1
|
Zhang X, Meng P, Wang P, Song Y. Activation of the SIRT1/PGC-1α pathway by HNRNPD promotes vasculogenic mimicry in NSCLC. Tissue Cell 2025; 95:102903. [PMID: 40203682 DOI: 10.1016/j.tice.2025.102903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/14/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Lung cancer is the predominant cause of cancer-related fatalities worldwide, with 80 % classified as non-small cell lung malignancies (NSCLC), characterized by a low 5-year overall survival rate and elevated mortality. Current therapies for NSCLC include targeted drugs, immunotherapy, and combination treatments. The low survival rates highlight the urgent need for novel NSCLC treatments. Vasculogenic mimicry is a tumor blood supply system devoid of endothelium, consisting of invasive and spreading. Heterogeneous Nuclear Ribonucleoprotein D (HNRNPD) expression is upregulated in various cancers. We conducted both in vitro and in vivo experiments by knockdown and overexpression of HNRNPD. Cell proliferation, invasion and angiogenesis were simulated in vitro. A mouse model of subcutaneous transplanted tumor was constructed in vivo, and pathological and immunohistochemical tests were performed.This study examined the involvement of HNRNPD in vasculogenic mimicry in NSCLC and its underlying mechanism. Our research demonstrated that HNRNPD was significantly expressed in NSCLC cells. Inhibition of HNRNPD expression impeded the activation of the Sirtuin 1 / PPARG Coactivator 1 Alpha (SIRT1/PGC-1α) pathway, thereby lowering the proliferation, invasion, and vascular mimicry capability of NSCLC cells. In vivo tests additionally validated that the suppression of HNRNPD could impede tumor growth and angiogenesis in NSCLC murine models. This presents a novel potential target for the targeted therapy of NSCLC. Our research demonstrated that HNRNPD facilitates vasculogenic mimicry development and tumor progression in NSCLC via activating the SIRT1/PGC-1α pathway, offering a novel approach for targeted therapy in NSCLC.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/blood supply
- Sirtuin 1/metabolism
- Sirtuin 1/genetics
- Humans
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/blood supply
- Lung Neoplasms/genetics
- Animals
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Mice
- Cell Proliferation/genetics
- Signal Transduction
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Mice, Nude
Collapse
Affiliation(s)
- Xuefeng Zhang
- Pulmonary and Critical Care Medicine, The Affiliated Yantaishan Hospital of Binzhou Medical College, Yantai, Shandong 264003, China
| | - Peng Meng
- The Fourth Department of Oncology, Yantai Hospital of Traditional Chinese Medicinee, Yantai, Shandong 264000, China
| | - Peng Wang
- Ministry of Scientific and technological innovation, Yantai Hi-tech industrial development zone, Yantai, Shandong 264000, China
| | - Yaobo Song
- Department of Medical Oncology, The Affiliated Yantaishan Hospital of Binzhou Medical College, Yantai, Shandong 264003, China.
| |
Collapse
|
2
|
Simpson KL, Rothwell DG, Blackhall F, Dive C. Challenges of small cell lung cancer heterogeneity and phenotypic plasticity. Nat Rev Cancer 2025; 25:447-462. [PMID: 40211072 DOI: 10.1038/s41568-025-00803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 04/12/2025]
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy with ~7% 5-year overall survival reflecting early metastasis and rapid acquired chemoresistance. Immunotherapy briefly extends overall survival in ~15% cases, yet predictive biomarkers are lacking. Targeted therapies are beginning to show promise, with a recently approved delta-like ligand 3 (DLL3)-targeted therapy impacting the treatment landscape. The increased availability of patient-faithful models, accumulating human tumour biobanks and numerous comprehensive molecular profiling studies have collectively facilitated the mapping and understanding of substantial intertumoural and intratumoural heterogeneity. Beyond the almost ubiquitous loss of wild-type p53 and RB1, SCLC is characterized by heterogeneously mis-regulated expression of MYC family members, yes-associated protein 1 (YAP1), NOTCH pathway signalling, anti-apoptotic BCL2 and epigenetic regulators. Molecular subtypes are based on the neurogenic transcription factors achaete-scute homologue 1 (ASCL1) and neurogenic differentiation factor 1 (NEUROD1), the rarer non-neuroendocrine transcription factor POU class 2 homeobox 3 (POU2F3), and immune- and inflammation-related signatures. Furthermore, SCLC shows phenotypic plasticity, including neuroendocrine-to-non-neuroendocrine transition driven by NOTCH signalling, which is associated with disease progression, chemoresistance and immune modulation and, in mouse models, with metastasis. Although these features pose substantial challenges, understanding the molecular vulnerabilities of transcription factor subtypes, the functional relevance of plasticity and cell cooperation offer opportunities for personalized therapies informed by liquid and tissue biomarkers.
