1
|
Li Y, Huang H, Gao J, Lu J, Kang G, Ge Y, Jiang W, Cai X, Zhang G, Liu L. A TLK2-mediated calcium-driven cell death pathway links neuronal degeneration to nuclear envelope disruption. Nat Commun 2025; 16:3419. [PMID: 40210858 PMCID: PMC11986041 DOI: 10.1038/s41467-025-58737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Calcium overload drives neuronal cell death, but its mechanisms remain unclear. Previous studies in Drosophila implicated tousled-like kinase (TLK) in this process. Here, we investigated TLK2, the mammalian homolog, in calcium overload-induced neuronal death. We found that calcium overload enhances TLK2 expression, multimerization, and phosphorylation, increasing its kinase activity. Inhibiting TLK2 via RNA interference or a small-molecule inhibitor reduced neuronal death, while TLK2 overexpression triggered nuclear envelope (NE) rupture, nuclear enlargement, multinucleation, and cell cycle reentry markers. A protein complex involving TLK2, dynein light chain LC8, and myosin IIA was linked to NE disruption. In mouse models of glaucoma, TLK2 contributed to retinal ganglion cell degeneration, connecting calcium overload to neurodegeneration. We propose "CaToptosis" (Calcium-induced Tousled-like kinase-mediated cell death) as a distinct neuronal death pathway.
Collapse
Affiliation(s)
- Yajie Li
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
- Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huaiyuan Huang
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Jingwen Gao
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Jinhong Lu
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Guifeng Kang
- School of Pharmaceutical Sciences, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Yipeng Ge
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road 2#, Chaoyang District, Beijing, 10029, China
| | - Wencan Jiang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital and Capital Medical University, Beijing, 100070, China
- Laboratory diagnosis platform for nervous system infectious diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100070, China
| | - Xiang Cai
- Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Guojun Zhang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital and Capital Medical University, Beijing, 100070, China.
- Laboratory diagnosis platform for nervous system infectious diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100070, China.
| | - Lei Liu
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China.
- Laboratory diagnosis platform for nervous system infectious diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
2
|
Olatunde D, Franco OC, Gaestel M, De Benedetti A. Targeting the TLK1-MK5 Axis Suppresses Prostate Cancer Metastasis. Cancers (Basel) 2025; 17:1187. [PMID: 40227796 PMCID: PMC11988051 DOI: 10.3390/cancers17071187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
Background: The spread of metastatic prostate cancer (PCa) is responsible for the majority of PCa-related deaths, yet the precise mechanisms driving this process remain unclear. We have identified a novel interaction between two distinct promotility factors, tousled-like kinase 1 (TLK1) and MAPK-activated protein kinase 5 (MK5), which triggers a signaling cascade that promotes metastasis. In PCa, the TLK1-MK5 pathway may play a critical role, as androgen deprivation therapy (ADT) has been linked to increased expression of both TLK1 and MK5 in metastatic patients linked with poor survival. Objectives: In this study, we directly examined the effects of disrupting the TLK1>MK5 axis on the motility, invasiveness, and metastatic potential of PCa cells. Methods: To establish this, we used both pharmacologic and systemic approaches with genetically engineered mouse models and the use of IVIS. Results: The results of targeting the TLK1>MK5 axis support the notion that this axis is essential for the spread of metastatic cells and the development of age-related metastases.
Collapse
Affiliation(s)
- Damilola Olatunde
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (D.O.); (O.C.F.)
| | - Omar Coronel Franco
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (D.O.); (O.C.F.)
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany;
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (D.O.); (O.C.F.)
| |
Collapse
|
3
|
West K, Nguyen TN, Tengler K, Kreiling N, Raney K, Ghosal G, Leung J. Autophosphorylation of the Tousled-like kinases TLK1 and TLK2 regulates recruitment to damaged chromatin via PCNA interaction. Nucleic Acids Res 2025; 53:gkae1279. [PMID: 39727191 PMCID: PMC11879137 DOI: 10.1093/nar/gkae1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Tousled-like kinases 1 and 2 (TLK1 and 2) are cell cycle-regulated serine/threonine kinases that are involved in multiple biological processes. Mutation of TLK1 and 2 confer neurodegenerative diseases. Recent studies demonstrate that TLK1 and 2 are involved in DNA repair. However, there is no direct evidence that TLK1 and 2 function at DNA damage sites. Here, we show that both TLK1 and TLK2 are hyper-autophosphorylated at their N-termini, at least in part, mediated by their homo- or hetero- dimerization. We found that TLK1 and 2 hyper-autophosphorylation suppresses their recruitment to damaged chromatin. Furthermore, both TLK1 and 2 associate with PCNA specifically through their evolutionarily conserved non-canonical PCNA-interacting protein (PIP) box at the N-terminus, and mutation of the PIP-box abolishes their recruitment to DNA damage sites. Mechanistically, the TLK1 and 2 hyper-autophosphorylation masks the PIP-box and negatively regulates their recruitment to the DNA damage site. Overall, our study dissects the detailed genetic regulation of TLK1 and 2 at damaged chromatin, which provides important insights into their emerging roles in DNA repair.
Collapse
Affiliation(s)
- Kirk L West
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 Markham St, Little Rock, AR 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 Markham St, Little Rock, AR 72205, USA
| | - Tram T N Nguyen
- Department of Radiation Oncology, University of Texas Health and Science Center, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Kyle A Tengler
- Department of Radiation Oncology, University of Texas Health and Science Center, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Natasha Kreiling
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, S 42nd &, Emile St, Omaha, NE 68198, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 Markham St, Little Rock, AR 72205, USA
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, S 42nd &, Emile St, Omaha, NE 68198, USA
| | - Justin W Leung
- Department of Radiation Oncology, University of Texas Health and Science Center, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Kim MA, Kim B, Jeon J, Lee J, Jang H, Baek M, Seo SU, Shin D, Dutta A, Lee KY. Tousled-like kinase loss confers PARP inhibitor resistance in BRCA1-mutated cancers by impeding non-homologous end joining repair. Mol Med 2025; 31:18. [PMID: 39844055 PMCID: PMC11753094 DOI: 10.1186/s10020-025-01066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ. Therefore, identifying novel regulators of NHEJ could provide valuable insights into the mechanisms underlying PARPi resistance. METHODS Cellular DSBs were assessed using neutral comet assays and phospho-H2AX immunoblotting. Fluorescence-based reporter assays quantified repair via NHEJ or HR. The recruitment of proteins that promote NHEJ and HR to DSBs was analyzed using immunostaining, live-cell imaging following laser-induced microirradiation, and FokI-inducible single DSB generation. Loss-of-function experiments were performed in multiple human cancer cell lines using siRNA-mediated knockdown or CRISPR-Cas9 gene knockout. Cell viability assays were conducted to evaluate resistance to PARP inhibitors. Additionally, bioinformatic analyses of public databases were performed to investigate the association between TLK expression and BRCA1 status. RESULTS We demonstrate that human tousled-like kinase (TLK) orthologs are essential for NHEJ-mediated repair of DSBs and for PARPi sensitivity in cells with BRCA1 mutation. TLK1 and TLK2 exhibit redundant roles in promoting NHEJ, and their deficiency results in a significant accumulation of DSBs. TLKs are required for the proper localization of 53BP1, a key factor in promoting the NHEJ pathway. Consequently, TLK deficiency induces PARPi resistance in triple-negative breast cancer (TNBC) and ovarian cancer (OVCA) cell lines with BRCA1 deficiency, as TLK deficiency in BRCA1-depleted cells, impairs 53BP1 recruitment to DSBs and reduces NHEJ efficiency, while restoring HR. CONCLUSIONS We have identified TLK proteins as novel regulators of NHEJ repair and PARPi sensitivity in BRCA1-depleted cells, suggesting that TLK repression may represent a previously unrecognized mechanism by which BRCA1 mutant cancers acquire PARPi resistance.
Collapse
Affiliation(s)
- Min-Ah Kim
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Banseok Kim
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Jihyeon Jeon
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Jonghyun Lee
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Hyeji Jang
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Minjae Baek
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dongkwan Shin
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Anindya Dutta
- Department of Genetics, University of Alabama, Birmingham, AL, 35233, USA
| | - Kyung Yong Lee
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea.
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea.
| |
Collapse
|
5
|
Bhoir S, De Benedetti A. Beyond the Horizon: Rethinking Prostate Cancer Treatment Through Innovation and Alternative Strategies. Cancers (Basel) 2024; 17:75. [PMID: 39796704 PMCID: PMC11718964 DOI: 10.3390/cancers17010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
For nearly a century, fundamental observations that prostate cancer (PCa) cells nearly always require AR stimulation for sustained proliferation have led to a unidirectional quest to abrogate such a pathway. Similarly focused have been efforts to understand AR-driven processes in the context of elevated expression of its target genes, and much less so on products that become overexpressed when AR signaling is suppressed. Treatment with ARSI results in an increased expression of the TLK1B splice variant via a 'translational' derepression driven by the compensatory mTOR activation and consequent activation of the TLK1 > NEK1 > ATR > Chk1 and NEK1 > YAP axes. In due course, this results first in a pro-survival quiescence and then adaptation to ADT and CRPC progression. This constitutes a novel liability for PCa that we have targeted for several years and novel approaches.
