analysis. Discov Oncol 2025; 16:782. [PMID: 40377809 PMCID: PMC12084449 DOI: 10.1007/s12672-025-02568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 05/05/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is increasingly prevalent among patients under 50 years old, and the 5-year survival rate for patients with metastasis is less than 20%. Identifying significant biomarkers and therapeutic targets is crucial. We investigated the expression of LRP2 in COAD and its prognostic value utilizing single-cell sequencing and transcriptomics datasets, which was conducted preliminary validation at the patient samples and cellular levels as well. METHODS Based on differential gene expression of tumor samples and normal tissues in The Cancer Genome Atlas (TCGA), we performed consensus clustering, univariate and multivariate Cox regression analysis applying 1,234 mitochondrial metabolism-related genes (MMRGs) to identify some essential genes associated with poor prognosis in COAD patients. We validated survival outcome and biological function of the target gene leveraging single-cell sequencing and transcriptomics datasets from Gene Expression Omnibus (GEO), and evaluated the value of the target gene in the clinical pathology stage of COAD patients. Simultaneously, the expression levels of critical gene were detected in the diverse tissues of COAD by immunohistochemistry (IHC) staining. Transcriptomics data was continuously implemented to compare the discrepancy between the expression levels of the target gene and somatic mutation burden, inspecting the key pathways of the target gene by gene set enrichment analysis (GSEA) and examining its drug sensitivity synthetically in the CellMiner databases. The proliferative capacity augmented in LRP2-overexpressed colon cancer cells was determined employing cell counting kit-8 (CCK-8) and flow cytometry assays. RESULTS LRP2 served as a key mitochondrial metabolism-related gene was assessed clinical prognosis in COAD patients according to the TCGA database. High expression of LRP2 was prominently associated with poor prognosis in COAD patients (P < 0.05), which was validated by GEO databases, and the expression levels of LRP2 were positively related to clinical pathological stage simultaneously (P < 0.05). Some specific cell types were clustered and proliferation pathways were immensely enriched, which were correlated with LRP2 in two single-cell sequencing datasets. The mutation profiles displayed remarkable differences in two levels of LRP2, we also observed high expressions of LRP2 were immensely correlated with high tumor mutation burden (TMB) and unfavorable prognosis in these patients (P < 0.05). LRP2 was significantly enriched in multiple cancer proliferation-related pathways, and the noteworthy correlation between LRP2 and the sensitivity to various drugs was identified (P < 0.05). The expression levels of LRP2 were multifarious in different COAD patients based on IHC staining. LRP2-overpression could stimulate the proliferation capability of HCT116 and SW480 cell lines markedly (P < 0.05). CONCLUSION The expression levels of LRP2 were intimately correlated with gene mutations, prognosis, pathological stage and the sensitivity to anticancer drugs in COAD. Augmented levels of LRP2 would manifest poor prognosis, which furnished novel insights for clinical diagnosis and treatment in COAD. LRP2 could extensively facilitate the proliferation ability of colon cell lines.
Collapse
Affiliation(s)
- Jie Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Ziyun Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiaoqing Ma
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhenyu Shi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jing Zhao
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Xiaobin Shang
- Department of Minimally Invasive Esophageal Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xia Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
2
|
Khanal V, Carroll M, Carter J, Zhong Y, Chikkamagaluru S, Sato A, Allen R, Wankhade U, Dole N. Lipocalin-2 Regulates Osteocyte Ferroptosis and Osteocyte-Osteoblast Crosstalk via Wnt Signaling to Control Bone Formation. RESEARCH SQUARE 2025:rs.3.rs-6430607. [PMID: 40343339 PMCID: PMC12060985 DOI: 10.21203/rs.3.rs-6430607/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Osteoporosis is a multifactorial disease, and emerging evidence suggests that iron overload contributes to its progression. Here, we identify Lipocalin-2 (LCN2), a cytokine secreted by bone cells with endocrine effects on other tissues, as a local regulator of osteocyte iron metabolism and a mediator of skeletal deterioration. Our findings reveal that LCN2 promotes iron accumulation, mitochondrial dysfunction, and ferroptosis in osteocytes in a process dependent on LCN2 receptor SLC22A17. Genetic ablation of Lcn2 (Dmp1-Cre; Lcn2 fl/fl ) in osteocytes mitigates their ferroptotic vulnerability by preserving mitochondrial integrity and limiting iron overload. Remarkably, LCN2 deletion enhances osteocyte dendricity and lacunocanalicular network, supporting their function in bone remodeling. Mechanistically, we demonstrate that Lcn2 ablation in osteocytes decreases DKK1 and SOST expression in bone, leading to increased Wnt/β-catenin signaling and osteoblast-driven bone formation. Using in vitro and in vivo approaches, we establish the LCN2-SLC22A17 axis as a key pathway linking iron homeostasis, osteocyte dysfunction, and skeletal remodeling. These findings provide insight into a previously unrecognized mechanism underlying iron-driven bone loss and suggest that targeting LCN2 could offer therapeutic potential for osteoporosis.
Collapse
Affiliation(s)
| | | | | | - Ying Zhong
- University of Arkansas for Medical Sciences
| | | | - Amy Sato
- University of Arkansas for Medical Sciences
| | - Ryan Allen
- University of Arkansas for Medical Sciences
| | | | - Neha Dole
- University of Arkansas for Medical Sciences
| |
Collapse
|
3
|
Vogel K, Moeller J, Bozhanova NG, Voehler M, Penk A, Meiler J, Schoeder CT. Computational Engineering of siderocalin to modulate its binding affinity to the antihypertension drug candesartan. J Struct Biol 2025; 217:108180. [PMID: 39978741 DOI: 10.1016/j.jsb.2025.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Lipocalin family proteins have been shown to bind a vast array of small molecules and have subsequently been adapted to selectively bind specific ligands. In this study, candesartan, an antihypertension drug, was identified to bind mouse and human siderocalin in biomolecular NMR experiments, allowing for structural insights into the candesartan-siderocalin interaction. The ligand binding site was determined through an integrative structural biology approach using in silico ligand docking guided by NMR experiments. Building on this structurally informed binding model, we used rational protein design to modulate the binding pocket for increased or decreased ligand binding affinity. The predicted mutations were evaluated in vitro using isothermal titration calorimetry. This resulted in a mutant with a 50-fold increase in binding affinity in addition to a second mutant with a five-fold decrease in binding affinity. Thus, siderocalins have potential as a scaffold for creation of various ligand binding-based tools, including drug scavengers.
Collapse
Affiliation(s)
- Kristina Vogel
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Johanna Moeller
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Leipzig University, Leipzig, Germany
| | - Nina G Bozhanova
- Center for Structural Biology, Vanderbilt University, Nashville, TN, the United States of America; Department of Chemistry, Vanderbilt University, Nashville, TN, the United States of America
| | - Markus Voehler
- Center for Structural Biology, Vanderbilt University, Nashville, TN, the United States of America; Department of Chemistry, Vanderbilt University, Nashville, TN, the United States of America
| | - Anja Penk
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Leipzig University, Leipzig, Germany; Center for Structural Biology, Vanderbilt University, Nashville, TN, the United States of America; Department of Chemistry, Vanderbilt University, Nashville, TN, the United States of America; Institute for Computer Science, Wilhelm Ostwald Institute for Physical and Theoretical Chemistry, Leipzig University, Leipzig, Germany; School of Embedded Composite Artificial Intelligence SECAI, Dresden/Leipzig, Germany; Department of Pharmacology, Institute of Chemical Biology, Center for Applied Artificial Intelligence in Protein Dynamics, Vanderbilt University, Nashville, TN, the United States of America.
| | - Clara T Schoeder
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Leipzig University, Leipzig, Germany.
| |
Collapse
|
4
|
Kong Y, Zhang X, Li L, Zhao T, Huang Z, Zhang A, Sun Y, Jiao J, Zhang G, Liu M, Han Y, Yang L, Zhang Z. Microglia-Derived Vitamin D Binding Protein Mediates Synaptic Damage and Induces Depression by Binding to the Neuronal Receptor Megalin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410273. [PMID: 39716879 PMCID: PMC11809382 DOI: 10.1002/advs.202410273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Indexed: 12/25/2024]
Abstract
Vitamin D binding protein (VDBP) is a potential biomarker of major depressive disorder (MDD). This study demonstrates for the first time that VDBP is highly expressed in core emotion-related brain regions of mice susceptible to chronic unpredictable mild stress (CUMS). Specifically, the overexpression of microglia (MG)-derived VDBP in the prelimbic leads to depression-like behavior and aggravates CUMS-induced depressive phenotypes in mice, whereas conditional knockout of MG-derived VDBP can reverse both neuronal damage and depression-like behaviors. Mechanistically, the binding of MG-derived VDBP with the neuronal receptor megalin mediates the downstream SRC signaling pathway, leading to neuronal and synaptic damage and depression-like behaviors. These events may be caused by biased activation of inhibitory neurons and excitatory-inhibitory imbalance. Importantly, this study has effectively identified MG-derived VDBP as a pivotal mediator in the interplay between microglia and neurons via its interaction with the neuronal receptor megalin and intricate downstream impacts on neuronal functions, thus offering a promising therapeutic target for MDD.
Collapse
Affiliation(s)
- Yan Kong
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
- Department of Biochemistry and Molecular BiologySchool of MedicineSoutheast UniversityNanjingJiangsu210009China
| | - Xian Zhang
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Ling Li
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Te Zhao
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of DepressionDepartment of Mental Health and Public HealthFaculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Zihan Huang
- Department of Biochemistry and Molecular BiologySchool of MedicineSoutheast UniversityNanjingJiangsu210009China
| | - Aini Zhang
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Yun Sun
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Jiao Jiao
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Gaojia Zhang
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Mengyu Liu
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of DepressionDepartment of Mental Health and Public HealthFaculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Yijun Han
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of DepressionDepartment of Mental Health and Public HealthFaculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Linfeng Yang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of DepressionDepartment of Mental Health and Public HealthFaculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Zhijun Zhang
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of DepressionDepartment of Mental Health and Public HealthFaculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| |
Collapse
|
5
|
Zhang ZX, Peng J, Ding WW. Lipocalin-2 and intestinal diseases. World J Gastroenterol 2024; 30:4864-4879. [PMID: 39679305 PMCID: PMC11612708 DOI: 10.3748/wjg.v30.i46.4864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Dysfunction of the intestinal barrier is a prevalent phenomenon observed across a spectrum of diseases, encompassing conditions such as mesenteric artery dissection, inflammatory bowel disease, cirrhosis, and sepsis. In these pathological states, the integrity of the intestinal barrier, which normally serves to regulate the selective passage of substances between the gut lumen and the bloodstream, becomes compromised. This compromised barrier function can lead to a range of adverse consequences, including increased permeability to harmful substances, the translocation of bacteria and their products into systemic circulation, and heightened inflammatory responses within the gut and beyond. Understanding the mechanisms underlying intestinal barrier dysfunction in these diverse disease contexts is crucial for the development of targeted therapeutic interventions aimed at restoring barrier integrity and ameliorating disease progression. Lipocalin-2 (LCN2) expression is significantly upregulated during episodes of intestinal inflammation, making it a pivotal indicator for gauging the extent of such inflammatory processes. Notably, however, LCN2 derived from distinct cellular sources, whether intestinal epithelial cells or immune cells, exhibits notably divergent functional characteristics. Furthermore, the multifaceted nature of LCN2 is underscored by its varying roles across different diseases, sometimes even demonstrating contradictory effects.