Collapse
Affiliation(s)
- Kathryn L Simpson
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Dominic G Rothwell
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Fiona Blackhall
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Medical Oncology, Christie Hospital National Health Service, Foundation Trust, Manchester, UK
| | - Caroline Dive
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK.
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK.
- CRUK Lung Cancer Centre of Excellence, Manchester, UK.
| |
Collapse
|
3
|
Ghaith AK, Yang X, Khalilullah T, Wang X, Alfonzo Horowitz M, Khalifeh J, Ahmed AK, Azad T, Weinberg J, Al-Mistarehi AH, Foster C, Bhimreddy M, Menta AK, Redmond KJ, Theodore N, Lubelski D. Histology-Specific Treatment Strategies and Survival Prediction in Lung Cancer Patients with Spinal Metastases: A Nationwide Analysis. Cancers (Basel) 2025; 17:1374. [PMID: 40282550 PMCID: PMC12025767 DOI: 10.3390/cancers17081374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Spinal metastases are a common and severe complication of lung cancer, particularly in small cell lung cancer (SCLC), and are associated with poor survival. Despite advancements in treatment, optimal management strategies remain unclear, with significant differences between non-small cell lung cancer (NSCLC) and SCLC. This study evaluates treatment patterns, survival outcomes, and prognostic factors in lung cancer patients with spinal metastases, integrating deep learning survival prediction models. METHODS This retrospective cohort study analyzed the National Cancer Database (NCDB) to identify NSCLC and SCLC patients diagnosed with spinal metastases. Demographics and treatment modalities were analyzed and adjusted for age, sex, and comorbidities. Kaplan-Meier analysis and Cox proportional hazards models assessed overall survival (OS). Five advanced survival prediction models estimated 1-year and 10-year mortality, with feature importance determined via permutation analysis. RESULTS Among 428,919 lung cancer patients, 5.1% developed spinal metastases, with a significantly higher incidence in SCLC (13.6%) than in NSCLC (5.1%). SCLC patients had poorer OS. Radiation therapy alone was the predominant treatment, and stereotactic body radiation therapy (SBRT) predicted better short- and long-term survival compared to other radiation techniques. High-dose radiation (71-150 Gy BED) improved OS in NSCLC, while reirradiation benefited NSCLC but had a limited impact in SCLC. SurvTrace demonstrated the highest predictive accuracy for 1-year and 10-year mortality, identifying age, radiation dose, reirradiation, and race as key prognostic factors. CONCLUSIONS The management of spinal metastases requires a histology-specific approach. Radiation remains the primary treatment, with SBRT predicting better short- and long-term survival. High-dose radiation and reirradiation should be considered for NSCLC, while the benefits are limited in SCLC. These findings support histology-specific treatment strategies to improve survival of patients with metastatic lung cancer to the spine.
Collapse
Affiliation(s)
- Abdul Karim Ghaith
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.K.G.); (X.Y.); (T.K.); (X.W.); (M.A.H.); (J.K.); (A.K.A.); (T.A.); (A.-H.A.-M.); (M.B.); (A.K.M.); (K.J.R.); (N.T.)
| | - Xinlan Yang
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.K.G.); (X.Y.); (T.K.); (X.W.); (M.A.H.); (J.K.); (A.K.A.); (T.A.); (A.-H.A.-M.); (M.B.); (A.K.M.); (K.J.R.); (N.T.)
| | - Taha Khalilullah
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.K.G.); (X.Y.); (T.K.); (X.W.); (M.A.H.); (J.K.); (A.K.A.); (T.A.); (A.-H.A.-M.); (M.B.); (A.K.M.); (K.J.R.); (N.T.)