Collapse
Affiliation(s)
- Siddhant Bhoir
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA;
- Department of Therapeutic Radiology, School of Medicine, Yale University, 15 York Street, New Haven, CT 06510, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA;
| |
Collapse
|
6
|
He T, Xu B, Ma H. TLK2 promotes progression of hepatocellular carcinoma through Wnt/β-catenin signaling. Transl Cancer Res 2024; 13:3729-3741. [PMID: 39145094 PMCID: PMC11319953 DOI: 10.21037/tcr-23-2264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/21/2024] [Indexed: 08/16/2024]
Abstract
Background Hepatocellular carcinoma is a widespread cancer worldwide, ranking as the fifth most frequent cancer and the fourth leading cause of cancer-related deaths. According to comprehensive research, TLK2, a phosphorylated kinase, has been discovered to play a crucial role in promoting tumor development. However, the prognostic significance and influence of TLK2 on hepatocellular carcinoma tumor cells and the immune microenvironment remain unexplored, warranting further investigation. The aim of this study was to investigate the role of TLK2 in promoting the development of hepatocellular carcinoma. Methods The present study utilized The Cancer Genome Atlas (TCGA) database and other databases as training sets to examine the expression of TLK2 and its prognostic significance. The findings were subsequently validated through cell proliferation assays and cell colony assays. Gene set enrichment analysis (GSEA) was employed to investigate the tumor-related biological processes associated with TLK2 in hepatocellular carcinoma, while the relationship between TLK2 expression and Wnt/β-catenin signaling pathway was analyzed via TCGA dataset analysis. Western blotting and immunofluorescence assays were used to confirm the experimental results. Results TLK2 showed higher expression levels in tumor tissues than in normal tissues. Alpha fetoprotein (AFP), T stage, pathological stage, and histological grade were significantly associated with TLK2 expression. High TLK2 expression correlated with worse overall survival (OS) [hazard ratio (HR) =1.62, 95% confidence interval (CI): 1.14-2.29, P=0.007], progression-free survival (PFS) (HR =1.88, 95% CI: 1.40-2.52, P<0.001) and disease specific survival (DSS) (HR =1.86, 95% CI: 1.18-2.93, P=0.007) in the training and validation sets. Both univariate and multivariate analyses showed that TLK2 was an independent prognostic factor. GSEA showed that TLK2 was significantly enriched in tumor-related biological processes. TLK2 induced the activation of β-catenin signaling, resulting in sustained tumor growth. Methyl thiazolyl tetrazolium (MTT) and colony formation assays demonstrated that TLK2 could promote hepatocellular carcinoma progression. Furthermore, TLK2 showed a significant association with β-catenin in the Wnt pathway. Conclusions TLK2 represents an independent prognostic factor in hepatocellular carcinoma and can promote cancer progression via the β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ting He
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Borui Xu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Haiqing Ma
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Oncology, Heyuan Hospital of Guangdong Provincial People’s Hospital, Heyuan People’s Hospital, Heyuan, China
| |
Collapse
|
7
|
Lin HY, Mohammadhosseini M, McClatchy J, Villamor-Payà M, Jeng S, Bottomly D, Tsai CF, Posso C, Jacobson J, Adey A, Gosline S, Liu T, McWeeney S, Stracker TH, Agarwal A. The TLK-ASF1 histone chaperone pathway plays a critical role in IL-1β-mediated AML progression. Blood 2024; 143:2749-2762. [PMID: 38498025 PMCID: PMC11340594 DOI: 10.1182/blood.2023022079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Identifying and targeting microenvironment-driven pathways that are active across acute myeloid leukemia (AML) genetic subtypes should allow the development of more broadly effective therapies. The proinflammatory cytokine interleukin-1β (IL-1β) is abundant in the AML microenvironment and promotes leukemic growth. Through RNA-sequencing analysis, we identify that IL-1β-upregulated ASF1B (antisilencing function-1B), a histone chaperone, in AML progenitors compared with healthy progenitors. ASF1B, along with its paralogous protein ASF1A, recruits H3-H4 histones onto the replication fork during S-phase, a process regulated by Tousled-like kinase 1 and 2 (TLKs). Although ASF1s and TLKs are known to be overexpressed in multiple solid tumors and associated with poor prognosis, their functional roles in hematopoiesis and inflammation-driven leukemia remain unexplored. In this study, we identify that ASF1s and TLKs are overexpressed in multiple genetic subtypes of AML. We demonstrate that depletion of ASF1s significantly reduces leukemic cell growth in both in vitro and in vivo models using human cells. Using a murine model, we show that overexpression of ASF1B accelerates leukemia progression. Moreover, Asf1b or Tlk2 deletion delayed leukemia progression, whereas these proteins are dispensable for normal hematopoiesis. Through proteomics and phosphoproteomics analyses, we uncover that the TLK-ASF1 pathway promotes leukemogenesis by affecting the cell cycle and DNA damage pathways. Collectively, our findings identify the TLK1-ASF1 pathway as a novel mediator of inflammatory signaling and a promising therapeutic target for AML treatment across diverse genetic subtypes. Selective inhibition of this pathway offers potential opportunities to intervene effectively, address intratumoral heterogeneity, and ultimately improve clinical outcomes in AML.
Collapse
Affiliation(s)
- Hsin-Yun Lin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Mona Mohammadhosseini
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - John McClatchy
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Marina Villamor-Payà
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sophia Jeng
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR
| | - Daniel Bottomly
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR
| | - Chia-Feng Tsai
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Camilo Posso
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Jeremy Jacobson
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Andrew Adey
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
| | - Sara Gosline
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| | - Tao Liu
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA
| | - Shannon McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, OR
| | - Travis H. Stracker
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
- Department of Oncogenic Science, Oregon Health & Science University, Portland, OR
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
8
|
Nauffal V, Klarqvist MDR, Hill MC, Pace DF, Di Achille P, Choi SH, Rämö JT, Pirruccello JP, Singh P, Kany S, Hou C, Ng K, Philippakis AA, Batra P, Lubitz SA, Ellinor PT. Noninvasive assessment of organ-specific and shared pathways in multi-organ fibrosis using T1 mapping. Nat Med 2024; 30:1749-1760. [PMID: 38806679 DOI: 10.1038/s41591-024-03010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024]
Abstract
Fibrotic diseases affect multiple organs and are associated with morbidity and mortality. To examine organ-specific and shared biologic mechanisms that underlie fibrosis in different organs, we developed machine learning models to quantify T1 time, a marker of interstitial fibrosis, in the liver, pancreas, heart and kidney among 43,881 UK Biobank participants who underwent magnetic resonance imaging. In phenome-wide association analyses, we demonstrate the association of increased organ-specific T1 time, reflecting increased interstitial fibrosis, with prevalent diseases across multiple organ systems. In genome-wide association analyses, we identified 27, 18, 11 and 10 independent genetic loci associated with liver, pancreas, myocardial and renal cortex T1 time, respectively. There was a modest genetic correlation between the examined organs. Several loci overlapped across the examined organs implicating genes involved in a myriad of biologic pathways including metal ion transport (SLC39A8, HFE and TMPRSS6), glucose metabolism (PCK2), blood group antigens (ABO and FUT2), immune function (BANK1 and PPP3CA), inflammation (NFKB1) and mitosis (CENPE). Finally, we found that an increasing number of organs with T1 time falling in the top quintile was associated with increased mortality in the population. Individuals with a high burden of fibrosis in ≥3 organs had a 3-fold increase in mortality compared to those with a low burden of fibrosis across all examined organs in multivariable-adjusted analysis (hazard ratio = 3.31, 95% confidence interval 1.77-6.19; P = 1.78 × 10-4). By leveraging machine learning to quantify T1 time across multiple organs at scale, we uncovered new organ-specific and shared biologic pathways underlying fibrosis that may provide therapeutic targets.
Collapse
Affiliation(s)
- Victor Nauffal
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Matthew C Hill
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Danielle F Pace
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paolo Di Achille
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joel T Rämö
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Pulkit Singh
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cody Hou
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenney Ng
- Center for Computational Health, IBM Research, Cambridge, MA, USA
| | - Anthony A Philippakis
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Puneet Batra
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A Lubitz
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
9
|
Asquith CRM, East MP, Laitinen T, Alamillo-Ferrer C, Hartikainen E, Wells CI, Axtman AD, Drewry DH, Tizzard GJ, Poso A, Willson TM, Johnson GL. Discovery and optimization of narrow spectrum inhibitors of Tousled like kinase 2 (TLK2) using quantitative structure activity relationships. Eur J Med Chem 2024; 271:116357. [PMID: 38636130 PMCID: PMC11421834 DOI: 10.1016/j.ejmech.2024.116357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024]
Abstract
The oxindole scaffold has been the center of several kinase drug discovery programs, some of which have led to approved medicines. A series of two oxindole matched pairs from the literature were identified where TLK2 was potently inhibited as an off-target kinase. The oxindole has long been considered a promiscuous kinase inhibitor template, but across these four specific literature oxindoles TLK2 activity was consistent, while the kinome profile was radically different ranging from narrow to broad spectrum kinome coverage. We synthesized a large series of analogues, utilizing quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites, kinome profiling, and small-molecule x-ray structural analysis to optimize TLK2 inhibition and kinome selectivity. This resulted in the identification of several narrow spectrum, sub-family selective, chemical tool compounds including 128 (UNC-CA2-103) that could enable elucidation of TLK2 biology.
Collapse
Affiliation(s)
- Christopher R M Asquith
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Michael P East
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Carla Alamillo-Ferrer
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Erkka Hartikainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Carrow I Wells
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alison D Axtman
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Graham J Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Timothy M Willson
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gary L Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
10
|
West KL, Kreiling N, Raney KD, Ghosal G, Leung JW. Autophosphorylation of the Tousled-like kinases TLK1 and TLK2 regulates recruitment to damaged chromatin via PCNA interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590659. [PMID: 38712247 PMCID: PMC11071368 DOI: 10.1101/2024.04.22.590659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tousled-like kinases 1 and 2 (TLK1 and 2) are cell cycle-regulated serine/threonine kinases that are involved in multiple biological processes. Mutation of TLK1 and 2 confer neurodegenerative diseases. Recent studies demonstrate that TLK1 and 2 are involved in DNA repair. However, there is no direct evidence that TLK1 and 2 function at DNA damage sites. Here, we show that both TLK1 and TLK2 are hyper-autophosphorylated at their N-termini, at least in part, mediated by their homo- or hetero-dimerization. We found that TLK1 and 2 hyper-autophosphorylation suppresses their recruitment to damaged chromatin. Furthermore, both TLK1 and 2 associate with PCNA specifically through their evolutionarily conserved non-canonical PCNA-interacting protein (PIP) box at the N-terminus, and mutation of the PIP-box abolishes their recruitment to DNA damage sites. Mechanistically, the TLK1 and 2 hyper-autophosphorylation masks the PIP-box and negatively regulates their recruitment to the DNA damage site. Overall, our study dissects the detailed genetic regulation of TLK1 and 2 at damaged chromatin, which provides important insights into their emerging roles in DNA repair.
Collapse
Affiliation(s)
- Kirk L. West
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Natasha Kreiling
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kevin D. Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Justin W Leung
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| |
Collapse
|
11
|
Shrivastava A, Magani SKJ, Lokhande KB, Chintakhindi M, Singh A. Exploring the role of TLK2 mutation in tropical calcific pancreatitis: an in silico and molecular dynamics simulation study. J Biomol Struct Dyn 2024:1-20. [PMID: 38500246 DOI: 10.1080/07391102.2024.2329797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Tropical calcific pancreatitis (TCP) is a juvenile form of non-alcoholic chronic pancreatitis seen exclusively in tropical countries. The disease poses a high risk of complications, including pancreatic diabetes and cancer, leading to significant mortality due to poor diagnosis and ineffective treatments. This study employed whole exome sequencing (WES) of 5 TCP patient samples to identify genetic variants associated with TCP. Advanced computational techniques were used to gain atomic-level insights into disease progression, including microsecond-scale long MD simulations and essential dynamics. In silico virtual screening was performed to identify potential therapeutic compounds targeting the mutant protein using the Asinex and DrugBank compound library. WES analysis predicted several single nucleotide variants (SNVs) associated with TCP, including a novel missense variant (c.T1802A or p.V601E) in the TLK2 gene. Computational analysis revealed that the p.V601E mutation significantly affected the structure of the TLK2 kinase domain and its conformational dynamics, altering the interaction profile between ATP and the binding pocket. These changes could impact TLK2's kinase activity and functions, potentially correlating with TCP progression. Promising lead compounds that selectively bind to the TLK2 mutant protein were identified, offering potential for therapeutic interventions in TCP. These findings hold great potential for future research.
Collapse
Affiliation(s)
- Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Sri Krishna Jayadev Magani
- Cancer Biology Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Kiran Bharat Lokhande
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | | | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| |
Collapse
|
12
|
Asquith CRM, East MP, Laitinen T, Alamillo-Ferrer C, Hartikainen E, Wells CI, Axtman AD, Drewry DH, Tizzard GJ, Poso A, Willson TM, Johnson GL. Discovery and Optimization of Narrow Spectrum Inhibitors of Tousled Like Kinase 2 (TLK2) Using Quantitative Structure Activity Relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.28.573261. [PMID: 38234837 PMCID: PMC10793458 DOI: 10.1101/2023.12.28.573261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The oxindole scaffold has been the center of several kinase drug discovery programs, some of which have led to approved medicines. A series of two oxindole matched pairs from the literature were identified where TLK2 was a potent off-target kinase. The oxindole has long been considered a promiscuous inhibitor template, but across these 4 specific literature oxindoles TLK2 activity was consistent, while the kinome profile was radically different from narrow to broad spectrum coverage. We synthesized a large series of analogues and through quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites, small-molecule x-ray structural analysis and kinome profiling, narrow spectrum, sub-family selective, chemical tool compounds were identified to enable elucidation of TLK2 biology.