Collapse
Affiliation(s)
- Zhong-Xu Zhang
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jian Peng
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wei-Wei Ding
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
6
|
Beenken A, Shen T, Jin G, Ghotra A, Xu K, Nesanir K, Sturley RE, Vijayakumar S, Khan A, Levitman A, Stauber J, Chavez EY, Robbins-Juarez SY, Hao L, Field TB, Erdjument-Bromage H, Neubert TA, Shapiro L, Qiu A, Barasch J. Spns1 is an iron transporter essential for megalin-dependent endocytosis. Am J Physiol Renal Physiol 2024; 327:F775-F787. [PMID: 39265081 PMCID: PMC11563593 DOI: 10.1152/ajprenal.00172.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024] Open
Abstract
Proximal tubule endocytosis is essential to produce protein-free urine as well as to regulate system-wide metabolic pathways, such as the activation of Vitamin D. We have determined that the proximal tubule expresses an endolysosomal membrane protein, protein spinster homolog1 (Spns1), which engenders a novel iron conductance that is indispensable during embryonic development. Conditional knockout of Spns1 with a novel Cre-LoxP construct specific to megalin-expressing cells led to the arrest of megalin receptor-mediated endocytosis as well as dextran pinocytosis in proximal tubules. The endocytic defect was accompanied by changes in megalin phosphorylation as well as enlargement of lysosomes, confirming previous findings in Drosophila and Zebrafish. The endocytic defect was also accompanied by iron overload in proximal tubules. Remarkably, iron levels regulated the Spns1 phenotypes because feeding an iron-deficient diet or mating Spns1 knockout with divalent metal transporter1 knockout rescued the phenotypes. Conversely, iron-loading wild-type mice reproduced the endocytic defect. These data demonstrate a reversible, negative feedback for apical endocytosis and raise the possibility that regulation of endocytosis, pinocytosis, megalin activation, and organellar size and function is nutrient-responsive.NEW & NOTEWORTHY Spns1 mediates a novel iron conductance essential during embryogenesis. Spns1 knockout leads to endocytic and lysosomal defects, accompanied by iron overload in the kidney. Reversal of iron overload by restricting dietary iron or by concurrent knockout of the iron transporter, DMT1 rescued the endocytic and organellar defects and reverted markers of iron overload. These data suggest feedback between iron and proximal tubule endocytosis.
Collapse
Affiliation(s)
- Andrew Beenken
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Tian Shen
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Guangchun Jin
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Aryan Ghotra
- Columbia College, Columbia University, New York, New York, United States
| | - Katherine Xu
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Kivanc Nesanir
- University of Richmond, Richmond, Virginia, United States
| | - Rachel E Sturley
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Soundarapandian Vijayakumar
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Abraham Levitman
- Albert Einstein College of Medicine, New York, New York, United States
| | - Jacob Stauber
- Albert Einstein College of Medicine, New York, New York, United States
| | - Estefania Y Chavez
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | | | - Luke Hao
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Thomas B Field
- Department of Mechanical Engineering, University of Vermont, Burlington, Vermont, United States
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States
- Aaron Diamond AIDS Research Center, Columbia University, New York, New York, United States
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States
| | - Andong Qiu
- Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Jonathan Barasch
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
- Columbia University George M. O'Brien Urology Center, New York, New York, United States
| |
Collapse
|
7
|
Crescenzi E, Mellone S, Gragnano G, Iaccarino A, Leonardi A, Pacifico F. NGAL Mediates Anaplastic Thyroid Carcinoma Cells Survival Through FAS/CD95 Inhibition. Endocrinology 2023; 165:bqad190. [PMID: 38091978 DOI: 10.1210/endocr/bqad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Indexed: 12/27/2023]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL), a siderophore-mediated iron binding protein, is highly expressed in human anaplastic thyroid carcinomas (ATCs) where it plays pleiotropic protumorigenic roles including that of a prosurvival protein. Here we show that NGAL inhibits FAS/CD95 death receptor to control ATC cell survival. FAS/CD95 expression in human specimens from patients with ATC and in ATC-derived cell lines negatively correlate with NGAL expression. Silencing of NGAL in ATC cells leads to FAS/CD95 upregulation, whereas NGAL overexpression determines the opposite effect. As a result, an agonist anti-FAS/CD95 antibody induces cell death in NGAL-silenced cells while it is ineffective on NGAL-overexpressing cells. Interestingly, the inhibitory activity of NGAL on FAS/CD95 is due to its iron carrier property given that perturbing iron homeostasis of NGAL-proficient and -deficient ATC cells directly influences FAS/CD95 expression. Accordingly, conditioned media containing a mutant form of NGAL unable to bind siderophores cannot rescue cells from FAS/CD95-dependent death, whereas NGAL wild type-containing conditioned media abolish the effects of the agonist antibody. We also find that downregulation of FAS/CD95 expression is mediated by iron-dependent NGAL suppression of p53 transcriptional activity. Our results indicate that NGAL contributes to ATC cell survival by iron-mediated inhibition of p53-dependent FAS/CD95 expression and suggest that restoring FAS/CD95 by NGAL suppression could be a helpful strategy to kill ATC cells.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Stefano Mellone
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Gianluca Gragnano
- Dipartimento di Salute Pubblica, "Federico II" University of Naples, 80131 Naples, Italy
| | - Antonino Iaccarino
- Dipartimento di Salute Pubblica, "Federico II" University of Naples, 80131 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" University of Naples, 80131 Naples, Italy
| | - Francesco Pacifico
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| |
Collapse
|
8
|
Thévenod F, Herbrechter R, Schlabs C, Pethe A, Lee WK, Wolff NA, Roussa E. Role of the SLC22A17/lipocalin-2 receptor in renal endocytosis of proteins/metalloproteins: a focus on iron- and cadmium-binding proteins. Am J Physiol Renal Physiol 2023; 325:F564-F577. [PMID: 37589051 DOI: 10.1152/ajprenal.00020.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023] Open
Abstract
The transmembrane protein SLC22A17 [or the neutrophil gelatinase-associated lipocalin/lipocalin-2 (LCN2)/24p3 receptor] is an atypical member of the SLC22 family of organic anion and cation transporters: it does not carry typical substrates of SLC22 transporters but mediates receptor-mediated endocytosis (RME) of LCN2. One important task of the kidney is the prevention of urinary loss of proteins filtered by the glomerulus by bulk reabsorption of multiple ligands via megalin:cubilin:amnionless-mediated endocytosis in the proximal tubule (PT). Accordingly, overflow, glomerular, or PT damage, as in Fanconi syndrome, results in proteinuria. Strikingly, up to 20% of filtered proteins escape the PT under physiological conditions and are reabsorbed by the distal nephron. The renal distal tubule and collecting duct express SLC22A17, which mediates RME of filtered proteins that evade the PT but with limited capacity to prevent proteinuria under pathological conditions. The kidney also prevents excretion of filtered essential and nonessential transition metals, such as iron or cadmium, respectively, that are largely bound to proteins with high affinity, e.g., LCN2, transferrin, or metallothionein, or low affinity, e.g., microglobulins or albumin. Hence, increased uptake of transition metals may cause nephrotoxicity. Here, we assess the literature on SLC22A17 structure, topology, tissue distribution, regulation, and assumed functions, emphasizing renal SLC22A17, which has relevance for physiology, pathology, and nephrotoxicity due to the accumulation of proteins complexed with transition metals, e.g., cadmium or iron. Other putative renal functions of SLC22A17, such as its contribution to osmotic stress adaptation, protection against urinary tract infection, or renal carcinogenesis, are discussed.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Robin Herbrechter
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Carolin Schlabs
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Abhishek Pethe
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Natascha A Wolff
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
9
|
Marques E, Alves Teixeira M, Nguyen C, Terzi F, Gallazzini M. Lipocalin-2 induces mitochondrial dysfunction in renal tubular cells via mTOR pathway activation. Cell Rep 2023; 42:113032. [PMID: 37624695 DOI: 10.1016/j.celrep.2023.113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial dysfunction is a critical process in renal epithelial cells upon kidney injury. While its implication in kidney disease progression is established, the mechanisms modulating it remain unclear. Here, we describe the role of Lipocalin-2 (LCN2), a protein expressed in injured tubular cells, in mitochondrial dysfunction. We show that LCN2 expression decreases mitochondrial mass and function and induces mitochondrial fragmentation. Importantly, while LCN2 expression favors DRP1 mitochondrial recruitment, DRP1 inhibition antagonizes LCN2's effect on mitochondrial shape. Remarkably, LCN2 promotes mitochondrial fragmentation independently of its secretion or transport iron activity. Mechanistically, intracellular LCN2 expression increases mTOR activity, and rapamycin inhibits LCN2's effect on mitochondrial shape. In vivo, Lcn2 gene inactivation prevents mTOR activation and mitochondrial length decrease observed upon ischemia-reperfusion-induced kidney injury (IRI) in Lcn2+/+ mice. Our data identify LCN2 as a key regulator of mitochondrial dynamics and further elucidate the mechanisms leading to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Eloïse Marques
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Institut Necker Enfants Malades, 160 Rue de Vaugirard, 75015 Paris, France
| | - Maraiza Alves Teixeira
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Institut Necker Enfants Malades, 160 Rue de Vaugirard, 75015 Paris, France
| | - Clément Nguyen
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Institut Necker Enfants Malades, 160 Rue de Vaugirard, 75015 Paris, France
| | - Fabiola Terzi
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Institut Necker Enfants Malades, 160 Rue de Vaugirard, 75015 Paris, France
| | - Morgan Gallazzini
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Institut Necker Enfants Malades, 160 Rue de Vaugirard, 75015 Paris, France.