| | - Xihang Wang
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.K.G.); (X.Y.); (T.K.); (X.W.); (M.A.H.); (J.K.); (A.K.A.); (T.A.); (A.-H.A.-M.); (M.B.); (A.K.M.); (K.J.R.); (N.T.)
| | - Melanie Alfonzo Horowitz
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.K.G.); (X.Y.); (T.K.); (X.W.); (M.A.H.); (J.K.); (A.K.A.); (T.A.); (A.-H.A.-M.); (M.B.); (A.K.M.); (K.J.R.); (N.T.)
| | - Jawad Khalifeh
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.K.G.); (X.Y.); (T.K.); (X.W.); (M.A.H.); (J.K.); (A.K.A.); (T.A.); (A.-H.A.-M.); (M.B.); (A.K.M.); (K.J.R.); (N.T.)
| | - A. Karim Ahmed
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.K.G.); (X.Y.); (T.K.); (X.W.); (M.A.H.); (J.K.); (A.K.A.); (T.A.); (A.-H.A.-M.); (M.B.); (A.K.M.); (K.J.R.); (N.T.)
| | - Tej Azad
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.K.G.); (X.Y.); (T.K.); (X.W.); (M.A.H.); (J.K.); (A.K.A.); (T.A.); (A.-H.A.-M.); (M.B.); (A.K.M.); (K.J.R.); (N.T.)
| | - Joshua Weinberg
- Department of Neurosurgery, School of Medicine, Ohio State University, Columbus, OH 43210, USA;
| | - Abdel-Hameed Al-Mistarehi
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.K.G.); (X.Y.); (T.K.); (X.W.); (M.A.H.); (J.K.); (A.K.A.); (T.A.); (A.-H.A.-M.); (M.B.); (A.K.M.); (K.J.R.); (N.T.)
| | - Chase Foster
- Department of Neurosurgery, School of Medicine, George Washington University, Washington, DC 20052, USA;
| | - Meghana Bhimreddy
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.K.G.); (X.Y.); (T.K.); (X.W.); (M.A.H.); (J.K.); (A.K.A.); (T.A.); (A.-H.A.-M.); (M.B.); (A.K.M.); (K.J.R.); (N.T.)
| | - Arjun K. Menta
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.K.G.); (X.Y.); (T.K.); (X.W.); (M.A.H.); (J.K.); (A.K.A.); (T.A.); (A.-H.A.-M.); (M.B.); (A.K.M.); (K.J.R.); (N.T.)
| | - Kristin J. Redmond
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.K.G.); (X.Y.); (T.K.); (X.W.); (M.A.H.); (J.K.); (A.K.A.); (T.A.); (A.-H.A.-M.); (M.B.); (A.K.M.); (K.J.R.); (N.T.)
| | - Nicholas Theodore
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.K.G.); (X.Y.); (T.K.); (X.W.); (M.A.H.); (J.K.); (A.K.A.); (T.A.); (A.-H.A.-M.); (M.B.); (A.K.M.); (K.J.R.); (N.T.)
| | - Daniel Lubelski
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.K.G.); (X.Y.); (T.K.); (X.W.); (M.A.H.); (J.K.); (A.K.A.); (T.A.); (A.-H.A.-M.); (M.B.); (A.K.M.); (K.J.R.); (N.T.)