Collapse
Affiliation(s)
- Christopher R M Asquith
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael P East
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Carla Alamillo-Ferrer
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erkka Hartikainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Carrow I Wells
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alison D Axtman
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Graham J Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Timothy M Willson
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gary L Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Stracker TH, Osagie OI, Escorcia FE, Citrin DE. Exploiting the DNA Damage Response for Prostate Cancer Therapy. Cancers (Basel) 2023; 16:83. [PMID: 38201511 PMCID: PMC10777950 DOI: 10.3390/cancers16010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancers that progress despite androgen deprivation develop into castration-resistant prostate cancer, a fatal disease with few treatment options. In this review, we discuss the current understanding of prostate cancer subtypes and alterations in the DNA damage response (DDR) that can predispose to the development of prostate cancer and affect its progression. We identify barriers to conventional treatments, such as radiotherapy, and discuss the development of new therapies, many of which target the DDR or take advantage of recurring genetic alterations in the DDR. We place this in the context of advances in understanding the genetic variation and immune landscape of CRPC that could help guide their use in future treatment strategies. Finally, we discuss several new and emerging agents that may advance the treatment of lethal disease, highlighting selected clinical trials.
Collapse
Affiliation(s)
- Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Oloruntoba I. Osagie
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| |
Collapse
|
14
|
Wang M, Li J, Yang X, Yan Q, Wang H, Xu X, Lu Y, Li D, Wang Y, Sun R, Zhang S, Zhang Y, Zhang Z, Meng F, Li Y. Targeting TLK2 inhibits the progression of gastric cancer by reprogramming amino acid metabolism through the mTOR/ASNS axis. Cancer Gene Ther 2023; 30:1485-1497. [PMID: 37542132 DOI: 10.1038/s41417-023-00653-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Several recent studies have suggested that TLKs are related to tumor progression. However, the function and mechanism of action of TLK2 in gastric cancer (GC) remain elusive. In this study, TLK2 was found to be significantly upregulated in patients with GC and was identified as an independent prognostic factor for GC. Consistently, TLK2 knockdown markedly reduced the aggressiveness of GC, whereas its overexpression had the opposite effect. IP-MS revealed that the effects of TLK2 on GC were mainly associated with metabolism reprogramming. TLK2 knockdown suppressed amino acid synthesis by downregulating the mTORC1 pathway and ASNS expression in GC cells. Mechanistically, mTORC1 directly interacts with the ASNS protein and inhibits its degradation. Further experiments validated that the ASNS protein was degraded via ubiquitination instead of autophagy. Inhibiting and activating the mTORC1 pathway can upregulate and downregulate ASNS ubiquitination, respectively, and the mTORC1 pathway can reverse the regulatory effects of TLK2 on ASNS. Furthermore, TLK2 was found to regulate the mRNA expression of ASNS. TLK2 directly interacted with ATF4, a transcription factor of ASNS, and promoted its expression. The kinase inhibitor fostamatinib significantly inhibited the proliferative, invasive, and migratory capabilities of GC cells by inhibiting TLK2 activity. Altogether, this study reveals a novel functional relationship between TLK2 and the mTORC1/ASNS axis in GC. Therefore, TLK2 may serve as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Mingliang Wang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Jing Li
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Xiaodong Yang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Qiang Yan
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Huizhen Wang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Xin Xu
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Yida Lu
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Deguan Li
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Yigao Wang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Ruochuan Sun
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Shangxin Zhang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Yonghong Zhang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Zhen Zhang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Futao Meng
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China.
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu, China.
| | - Yongxiang Li
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China.
| |
Collapse
|
15
|
Jin X, Zhou YF, Ma D, Zhao S, Lin CJ, Xiao Y, Fu T, Liu CL, Chen YY, Xiao WX, Liu YQ, Chen QW, Yu Y, Shi LM, Shi JX, Huang W, Robertson JFR, Jiang YZ, Shao ZM. Molecular classification of hormone receptor-positive HER2-negative breast cancer. Nat Genet 2023; 55:1696-1708. [PMID: 37770634 DOI: 10.1038/s41588-023-01507-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most prevalent type of breast cancer, in which endocrine therapy resistance and distant relapse remain unmet challenges. Accurate molecular classification is urgently required for guiding precision treatment. We established a large-scale multi-omics cohort of 579 patients with HR+/HER2- breast cancer and identified the following four molecular subtypes: canonical luminal, immunogenic, proliferative and receptor tyrosine kinase (RTK)-driven. Tumors of these four subtypes showed distinct biological and clinical features, suggesting subtype-specific therapeutic strategies. The RTK-driven subtype was characterized by the activation of the RTK pathways and associated with poor outcomes. The immunogenic subtype had enriched immune cells and could benefit from immune checkpoint therapy. In addition, we developed convolutional neural network models to discriminate these subtypes based on digital pathology for potential clinical translation. The molecular classification provides insights into molecular heterogeneity and highlights the potential for precision treatment of HR+/HER2- breast cancer.
Collapse
Affiliation(s)
- Xi Jin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi-Fan Zhou
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ding Ma
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shen Zhao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cai-Jin Lin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Tong Fu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cheng-Lin Liu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi-Yu Chen
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wen-Xuan Xiao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ya-Qing Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qing-Wang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Le-Ming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Jin-Xiu Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Wei Huang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | | | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
16
|
Yamashita N, Kawahara M, Imai T, Tatsumi G, Asai-Nishishita A, Andoh A. Loss of Nudt15 thiopurine detoxification increases direct DNA damage in hematopoietic stem cells. Sci Rep 2023; 13:11908. [PMID: 37488179 PMCID: PMC10366091 DOI: 10.1038/s41598-023-38952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
Thiopurines, such as 6-mercaptopurine (6-MP), are widely used as cytotoxic agents and immunosuppressants for leukemia and autoimmune or inflammatory diseases. A nonsynonymous single nucleotide polymorphism (p.Arg139Cys; R139C) of the nucleoside diphosphate-linked moiety X-type motif 15 (NUDT15) gene causes the loss of thiopurine detoxification, inducing myelosuppression. To understand such hematotoxicity, we investigate the effects of NUDT15 R139C on hematopoietic stem cells (HSCs) upon thiopurine administration. Using previously established Nudt15R138C knock-in mice, which mimic myelosuppression in NUDT15R139C homozygous or heterozygous patients following thiopurine administration, we investigated the numerical changes of HSCs and hematopoietic progenitor cells following 6-MP administration using in vivo flowcytometry and ex vivo HSC expansion. Genes differentially expressed between Nudt15+/+ HSCs and Nudt15R138C/R138C HSCs were identified using RNA-sequencing before the emergence of 6-MP-induced HSC-damage. Gene Ontology (GO) and Transcriptional Regulatory Relationships Unraveled by Sentence-based Text Mining (TRRUST) analyses were performed to elucidate the molecular effects of 6-MP on HSCs. In Nudt15R138C/R138C mice, 6-MP induced exhaustion of HSCs faster than that of multipotent progenitors and as fast as that of myeloid-committed progenitors. Ex vivo-expanded Nudt15R138C/R138C HSCs were dose- and time-dependently damaged by 6-MP. GO analysis identified the DNA damage response and cell cycle process as the most strongly influenced processes in Nudt15R138C/R138C HSCs. TRRUST analysis revealed that the Trp53-regulated transcriptional regulatory network is influenced prior to HSC exhaustion in Nudt15R138C/R138C HSCs. The loss of NUDT15 thiopurine detoxification enhances thiopurine-mediated DNA damage via the Trp53 networks in HSCs. Therefore, caution is required in long-term thiopurine use in patients with NUDT15 R139C in view of its adverse effects on HSCs in the form of DNA damage.
Collapse
Affiliation(s)
- Noriaki Yamashita
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Masahiro Kawahara
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan.
| | - Takayuki Imai
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Goichi Tatsumi
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Ai Asai-Nishishita
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Akira Andoh
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
17
|
Bhoir S, De Benedetti A. Targeting Prostate Cancer, the 'Tousled Way'. Int J Mol Sci 2023; 24:11100. [PMID: 37446279 DOI: 10.3390/ijms241311100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Androgen deprivation therapy (ADT) has been the mainstay of prostate cancer (PCa) treatment, with success in developing more effective inhibitors of androgen synthesis and antiandrogens in clinical practice. However, hormone deprivation and AR ablation have caused an increase in ADT-insensitive PCas associated with a poor prognosis. Resistance to ADT arises through various mechanisms, and most castration-resistant PCas still rely on the androgen axis, while others become truly androgen receptor (AR)-independent. Our research identified the human tousled-like kinase 1 (TLK1) as a crucial early mediator of PCa cell adaptation to ADT, promoting androgen-independent growth, inhibiting apoptosis, and facilitating cell motility and metastasis. Although explicit, the growing role of TLK1 biology in PCa has remained underrepresented and elusive. In this review, we aim to highlight the diverse functions of TLK1 in PCa, shed light on the molecular mechanisms underlying the transition from androgen-sensitive (AS) to an androgen-insensitive (AI) disease mediated by TLK1, and explore potential strategies to counteract this process. Targeting TLK1 and its associated signaling could prevent PCa progression to the incurable metastatic castration-resistant PCa (mCRPC) stage and provide a promising approach to treating PCa.
Collapse
Affiliation(s)
- Siddhant Bhoir
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
18
|
Aldwaik RK, Shian D, Thapa R, Vasudevan S, Ashqar MAA, Reich E, Kravchenko-Balasha N, Klutstein M. Overexpressed kinetochore genes are used by cancer cells as genome destabilizers and transformation catalysts. Transl Oncol 2023; 34:101703. [PMID: 37295219 DOI: 10.1016/j.tranon.2023.101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer cells have an altered transcriptome, which contributes to their abnormal behavior. Many tumors have high levels of kinetochore genes, which play important roles in genome stability. This overexpression could be utilized to destabilize cancer cell genomes, however this has not been proven specifically. We investigated the link between kinetochore gene overexpression, chromosomal number variations (CNVs) and genomic instability. Data on RNA expression and CNV from 12 different cancer types were evaluated using information theory. In all cancer types, we looked at the relationship between RNA expression and CNVs. Kinetochore gene expression was found to be substantially linked with CNV levels. In all cancer types, with the exception of thyroid cancer, highly expressed kinetochore genes were enriched in the most dominant cancer-specific co-expression subnetworks characterizing the largest patient subgroups. Except for thyroid cancer, kinetochore inner protein CENPA was among the transcripts most strongly associated with CNV values in all cancer types studied, with significantly higher expression levels in patients with high CNVs than in patients with low CNVs. CENPA function was investigated further in cell models by transfecting genomically stable (HCT116) and unstable (MCF7 and HT29) cancer cell lines using CENPA overexpression vectors. This overexpression increased the number of abnormal cell divisions in the stable cancer cell line HCT116 and, to a lesser extent, in the unstable cell lines MCF7 and HT29. Overexpression improved anchorage-independent growth properties of all cell lines. Our findings suggest that overexpression of kinetochore genes in general, and CENPA in particular, can cause genomic instability and cancer progression.