| |
Collapse
|
10
|
Xia Y, Ge G, Xiao H, Wu M, Wang T, Gu C, Yang H, Geng D. REPIN1 regulates iron metabolism and osteoblast apoptosis in osteoporosis. Cell Death Dis 2023; 14:631. [PMID: 37749079 PMCID: PMC10519990 DOI: 10.1038/s41419-023-06160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
Osteoporosis is not well treated due to the difficulty of finding commonalities between the various types of it. Iron homeostasis is a vital component in supporting biochemical functions, and iron overload is recognized as a common risk factor for osteoporosis. In this research, we found that there is indeed evidence of iron accumulation in the bone tissue of patients with osteoporosis and REPIN1, as an origin specific DNA binding protein, may play a key role in this process. We revealed that sh-Repin1 therapy can rescue bone loss in an iron-overload-induced osteoporosis mouse model. Knockdown of Repin1 can inhibit apoptosis and enhance the resistance of osteoblasts to iron overload toxicity. REPIN1 promoted apoptosis by regulating iron metabolism in osteoblasts. Mechanistically, knockdown of Repin1 decreased the expression of Lcn2, which ameliorated the toxic effects of intracellular iron overload. The anti-iron effect of lentivirus sh-Repin1 was partially reversed or replicated by changing LCN2 expression level via si-RNA or plasmid, which indirectly verified the key regulatory role of LCN2 as a downstream target. Furthermore, the levels of BCL2 and BAX, which play a key role in the mitochondrial apoptosis pathway, were affected. In summary, based on the results of clinical specimens, animal models and in vitro experiments, for the first time, we proved the key role of REPIN1 in iron metabolism-related osteoporosis.
Collapse
Affiliation(s)
- Yu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Taicang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Tianhao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chengyong Gu
- Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital (North District), Suzhou, China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
11
|
Schröder SK, Gasterich N, Weiskirchen S, Weiskirchen R. Lipocalin 2 receptors: facts, fictions, and myths. Front Immunol 2023; 14:1229885. [PMID: 37638032 PMCID: PMC10451079 DOI: 10.3389/fimmu.2023.1229885] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The human 25-kDa Lipocalin 2 (LCN2) was first identified and purified as a protein that in part is associated with gelatinase from neutrophils. This protein shows a high degree of sequence similarity with the deduced sequences of rat α2-microglobulin-related protein and the mouse protein 24p3. Based on its typical lipocalin fold, which consists of an eight-stranded, anti-parallel, symmetrical β-barrel fold structure it was initially thought that LCN2 is a circulating protein functioning as a transporter of small lipophilic molecules. However, studies in Lcn2 null mice have shown that LCN2 has bacteriostatic properties and plays a key role in innate immunity by sequestering bacterial iron siderophores. Numerous reports have further shown that LCN2 is involved in the control of cell differentiation, energy expenditure, cell death, chemotaxis, cell migration, and many other biological processes. In addition, important roles for LCN2 in health and disease have been identified in Lcn2 null mice and multiple molecular pathways required for regulation of Lcn2 expression have been identified. Nevertheless, although six putative receptors for LCN2 have been proposed, there is a fundamental lack in understanding of how these cell-surface receptors transmit and amplify LCN2 to the cell. In the present review we summarize the current knowledge on LCN2 receptors and discuss inconsistencies, misinterpretations and false assumptions in the understanding of these potential LCN2 receptors.
Collapse
Affiliation(s)
- Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Natalie Gasterich
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
12
|
Jerschke E, Barkovsky M, Jung N, Neuberger H, Stenzel J, Eyer F, Skerra A, Geith S. In vivo Neutralization of Colchicine Toxicity by a PASylated Anticalin in a Rat Model. Toxicology 2023; 492:153526. [PMID: 37116682 DOI: 10.1016/j.tox.2023.153526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
We have investigated the pharmacokinetics (PK) and in vivo activity of an Anticalin exhibiting picomolar affinity towards colchicine, a plant toxin with low tolerable dose in humans. PK analysis of the 20-kDa "Colchicalin" protein in male Sprague Dawley rats (n=3) revealed a very short plasma half-life (3.5min), which was prolonged 21-fold via genetic fusion with a 200-residue Pro/Ala sequence (PASylation). The scavenging activity of the PASylated Colchicalin was investigated over 3.5h via stoichiometric application following a sub-toxic i.v. dose of colchicine on anesthetized rats (n=2) leading to a rapid rise in total plasma colchicine concentration. We then established a 14-day intoxication model in rats (n=3) at a 30mg/kg p.o. colchicine dose which was characterized by severe weight loss, elevated neutrophil-to-lymphocyte ratio and shortened survival. Colchicalin administration at 4.2% of the neutralizing dose (125mg/kg/day daily for 12 consecutive days) resulted in faster relief of the symptoms in 2/3 of animals (n=6) compared to the control group without Colchicalin treatment (n=5). Nevertheless, 1/3 of the rats died suddenly after the first Colchicalin injection, probably due to a steep rise in the total colchicine plasma concentration, which suggests further improvement of the dosing scheme prior to potential application in acute human colchicine poisoning.
Collapse
Affiliation(s)
- Elena Jerschke
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany
| | - Mikhail Barkovsky
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany
| | - Nicole Jung
- Division of Clinical Toxicology and Poison Control Centre Munich, Department of Internal Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Heidi Neuberger
- Division of Clinical Toxicology and Poison Control Centre Munich, Department of Internal Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jochen Stenzel
- Division of Clinical Toxicology and Poison Control Centre Munich, Department of Internal Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Eyer
- Division of Clinical Toxicology and Poison Control Centre Munich, Department of Internal Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany.
| | - Stefanie Geith
- Division of Clinical Toxicology and Poison Control Centre Munich, Department of Internal Medicine II, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
13
|
Natural polyphenol-based nanoparticles for the treatment of iron-overload disease. J Control Release 2023; 356:84-92. [PMID: 36813037 DOI: 10.1016/j.jconrel.2023.02.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Iron-overload diseases are characterized by a variety of symptoms resulting from excessive iron stores, oxidative stress and consequent end-organ damage. Deferoxamine (DFO) is an iron-chelator that can protect tissues from iron-induced damage. However, its application is limited due to its low stability and weak free radical scavenging ability. Herein, natural polyphenols have been employed to enhance the protective efficacy of DFO through the construction of supramolecular dynamic amphiphiles, which self-assemble into spherical nanoparticles with excellent scavenging capacity against both iron (III) and reactive oxygen species (ROS). This class of natural polyphenols-assisted nanoparticles was found to exhibit enhanced protective efficacy both in vitro in an iron-overload cell model and in vivo in an intracerebral hemorrhage model. This strategy of constructing natural polyphenols- assisted nanoparticles could benefit the treatment of iron-overload related diseases with excessive accumulation of toxic or harmful substances.
Collapse
|
14
|
Beenken A, Cerutti G, Brasch J, Guo Y, Sheng Z, Erdjument-Bromage H, Aziz Z, Robbins-Juarez SY, Chavez EY, Ahlsen G, Katsamba PS, Neubert TA, Fitzpatrick AWP, Barasch J, Shapiro L. Structures of LRP2 reveal a molecular machine for endocytosis. Cell 2023; 186:821-836.e13. [PMID: 36750096 PMCID: PMC9993842 DOI: 10.1016/j.cell.2023.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2 or megalin) is representative of the phylogenetically conserved subfamily of giant LDL receptor-related proteins, which function in endocytosis and are implicated in diseases of the kidney and brain. Here, we report high-resolution cryoelectron microscopy structures of LRP2 isolated from mouse kidney, at extracellular and endosomal pH. The structures reveal LRP2 to be a molecular machine that adopts a conformation for ligand binding at the cell surface and for ligand shedding in the endosome. LRP2 forms a homodimer, the conformational transformation of which is governed by pH-sensitive sites at both homodimer and intra-protomer interfaces. A subset of LRP2 deleterious missense variants in humans appears to impair homodimer assembly. These observations lay the foundation for further understanding the function and mechanism of LDL receptors and implicate homodimerization as a conserved feature of the LRP receptor subfamily.