| |
Collapse
|
4
|
Zhai X, Zhang Z, Chen Y, Wu Y, Zhen C, Liu Y, Lin Y, Chen C. Current and future therapies for small cell lung carcinoma. J Hematol Oncol 2025; 18:37. [PMID: 40170056 PMCID: PMC11959764 DOI: 10.1186/s13045-025-01690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/14/2025] [Indexed: 04/03/2025] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy characterized by rapid proliferation and high metastatic potential. It is characterized by universal inactivation of and RB1, overexpression of the MYC family and dysregulation of multiple oncogenic signaling pathways. Among different patients, SCLCs are similar at the genetic level but exhibit significant heterogeneity at the molecular level. The classification of SCLC has evolved from a simple neuroendocrine (NE)/non-neuroendocrine (non-NE) classification system to a transcription factor-based molecular subtype system; lineage plasticity adds further complexity and poses challenges for therapeutic development. While SCLC is initially sensitive to platinum-based chemotherapy, resistance develops rapidly, leading to a dismal prognosis. Various antibodies, including PD-1/PD-L1 inhibitors and antibody‒drug conjugates, have been introduced into clinical practice or are being evaluated in clinical trials. However, their therapeutic benefits for SCLC patients remain limited. This review summarizes SCLC carcinogenic mechanisms, tumor heterogeneity, and the immune microenvironment of SCLC, with a focus on recent advances in metastasis and resistance mechanisms. Additionally, the corresponding clinical progress in tackling these challenges is discussed.
Collapse
Affiliation(s)
- Xiaoqian Zhai
- Department of Medical Oncology, State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 1, Keyuan 4th Road, Gaopeng Avenue, Chengdu, 610041, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhengkun Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxin Chen
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanmou Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Cheng Zhen
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Liu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, Keyuan 4th Road, Gaopeng Avenue, Chengdu, 610041, Sichuan, China.
| | - Yiyun Lin
- Department of Medicine, Weill Cornell Medicine, East 69th Street, New York, NY, 10021, USA.
| | - Chong Chen
- Department of Medical Oncology, State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 1, Keyuan 4th Road, Gaopeng Avenue, Chengdu, 610041, Sichuan, China.
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Delgado-Bellido D, Chacon-Barrado A, Olmedo-Pelayo J, Jordán Perez C, Gilabert-Prieto P, Díaz-Martin J, Garcia-Diaz A, Oliver FJ, de Álava E. Chromosomal 3p loss and 8q gain drive vasculogenic mimicry via HIF-2α and VE-cadherin activation in uveal melanoma. Cell Death Differ 2025:10.1038/s41418-025-01469-9. [PMID: 40000790 DOI: 10.1038/s41418-025-01469-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults and is where Vasculogenic Mimicry (VM) was first described. VM enables aggressive cancer cells to independently form blood networks, complicating treatment for patients exhibiting VM. Previous studies linked VE-Cadherin phosphorylation at Y658 to gene expression via Focal Adhesion Kinase (FAK), enhancing the Kaiso/β-catenin/TCF-4 complex associated with VE-Cadherin and thereby promoting VM. Recently, an allosteric HIF-2α inhibitor (Belzutifan) was FDA-approved for VHL-associated ccRCCs. In this research, we elucidate the primary causes of VM formation in UM patients with chromosome 3p loss and chromosome 8q gain, identifying VHL, BAP1, and FAK as important factors driving VM and worsening prognosis. These factors promote abnormal activation of HIF-2α and VE-Cadherin under basal hypoxic conditions, leading to VM formation. Cytoscan 750k experiments on the MUM 2B cell line reveal a loss of chromosome 3p, where the VHL, BAP1, and CTNNB1 genes are located, and a gain of chromosome 8q (FAK), whereas the MUM 2C cell line shows a gain of chromosome 3p. This provides an outstanding cross-sectional model from patient samples to established cell lines for VM studies. LC-MS experiments demonstrate that VE-Cad/ENG expression is related to FAK activity in UM cell lines. Finally, using a combination of Belzutifan (HIF-2α inhibitor) and FAK inhibitor (FAKi), we observed a significant reduction in UM xenografts. Our results lead us to propose combining Belzutifan and FAKi as a personalized treatment strategy for UM patients. This approach inhibits VM formation and counters the initial hypoxic conditions resulting from chromosome 3p loss and chromosome 8q gain in UM patients, instilling confidence in the potential of this treatment strategy.
Collapse
Affiliation(s)
- Daniel Delgado-Bellido
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain.
- Instituto de Salud Carlos III, CIBERONC, Madrid, Spain.