Collapse
Affiliation(s)
- Reem Kamal Aldwaik
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Denen Shian
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Roshina Thapa
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Swetha Vasudevan
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Mimi Abo-Ayoub Ashqar
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Eli Reich
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel.
| | - Michael Klutstein
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel.
| |
Collapse
|
19
|
Dave A, Charytonowicz D, Francoeur NJ, Beaumont M, Beaumont K, Schmidt H, Zeleke T, Silva J, Sebra R. The Breast Cancer Single-Cell Atlas: Defining cellular heterogeneity within model cell lines and primary tumors to inform disease subtype, stemness, and treatment options. Cell Oncol (Dordr) 2023; 46:603-628. [PMID: 36598637 PMCID: PMC10205851 DOI: 10.1007/s13402-022-00765-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Breast Cancer (BC) is the most diagnosed cancer in women; however, through significant research, relative survival rates have significantly improved. Despite progress, there remains a gap in our understanding of BC subtypes and personalized treatments. This manuscript characterized cellular heterogeneity in BC cell lines through scRNAseq to resolve variability in subtyping, disease modeling potential, and therapeutic targeting predictions. METHODS We generated a Breast Cancer Single-Cell Cell Line Atlas (BSCLA) to help inform future BC research. We sequenced over 36,195 cells composed of 13 cell lines spanning the spectrum of clinical BC subtypes and leveraged publicly available data comprising 39,214 cells from 26 primary tumors. RESULTS Unsupervised clustering identified 49 subpopulations within the cell line dataset. We resolve ambiguity in subtype annotation comparing expression of Estrogen Receptor, Progesterone Receptor, and Human Epidermal Growth Factor Receptor 2 genes. Gene correlations with disease subtype highlighted S100A7 and MUCL1 overexpression in HER2 + cells as possible cell motility and localization drivers. We also present genes driving populational drifts to generate novel gene vectors characterizing each subpopulation. A global Cancer Stem Cell (CSC) scoring vector was used to identify stemness potential for subpopulations and model multi-potency. Finally, we overlay the BSCLA dataset with FDA-approved targets to identify to predict the efficacy of subpopulation-specific therapies. CONCLUSION The BSCLA defines the heterogeneity within BC cell lines, enhancing our overall understanding of BC cellular diversity to guide future BC research, including model cell line selection, unintended sample source effects, stemness factors between cell lines, and cell type-specific treatment response.
Collapse
Affiliation(s)
- Arpit Dave
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave - Icahn (East) Building, Floor 14, Room 14-20E, New York, NY 10029 USA
| | - Daniel Charytonowicz
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave - Icahn (East) Building, Floor 14, Room 14-20E, New York, NY 10029 USA
| | - Nancy J. Francoeur
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave - Icahn (East) Building, Floor 14, Room 14-20E, New York, NY 10029 USA
- Pacific Biosciences, CA Menlo Park, USA
| | - Michael Beaumont
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave - Icahn (East) Building, Floor 14, Room 14-20E, New York, NY 10029 USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Kristin Beaumont
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave - Icahn (East) Building, Floor 14, Room 14-20E, New York, NY 10029 USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | | | - Tizita Zeleke
- Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029 USA
| | - Jose Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029 USA
| | - Robert Sebra
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave - Icahn (East) Building, Floor 14, Room 14-20E, New York, NY 10029 USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| |
Collapse
|
20
|
The TLK1-MK5 Axis Regulates Motility, Invasion, and Metastasis of Prostate Cancer Cells. Cancers (Basel) 2022; 14:cancers14235728. [PMID: 36497211 PMCID: PMC9736944 DOI: 10.3390/cancers14235728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Metastatic dissemination of prostate cancer (PCa) accounts for the majority of PCa-related deaths. However, the exact mechanism of PCa cell spread is still unknown. We uncovered a novel interaction between two unrelated promotility factors, tousled-like kinase 1 (TLK1) and MAPK-activated protein kinase 5 (MK5), that initiates a signaling cascade promoting metastasis. In PCa, TLK1−MK5 signaling might be crucial, as androgen deprivation therapy (ADT) leads to increased expression of both TLK1 and MK5 in metastatic patients, but in this work, we directly investigated the motility, invasive, and metastatic capacity of PCa cells following impairment of the TLK1 > MK5 axis. Results: We conducted scratch wound repair and transwell invasion assays with LNCaP and PC3 cells to determine if TLK1 and MK5 can regulate motility and invasion. Both genetic depletion and pharmacologic inhibition of TLK1 and MK5 resulted in reduced migration and invasion through a Matrigel plug. We further elucidated the potential mechanisms underlying these effects and found that this is likely due to the reorganization of the actin fibers at lamellipodia and the focal adhesions network, in conjunction with increased expression of some MMPs that can affect penetration through the ECM. PC3, a highly metastatic cell line when assayed in xenografts, was further tested in a tail-vein injection/lung metastasis model, and we showed that, following inoculation, treatment with GLPG0259 (MK5 specific inhibitor) or J54 (TLK1 inhibitor) resulted in the lung tumor nodules being greatly diminished in number, and for J54, also in size. Conclusion: Our data support that the TLK1−MK5 axis is functionally involved in driving PCa cell metastasis and clinical aggressiveness; hence, disruption of this axis may inhibit the metastatic capacity of PCa.
Collapse
|
21
|
Zhang X, Sun D, Zheng H, Rao Y, Deng Y, Liang X, chen J, Yang J. Comprehensive analysis of transcriptome characteristics and identification of TLK2 as a potential biomarker in dermatofibrosarcoma protuberans. Front Genet 2022; 13:926282. [PMID: 36134026 PMCID: PMC9483842 DOI: 10.3389/fgene.2022.926282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Dermatofibrosarcoma protuberans (DFSP) is a rare cutaneous sarcoma characterized by local invasion and recurrence. RNA sequencing (RNA-seq) allows the qualification of cellular RNA populations and provides information on the transcriptional state. However, few studies have comprehensively analyzed DFSP transcriptional data. Methods: Fourteen DFSP samples with paired non-neoplastic soft tissue from Chinese patients undergoing Mohs micrographic surgery were used for RNA-seq analysis. Differential expression analysis and enrichment analysis for RNA-seq data were performed to identify fusion genes, biomarkers, and microenvironment characteristics of DFSP. Results: This study systemically describes the transcriptomic characteristics of DFSP. First, we performed gene fusion analysis and identified a novel FBN1-CSAD fusion event in a DFSP patient with fibrosarcomatous transformation. Then, we identified TLK2 as a biomarker for DFSP based on functional enrichment analysis, and validated its accuracy for diagnosing DFSP by immunohistochemical staining and joint analysis with public data. Finally, microenvironment analysis described the infiltration characteristics of immune and stromal cells in DFSP. Conclusion: This study demonstrates that RNA-seq can serve as a promising strategy for exploring molecular mechanisms in DFSP. Our results provide new insights into accurate diagnosis and therapeutic targets of DFSP.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Zheng
- Department of Pathology, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yamin Rao
- Department of Pathology, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuqi Deng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun chen
- Department of Dermatology, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Jun Chen, ; Jun yang,
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jun Chen, ; Jun yang,
| |
Collapse
|
22
|
Kuczler MD, Zieren RC, Dong L, de Reijke TM, Pienta KJ, Amend SR. Advancements in the identification of EV derived mRNA biomarkers for liquid biopsy of clear cell renal cell carcinomas. Urology 2022; 160:87-93. [PMID: 34793840 PMCID: PMC8882144 DOI: 10.1016/j.urology.2021.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To propose EV-derived mRNA as a potential diagnostic biomarker detecting the presence of clear cell renal cell carcinoma (ccRCC). There is currently no kidney cancer specific screening or diagnostic technology. Therefore, one-third of kidney cancer diagnoses occur after the cancer has metastasized and is past curative measures MATERIALS AND METHODS: Urine, plasma, normal tumor adjacent tissue, and tumor tissue was collected from a limited population of ccRCC patients. Extracellular vesicle (EV) isolation was performed on each sample, followed by mRNA extraction from isolated EVs. NanoString nCounter technology was utilized to count the mRNA transcripts present in matched plasma, urine, tumor tissue, and normal tumor adjacent tissue samples. RESULTS 770 mRNA transcripts related to gene's affecting cancer's progression and metastasis processes were evaluated. Four EV derived mRNA transcripts (ALOX5, RBL2, VEGFA, TLK2) were found specific to urine and tumor tissue samples. CONCLUSION Four candidate RCC-specific urine EV biomarkers were identified. However, due to the lack of a true negative control and urine collection techniques, further re-examination is necessary for validation. This study demonstrates the promise of defining disease-specific EV biomarkers in liquid biopsy patient samples.
Collapse
Affiliation(s)
- MD Kuczler
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine
| | - RC Zieren
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine,Department of Urology, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - L Dong
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine,Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - TM de Reijke
- Department of Urology, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - KJ Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine
| | - SR Amend
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine
| |
Collapse
|
23
|
Khalil MI, Singh V, King J, De Benedetti A. TLK1-mediated MK5-S354 phosphorylation drives prostate cancer cell motility and may signify distinct pathologies. Mol Oncol 2022; 16:2537-2557. [PMID: 35064619 PMCID: PMC9251878 DOI: 10.1002/1878-0261.13183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 01/19/2022] [Indexed: 12/02/2022] Open
Abstract
Metastases account for the majority of prostate cancer (PCa) deaths, and targeting them is a major goal of systemic therapy. We identified a novel interaction between two kinases: tousled‐like kinase 1 (TLK1) and MAP kinase‐activated protein kinase 5 (MK5) that promotes PCa spread. In PCa progression, TLK1–MK5 signalling appears to increase following antiandrogen treatment and in metastatic castration‐resistant prostate cancer (mCRPC) patients. Determinations of motility rates (2D and 3D) of different TLK1‐ and MK5‐perturbed cells, including knockout (KO) and knockdown (KD), as well as the use of specific inhibitors, showed the importance of these two proteins for in vitro dissemination. We established that TLK1 phosphorylates MK5 on three residues (S160, S354 and S386), resulting in MK5 activation, and additionally, mobility shifts of MK5 also supported its phosphorylation by TLK1 in transfected HEK 293 cells. Expression of MK5‐S354A or kinase‐dead MK5 in MK5‐depleted mouse embryonic fibroblast (MEF) cells failed to restore their motility compared with that of wild‐type (WT) MK5‐rescued MK5−/− MEF cells. A pMK5‐S354 antiserum was used to establish this site as an authentic TLK1 target in androgen‐sensitive human prostate adenocarcinoma (LNCaP) cells, and was used in immunohistochemistry (IHC) studies of age‐related PCa sections from TRAMP (transgenic adenocarcinoma of the mouse prostate) mice and to probe a human tissue microarray (TMA), which revealed pMK5‐S354 level is correlated with disease progression (Gleason score and nodal metastases). In addition, The Cancer Genome Atlas (TCGA) analyses of PCa expression and genome‐wide association study (GWAS) relations identify TLK1 and MK5 as potential drivers of advanced PCa and as markers of mCRPC. Our work suggests that TLK1–MK5 signalling is functionally involved in driving PCa cell motility and clinical features of aggressiveness; hence, disruption of this axis may inhibit the metastatic spread of PCa.
Collapse
Affiliation(s)
| | - Vibha Singh
- Department of Biochemistry and Molecular Biology
| | - Judy King
- Deparment of Pathology and Translational Pathobiology, LSU Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
24
|
Lee SB, Chang TY, Lee NZ, Yu ZY, Liu CY, Lee HY. Design, synthesis and biological evaluation of bisindole derivatives as anticancer agents against Tousled-like kinases. Eur J Med Chem 2022; 227:113904. [PMID: 34662748 DOI: 10.1016/j.ejmech.2021.113904] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 11/03/2022]
Abstract
This study presents the design, synthesis, and characterization of bisindole molecules as anti-cancer agents against Tousled-like kinases (TLKs). We show that compound 2 composed of an indirubin-3'-oxime group linked with a (N-methylpiperidin-2-yl)ethyl moiety possessed inhibitory activity toward both TLK1 and TLK2 in vitro and diminished the phosphorylation level of the downstream substrate anti-silencing function 1 (ASF1) in replicating cells. The treatment of compound 2 impaired DNA replication, slowed S-phase progression, and triggered DNA damage response in replicating cells. Structure optimization further discovered six derivatives exhibiting potent TLK inhibitory activity and revealed the importance of the tertiary amine-containing moiety of the side chain. Moreover, the derivatives 6, 17, 19, and 20 strongly suppressed the growth of triple-negative breast cancer MDA-MB-231 cells, non-small cell lung cancer A549 cells, and colorectal cancer HCT-116 cells, while normal lung fibroblast MRC5 and IMR90 cells showed a lower response to these compounds. Taken together, this study identifies tertiary amine-linked indirubin-3'-oximes as potent anticancer agents that inhibit TLK activity.