Collapse
Affiliation(s)
- Andrew Beenken
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gabriele Cerutti
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Julia Brasch
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University, New York, NY 10032, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University, New York, NY 10032, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Zainab Aziz
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Estefania Y Chavez
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Goran Ahlsen
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Thomas A Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anthony W P Fitzpatrick
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Jonathan Barasch
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Columbia University George M. O'Brien Urology Center, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
15
|
Gupta U, Ghosh S, Wallace CT, Shang P, Xin Y, Nair AP, Yazdankhah M, Strizhakova A, Ross MA, Liu H, Hose S, Stepicheva NA, Chowdhury O, Nemani M, Maddipatla V, Grebe R, Das M, Lathrop KL, Sahel JA, Zigler JS, Qian J, Ghosh A, Sergeev Y, Handa JT, St Croix CM, Sinha D. Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD. Autophagy 2023; 19:92-111. [PMID: 35473441 PMCID: PMC9809950 DOI: 10.1080/15548627.2022.2062887] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023] Open
Abstract
In dry age-related macular degeneration (AMD), LCN2 (lipocalin 2) is upregulated. Whereas LCN2 has been implicated in AMD pathogenesis, the mechanism remains unknown. Here, we report that in retinal pigmented epithelial (RPE) cells, LCN2 regulates macroautophagy/autophagy, in addition to maintaining iron homeostasis. LCN2 binds to ATG4B to form an LCN2-ATG4B-LC3-II complex, thereby regulating ATG4B activity and LC3-II lipidation. Thus, increased LCN2 reduced autophagy flux. Moreover, RPE cells from cryba1 KO, as well as sting1 KO and Sting1Gt mutant mice (models with abnormal iron chelation), showed decreased autophagy flux and increased LCN2, indicative of CGAS- and STING1-mediated inflammasome activation. Live cell imaging of RPE cells with elevated LCN2 also showed a correlation between inflammasome activation and increased fluorescence intensity of the Liperfluo dye, indicative of oxidative stress-induced ferroptosis. Interestingly, both in human AMD patients and in mouse models with a dry AMD-like phenotype (cryba1 cKO and KO), the LCN2 homodimer variant is increased significantly compared to the monomer. Sub-retinal injection of the LCN2 homodimer secreted by RPE cells into NOD-SCID mice leads to retinal degeneration. In addition, we generated an LCN2 monoclonal antibody that neutralizes both the monomer and homodimer variants and rescued autophagy and ferroptosis activities in cryba1 cKO mice. Furthermore, the antibody rescued retinal function in cryba1 cKO mice as assessed by electroretinography. Here, we identify a molecular pathway whereby increased LCN2 elicits pathophysiology in the RPE, cells known to drive dry AMD pathology, thus providing a possible therapeutic strategy for a disease with no current treatment options.Abbreviations: ACTB: actin, beta; Ad-GFP: adenovirus-green fluorescent protein; Ad-LCN2: adenovirus-lipocalin 2; Ad-LCN2-GFP: adenovirus-LCN2-green fluorescent protein; LCN2AKT2: AKT serine/threonine kinase 2; AMBRA1: autophagy and beclin 1 regulator 1; AMD: age-related macular degeneration; ARPE19: adult retinal pigment epithelial cell line-19; Asp278: aspartate 278; ATG4B: autophagy related 4B cysteine peptidase; ATG4C: autophagy related 4C cysteine peptidase; ATG7: autophagy related 7; ATG9B: autophagy related 9B; BLOC-1: biogenesis of lysosomal organelles complex 1; BLOC1S1: biogenesis of lysosomal organelles complex 1 subunit 1; C57BL/6J: C57 black 6J; CGAS: cyclic GMP-AMP synthase; ChQ: chloroquine; cKO: conditional knockout; Cys74: cysteine 74; Dab2: DAB adaptor protein 2; Def: deferoxamine; DHE: dihydroethidium; DMSO: dimethyl sulfoxide; ERG: electroretinography; FAC: ferric ammonium citrate; Fe2+: ferrous; FTH1: ferritin heavy chain 1; GPX: glutathione peroxidase; GST: glutathione S-transferase; H2O2: hydrogen peroxide; His280: histidine 280; IFNL/IFNλ: interferon lambda; IL1B/IL-1β: interleukin 1 beta; IS: Inner segment; ITGB1/integrin β1: integrin subunit beta 1; KO: knockout; LC3-GST: microtubule associated protein 1 light chain 3-GST; C-terminal fusion; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LCN2: lipocalin 2; mAb: monoclonal antibody; MDA: malondialdehyde; MMP9: matrix metallopeptidase 9; NLRP3: NLR family pyrin domain containing 3; NOD-SCID: nonobese diabetic-severe combined immunodeficiency; OS: outer segment; PBS: phosphate-buffered saline; PMEL/PMEL17: premelanosome protein; RFP: red fluorescent protein; rLCN2: recombinant LCN2; ROS: reactive oxygen species; RPE SM: retinal pigmented epithelium spent medium; RPE: retinal pigment epithelium; RSL3: RAS-selective lethal; scRNAseq: single-cell ribonucleic acid sequencing; SD-OCT: spectral domain optical coherence tomography; shRNA: small hairpin ribonucleic acid; SM: spent medium; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STAT1: signal transducer and activator of transcription 1; STING1: stimulator of interferon response cGAMP interactor 1; TYR: tyrosinase; VCL: vinculin; WT: wild type.
Collapse
Affiliation(s)
- Urvi Gupta
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Callen T Wallace
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ying Xin
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anastasia Strizhakova
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark A Ross
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadezda A Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Olivia Chowdhury
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mihir Nemani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vishnu Maddipatla
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rhonda Grebe
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manjula Das
- Molecular Immunology, Mazumdar Shaw Medical Foundation, Bengaluru, India
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institut De La Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - J Samuel Zigler
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arkasubhra Ghosh
- GROW Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Yuri Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - James T Handa
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Claudette M St Croix
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Dufrusine B, Valentinuzzi S, Bibbò S, Damiani V, Lanuti P, Pieragostino D, Del Boccio P, D’Alessandro E, Rabottini A, Berghella A, Allocati N, Falasca K, Ucciferri C, Mucedola F, Di Perna M, Martino L, Vecchiet J, De Laurenzi V, Dainese E. Iron Dyshomeostasis in COVID-19: Biomarkers Reveal a Functional Link to 5-Lipoxygenase Activation. Int J Mol Sci 2022; 24:15. [PMID: 36613462 PMCID: PMC9819889 DOI: 10.3390/ijms24010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical symptoms. After acute infection, some subjects develop a post-COVID-19 syndrome known as long-COVID. This study aims to recognize the molecular and functional mechanisms that occur in COVID-19 and long-COVID patients and identify useful biomarkers for the management of patients with COVID-19 and long-COVID. Here, we profiled the response to COVID-19 by performing a proteomic analysis of lymphocytes isolated from patients. We identified significant changes in proteins involved in iron metabolism using different biochemical analyses, considering ceruloplasmin (Cp), transferrin (Tf), hemopexin (HPX), lipocalin 2 (LCN2), and superoxide dismutase 1 (SOD1). Moreover, our results show an activation of 5-lipoxygenase (5-LOX) in COVID-19 and in long-COVID possibly through an iron-dependent post-translational mechanism. Furthermore, this work defines leukotriene B4 (LTB4) and lipocalin 2 (LCN2) as possible markers of COVID-19 and long-COVID and suggests novel opportunities for prevention and treatment.
Collapse
Affiliation(s)
- Beatrice Dufrusine
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Sandra Bibbò
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Verena Damiani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Ersilia D’Alessandro
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alberto Rabottini
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Berghella
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Katia Falasca
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Claudio Ucciferri
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Francesco Mucedola
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Marco Di Perna
- Pneumology Department, “SS Annunziata” Hospital, 66100 Chieti, Italy
| | - Laura Martino
- Pneumology Department, “SS Annunziata” Hospital, 66100 Chieti, Italy
| | - Jacopo Vecchiet
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Enrico Dainese
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
17
|
Rittase WB, Slaven JE, Suzuki YJ, Muir JM, Lee SH, Rusnak M, Brehm GV, Bradfield DT, Symes AJ, Day RM. Iron Deposition and Ferroptosis in the Spleen in a Murine Model of Acute Radiation Syndrome. Int J Mol Sci 2022; 23:ijms231911029. [PMID: 36232330 PMCID: PMC9570444 DOI: 10.3390/ijms231911029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Total body irradiation (TBI) can result in death associated with hematopoietic insufficiency. Although radiation causes apoptosis of white blood cells, red blood cells (RBC) undergo hemolysis due to hemoglobin denaturation. RBC lysis post-irradiation results in the release of iron into the plasma, producing a secondary toxic event. We investigated radiation-induced iron in the spleens of mice following TBI and the effects of the radiation mitigator captopril. RBC and hematocrit were reduced ~7 days (nadir ~14 days) post-TBI. Prussian blue staining revealed increased splenic Fe3+ and altered expression of iron binding and transport proteins, determined by qPCR, western blotting, and immunohistochemistry. Captopril did not affect iron deposition in the spleen or modulate iron-binding proteins. Caspase-3 was activated after ~7–14 days, indicating apoptosis had occurred. We also identified markers of iron-dependent apoptosis known as ferroptosis. The p21/Waf1 accelerated senescence marker was not upregulated. Macrophage inflammation is an effect of TBI. We investigated the effects of radiation and Fe3+ on the J774A.1 murine macrophage cell line. Radiation induced p21/Waf1 and ferritin, but not caspase-3, after ~24 h. Radiation ± iron upregulated several markers of pro-inflammatory M1 polarization; radiation with iron also upregulated a marker of anti-inflammatory M2 polarization. Our data indicate that following TBI, iron accumulates in the spleen where it regulates iron-binding proteins and triggers apoptosis and possible ferroptosis.
Collapse
Affiliation(s)
- W. Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yuichiro J. Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jeannie M. Muir
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sang-Ho Lee
- Department of Laboratory Animal Research, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Milan Rusnak
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Grace V. Brehm
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Aviva J. Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3236; Fax: +1-301-295-3220
| |
Collapse
|
18
|
Zou C, Wang C, Lu L. Advances in the study of subclinical AKI biomarkers. Front Physiol 2022; 13:960059. [PMID: 36091391 PMCID: PMC9449362 DOI: 10.3389/fphys.2022.960059] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) is a prevalent and serious illness in all clinical departments, with a high morbidity and death rate, particularly in intensive care units, where prevention and treatment are crucial. As a result, active prevention, early detection, and timely intervention for acute kidney injury are critical. The current diagnostic criteria for acute kidney injury are an increase in serum creatinine concentration and/or a decrease in urine output, although creatinine and urine output merely reflect changes in kidney function, and AKI suggests injury or damage, but not necessarily dysfunction. The human kidney plays a crucial functional reserve role, and dysfunction is only visible when more than half of the renal mass is impaired. Tubular damage markers can be used to detect AKI before filtration function is lost, and new biomarkers have shown a new subset of AKI patients known as "subclinical AKI." Furthermore, creatinine and urine volume are only marginally effective for detecting subclinical AKI. As a result, the search for new biomarkers not only identifies deterioration of renal function but also allows for the early detection of structural kidney damage. Several biomarkers have been identified and validated. This study discusses some of the most promising novel biomarkers of AKI, including CysC, NGAL, KIM-1, lL-18, L-FABP, IGFBP7, TIMP-2, Clusterin, and Penkid. We examine their performance in the diagnosis of subclinical AKI, limitations, and future clinical practice directions.
Collapse
Affiliation(s)
- Chenchen Zou
- Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Chentong Wang
- Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Lin Lu
- Department of Integrative Medicine-Geriatrics, Hongqi Hospital, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| |
Collapse
|
19
|
Abstract
Urinary tract infection (UTI) is the most common type of urogenital disease. UTI affects the urethra, bladder, ureter, and kidney. A total of 13.3% of women, 2.3% of men, and 3.4% of children in the United States will require treatment for UTI. Traditionally, bladder (cystitis) and kidney (pyelonephritis) infections are considered independently. However, both infections induce host defenses that are either shared or coordinated across the urinary tract. Here, we review the chemical and biophysical mechanisms of bacteriostasis, which limit the duration and severity of the illness. Urinary bacteria attempt to overcome each of these defenses, complicating description of the natural history of UTI.