- Institute of Biomedicine of Sevilla, IBiS/ Virgen del Rocio University Hospital /CSIC/University of Sevilla/CIBERONC, 41013, Seville, Spain.
| | - Antonio Chacon-Barrado
- Institute of Biomedicine of Sevilla, IBiS/ Virgen del Rocio University Hospital /CSIC/University of Sevilla/CIBERONC, 41013, Seville, Spain
| | - Joaquin Olmedo-Pelayo
- Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
- Institute of Biomedicine of Sevilla, IBiS/ Virgen del Rocio University Hospital /CSIC/University of Sevilla/CIBERONC, 41013, Seville, Spain
| | - Carmen Jordán Perez
- Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
- Institute of Biomedicine of Sevilla, IBiS/ Virgen del Rocio University Hospital /CSIC/University of Sevilla/CIBERONC, 41013, Seville, Spain
| | - Paula Gilabert-Prieto
- Institute of Biomedicine of Sevilla, IBiS/ Virgen del Rocio University Hospital /CSIC/University of Sevilla/CIBERONC, 41013, Seville, Spain
| | - Juan Díaz-Martin
- Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
- Institute of Biomedicine of Sevilla, IBiS/ Virgen del Rocio University Hospital /CSIC/University of Sevilla/CIBERONC, 41013, Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009, Seville, Spain
| | - Angel Garcia-Diaz
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain
| | - F J Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain
| | - Enrique de Álava
- Instituto de Salud Carlos III, CIBERONC, Madrid, Spain.
- Institute of Biomedicine of Sevilla, IBiS/ Virgen del Rocio University Hospital /CSIC/University of Sevilla/CIBERONC, 41013, Seville, Spain.
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009, Seville, Spain.
| |
Collapse
|
6
|
Meerovich G, Kogan E, Romanishkin I, Zharkov N, Avraamova S, Shchelokova E, Akhlyustina E, Strakhovskaya M, Meerovich I, Demura S, Tiganova I, Romanova Y, Chen ZL, Reshetov I. Potential of photodynamic therapy using polycationic photosensitizers in the treatment of lung cancer patients with SARS-CoV-2 infection and bacterial complications: Our recent experience. Photodiagnosis Photodyn Ther 2025; 51:104447. [PMID: 39681293 DOI: 10.1016/j.pdpdt.2024.104447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
The problem of treating cancer patients with lung cancer has become more difficult due to the SARS-CoV-2 viral infection and concomitant bacterial lesions. The analysis shows that the photodynamic effect of long-wavelength polycationic photosensitizers suppresses the tumor process (including the destruction of cancer stem cells), SARS-CoV-2 coronavirus infection, Gram-positive and Gram-negative bacteria, including those that can cause pneumonia. Therefore, the photodynamic approach using such photosensitizers is promising for the development of an effective treatment method for patients with lung cancer, including those with SARS-CoV-2 infection and bacterial complications.
Collapse
Affiliation(s)
- Gennady Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia
| | - Evgeniya Kogan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Igor Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia.
| | - Nikolay Zharkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Sofiya Avraamova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Elena Shchelokova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Ekaterina Akhlyustina
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia
| | | | - Irina Meerovich
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow 119071, Russia
| | - Sofya Demura
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia
| | - Irina Tiganova
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yulia Romanova
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - Zhi-Long Chen
- Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Igor Reshetov
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia
| |
Collapse
|
7
|
Fan L, Lin Y, Fu Y, Wang J. Small cell lung cancer with liver metastases: from underlying mechanisms to treatment strategies. Cancer Metastasis Rev 2024; 44:5. [PMID: 39585433 DOI: 10.1007/s10555-024-10220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
Small cell lung cancer (SCLC) represents an aggressive neuroendocrine (NE) tumor within the pulmonary region, characterized by very poor prognoses. Druggable targets for SCLC remain limited, thereby constraining treatment options available to patients. Immuno-chemotherapy has emerged as a pivotal therapeutic strategy for extensive-stage SCLC (ES-SCLC), yet it fails to confer significant efficacy in cases involving liver metastases (LMs) originating from SCLC. Therefore, our attention is directed towards the challenging subset of SCLC patients with LMs. Disease progression of LM-SCLC patients is affected by various factors in the tumor microenvironment (TME), including immune cells, blood vessels, inflammatory mediators, metabolites, and NE substances. Beyond standard immuno-chemotherapy, ongoing efforts to manage LMs in SCLC encompass anti-angiogenic therapy, radiotherapy, microwave ablation (MWA) / radiofrequency ablation (RFA), trans-arterial chemoembolization (TACE), and systemic therapies in conjunction with local interventions. Prospective experimental and clinical investigations into SCLC should prioritize precise and individualized approaches to enhance the prognosis across distinct patient cohorts.