Collapse
Affiliation(s)
- Sung-Bau Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Chang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Nian-Zhe Lee
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Zih-Yao Yu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chi-Yuan Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hsueh-Yun Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
25
|
Chi X, Sartor MA, Lee S, Anurag M, Patil S, Hall P, Wexler M, Wang XS. Universal concept signature analysis: genome-wide quantification of new biological and pathological functions of genes and pathways. Brief Bioinform 2021; 21:1717-1732. [PMID: 31631213 DOI: 10.1093/bib/bbz093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/23/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Identifying new gene functions and pathways underlying diseases and biological processes are major challenges in genomics research. Particularly, most methods for interpreting the pathways characteristic of an experimental gene list defined by genomic data are limited by their dependence on assessing the overlapping genes or their interactome topology, which cannot account for the variety of functional relations. This is particularly problematic for pathway discovery from single-cell genomics with low gene coverage or interpreting complex pathway changes such as during change of cell states. Here, we exploited the comprehensive sets of molecular concepts that combine ontologies, pathways, interactions and domains to help inform the functional relations. We first developed a universal concept signature (uniConSig) analysis for genome-wide quantification of new gene functions underlying biological or pathological processes based on the signature molecular concepts computed from known functional gene lists. We then further developed a novel concept signature enrichment analysis (CSEA) for deep functional assessment of the pathways enriched in an experimental gene list. This method is grounded on the framework of shared concept signatures between gene sets at multiple functional levels, thus overcoming the limitations of the current methods. Through meta-analysis of transcriptomic data sets of cancer cell line models and single hematopoietic stem cells, we demonstrate the broad applications of CSEA on pathway discovery from gene expression and single-cell transcriptomic data sets for genetic perturbations and change of cell states, which complements the current modalities. The R modules for uniConSig analysis and CSEA are available through https://github.com/wangxlab/uniConSig.
Collapse
Affiliation(s)
- Xu Chi
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, U.S.A.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Maureen A Sartor
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, U.S.A
| | - Sanghoon Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, U.S.A
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, U.S.A
| | - Snehal Patil
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, U.S.A
| | - Pelle Hall
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, U.S.A
| | - Matthew Wexler
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, U.S.A
| | - Xiao-Song Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, U.S.A.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, U.S.A
| |
Collapse
|
26
|
Montazeri H, Coto-Llerena M, Bianco G, Zangene E, Taha-Mehlitz S, Paradiso V, Srivatsa S, de Weck A, Roma G, Lanzafame M, Bolli M, Beerenwinkel N, von Flüe M, Terracciano L, Piscuoglio S, Ng CKY. Systematic identification of novel cancer genes through analysis of deep shRNA perturbation screens. Nucleic Acids Res 2021; 49:8488-8504. [PMID: 34313788 PMCID: PMC8421231 DOI: 10.1093/nar/gkab627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022] Open
Abstract
Systematic perturbation screens provide comprehensive resources for the elucidation of cancer driver genes. The perturbation of many genes in relatively few cell lines in such functional screens necessitates the development of specialized computational tools with sufficient statistical power. Here we developed APSiC (Analysis of Perturbation Screens for identifying novel Cancer genes) to identify genetic drivers and effectors in perturbation screens even with few samples. Applying APSiC to the shRNA screen Project DRIVE, APSiC identified well-known and novel putative mutational and amplified cancer genes across all cancer types and in specific cancer types. Additionally, APSiC discovered tumor-promoting and tumor-suppressive effectors, respectively, for individual cancer types, including genes involved in cell cycle control, Wnt/β-catenin and hippo signalling pathways. We functionally demonstrated that LRRC4B, a putative novel tumor-suppressive effector, suppresses proliferation by delaying cell cycle and modulates apoptosis in breast cancer. We demonstrate APSiC is a robust statistical framework for discovery of novel cancer genes through analysis of large-scale perturbation screens. The analysis of DRIVE using APSiC is provided as a web portal and represents a valuable resource for the discovery of novel cancer genes.
Collapse
Affiliation(s)
- Hesam Montazeri
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Mairene Coto-Llerena
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Visceral Surgery and Precision Medicine Research laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Gaia Bianco
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Visceral Surgery and Precision Medicine Research laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ehsan Zangene
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Stephanie Taha-Mehlitz
- Visceral Surgery and Precision Medicine Research laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Viola Paradiso
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Antoine de Weck
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Manuela Lanzafame
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Martin Bolli
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Markus von Flüe
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Luigi M Terracciano
- Department of Pathology, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Visceral Surgery and Precision Medicine Research laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Charlotte K Y Ng
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
27
|
TRIM47 activates NF-κB signaling via PKC-ε/PKD3 stabilization and contributes to endocrine therapy resistance in breast cancer. Proc Natl Acad Sci U S A 2021; 118:2100784118. [PMID: 34433666 DOI: 10.1073/pnas.2100784118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Increasing attention has been paid to roles of tripartite motif-containing (TRIM) family proteins in cancer biology, often functioning as E3 ubiquitin ligases. In the present study, we focus on a contribution of TRIM47 to breast cancer biology, particularly to endocrine therapy resistance, which is a major clinical problem in breast cancer treatment. We performed immunohistochemical analysis of TRIM47 protein expression in 116 clinical samples of breast cancer patients with postoperative endocrine therapy using tamoxifen. Our clinicopathological study showed that higher immunoreactivity scores of TRIM47 were significantly associated with higher relapse rate of breast cancer patients (P = 0.012). As functional analyses, we manipulated TRIM47 expression in estrogen receptor-positive breast cancer cells MCF-7 and its 4-hydroxytamoxifen (OHT)-resistant derivative OHTR, which was established in a long-term culture with OHT. TRIM47 promoted both MCF-7 and OHTR cell proliferation. MCF-7 cells acquired tamoxifen resistance by overexpressing exogenous TRIM47. We found that TRIM47 enhances nuclear factor kappa-B (NF-κB) signaling, which further up-regulates TRIM47. We showed that protein kinase C epsilon (PKC-ε) and protein kinase D3 (PKD3), known as NF-κB-activating protein kinases, are directly associated with TRIM47 and stabilized in the presence of TRIM47. As an underlying mechanism, we showed TRIM47-dependent lysine 27-linked polyubiquitination of PKC-ε. These results indicate that TRIM47 facilitates breast cancer proliferation and endocrine therapy resistance by forming a ternary complex with PKC-ε and PKD3. TRIM47 and its associated kinases can be a potential diagnostic and therapeutic target for breast cancer refractory to endocrine therapy.
Collapse
|
28
|
El-Ashmawy NE, El-Zamarany EA, Khedr NF, Selim HM, Khedr EG. Inhibition of PKC/MEK pathway suppresses β1-integrin and mitigates breast cancer cells proliferation. Toxicol Rep 2021; 8:1530-1537. [PMID: 34408972 PMCID: PMC8361284 DOI: 10.1016/j.toxrep.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
PGE2 enhanced β1- integrin expression via EP1 receptor, PKC, MEK and NfҡB. FOXC2, E2F1 and survivin play a role in PGE2 mediated effect in MCF7 cells. PGE2 enhances breast cancer cell cycle through E2F1, FOXC2, survivin and β integrin. Biochemical mediators of PKC/MEK pathway could be considered as targets for breast cancer treatment.
Prostaglandin E2 (PGE2) and β1-integrin have been correlated with breast cancer, where both could enhance progression and metastasis. Protein kinase C (PKC) and MEK have played a vital role in breast cancer development. Our study was conducted to elucidate the effect of inhibition of E-prostanoid receptor 1 (EP1)/ PKC/ MEK/ β1-integrin pathway in mitigating breast cancer progression and to evaluate the role of the intermediate signals FOXC2, E2F1, NF-ҡB and survivin. MCF7 cells were treated with 17 -PT-PGE2, an EP1 agonist, for 24 h, and β1-integrin was measured. To MCF7 cells treated with 17-PT-PGE2, inhibitors of either EP1, MEK, PKC or NF-ҡB were added followed by measurement of β1-integrin gene expression and cell proliferation in each case. Addition of 17- PT-PGE2 to MCF7 cells showed enhancement of both cell proliferation, and cell cycle transition from G1 to S phase. In addition, activation of EP1 receptor increased β1-integrin expression. On the contrary, inhibition of EP1 receptor showed a decrease in the cell proliferation, β1-integrin expression and cells transition to S phase, but increased cell count in apoptotic phase. Selective inhibition of each of MEK, PKC, and NF-ҡB suppressed 17 -PT-PGE2-mediated β1-integrin expression as well as cell proliferation. Furthermore, FOXC2, phosphorylated NF-ҡB, E2F1, and survivin levels were upregulated with 17- PT-PGE2 and suppressed by MEK, PKC and NF-ҡB inhibitors. Targeting the biochemical mediators of PKC/MEK pathway may be of value in developing new chemical entities for cancer treatment.
Collapse
Affiliation(s)
| | - Enas A El-Zamarany
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Egypt
| | - Naglaa F Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Hend M Selim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Eman G Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| |
Collapse
|
29
|
Segura-Bayona S, Villamor-Payà M, Attolini CSO, Koenig LM, Sanchiz-Calvo M, Boulton SJ, Stracker TH. Tousled-Like Kinases Suppress Innate Immune Signaling Triggered by Alternative Lengthening of Telomeres. Cell Rep 2021; 32:107983. [PMID: 32755577 PMCID: PMC7408502 DOI: 10.1016/j.celrep.2020.107983] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The Tousled-like kinases 1 and 2 (TLK1/2) control histone deposition through the ASF1 histone chaperone and influence cell cycle progression and genome maintenance, yet the mechanisms underlying TLK-mediated genome stability remain uncertain. Here, we show that TLK loss results in severe chromatin decompaction and altered genome accessibility, particularly affecting heterochromatic regions. Failure to maintain heterochromatin increases spurious transcription of repetitive elements and induces features of alternative lengthening of telomeres (ALT). TLK depletion culminates in a cGAS-STING-TBK1-mediated innate immune response that is independent of replication-stress signaling and attenuated by the depletion of factors required to produce extra-telomeric DNA. Analysis of human cancers reveals that chromosomal instability correlates with high TLK2 and low STING levels in many cohorts. Based on these findings, we propose that high TLK levels contribute to immune evasion in chromosomally unstable and ALT+ cancers. TLK-deficient cells have increased accessibility at heterochromatin regions TLK1/2 suppress spurious transcription and telomere hyper-recombination Extra-telomeric DNA generated upon TLK loss promotes innate immune signaling cGAS-STING-TBK1 signaling in TLK-deficient cells is independent of replication stress
Collapse
Affiliation(s)
- Sandra Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Lars M Koenig
- Division of Clinical Pharmacology, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Maria Sanchiz-Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain.