Collapse
Affiliation(s)
| | - Anne-Catrin Uhlemann
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| | - Jonathan Barasch
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| |
Collapse
|
20
|
Zavala-Guevara IP, Ortega-Romero MS, Narváez-Morales J, Jacobo-Estrada TL, Lee WK, Arreola-Mendoza L, Thévenod F, Barbier OC. Increased Endocytosis of Cadmium-Metallothionein through the 24p3 Receptor in an In Vivo Model with Reduced Proximal Tubular Activity. Int J Mol Sci 2021; 22:7262. [PMID: 34298880 PMCID: PMC8303618 DOI: 10.3390/ijms22147262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The proximal tubule (PT) is the major target of cadmium (Cd2+) nephrotoxicity. Current dogma postulates that Cd2+ complexed to metallothionein (MT) (CdMT) is taken up through receptor-mediated endocytosis (RME) via the PT receptor megalin:cubilin, which is the predominant pathway for reuptake of filtered proteins in the kidney. Nevertheless, there is evidence that the distal parts of the nephron are also sensitive to damage induced by Cd2+. In rodent kidneys, another receptor for protein endocytosis, the 24p3 receptor (24p3R), is exclusively expressed in the apical membranes of distal tubules (DT) and collecting ducts (CD). Cell culture studies have demonstrated that RME and toxicity of CdMT and other (metal ion)-protein complexes in DT and CD cells is mediated by 24p3R. In this study, we evaluated the uptake of labeled CdMT complex through 24p3R after acute kidney injury (AKI) induced by gentamicin (GM) administration that disrupts PT function. Subcutaneous administration of GM at 10 mg/kg/day for seven days did not alter the structural and functional integrity of the kidney's filtration barrier. However, because of PT injury, the concentration of the renal biomarker Kim-1 increased. When CdMT complex coupled to FITC was administered intravenously, both uptake of the CdMT complex and 24p3R expression in DT increased and also colocalized after PT injury induced by GM. Although megalin decreased in PT after GM administration, urinary protein excretion was not changed, which suggests that the increased levels of 24p3R in the distal nephron could be acting as a compensatory mechanism for protein uptake. Altogether, these results suggest that PT damage increases the uptake of the CdMT complex through 24p3R in DT (and possibly CD) and compensate for protein losses associated with AKI.
Collapse
Affiliation(s)
- Itzel Pamela Zavala-Guevara
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| | - Manolo Sibael Ortega-Romero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| | - Tania Libertad Jacobo-Estrada
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, 30 de Junio de 1520 s/n, Col. Barrio la Laguna Ticomán, México CP 07340, Mexico;
| | - Wing-Kee Lee
- Department of Physiology, Pathophysiology and Toxicology and ZBAF (Center for Biomedical Education and Research), Faculty of Health-School of Medicine, Witten/Herdecke University, 58448 Witten, Germany; (W.-K.L.); (F.T.)
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany
| | - Laura Arreola-Mendoza
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, 30 de Junio de 1520 s/n, Col. Barrio la Laguna Ticomán, México CP 07340, Mexico;
| | - Frank Thévenod
- Department of Physiology, Pathophysiology and Toxicology and ZBAF (Center for Biomedical Education and Research), Faculty of Health-School of Medicine, Witten/Herdecke University, 58448 Witten, Germany; (W.-K.L.); (F.T.)
| | - Olivier Christophe Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| |
Collapse
|
21
|
Lim D, Jeong JH, Song J. Lipocalin 2 regulates iron homeostasis, neuroinflammation, and insulin resistance in the brains of patients with dementia: Evidence from the current literature. CNS Neurosci Ther 2021; 27:883-894. [PMID: 33945675 PMCID: PMC8265939 DOI: 10.1111/cns.13653] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
Dementia accompanied by memory loss is considered one of the most common neurodegenerative diseases worldwide, and its prevalence is gradually increasing. Known risk factors for dementia include genetic background, certain lifestyle and dietary patterns, smoking, iron overload, insulin resistance, and impaired glucose metabolism in the brain. Here, we review recent evidence on the regulatory role of lipocalin 2 (LCN2) in dementia from various perspectives. LCN2 is a neutrophil gelatinase-associated protein that influences diverse cellular processes, including the immune system, iron homeostasis, lipid metabolism, and inflammatory responses. Although its functions within the peripheral system are most widely recognized, recent findings have revealed links between LCN2 and central nervous system diseases, as well as novel roles for LCN2 in neurons and glia. Furthermore, LCN2 may modulate diverse pathological mechanisms involved in dementia. Taken together, LCN2 is a promising therapeutic target with which to address the neuropathology of dementia.
Collapse
Affiliation(s)
- Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Chonnam National University, Gwangju, Korea
| |
Collapse
|
22
|
Olson B, Zhu X, Norgard MA, Levasseur PR, Butler JT, Buenafe A, Burfeind KG, Michaelis KA, Pelz KR, Mendez H, Edwards J, Krasnow SM, Grossberg AJ, Marks DL. Lipocalin 2 mediates appetite suppression during pancreatic cancer cachexia. Nat Commun 2021; 12:2057. [PMID: 33824339 PMCID: PMC8024334 DOI: 10.1038/s41467-021-22361-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/12/2021] [Indexed: 12/22/2022] Open
Abstract
Lipocalin 2 (LCN2) was recently identified as an endogenous ligand of the type 4 melanocortin receptor (MC4R), a critical regulator of appetite. However, it remains unknown if this molecule influences appetite during cancer cachexia, a devastating clinical entity characterized by decreased nutrition and progressive wasting. We demonstrate that LCN2 is robustly upregulated in murine models of pancreatic cancer, its expression is associated with reduced food consumption, and Lcn2 deletion is protective from cachexia-anorexia. Consistent with LCN2's proposed MC4R-dependent role in cancer-induced anorexia, pharmacologic MC4R antagonism mitigates cachexia-anorexia, while restoration of Lcn2 expression in the bone marrow is sufficient in restoring the anorexia feature of cachexia. Finally, we observe that LCN2 levels correlate with fat and lean mass wasting and is associated with increased mortality in patients with pancreatic cancer. Taken together, these findings implicate LCN2 as a pathologic mediator of appetite suppression during pancreatic cancer cachexia.
Collapse
Affiliation(s)
- Brennan Olson
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Peter R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - John T Butler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Abigail Buenafe
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kevin G Burfeind
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Katherine A Michaelis
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Katherine R Pelz
- Brenden-Colson Center for Pancreatic Care, Oregon Health and & Science University, Portland, OR, USA
| | - Heike Mendez
- Brenden-Colson Center for Pancreatic Care, Oregon Health and & Science University, Portland, OR, USA
| | - Jared Edwards
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Stephanie M Krasnow
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Aaron J Grossberg
- Brenden-Colson Center for Pancreatic Care, Oregon Health and & Science University, Portland, OR, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA.
- Brenden-Colson Center for Pancreatic Care, Oregon Health and & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
23
|
Tsakogiannis D, Kalogera E, Zagouri F, Zografos E, Balalis D, Bletsa G. Determination of FABP4, RBP4 and the MMP-9/NGAL complex in the serum of women with breast cancer. Oncol Lett 2020; 21:85. [PMID: 33376518 PMCID: PMC7751333 DOI: 10.3892/ol.2020.12346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the most common type of cancer in females and is the leading cause of cancer-associated death among women, worldwide. The present study aimed to measure the serum levels of fatty acid-binding protein 4 (FABP4), retinol binding protein 4 (RBP4) and the MMP-9/neutrophil gelatinase-associated lipocalin (NGAL) complex in women diagnosed with breast cancer. Serum levels of the examined proteins were determined in the peripheral blood of patients via ELISA. Furthermore, whether the concentration of each protein was associated with breast cancer growth, molecular subtype, BMI, postmenopausal status, diabetes and the social background of patients was assessed. Women with invasive breast cancer demonstrated significantly higher levels of FABP4 (P=0.008). Additionally, considerably elevated FABP4 levels were demonstrated specifically in Luminal breast cancer cases (P<0.01). No significant association was recorded between RBP4 and breast cancer development. In addition, significantly lower levels of the MMP-9/NGAL complex were recorded in triple negative/HER-2 cases (P<0.05). BMI values appeared to influence the aforementioned associations, while significantly high serum levels of FABP4 and the MMP-9/NGAL complex were found in postmenopausal patients with breast cancer and a BMI ≥25 kg/m2 (P<0.05). In addition, high levels of FABP4 were significantly associated with breast cancer patients with diabetes (P=0.05). However, no association was identified between RBP4, the MMP-9/NGAL complex and diabetes. In conclusion, FABP4 can be regarded as a biomarker of breast cancer growth, while both FABP4 and the MMP-9/NGAL complex may provide considerable information regarding the development of specific breast cancer subtypes. FABP4 and the MMP-9/NGAL complex may also be able to predict the development of breast cancer in postmenopausal patients with obesity.
Collapse
Affiliation(s)
| | - Eleni Kalogera
- Research Center, Hellenic Anticancer Institute, Athens 10680, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens 11528, Greece
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens 11528, Greece
| | - Dimitris Balalis
- Department of Surgery, Saint Savvas, Anticancer Hospital, Athens 11522, Greece
| | - Garyfalia Bletsa
- Research Center, Hellenic Anticancer Institute, Athens 10680, Greece
| |
Collapse
|
24
|
Mertens C, Kuchler L, Sola A, Guiteras R, Grein S, Brüne B, von Knethen A, Jung M. Macrophage-Derived Iron-Bound Lipocalin-2 Correlates with Renal Recovery Markers Following Sepsis-Induced Kidney Damage. Int J Mol Sci 2020; 21:ijms21207527. [PMID: 33065981 PMCID: PMC7589935 DOI: 10.3390/ijms21207527] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
During the course of sepsis in critically ill patients, kidney dysfunction and damage are among the first events of a complex scenario toward multi-organ failure and patient death. Acute kidney injury triggers the release of lipocalin-2 (Lcn-2), which is involved in both renal injury and recovery. Taking into account that Lcn-2 binds and transports iron with high affinity, we aimed at clarifying if Lcn-2 fulfills different biological functions according to its iron-loading status and its cellular source during sepsis-induced kidney failure. We assessed Lcn-2 levels both in serum and in the supernatant of short-term cultured renal macrophages (MΦ) as well as renal tubular epithelial cells (TEC) isolated from either Sham-operated or cecal ligation and puncture (CLP)-treated septic mice. Total kidney iron content was analyzed by Perls’ staining, while Lcn-2-bound iron in the supernatants of short-term cultured cells was determined by atomic absorption spectroscopy. Lcn-2 protein in serum was rapidly up-regulated at 6 h after sepsis induction and subsequently increased up to 48 h. Lcn-2-levels in the supernatant of TEC peaked at 24 h and were low at 48 h with no change in its iron-loading. In contrast, in renal MΦ Lcn-2 was low at 24 h, but increased at 48 h, where it mainly appeared in its iron-bound form. Whereas TEC-secreted, iron-free Lcn-2 was associated with renal injury, increased MΦ-released iron-bound Lcn-2 was linked to renal recovery. Therefore, we hypothesized that both the cellular source of Lcn-2 as well as its iron-load crucially adds to its biological function during sepsis-induced renal injury.