Collapse
Affiliation(s)
- Linjie Fan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiwen Lin
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yunjie Fu
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Yu T, Lok BH. Strategies to Target Chemoradiotherapy Resistance in Small Cell Lung Cancer. Cancers (Basel) 2024; 16:3438. [PMID: 39456533 PMCID: PMC11506711 DOI: 10.3390/cancers16203438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Small cell lung cancer (SCLC) is a lethal form of lung cancer with few treatment options and a high rate of relapse. While SCLC is initially sensitive to first-line DNA-damaging chemo- and radiotherapy, relapse disease is almost universally therapy-resistant. As a result, there has been interest in understanding the mechanisms of therapeutic resistance in this disease. Conclusions: Progress has been made in elucidating these mechanisms, particularly as they relate to the DNA damage response and SCLC differentiation and transformation, leading to many clinical trials investigating new therapies and combinations. Yet there remain many gaps in our understanding, such as the effect of epigenetics or the tumor microenvironment on treatment response, and no single mechanism has been found to be ubiquitous, suggesting a significant heterogeneity in the mechanisms of acquired resistance. Nevertheless, the advancement of techniques in the laboratory and the clinic will improve our ability to study this disease, especially in patient populations, and identify methods to surmount therapeutic resistance.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Benjamin H. Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2M9, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 6 Queen’s Park Crescent, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
9
|
He C. Activating Invasion and Metastasis in Small Cell Lung Cancer: Role of the Tumour Immune Microenvironment and Mechanisms of Vasculogenesis, Epithelial-Mesenchymal Transition, Cell Migration, and Organ Tropism. Cancer Rep (Hoboken) 2024; 7:e70018. [PMID: 39376011 PMCID: PMC11458887 DOI: 10.1002/cnr2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) harbours the most aggressive phenotype of all lung cancers to correlate with its bleak prognosis. The aggression of SCLC is partially attributable to its strong metastatic tendencies. The biological processes facilitating the metastasis in SCLC are still poorly understood and garnering a deeper understanding of these processes may enable the exploration of additional targets against this cancer hallmark in the treatment of SCLC. RECENT FINDINGS This narrative review will discuss the proposed molecular mechanisms by which the cancer hallmark of activating invasion and metastasis is featured in SCLC through important steps of the metastatic pathway, and address the various molecular targets that may be considered for therapeutic intervention. The tumour immune microenvironment plays an important role in facilitating immunotherapy resistance, whilst the poor infiltration of natural killer cells in particular fosters a pro-metastatic environment in SCLC. SCLC vasculogenesis is achieved through VEGF expression and vascular mimicry, and epithelial-mesenchymal transition is facilitated by the expression of the transcriptional repressors of E-cadherin, the suppression of the Notch signalling pathway and tumour heterogeneity. Nuclear factor I/B, selectin and B1 integrin hold important roles in SCLC migration, whilst various molecular markers are expressed by SCLC to assist organ-specific homing during metastasis. The review will also discuss a recent article observing miR-1 mRNA upregulation as a potential therapeutic option in targeting the metastatic activity of SCLC. CONCLUSION Treatment of SCLC remains a clinical challenge due to its recalcitrant and aggressive nature. Amongst the many hallmarks used by SCLC to enable its aggressive behaviour, that of its ability to invade surrounding tissue and metastasise is particularly notable and understanding the molecular mechanisms in SCLC metastasis can identify therapeutic targets to attenuate SCLC aggression and improve mortality.