| |
Collapse
|
30
|
Wang X, Veeraraghavan J, Liu CC, Cao X, Qin L, Kim JA, Tan Y, Loo SK, Hu Y, Lin L, Lee S, Shea MJ, Mitchell T, Li S, Ellis MJ, Hilsenbeck SG, Schiff R, Wang XS. Therapeutic Targeting of Nemo-like Kinase in Primary and Acquired Endocrine-resistant Breast Cancer. Clin Cancer Res 2021; 27:2648-2662. [PMID: 33542078 DOI: 10.1158/1078-0432.ccr-20-2961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/29/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Endocrine resistance remains a major clinical challenge in estrogen receptor (ER)-positive breast cancer. Despite the encouraging results from clinical trials for the drugs targeting known survival signaling, relapse is still inevitable. There is an unmet need to discover new drug targets in the unknown escape pathways. Here, we report Nemo-like kinase (NLK) as a new actionable kinase target that endows previously uncharacterized survival signaling in endocrine-resistant breast cancer. EXPERIMENTAL DESIGN The effects of NLK inhibition on the viability of endocrine-resistant breast cancer cell lines were examined by MTS assay. The effect of VX-702 on NLK activity was verified by kinase assay. The modulation of ER and its coactivator, SRC-3, by NLK was examined by immunoprecipitation, kinase assay, luciferase assay, and RNA sequencing. The therapeutic effects of VX-702 and everolimus were tested on cell line- and patient-derived xenograft (PDX) tumor models. RESULTS NLK overexpression endows reduced endocrine responsiveness and is associated with worse outcome of patients treated with tamoxifen. Mechanistically, NLK may function, at least in part, via enhancing the phosphorylation of ERα and its key coactivator, SRC-3, to modulate ERα transcriptional activity. Through interrogation of a kinase profiling database, we uncovered and verified a highly selective dual p38/NLK inhibitor, VX-702. Coadministration of VX-702 with the mTOR inhibitor, everolimus, demonstrated a significant therapeutic effect in cell line-derived xenograft and PDX tumor models of acquired or de novo endocrine resistance. CONCLUSIONS Together, this study reveals the potential of therapeutic modulation of NLK for the management of the endocrine-resistant breast cancers with active NLK signaling.
Collapse
Affiliation(s)
- Xian Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania.,Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Chia-Chia Liu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Xixi Cao
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Lanfang Qin
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jin-Ah Kim
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ying Tan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Suet Kee Loo
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Yiheng Hu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania.,Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ling Lin
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Sanghoon Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Martin J Shea
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Tamika Mitchell
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine at St Louis, St. Louis, Missouri
| | - Matthew J Ellis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rachel Schiff
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Xiao-Song Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania. .,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania.,Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
31
|
Gu G, Tian L, Herzog SK, Rechoum Y, Gelsomino L, Gao M, Du L, Kim JA, Dustin D, Lo HC, Beyer AR, Edwards DG, Gonzalez T, Tsimelzon A, Huang HJ, Fernandez NM, Grimm SL, Hilsenbeck SG, Liu D, Xu J, Alaniz A, Li S, Mills GB, Janku F, Kittler R, Zhang XHF, Coarfa C, Foulds CE, Symmans WF, Andò S, Fuqua SAW. Hormonal modulation of ESR1 mutant metastasis. Oncogene 2021; 40:997-1011. [PMID: 33323970 PMCID: PMC8020875 DOI: 10.1038/s41388-020-01563-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/31/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
Estrogen receptor alpha gene (ESR1) mutations occur frequently in ER-positive metastatic breast cancer, and confer clinical resistance to aromatase inhibitors. Expression of the ESR1 Y537S mutation induced an epithelial-mesenchymal transition (EMT) with cells exhibiting enhanced migration and invasion potential in vitro. When small subpopulations of Y537S ESR1 mutant cells were injected along with WT parental cells, tumor growth was enhanced with mutant cells becoming the predominant population in distant metastases. Y537S mutant primary xenograft tumors were resistant to the antiestrogen tamoxifen (Tam) as well as to estradiol (E2) withdrawal. Y537S ESR1 mutant primary tumors metastasized efficiently in the absence of E2; however, Tam treatment significantly inhibited metastasis to distant sites. We identified a nine-gene expression signature, which predicted clinical outcomes of ER-positive breast cancer patients, as well as breast cancer metastasis to the lung. Androgen receptor (AR) protein levels were increased in mutant models, and the AR agonist dihydrotestosterone significantly inhibited estrogen-regulated gene expression, EMT, and distant metastasis in vivo, suggesting that AR may play a role in distant metastatic progression of ESR1 mutant tumors.
Collapse
Affiliation(s)
- Guowei Gu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Lin Tian
- Cancer Biology & Genetics Program Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah K Herzog
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX, USA
| | - Yassine Rechoum
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Meng Gao
- Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Lili Du
- Department of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jin-Ah Kim
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Derek Dustin
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Hin Ching Lo
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Amanda R Beyer
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - David G Edwards
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Thomas Gonzalez
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Anna Tsimelzon
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Helen J Huang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie M Fernandez
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sandra L Grimm
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Susan G Hilsenbeck
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dan Liu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jun Xu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Alyssa Alaniz
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Shunqiang Li
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Gordon B Mills
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development and Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiang H-F Zhang
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - W Fraser Symmans
- Department of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Suzanne A W Fuqua
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
32
|
Liu CC, Veeraraghavan J, Tan Y, Kim JA, Wang X, Loo SK, Lee S, Hu Y, Wang XS. A Novel Neoplastic Fusion Transcript, RAD51AP1-DYRK4, Confers Sensitivity to the MEK Inhibitor Trametinib in Aggressive Breast Cancers. Clin Cancer Res 2021; 27:785-798. [PMID: 33172895 PMCID: PMC7934498 DOI: 10.1158/1078-0432.ccr-20-2769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 01/19/2023]
Abstract
PURPOSE Luminal B breast tumors are more aggressive estrogen receptor-positive (ER+) breast cancers characterized by aggressive clinical behavior and a high risk of metastatic dissemination. The underlying pathologic molecular events remain poorly understood with a paucity of actionable genetic drivers, which hinders the development of new treatment strategies. EXPERIMENTAL DESIGN We performed large-scale RNA sequencing analysis to identify chimerical transcripts preferentially expressed in luminal B breast cancer. The lead candidate was validated by reverse transcription PCR in breast cancer tissues. The effects of inducible ectopic expression or genetic silencing were assessed by phenotypic assays such as MTS, transwell, and transendothelial migration assays, and by clonogenic assays to assess MEK inhibitor sensitivity. Subcellular fractionation, Western blots, and immunoprecipitation were performed to characterize the protein products and elucidate the engaged mechanisms. RESULTS Here we report a novel tumor-specific chimeric transcript RAD51AP1-DYRK4 preferentially expressed in luminal B tumors. Analysis of 200 ER+ breast tumors detected RAD51AP1-DYRK4 overexpression in 19 tumors (9.5%), which is markedly enriched in the luminal B tumors (17.5%). Ectopic expression of RAD51AP1-DYRK4, but not wild-type RAD51AP1, leads to marked activation of MEK/ERK signaling, and endows increased cell motility and transendothelial migration. More importantly, RAD51AP1-DYRK4 appears to endow increased sensitivity to the MEK inhibitor trametinib through attenuating compensatory activation of HER2/PI3K/AKT under MEK inhibition. CONCLUSIONS This discovery sheds light on a new area of molecular pathobiology of luminal B tumors and implies potential new therapeutic opportunities for more aggressive breast tumors overexpressing this fusion.
Collapse
Affiliation(s)
- Chia-Chia Liu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ying Tan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jin-Ah Kim
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xian Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Suet Kee Loo
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sanghoon Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yiheng Hu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xiao-Song Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
33
|
Singh V, Bhoir S, Chikhale RV, Hussain J, Dwyer D, Bryce RA, Kirubakaran S, De Benedetti A. Generation of Phenothiazine with Potent Anti-TLK1 Activity for Prostate Cancer Therapy. iScience 2020; 23:101474. [PMID: 32905878 PMCID: PMC7486443 DOI: 10.1016/j.isci.2020.101474] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/15/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Through in vitro kinase assays and docking studies, we report the synthesis and biological evaluation of a phenothiazine analog J54 with potent TLK1 inhibitory activity for prostate cancer (PCa) therapy. Most PCa deaths result from progressive failure in standard androgen deprivation therapy (ADT), leading to metastatic castration-resistant PCa. Treatments that can suppress the conversion to mCRPC have high potential to be rapidly implemented in the clinics. ADT results in increased expression of TLK1B, a key kinase upstream of NEK1 and ATR and mediating the DNA damage response that typically results in temporary cell-cycle arrest of androgen-responsive PCa cells, whereas its abrogation leads to apoptosis. We studied J54 as a potent inhibitor of this axis and as a mediator of apoptosis in vitro and in LNCaP xenografts, which has potential for clinical investigation in combination with ADT. J54 has low affinity for the dopamine receptor in modeling and competition studies and weak detrimental behavioral effects in mice and C. elegans.
Collapse
Affiliation(s)
- Vibha Singh
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, USA
| | - Siddhant Bhoir
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, USA
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Rupesh V. Chikhale
- Division of Pharmacy & Optometry, University of Manchester, Manchester, UK
| | - Javeena Hussain
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Donard Dwyer
- Department of Psychiatry and Behavioral Medicine, LSU Health Sciences Center, Shreveport, USA
| | - Richard A. Bryce
- Division of Pharmacy & Optometry, University of Manchester, Manchester, UK
| | - Sivapriya Kirubakaran
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, USA
| |
Collapse
|
34
|
Li L, Lin L, Veeraraghavan J, Hu Y, Wang X, Lee S, Tan Y, Schiff R, Wang XS. Therapeutic role of recurrent ESR1-CCDC170 gene fusions in breast cancer endocrine resistance. Breast Cancer Res 2020; 22:84. [PMID: 32771039 PMCID: PMC7414578 DOI: 10.1186/s13058-020-01325-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/27/2020] [Indexed: 01/07/2023] Open
Abstract
Background Endocrine therapy is the most common treatment for estrogen receptor (ER)-positive breast cancer, but its effectiveness is limited by high rates of primary and acquired resistance. There are likely many genetic causes, and recent studies suggest the important role of ESR1 mutations and fusions in endocrine resistance. Previously, we reported a recurrent ESR1 fusion called ESR1-CCDC170 in 6–8% of the luminal B breast cancers that has a worse clinical outcome after endocrine therapy. Despite being the most frequent ESR1 fusion, its functional role in endocrine resistance has not been studied in vivo, and the engaged mechanism and therapeutic relevance remain uncharacterized. Methods The endocrine sensitivities of HCC1428 or T47D breast cancer cells following genetic perturbations of ESR1-CCDC170 were assessed using clonogenic assays and/or xenograft mouse models. The underlying mechanisms were investigated by reverse phase protein array, western blotting, immunoprecipitation, and bimolecular fluorescence complementation assays. The sensitivity of ESR1-CCDC170 expressing breast cancer cells to concomitant treatments of tamoxifen and HER/SRC inhibitors was assessed by clonogenic assays. Results Our results suggested that different ESR1-CCDC170 fusions endow different levels of reduced endocrine sensitivity in vivo, resulting in significant survival disadvantages. Further investigation revealed a novel mechanism that ESR1-CCDC170 binds to HER2/HER3/SRC and activates SRC/PI3K/AKT signaling. Silencing of ESR1-CCDC170 in the fusion-positive cell line, HCC1428, downregulates HER2/HER3, represses pSRC/pAKT, and improves endocrine sensitivity. More important, breast cancer cells expressing ectopic or endogenous ESR1-CCDC170 are highly sensitive to treatment regimens combining endocrine agents with the HER2 inhibitor lapatinib and/or the SRC inhibitor dasatinib. Conclusion ESR1-CCDC170 may endow breast cancer cell survival under endocrine therapy via maintaining/activating HER2/HER3/SRC/AKT signaling which implies a potential therapeutic strategy for managing these fusion positive tumors.