Collapse
Affiliation(s)
- Christina Mertens
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.M.); (L.K.); (B.B.); (A.v.K.)
| | - Laura Kuchler
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.M.); (L.K.); (B.B.); (A.v.K.)
| | - Anna Sola
- Department of Experimental Nephrology, IDIBELL, 08908 L’Hospitalet del Llobregat, Barcelona, Spain; (A.S.); (R.G.)
| | - Roser Guiteras
- Department of Experimental Nephrology, IDIBELL, 08908 L’Hospitalet del Llobregat, Barcelona, Spain; (A.S.); (R.G.)
| | - Stephan Grein
- Department of Mathematics, Temple University, Philadelphia, PA 19122, USA;
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.M.); (L.K.); (B.B.); (A.v.K.)
- Project Group Translational Medicine & Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 60590 Frankfurt am Main, Germany
| | - Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.M.); (L.K.); (B.B.); (A.v.K.)
- Project Group Translational Medicine & Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 60590 Frankfurt am Main, Germany
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.M.); (L.K.); (B.B.); (A.v.K.)
- Correspondence:
| |
Collapse
|
25
|
Rittase WB, Muir JM, Slaven JE, Bouten RM, Bylicky MA, Wilkins WL, Day RM. Deposition of Iron in the Bone Marrow of a Murine Model of Hematopoietic Acute Radiation Syndrome. Exp Hematol 2020; 84:54-66. [PMID: 32240658 DOI: 10.1016/j.exphem.2020.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/02/2023]
Abstract
Exposure to high-dose total body irradiation (TBI) can result in hematopoietic acute radiation syndrome (H-ARS), characterized by leukopenia, anemia, and coagulopathy. Death from H-ARS occurs from hematopoietic insufficiency and opportunistic infections. Following radiation exposure, red blood cells (RBCs) undergo hemolysis from radiation-induced hemoglobin denaturation, causing the release of iron. Free iron can have multiple detrimental biological effects, including suppression of hematopoiesis. We investigated the impact of radiation-induced iron release on the bone marrow following TBI and the potential impact of the ACE inhibitor captopril, which improves survival from H-ARS. C57BL/6J mice were exposed to 7.9 Gy, 60Co irradiation, 0.6 Gy/min (LD70-90/30). RBCs and reticulocytes were significantly reduced within 7 days of TBI, with the RBC nadir at 14-21 days. Iron accumulation in the bone marrow correlated with the time course of RBC hemolysis, with an ∼10-fold increase in bone marrow iron at 14-21 days post-irradiation, primarily within the cytoplasm of macrophages. Iron accumulation in the bone marrow was associated with increased expression of genes for iron binding and transport proteins, including transferrin, transferrin receptor 1, ferroportin, and integrin αMβ2. Expression of the gene encoding Nrf2, a transcription factor activated by oxidative stress, also increased at 21 days post-irradiation. Captopril did not alter iron accumulation in the bone marrow or expression of iron storage genes, but did suppress Nrf2 expression. Our study suggests that following TBI, iron is deposited in tissues not normally associated with iron storage, which may be a secondary mechanism of radiation-induced tissue injury.
Collapse
Affiliation(s)
- W Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Jeannie M Muir
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - John E Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Roxane M Bouten
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Michelle A Bylicky
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health Bethesda, MD
| | - W Louis Wilkins
- Department of Laboratory Animal Research, Uniformed Services University of Health Sciences, Bethesda, MD
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD.
| |
Collapse
|
26
|
Increased intestinal permeability exacerbates sepsis through reduced hepatic SCD-1 activity and dysregulated iron recycling. Nat Commun 2020; 11:483. [PMID: 31980623 PMCID: PMC6981269 DOI: 10.1038/s41467-019-14182-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease is associated with changes in the mucosal barrier, increased intestinal permeability, and increased risk of infections and sepsis, but the underlying mechanisms are incompletely understood. Here, we show how continuous translocation of gut microbial components affects iron homeostasis and facilitates susceptibility to inflammation-associated sepsis. A sub-lethal dose of lipopolysaccharide results in higher mortality in Mucin 2 deficient (Muc2-/-) mice, and is associated with elevated circulatory iron load and increased bacterial translocation. Translocation of gut microbial components attenuates hepatic stearoyl CoA desaturase-1 activity, a key enzyme in hepatic de novo lipogenesis. The resulting reduction of hepatic saturated and unsaturated fatty acid levels compromises plasma membrane fluidity of red blood cells, thereby significantly reducing their life span. Inflammation in Muc2-/- mice alters erythrophagocytosis efficiency of splenic macrophages, resulting in an iron-rich milieu that promotes bacterial growth. Our study thus shows that increased intestinal permeability triggers a cascade of events resulting in increased bacterial growth and risk of sepsis.
Collapse
|
27
|
Tajima S, Yamamoto N, Masuda S. Clinical prospects of biomarkers for the early detection and/or prediction of organ injury associated with pharmacotherapy. Biochem Pharmacol 2019; 170:113664. [PMID: 31606409 DOI: 10.1016/j.bcp.2019.113664] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022]
Abstract
Several biomarkers are used to monitor organ damage caused by drug toxicity. Traditional markers of kidney function, such as serum creatinine and blood urea nitrogen are commonly used to estimate glomerular filtration rate. However, these markers have several limitations including poor specificity and sensitivity. A number of serum and urine biomarkers have recently been described to detect kidney damage caused by drugs such as cisplatin, gentamicin, vancomycin, and tacrolimus. Neutrophil gelatinase-associated lipocalin (NGAL), liver-type fatty acid-binding protein (L-FABP), kidney injury molecule-1 (KIM-1), monocyte chemotactic protein-1 (MCP-1), and cystatin C have been identified as biomarkers for early kidney damage. Hy's Law is widely used as to predict a high risk of severe drug-induced liver injury caused by drugs such as acetaminophen. Recent reports have indicated that glutamate dehydrogenase (GLDH), high-mobility group box 1 (HMGB-1), Keratin-18 (k18), MicroRNA-122 and ornithine carbamoyltransferase (OCT) are more sensitive markers of hepatotoxicity compared to the traditional markers including the blood levels of amiotransferases and total bilirubin. Additionally, the rapid development of proteomic technologies in biofluids and tissue provides a new multi-marker panel, leading to the discovery of more sensitive biomarkers. In this review, an update topics of biomarkers for the detection of kidney or liver injury associated with pharmacotherapy.
Collapse
Affiliation(s)
- Soichiro Tajima
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Nanae Yamamoto
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan; Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Pharmacy, International University of Health and Welfare Narita Hospital, Japan; Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, International University of Health and Welfare Narita Hospital, Japan.
| |
Collapse
|
28
|
Parsing the functional specificity of Siderocalin/Lipocalin 2/NGAL for siderophores and related small-molecule ligands. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 2:100008. [PMID: 32647813 PMCID: PMC7337064 DOI: 10.1016/j.yjsbx.2019.100008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
Ligand recognition by antibacterial Siderocalin controls the competition for iron during infection. We determined nine crystal structures of Siderocalin mutants with ligands. We determined three candidate ligands did not bind. We determined the crystal structure of SBP YfiY. Multiplexed specificity of Siderocalin was determined.
Siderocalin/Lipocalin 2/Neutrophil Gelatinase Associated Lipocalin/24p3 is an innate immune system protein with bacteriostatic activity, acting by tightly binding and sequestering diverse catecholate and mixed-type ferric siderophores from enteric bacteria and mycobacteria. Bacterial virulence achieved through siderophore modifications, or utilization of alternate siderophores, can be explained by evasion of Siderocalin binding. Siderocalin has also been implicated in a wide variety of disease processes, though often in seemingly contradictory ways, and has been proposed to bind to a broader array of ligands beyond siderophores. Using structural, directed mutational, and binding studies, we have sought to rigorously test, and fully elucidate, the Siderocalin recognition mechanism. Several proposed ligands fail to meet rigorous binding criteria, including the bacterial siderophore pyochelin, the iron-chelating catecholamine hormone norepinephrine, and the bacterial second messenger cyclic diguanylate monophosphate. While possessing a remarkably rigid structure, in principle simplifying analyses of ligand recognition, understanding Scn recognition is complicated by the observed conformational and stoichiometric plasticity, and instability, of its bona fide siderophore ligands. Since the role of Siderocalin at the early host/pathogen interface is to compete for bacterial ferric siderophores, we also analyzed how bacterial siderophore binding proteins and enzymes alternately recognize siderophores that efficiently bind to, or evade, Siderocalin sequestration – including determining the crystal structure of Bacillus cereus YfiY bound to schizokinen. These studies combine to refine the potential physiological functions of Siderocalin by defining its multiplexed recognition mechanism.
Collapse
Key Words
- ABC, ATP‐binding cassette
- AEB, aerobactin
- AU, crystallographic asymmetric unit
- Antimicrobial responses
- BOCT, brain-type organic cation receptor
- Bacterial substrate binding proteins
- CAM, catechol
- CMB, carboxymycobactin
- DHBA, dihydroxybenzoic acid
- ENT, enterobactin or enterochelin
- FQ, fluorescence quenching
- Ferric enterobactin/enterochelin
- HOPO, hydroxypyridinone
- NE, norepinephrine
- NGAL, Neutrophil Gelatinase Associated Lipocalin
- PBP, bacterial periplasmic binding protein
- PCH, pyochelin
- PDB, Research Collaboratory for Structural Biology Protein Databank
- PVD, pyoverdine
- SBP, bacterial membrane-associated, substrate-binding protein
- SCH, schizokinen
- Scn, Siderocalin
- X-ray crystallography
- c-di-GMP, cyclic diguanylate monophosphate
Collapse
|
29
|
Smith CP, Lee WK, Haley M, Poulsen SB, Thévenod F, Fenton RA. Proximal tubule transferrin uptake is modulated by cellular iron and mediated by apical membrane megalin-cubilin complex and transferrin receptor 1. J Biol Chem 2019; 294:7025-7036. [PMID: 30833328 PMCID: PMC6497946 DOI: 10.1074/jbc.ra118.006390] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/27/2019] [Indexed: 01/12/2023] Open
Abstract
Receptor-mediated endocytosis is responsible for reabsorption of transferrin (Tf) in renal proximal tubules (PTs). Although the role of the megalin-cubilin receptor complex (MCRC) in this process is unequivocal, modalities independent of this complex are evident but as yet undefined. Here, using immunostaining and Tf-flux assays, FACS analysis, and fluorescence imaging, we report localization of Tf receptor 1 (TfR1), the cognate Tf receptor mediating cellular holo-Tf (hTf) acquisition, to the apical brush border of the PT, with expression gradually declining along the PT in mouse and rat kidneys. In functional studies, hTf uptake across the apical membrane of cultured PT epithelial cell (PTEC) monolayers increased in response to decreased cellular iron after desferrioxamine (DFO) treatment. We also found that apical hTf uptake under basal conditions is receptor-associated protein (RAP)-sensitive and therefore mediated by the MCRC but becomes RAP-insensitive under DFO treatment, with concomitantly decreased megalin and cubilin expression levels and increased TfR1 expression. Thus, as well as the MCRC, TfR1 mediates hTf uptake across the PT apical brush border, but in conditions of decreased cellular iron, hTf uptake is predominated by augmented apical TfR1. In conclusion, both the MCRC and TfR1 mediate hTf uptake across apical brush border membranes of PTECs and reciprocally respond to decreased cellular iron. Our findings have implications for renal health, whole-body iron homeostasis, and pathologies arising from disrupted iron balance.