Collapse
Affiliation(s)
- Li Li
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA.,Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ling Lin
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yiheng Hu
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA.,Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xian Wang
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA.,Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sanghoon Lee
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, USA
| | - Ying Tan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rachel Schiff
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiao-Song Wang
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA. .,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA. .,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA. .,Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA. .,Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, USA.
| |
Collapse
|
35
|
Abstract
Circadian clocks are cell-autonomous self-sustaining oscillators that allow organisms to anticipate environmental changes throughout the solar day and persist in nearly every cell examined. Environmental or genetic disruption of circadian rhythms increases the risk of several types of cancer, but the underlying mechanisms are not well understood. Here, we discuss evidence connecting circadian rhythms-with emphasis on the cryptochrome proteins (CRY1/2)-to cancer through in vivo models, mechanisms involving known tumor suppressors and oncogenes, chemotherapeutic efficacy, and human cancer risk.
Collapse
Affiliation(s)
- Alanna B Chan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Katja A Lamia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
36
|
Lin CL, Tan X, Chen M, Kusi M, Hung CN, Chou CW, Hsu YT, Wang CM, Kirma N, Chen CL, Lin CH, Lathrop KI, Elledge R, Kaklamani VG, Mitsuya K, Huang THM. ERα-related chromothripsis enhances concordant gene transcription on chromosome 17q11.1-q24.1 in luminal breast cancer. BMC Med Genomics 2020; 13:69. [PMID: 32408897 PMCID: PMC7222439 DOI: 10.1186/s12920-020-0729-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chromothripsis is an event of genomic instability leading to complex chromosomal alterations in cancer. Frequent long-range chromatin interactions between transcription factors (TFs) and targets may promote extensive translocations and copy-number alterations in proximal contact regions through inappropriate DNA stitching. Although studies have proposed models to explain the initiation of chromothripsis, few discussed how TFs influence this process for tumor progression. METHODS This study focused on genomic alterations in amplification associated regions within chromosome 17. Inter-/intra-chromosomal rearrangements were analyzed using whole genome sequencing data of breast tumors in the Cancer Genome Atlas (TCGA) cohort. Common ERα binding sites were defined based on MCF-7, T47D, and MDA-MB-134 breast cancer cell lines using univariate K-means clustering methods. Nanopore sequencing technology was applied to validate frequent rearrangements detected between ATC loci on 17q23 and an ERα hub on 20q13. The efficacy of pharmacological inhibition of a potentially druggable target gene on 17q23 was evaluated using breast cancer cell lines and patient-derived circulating breast tumor cells. RESULTS There are five adjoining regions from 17q11.1 to 17q24.1 being hotspots of chromothripsis. Inter-/intra-chromosomal rearrangements of these regions occurred more frequently in ERα-positive tumors than in ERα-negative tumors. In addition, the locations of the rearrangements were often mapped within or close to dense ERα binding sites localized on these five 17q regions or other chromosomes. This chromothriptic event was linked to concordant upregulation of 96 loci that predominantly regulate cell-cycle machineries in advanced luminal tumors. Genome-editing analysis confirmed that an ERα hub localized on 20q13 coordinately regulates a subset of these loci localized on 17q23 through long-range chromosome interactions. One of these loci, Tousled Like Kinase 2 (TLK2) known to participate in DNA damage checkpoint control, is an actionable target using phenothiazine antipsychotics (PTZs). The antiproliferative effect of PTZs was prominent in high TLK2-expressing cells, compared to low expressing cells. CONCLUSION This study demonstrates a new approach for identifying tumorigenic drivers from genomic regions highly susceptible to ERα-related chromothripsis. We found a group of luminal breast tumors displaying 17q-related chromothripsis for which antipsychotics can be repurposed as treatment adjuncts.
Collapse
Affiliation(s)
- Chun-Lin Lin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Xi Tan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Meizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Meena Kusi
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chia-Nung Hung
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chih-Wei Chou
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Ya-Ting Hsu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chiou-Miin Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Nameer Kirma
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kate I Lathrop
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Richard Elledge
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Virginia G Kaklamani
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kohzoh Mitsuya
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
37
|
Segura-Bayona S, Stracker TH. The Tousled-like kinases regulate genome and epigenome stability: implications in development and disease. Cell Mol Life Sci 2019; 76:3827-3841. [PMID: 31302748 PMCID: PMC11105529 DOI: 10.1007/s00018-019-03208-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/05/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
The Tousled-like kinases (TLKs) are an evolutionarily conserved family of serine-threonine kinases that have been implicated in DNA replication, DNA repair, transcription, chromatin structure, viral latency, cell cycle checkpoint control and chromosomal stability in various organisms. The functions of the TLKs appear to depend largely on their ability to regulate the H3/H4 histone chaperone ASF1, although numerous TLK substrates have been proposed. Over the last few years, a clearer picture of TLK function has emerged through the identification of new partners, the definition of specific roles in development and the elucidation of their structural and biochemical properties. In addition, the TLKs have been clearly linked to human disease; both TLK1 and TLK2 are frequently amplified in human cancers and TLK2 mutations have been identified in patients with neurodevelopmental disorders characterized by intellectual disability (ID), autism spectrum disorder (ASD) and microcephaly. A better understanding of the substrates, regulation and diverse roles of the TLKs is needed to understand their functions in neurodevelopment and determine if they are viable targets for cancer therapy. In this review, we will summarize current knowledge of TLK biology and its potential implications in development and disease.
Collapse
Affiliation(s)
- Sandra Segura-Bayona
- Department of Oncology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/Baldiri Reixac 10, 08028, Barcelona, Spain.
- The Francis Crick Institute, London, UK.
| | - Travis H Stracker
- Department of Oncology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/Baldiri Reixac 10, 08028, Barcelona, Spain.
| |
Collapse
|
38
|
Cai C, Cooper GF, Lu KN, Ma X, Xu S, Zhao Z, Chen X, Xue Y, Lee AV, Clark N, Chen V, Lu S, Chen L, Yu L, Hochheiser HS, Jiang X, Wang QJ, Lu X. Systematic discovery of the functional impact of somatic genome alterations in individual tumors through tumor-specific causal inference. PLoS Comput Biol 2019; 15:e1007088. [PMID: 31276486 PMCID: PMC6650088 DOI: 10.1371/journal.pcbi.1007088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/23/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is mainly caused by somatic genome alterations (SGAs). Precision oncology involves identifying and targeting tumor-specific aberrations resulting from causative SGAs. We developed a novel tumor-specific computational framework that finds the likely causative SGAs in an individual tumor and estimates their impact on oncogenic processes, which suggests the disease mechanisms that are acting in that tumor. This information can be used to guide precision oncology. We report a tumor-specific causal inference (TCI) framework, which estimates causative SGAs by modeling causal relationships between SGAs and molecular phenotypes (e.g., transcriptomic, proteomic, or metabolomic changes) within an individual tumor. We applied the TCI algorithm to tumors from The Cancer Genome Atlas (TCGA) and estimated for each tumor the SGAs that causally regulate the differentially expressed genes (DEGs) in that tumor. Overall, TCI identified 634 SGAs that are predicted to cause cancer-related DEGs in a significant number of tumors, including most of the previously known drivers and many novel candidate cancer drivers. The inferred causal relationships are statistically robust and biologically sensible, and multiple lines of experimental evidence support the predicted functional impact of both the well-known and the novel candidate drivers that are predicted by TCI. TCI provides a unified framework that integrates multiple types of SGAs and molecular phenotypes to estimate which genome perturbations are causally influencing one or more molecular/cellular phenotypes in an individual tumor. By identifying major candidate drivers and revealing their functional impact in an individual tumor, TCI sheds light on the disease mechanisms of that tumor, which can serve to advance our basic knowledge of cancer biology and to support precision oncology that provides tailored treatment of individual tumors.
Collapse
Affiliation(s)
- Chunhui Cai
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Gregory F. Cooper
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Kevin N. Lu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Xiaojun Ma
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Shuping Xu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Zhenlong Zhao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xueer Chen
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Yifan Xue
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Adrian V. Lee
- Center for Causal Discovery, Pittsburgh, PA, United States of America
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Magee Women’s Cancer Research Center, Pittsburgh, PA, United States of America
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Nathan Clark
- Center for Causal Discovery, Pittsburgh, PA, United States of America
- Department of Computational Biology and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Vicky Chen
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Songjian Lu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Lujia Chen
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Liyue Yu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Harry S. Hochheiser
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Xia Jiang
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Q. Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail: (QJW); (XL)
| | - Xinghua Lu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- * E-mail: (QJW); (XL)
| |
Collapse
|
39
|
Kim HY, Choi HJ, Lee JY, Kong G. Cancer Target Gene Screening: a web application for breast cancer target gene screening using multi-omics data analysis. Brief Bioinform 2019; 21:663-675. [DOI: 10.1093/bib/bbz003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 12/22/2022] Open
Abstract
Abstract
Breast cancer comprises several molecular subtypes with distinct clinical features and treatment responses, and a substantial portion of each subtype remains incurable. A comprehensive analysis of multi-omics data and clinical profiles is required in order to better understand the biological complexity of this cancer type and to identify new prognostic and therapeutic markers. Thus, there arises a need for useful analytical tools to assist in the investigation and clinical management of the disease. We developed Cancer Target Gene Screening (CTGS), a web application that provides rapid and user-friendly analysis of multi-omics data sets from a large number of primary breast tumors. It allows the investigation of genomic and epigenomic aberrations, evaluation of transcriptomic profiles and performance of survival analyses and of bivariate correlations between layers of omics data. Notably, the genome-wide screening function of CTGS prioritizes candidate genes of clinical and biological significance among genes with copy number alteration, DNA methylation and dysregulated expression by the integrative analysis of different types of omics data in customized subgroups of breast cancer patients. These features may help in the identification of druggable cancer driver genes in a specific subtype or the clinical condition of human breast cancer. CTGS is available at http://ctgs.biohackers.net.
Collapse
Affiliation(s)
- Hyung-Yong Kim
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hee-Joo Choi
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| | - Jeong-Yeon Lee
- Department of Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Abstract
We recently demonstrated that the circadian clock component CRY2 is an essential cofactor in the SCFFBXL3-mediated ubiquitination of c-MYC. Because our demonstration that CRY2 recruits phosphorylated substrates to SCFFBXL3 was unexpected, we investigated the scope of this role by searching for additional substrates of FBXL3 that require CRY1 or CRY2 as cofactors. Here, we describe an affinity purification mass spectrometry (APMS) screen through which we identified more than one hundred potential substrates of SCFFBXL3+CRY1/2, including the cell cycle regulated Tousled-like kinase, TLK2. Both CRY1 and CRY2 recruit TLK2 to SCFFBXL3, and TLK2 kinase activity is required for this interaction. Overexpression or genetic deletion of CRY1 and/or CRY2 decreases or enhances TLK2 protein abundance, respectively. These findings reinforce the idea that CRYs function as co-factors for SCFFBXL3, provide a resource of potential substrates, and establish a molecular connection between the circadian and cell cycle oscillators via CRY-modulated turnover of TLK2.
Collapse
|
41
|
Lin M, Yao Z, Zhao N, Zhang C. TLK2 enhances aggressive phenotypes of glioblastoma cells through the activation of SRC signaling pathway. Cancer Biol Ther 2018; 20:101-108. [PMID: 30207834 DOI: 10.1080/15384047.2018.1507257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma are among the most common forms of cancer affecting the central nervous system, and yet there is currently no effective means of treating them. In the current study, we reported that tousled-like kinase 2 (TLK2) is a key factor in glioblastoma that modulates SRC signaling, thereby driving tumor malignancy. TLK2 is commonly upregulated in glioblastoma, and such upregulation was associated with poor patient outcomes. TLK2 overexpression induced cell growth, migration, invasion, and epithelial-mesenchymal transition, and cell cycle arrest, while TLK2 knockdown had the opposite effect. SRC pathway inhibition by Saracatinib resulted in reduced TLK2-mediated glioblastoma migration, invasion, confirming a key role for SRC signaling in regulating the functions of TLK2. Together, our findings demonstrate that glioblastoma TLK2 overexpression acts as a key driver of tumor malignancy via SRC signaling pathway.
Collapse
Affiliation(s)
- Muhui Lin
- a Department of Neurology , First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China
| | - Zhicheng Yao
- b Department of Neurology , The people's Hospital of Liaoning Province , Shenyang , Liaoning , China
| | - Na Zhao
- c Department of Laboratory Medicine , The people's Hospital of Liaoning Province , Shenyang , Liaoning , China
| | - Chaodong Zhang
- a Department of Neurology , First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China
| |
Collapse
|
42
|
Lee SB, Segura-Bayona S, Villamor-Payà M, Saredi G, Todd MAM, Attolini CSO, Chang TY, Stracker TH, Groth A. Tousled-like kinases stabilize replication forks and show synthetic lethality with checkpoint and PARP inhibitors. SCIENCE ADVANCES 2018; 4:eaat4985. [PMID: 30101194 PMCID: PMC6082654 DOI: 10.1126/sciadv.aat4985] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/01/2018] [Indexed: 05/12/2023]
Abstract
DNA sequence and epigenetic information embedded in chromatin must be faithfully duplicated and transmitted to daughter cells during cell division. However, how chromatin assembly and DNA replication are integrated remains unclear. We examined the contribution of the Tousled-like kinases 1 and 2 (TLK1/TLK2) to chromatin assembly and maintenance of replication fork integrity. We show that TLK activity is required for DNA replication and replication-coupled nucleosome assembly and that lack of TLK activity leads to replication fork stalling and the accumulation of single-stranded DNA, a phenotype distinct from ASF1 depletion. Consistent with these results, sustained TLK depletion gives rise to replication-dependent DNA damage and p53-dependent cell cycle arrest in G1. We find that deficient replication-coupled de novo nucleosome assembly renders replication forks unstable and highly dependent on the ATR and CHK1 checkpoint kinases, as well as poly(adenosine 5'-diphosphate-ribose) polymerase (PARP) activity, to avoid collapse. Human cancer data revealed frequent up-regulation of TLK genes and an association with poor patient outcome in multiple types of cancer, and depletion of TLK activity leads to increased replication stress and DNA damage in a panel of cancer cells. Our results reveal a critical role for TLKs in chromatin replication and suppression of replication stress and identify a synergistic lethal relationship with checkpoint signaling and PARP that could be exploited in treatment of a broad range of cancers.
Collapse
Affiliation(s)
- Sung-Bau Lee
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sandra Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Giulia Saredi
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthew A. M. Todd
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ting-Yu Chang
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Travis H. Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Corresponding author. (T.H.S.); (A.G.)
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Corresponding author. (T.H.S.); (A.G.)
| |
Collapse
|
43
|
Wang X, Tan Y, Cao X, Kim JA, Chen T, Hu Y, Wexler M, Wang X. Epigenetic activation of HORMAD1 in basal-like breast cancer: role in Rucaparib sensitivity. Oncotarget 2018; 9:30115-30127. [PMID: 30046392 PMCID: PMC6059019 DOI: 10.18632/oncotarget.25728] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 06/22/2018] [Indexed: 12/27/2022] Open
Abstract
Basal-like breast cancer (BLBC) is an aggressive breast cancer subtype with features similar to the basal cells surrounding the mammary ducts. Treatment of patients with BLBC has been challenging due to the lack of well-defined molecular targets. Due to the clinical and pathological similarities of BLBC with BRCA-deficient breast cancers, the effectiveness of Poly (ADP-ribose) polymerase inhibitors (PARPi) has been tested in early phase clinical trials for patients with advanced BLBC, with limited clinical responses. Recently, it was reported that HORMAD1 overexpression sensitizes BLBC to HR-targeting agents by suppressing homologous recombination. Our independent analysis suggests that HORMAD1 is aberrantly overexpressed in about 80% of BLBC, and its expression in normal tissues is restricted to testis. Our experimental data suggests that HORMAD1 overexpression correlates with focal hypomethylation in BLBC. On the other hand, investigation of the Genomics of Drug Sensitivity in Cancer dataset revealed significantly reduced sensitivity of HORMAD1-overexpressing BLBC cell lines to Rucaparib, a commonly used PARPi. To further assess the role of HORMAD1 in PARPi sensitivity, we generated three HORMAD1-overexpressing xenograft models using the HORMAD1-low BLBC cell lines HCC1954, HCC1806, and BT20; we then subjected these xenograft models to Rucaparib treatment. Ectopic expression of HORMAD1 enhances tumor formations in two of these models, and significantly reduces sensitivity to Rucaparib in the HCC1954 model. Taken together, our data suggest that epigenetic activation of HORMAD1 by hypomethylation in BLBC may endow reduced sensitivity to Rucaparib treatment in some tumor models.
Collapse
Affiliation(s)
- Xian Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Department of Pathology, University of Pittsburgh, PA 15232, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying Tan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xixi Cao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Ah Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tianmeng Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Department of Pathology, University of Pittsburgh, PA 15232, USA
| | - Yiheng Hu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Department of Pathology, University of Pittsburgh, PA 15232, USA
| | - Matthew Wexler
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Department of Pathology, University of Pittsburgh, PA 15232, USA
| | - Xiaosong Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Department of Pathology, University of Pittsburgh, PA 15232, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
44
|
Molecular basis of Tousled-Like Kinase 2 activation. Nat Commun 2018; 9:2535. [PMID: 29955062 PMCID: PMC6023931 DOI: 10.1038/s41467-018-04941-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/06/2018] [Indexed: 12/21/2022] Open
Abstract
Tousled-like kinases (TLKs) are required for genome stability and normal development in numerous organisms and have been implicated in breast cancer and intellectual disability. In humans, the similar TLK1 and TLK2 interact with each other and TLK activity enhances ASF1 histone binding and is inhibited by the DNA damage response, although the molecular mechanisms of TLK regulation remain unclear. Here we describe the crystal structure of the TLK2 kinase domain. We show that the coiled-coil domains mediate dimerization and are essential for activation through ordered autophosphorylation that promotes higher order oligomers that locally increase TLK2 activity. We show that TLK2 mutations involved in intellectual disability impair kinase activity, and the docking of several small-molecule inhibitors of TLK activity suggest that the crystal structure will be useful for guiding the rationale design of new inhibition strategies. Together our results provide insights into the structure and molecular regulation of the TLKs. The Tousled-like kinase (TLKs) family belongs to a distinct branch of Ser/Thr kinases that exhibit the highest levels of activity during DNA replication. Here the authors present the crystal structure of the kinase domain from human TLK2 and propose an activation model for TLK2 based on biochemical and phosphoproteomics experiments.
Collapse
|
45
|
de Freitas RCC, Bortolin RH, Lopes MB, Tamborlin L, Meneguello L, Silbiger VN, Hirata RDC, Hirata MH, Luchessi AD, Luchessi AD. Modulation of miR-26a-5p and miR-15b-5p Exosomal Expression Associated with Clopidogrel-Induced Hepatotoxicity in HepG2 Cells. Front Pharmacol 2017; 8:906. [PMID: 29311920 PMCID: PMC5733064 DOI: 10.3389/fphar.2017.00906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2017] [Indexed: 01/25/2023] Open
Abstract
Clopidogrel is an essential antiplatelet drug used to prevent thrombosis complications associated with atherosclerosis. However, hepatotoxicity is a potential adverse effect related to clopidogrel therapy. Exosome-derived miRNAs may be useful for improved monitoring of drug response and hepatotoxicity risk. In the present study, the expression of several exosomal miRNAs (miR-26a-5p, miR-145-5p, miR-15b-5p, and miR-4701-3p) and cell-derived mRNA targets (PLOD2, SENP5, EIF4G2, HMGA2, STRADB, and TLK1) were evaluated in HepG2 cells treated with clopidogrel (6.25, 12.5, 25, 50, and 100 μM) for 24 and 48 h. Then, clopidogrel cytotoxicity was evaluated by analyzing DNA fragmentation and the cell cycle profile using flow cytometry. Differential expression of exosome-derived miRNAs and cell-derived mRNAs was analyzed by RT-qPCR. Exposure of HepG2 cells to high concentrations of clopidogrel (50 and 100 μM) for 24 h caused significant DNA fragmentation (17.6 and 44.4%, respectively; p < 0.05) and 48 h (26.8 and 48.9%, respectively; p < 0.05), indicating cellular toxicity. Upregulation of miR-26a-5p and downregulation of miR-15b-5p was observed in cells exposed to 100 μM clopidogrel for 24 and 48 h. The miR-26a-5p target mRNAs HMGA2, EIF4G2, STRADB, and SENP5 were downregulated in HepG2 cells following exposure to cytotoxic concentrations of clopidogrel (50 and 100 μM) for 24 h, and HMGA2 levels remained low after 48 h of treatment. TLK1, a target of miR-15b-5p, was downregulated by 50 and 100 μM clopidogrel at 24 h. In conclusion, our results suggest that exposure to high concentrations of clopidogrel modulates the expression of exosomal miR-26a-5p and miR-15b-5p and their target mRNAs in HepG2 cells. Dysregulation of these miRNAs maybe modulate the regulatory pathways involved in clopidogrel-induced liver injury.
Collapse
Affiliation(s)
- Renata C Costa de Freitas
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Raul H Bortolin
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Mariana B Lopes
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Letícia Tamborlin
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Letícia Meneguello
- Post graduation in Biological Science, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Vivian N Silbiger
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rosario D C Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mário H Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Augusto D Luchessi
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas, Limeira, Brazil.,Post graduation in Biological Science, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - André D Luchessi
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
46
|
Differential requirements for Tousled-like kinases 1 and 2 in mammalian development. Cell Death Differ 2017; 24:1872-1885. [PMID: 28708136 DOI: 10.1038/cdd.2017.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022] Open
Abstract
The regulation of chromatin structure is critical for a wide range of essential cellular processes. The Tousled-like kinases, TLK1 and TLK2, regulate ASF1, a histone H3/H4 chaperone, and likely other substrates, and their activity has been implicated in transcription, DNA replication, DNA repair, RNA interference, cell cycle progression, viral latency, chromosome segregation and mitosis. However, little is known about the functions of TLK activity in vivo or the relative functions of the highly similar TLK1 and TLK2 in any cell type. To begin to address this, we have generated Tlk1- and Tlk2-deficient mice. We found that while TLK1 was dispensable for murine viability, TLK2 loss led to late embryonic lethality because of placental failure. TLK2 was required for normal trophoblast differentiation and the phosphorylation of ASF1 was reduced in placentas lacking TLK2. Conditional bypass of the placental phenotype allowed the generation of apparently healthy Tlk2-deficient mice, while only the depletion of both TLK1 and TLK2 led to extensive genomic instability, indicating that both activities contribute to genome maintenance. Our data identifies a specific role for TLK2 in placental function during mammalian development and suggests that TLK1 and TLK2 have largely redundant roles in genome maintenance.
Collapse
|