Collapse
Affiliation(s)
- Craig P Smith
- From the School of Medical Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom,
| | - Wing-Kee Lee
- Physiology, Pathophysiology and Toxicology, University of Witten/Herdecke, D-58453 Witten, Germany, and
| | - Matthew Haley
- From the School of Medical Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, 8000 Denmark
| | - Frank Thévenod
- Physiology, Pathophysiology and Toxicology, University of Witten/Herdecke, D-58453 Witten, Germany, and
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, 8000 Denmark
| |
Collapse
|
30
|
Golonka R, Yeoh BS, Vijay-Kumar M. The Iron Tug-of-War between Bacterial Siderophores and Innate Immunity. J Innate Immun 2019; 11:249-262. [PMID: 30605903 DOI: 10.1159/000494627] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022] Open
Abstract
Iron is necessary for the survival of almost all aerobic organisms. In the mammalian host, iron is a required cofactor for the assembly of functional iron-sulfur (Fe-S) cluster proteins, heme-binding proteins and ribonucleotide reductases that regulate various functions, including heme synthesis, oxygen transport and DNA synthesis. However, the bioavailability of iron is low due to its insolubility under aerobic conditions. Moreover, the host coordinates a nutritional immune response to restrict the accessibility of iron against potential pathogens. To counter nutritional immunity, most commensal and pathogenic bacteria synthesize and secrete small iron chelators termed siderophores. Siderophores have potent affinity for iron, which allows them to seize the essential metal from the host iron-binding proteins. To safeguard against iron thievery, the host relies upon the innate immune protein, lipocalin 2 (Lcn2), which could sequester catecholate-type siderophores and thus impede bacterial growth. However, certain bacteria are capable of outmaneuvering the host by either producing "stealth" siderophores or by expressing competitive antagonists that bind Lcn2 in lieu of siderophores. In this review, we summarize the mechanisms underlying the complex iron tug-of-war between host and bacteria with an emphasis on how host innate immunity responds to siderophores.
Collapse
Affiliation(s)
- Rachel Golonka
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Beng San Yeoh
- Graduate Program in Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA, .,Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA,
| |
Collapse
|
31
|
Betten R, Scharner B, Probst S, Edemir B, Wolff NA, Langelueddecke C, Lee WK, Thévenod F. Tonicity inversely modulates lipocalin-2 (Lcn2/24p3/NGAL) receptor (SLC22A17) and Lcn2 expression via Wnt/β-catenin signaling in renal inner medullary collecting duct cells: implications for cell fate and bacterial infection. Cell Commun Signal 2018; 16:74. [PMID: 30404645 PMCID: PMC6223074 DOI: 10.1186/s12964-018-0285-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
Background We have previously evidenced apical expression of the 24p3/NGAL/lipocalin-2 receptor (Lcn2-R; SLC22A17) in inner medullary collecting duct (IMCD) cells, which are present in vivo in a hyperosmotic/-tonic environment that activates canonical Wnt/β-catenin signaling. The localization of Lcn2-R in the inner medulla is intriguing considering local bacterial infections trigger toll-like receptor-4 (TLR-4)-mediated secretion of the bacteriostatic Fe3+-free (apo-)Lcn2. Aim To determine the effects of osmolarity/tonicity changes, Wnt/β-catenin and TLR-4 activation on Lcn2-R and Lcn2 expression and cell viability in rat primary IMCD and mouse (m)IMCD3 cells. Methods Normosmolarity/-tonicity was 300 mosmol/l whereas hyperosmolarity/-tonicity was induced by adding 100 mmol/l NaCl + 100 mmol/l urea (600 mosmol/l, 1-7 days). Lcn2-R and Lcn2 expression were determined by qPCR, immunoblotting, flow cytometry and immunofluorescence microscopy. β-catenin was silenced by RNAi. Cell viability/death was determined with MTT and LDH release assays. TLR-4 was activated by bacterial lipopolysaccharides (LPS). Results Hyperosmotic/-tonic media upregulated Lcn2-R by ~4-fold and decreased Lcn2 expression/secretion, along with Wnt/β-catenin activation, in IMCD cells. These effects of hyperosmotic/-tonic media on Lcn2-R/Lcn2 expression were reverted by normosmolarity/-tonicity, β-catenin silencing and/or LPS. Exposure of cells with endogenous or stably overexpressing Lcn2-R to apo-Lcn2 or LPS decreased cell viability. Conclusions Lcn2-R upregulation and Lcn2 downregulation via Wnt/β-catenin may promote adaptive osmotolerant survival of IMCD cells in response to hyperosmolarity/-tonicity whereas Lcn2 upregulation and Lcn2-R downregulation via TLR-4 and/or normosmolarity/-tonicity may protect IMCD cells against bacterial infections and prevent autocrine death induction by Lcn2. Electronic supplementary material The online version of this article (10.1186/s12964-018-0285-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R Betten
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453, Witten, Germany
| | - B Scharner
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453, Witten, Germany
| | - S Probst
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453, Witten, Germany
| | - B Edemir
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - N A Wolff
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453, Witten, Germany
| | - C Langelueddecke
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453, Witten, Germany
| | - W-K Lee
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453, Witten, Germany
| | - F Thévenod
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453, Witten, Germany.
| |
Collapse
|
32
|
Sun WY, Bai B, Luo C, Yang K, Li D, Wu D, Félétou M, Villeneuve N, Zhou Y, Yang J, Xu A, Vanhoutte PM, Wang Y. Lipocalin-2 derived from adipose tissue mediates aldosterone-induced renal injury. JCI Insight 2018; 3:120196. [PMID: 30185654 DOI: 10.1172/jci.insight.120196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Lipocalin-2 is not only a sensitive biomarker, but it also contributes to the pathogenesis of renal injuries. The present study demonstrates that adipose tissue-derived lipocalin-2 plays a critical role in causing both chronic and acute renal injuries. Four-week treatment with aldosterone and high salt after uninephrectomy (ANS) significantly increased both circulating and urinary lipocalin-2, and it induced glomerular and tubular injuries in kidneys of WT mice. Despite increased renal expression of lcn2 and urinary excretion of lipocalin-2, mice with selective deletion of lcn2 alleles in adipose tissue (Adipo-LKO) are protected from ANS- or aldosterone-induced renal injuries. By contrast, selective deletion of lcn2 alleles in kidney did not prevent aldosterone- or ANS-induced renal injuries. Transplantation of fat pads from WT donors increased the sensitivity of mice with complete deletion of Lcn2 alleles (LKO) to aldosterone-induced renal injuries. Aldosterone promoted the urinary excretion of a human lipocalin-2 variant, R81E, in turn causing renal injuries in LKO mice. Chronic treatment with R81E triggered significant renal injuries in LKO, resembling those observed in WT mice following ANS challenge. Taken in conjunction, the present results demonstrate that lipocalin-2 derived from adipose tissue causes acute and chronic renal injuries, largely independent of local lcn2 expression in kidney.
Collapse
Affiliation(s)
- Wai Yan Sun
- The State Key Laboratory of Pharmaceutical Biotechnology and.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Bo Bai
- The State Key Laboratory of Pharmaceutical Biotechnology and.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Cuiting Luo
- The State Key Laboratory of Pharmaceutical Biotechnology and.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Kangmin Yang
- The State Key Laboratory of Pharmaceutical Biotechnology and.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Dahui Li
- The State Key Laboratory of Pharmaceutical Biotechnology and.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | | | - Yang Zhou
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, China
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology and.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Paul M Vanhoutte
- The State Key Laboratory of Pharmaceutical Biotechnology and.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
33
|
Wang X, Zheng X, Zhang J, Zhao S, Wang Z, Wang F, Shang W, Barasch J, Qiu A. Physiological functions of ferroportin in the regulation of renal iron recycling and ischemic acute kidney injury. Am J Physiol Renal Physiol 2018; 315:F1042-F1057. [PMID: 29923765 DOI: 10.1152/ajprenal.00072.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Renal iron recycling preserves filtered iron from urinary excretion. However, it remains debated whether ferroportin (FPN), the only known iron exporter, is functionally involved in renal iron recycling and whether renal iron recycling is required for systemic iron homeostasis. We deleted FPN in whole nephrons by use of a Nestin-Cre and in the distal nephrons and collecting ducts, using a Ksp-Cre, and investigated its impacts on renal iron recycling and systemic iron homeostasis. FPN deletion by Nestin-Cre, but not by Ksp-Cre, caused excess iron retention and increased ferritin heavy chain (FTH1) specifically in the proximal tubules and resulted in the reduction of serum and hepatic iron. The systemic iron redistribution was aggravated, resulting in anemia and the marked downregulation of hepatic hepcidin in elderly FPN knockout (KO)/Nestin-Cre mice. Similarly, in iron-deficient FPN KO/Nestin-Cre mice, the renal iron retention worsened anemia with the activation of the erythropoietin-erythroferrone-hepcidin pathway and the downregulation of hepatic hepcidin. Hence, FPN likely located at the basolateral membrane of the proximal tubules to export iron into the circulation and was required for renal iron recycling and systemic iron homeostasis particularly in elderly and iron-deficient mice. Moreover, FPN deletion in the proximal tubules alleviated ischemic acute kidney injury, possibly by upregulating FTH1 to limit catalytic iron and by priming antioxidant mechanisms, indicating that FPN could be deleterious in the pathophysiology of ischemic acute kidney injury (AKI) and thus may be a potential target for the prevention and mitigation of ischemic AKI.
Collapse
Affiliation(s)
- Xueqiao Wang
- School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University , Shanghai , China
| | - Xiaoqing Zheng
- School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University , Shanghai , China
| | - Juanlian Zhang
- School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University , Shanghai , China
| | - Shifeng Zhao
- School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University , Shanghai , China
| | - Zhigang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Fudi Wang
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou , China
| | - Wenjun Shang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Jonathan Barasch
- Division of Nephrology, Department of Medicine, Columbia University , New York, New York
| | - Andong Qiu
- School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University , Shanghai , China.,Department of Laboratory Medicine, The First People's Hospital of Ninghai , Ningbo, China
| |
Collapse
|
34
|
Borkham-Kamphorst E, Van de Leur E, Meurer SK, Buhl EM, Weiskirchen R. N-Glycosylation of Lipocalin 2 Is Not Required for Secretion or Exosome Targeting. Front Pharmacol 2018; 9:426. [PMID: 29755357 PMCID: PMC5932398 DOI: 10.3389/fphar.2018.00426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/11/2018] [Indexed: 01/15/2023] Open
Abstract
Lipocalin 2 (LCN2) is a highly conserved secreted adipokine acting as a serum transport protein for small hydrophobic molecules such as fatty acids and steroids. In addition, LCN2 limits bacterial growth by sequestering iron-containing siderophores and further protects against intestinal inflammation and tumorigenesis associated with alterations in the microbiota. Human LCN2 contains one N-glycosylation site conserved in other species. It was postulated that this post-translational modification could facilitate protein folding, protects from proteolysis, is required for proper trafficking from the Golgi apparatus to the cell surface, and might be relevant for effective secretion. We here show that the homologous nucleoside antibiotic tunicamycin blocks N-linked glycosylation but not secretion of LCN2 in primary murine hepatocytes, derivatives thereof, human lung carcinoma cell line A549, and human prostate cancer cell line PC-3. Moreover, both the glycosylated and the non-glycosylated LCN2 variants are equally targeted to exosomes, demonstrating that this post-translational modification is not necessary for proper trafficking of LCN2 into these membranous extracellular vesicles. Furthermore, a hydrophobic cluster analysis revealed that the N-glycosylation site is embedded in a highly hydrophobic evolutionarily conserved surrounding. In sum, our data indicate that the N-glycosylation of LCN2 is not required for proper secretion and exosome cargo recruitment in different cell types, but might be relevant to increase overall solubility.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Eddy Van de Leur
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Eva M Buhl
- Institute of Pathology, Electron Microscopy Facility, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
35
|
Asimakopoulou A, Fülöp A, Borkham-Kamphorst E, de Leur EV, Gassler N, Berger T, Beine B, Meyer HE, Mak TW, Hopf C, Henkel C, Weiskirchen R. Altered mitochondrial and peroxisomal integrity in lipocalin-2-deficient mice with hepatic steatosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2093-2110. [PMID: 28396286 DOI: 10.1016/j.bbadis.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/04/2017] [Accepted: 04/06/2017] [Indexed: 01/10/2023]
Abstract
Lipocalin-2 (LCN2) is a secreted adipokine that transports small hydrophobic molecules such as fatty acids and steroids. LCN2 limits bacterial growth by sequestering iron-containing siderophores and in mammalian liver protects against inflammation, infection, injury and other stressors. Because LCN2 modulates hepatic fat metabolism and homeostasis, we performed a comparative profiling of proteins and lipids of wild type (WT) and Lcn2-deficient mice fed either standard chow or a methionine- and choline-deficient (MCD) diet. Label-free proteomics and 2D-DIGE protein expression profiling revealed differential expression of BRIT1/MCPH1, FABP5, HMGB1, HBB2, and L-FABP, results confirmed by Western blotting. Gene ontology enrichment analysis identified enrichment for genes associated with mitochondrial membrane permeabilization and metabolic processes involving carboxylic acid. Measurements of mitochondrial membrane potential, mitochondrial chelatable iron pool, intracellular lipid peroxidation, and peroxisome numbers in primary hepatocytes confirmed that LCN2 regulates mitochondrial and peroxisomal integrity. Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight (MALDI-TOF) mass spectrometry imaging identified significant changes to sphingomyelins, triglycerides, and glycerophospholipids in livers of mice fed an MCD diet regardless of LCN2 status. However, two arachidonic acid-containing glycerophospholipids were increased in Lcn2-deficient livers. Thus, LCN2 influences peroxisomal and mitochondrial biology in the liver to maintain triglyceride balance, handle oxidative stress, and control apoptosis.
Collapse
Affiliation(s)
- Anastasia Asimakopoulou
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Annabelle Fülöp
- Applied Research Center in Biomedical Mass Spectrometry (ABIMAS), Instrumental Analysis and Bioanalysis, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Eddy Van de Leur
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | | | - Thorsten Berger
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Birte Beine
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Medizinisches Proteom-Center, Ruhr-University, Bochum, Germany
| | - Helmut E Meyer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada; Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Carsten Hopf
- Applied Research Center in Biomedical Mass Spectrometry (ABIMAS), Instrumental Analysis and Bioanalysis, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Corinna Henkel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Medizinisches Proteom-Center, Ruhr-University, Bochum, Germany; Bruker Daltonik GmbH, Bremen
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
36
|
Lipocalins Are Required for Apical Extracellular Matrix Organization and Remodeling in Caenorhabditis elegans. Genetics 2017; 207:625-642. [PMID: 28842397 DOI: 10.1534/genetics.117.300207] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
A lipid and glycoprotein-rich apical extracellular matrix (aECM) or glycocalyx lines exposed membranes in the body, and is particularly important to protect narrow tube integrity. Lipocalins ("fat cups") are small, secreted, cup-shaped proteins that bind and transport lipophilic cargo and are often found in luminal or aECM compartments such as mammalian plasma, urine, or tear film. Although some lipocalins can bind known aECM lipids and/or matrix metalloproteinases, it is not known if and how lipocalins affect aECM structure due to challenges in visualizing the aECM in most systems. Here we show that two Caenorhabditiselegans lipocalins, LPR-1 and LPR-3, have distinct functions in the precuticular glycocalyx of developing external epithelia. LPR-1 moves freely through luminal compartments, while LPR-3 stably localizes to a central layer of the membrane-anchored glycocalyx, adjacent to the transient zona pellucida domain protein LET-653 Like LET-653 and other C. elegans glycocalyx components, these lipocalins are required to maintain the patency of the narrow excretory duct tube, and also affect multiple aspects of later cuticle organization. lpr-1 mutants cannot maintain a continuous excretory duct apical domain and have misshapen cuticle ridges (alae) and abnormal patterns of cuticular surface lipid staining. lpr-3 mutants cannot maintain a passable excretory duct lumen, properly degrade the eggshell, or shed old cuticle during molting, and they lack cuticle barrier function. Based on these phenotypes, we infer that both LPR-1 and LPR-3 are required to build a properly organized aECM, while LPR-3 additionally is needed for aECM clearance and remodeling. The C. elegans glycocalyx provides a powerful system, amenable to both genetic analysis and live imaging, for investigating how lipocalins and lipids affect aECM structure.
Collapse
|
37
|
Abstract
Lipocalin 2 (Lcn2), an innate immune protein, has emerged as a critical iron regulatory protein during physiological and inflammatory conditions. As a bacteriostatic factor, Lcn2 obstructs the siderophore iron-acquiring strategy of bacteria and thus inhibits bacterial growth. As part of host nutritional immunity, Lcn2 facilitates systemic, cellular, and mucosal hypoferremia during inflammation, in addition to stabilizing the siderophore-bound labile iron pool. In this review, we summarize recent advances in understanding the interaction between Lcn2 and iron, and its effects in various inflammatory diseases. Lcn2 exerts mostly a protective role in infectious and inflammatory bowel diseases, whereas both beneficial and detrimental functions have been documented in neurodegenerative diseases, metabolic syndrome, renal disorders, skin disorders, and cancer. Further animal and clinical studies are necessary to unveil the multifaceted roles of Lcn2 in iron dysregulation during inflammation and to explore its therapeutic potential for treating inflammatory diseases.
Collapse
Affiliation(s)
- Xia Xiao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Beng San Yeoh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802; .,Department of Medicine, The Pennsylvania State University Medical Center, Hershey, Pennsylvania 17033
| |
Collapse
|
38
|
Meng L, Wang M, Du Z, Fang Z, Wu B, Wu J, Xie W, Shen J, Zhu T, Xu X, Liao L, Xu L, Li E, Lan B. Cell Signaling Pathway in 12-O-Tetradecanoylphorbol-13-acetate-Induced LCN2 Gene Transcription in Esophageal Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9592501. [PMID: 29098164 PMCID: PMC5642883 DOI: 10.1155/2017/9592501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
Abstract
LCN2 is involved in various cellular functions, including transport of small hydrophobic molecules, protection of MMP9 from proteolytic degradation, and regulating innate immunity. LCN2 is elevated in multiple human cancers, frequently being associated with tumor size, stage, and invasiveness. Our previous studies have shown that LCN2 expression could be induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in esophageal squamous cell carcinoma (ESCC) by the binding of five nucleoproteins (MISP, KLF10, KLF15, PPP1R18, and RXRβ) at a novel TPA-responsive element (TRE), at -152~-60 bp of the 5' flanking region of the LCN2 promoter. However, much is unknown about whether these proteins can respond to TPA stimulation to regulate LCN2 transactivation and which cell signaling pathways mediate this process. In this study, expression plasmids encoding these five nucleoproteins were stably transfected into EC109 cells. Then, stable transfectant was characterized by a Dual-Luciferase Reporter Assay System. RT-PCR, real-time PCR, western blotting, specific kinase inhibitor treatment, and bioinformatics analyses were applied in this study. We found that MISP, KLF10, KLF15, PPP1R18, and RXRβ proteins could strongly respond to TPA stimulation and activate LCN2 transcriptional expression. MEK, ERK, JNK, and P38 kinases were involved in the LCN2 transactivation. Furthermore, the MEK-ERK signal pathway plays a major role in this biological process but does not involve PKCα signaling.
Collapse
Affiliation(s)
- Lingying Meng
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515041, China
| | - Muting Wang
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515041, China
| | - Zepeng Du
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515041, China
| | - Zhongmin Fang
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515041, China
| | - Bingli Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jianyi Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wenming Xie
- Network and Information Center, Shantou University Medical College, Shantou 515041, China
| | - Jian Shen
- Department of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Tianxiang Zhu
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515041, China
| | - XieE Xu
- Department of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Liandi Liao
- Department of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Liyan Xu
- Department of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Bin Lan
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515041, China
| |
Collapse
|