Collapse
Affiliation(s)
- Carl He
- Department of Oncology, Eastern HealthUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
10
|
Wen ZH, Chang L, Yang SN, Yu CL, Tung FY, Kuo HM, Lu IC, Wu CY, Shih PC, Chen WF, Chen NF. The anti-angiogenic and anti-vasculogenic mimicry effects of GN25 in endothelial and glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119799. [PMID: 39043304 DOI: 10.1016/j.bbamcr.2024.119799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND AND PURPOSE Scientists have been exploring anti-angiogenic strategies to inhibit angiogenesis and prevent tumor growth. Vasculogenic mimicry (VM) in glioblastoma multiforme (GBM) poses a challenge, complicating anti-angiogenesis therapy. A novel drug, GN25 (3-[{1,4-dihydro-5,8-dimethoxy-1,4-dioxo-2-naphthalenyl}thio]-propanoic acid), can inhibit tumor formation. This study aims to investigate the microenvironmental effects and molecular mechanisms of GN25 in anti-angiogenesis and anti-VM. EXPERIMENTAL APPROACH MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the cell viability of different concentrations of GN25 in human umbilical vein endothelial cells (HUVEC) and Uppsala 87 malignant glioma (U87MG) cells. Functional assays were used to investigate the effects of GN25 on angiogenesis-related processes, whereas gelatin zymography, enzyme-linked immunosorbent assays, and Western blotting were utilized to assess the influence on matrix metalloproteinase (MMP)-2 and vascular endothelial growth factor (VEGF) secretion and related signaling pathways. KEY RESULTS GN25 suppressed migration, wound healing, and tube formation in HUVECs and disrupted angiogenesis in a rat aorta ring and zebrafish embryo model. GN25 dose-dependently reduced phosphatidylinositol 3-kinase/AKT and inhibited MMP-2/VEGF secretion in HUVECs. In U87MG cells, GN25 inhibited migration, wound healing, and VM, accompanied by a decrease in MMP-2 and VEGF secretion. The results indicate that GN25 effectively inhibits angiogenesis and VM formation in HUVECs and U87MG cells without affecting preexisting vascular structures. CONCLUSION AND IMPLICATIONS This study elaborated GN25's potential as an anti-angiogenic agent by elucidating its inhibitory effects on classical angiogenesis. VM provides valuable insights for developing novel therapeutic strategies against tumor progression and angiogenesis-related diseases. These results indicate the potential of GN25 as a promising candidate for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Long Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - San-Nan Yang
- Department of Pediatrics, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chen-Ling Yu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Fang-Yu Tung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiao-Mei Kuo
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833301, Taiwan
| | - I-Chen Lu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Chang Shih
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833301, Taiwan.
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan.
| |
Collapse
|
11
|
Zhang TQ, Lv QY, Jin WL. The cellular-centered view of hypoxia tumor microenvironment: Molecular mechanisms and therapeutic interventions. Biochim Biophys Acta Rev Cancer 2024; 1879:189137. [PMID: 38880161 DOI: 10.1016/j.bbcan.2024.189137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cancer is a profoundly dynamic, heterogeneous and aggressive systemic ailment, with a coordinated evolution of various types of tumor niches. Hypoxia plays an indispensable role in the tumor micro-ecosystem, drastically enhancing the plasticity of cancer cells, fibroblasts and immune cells and orchestrating intercellular communication. Hypoxia-induced signals, particularly hypoxia-inducible factor-1α (HIF-1α), drive the reprogramming of genetic, transcriptional, and proteomic profiles. This leads to a spectrum of interconnected processes, including augmented survival of cancer cells, evasion of immune surveillance, metabolic reprogramming, remodeling of the extracellular matrix, and the development of resistance to conventional therapeutic modalities like radiotherapy and chemotherapy. Here, we summarize the latest research on the multifaceted effects of hypoxia, where a multitude of cellular and non-cellular elements crosstalk with each other and co-evolve in a synergistic manner. Additionally, we investigate therapeutic approaches targeting hypoxic niche, encompassing hypoxia-activated prodrugs, HIF inhibitors, nanomedicines, and combination therapies. Finally, we discuss some of the issues to be addressed and highlight the potential of emerging technologies in the treatment of cancer.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian-Yu Lv
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
12
|
Ou J, Yin H, Shu F, Wu Z, Liu S, Ye J, Zhang S. Vasculogenic mimicry-related gene prognostic index for predicting prognosis, immune microenvironment in clear cell renal cell carcinoma. Heliyon 2024; 10:e36235. [PMID: 39247316 PMCID: PMC11380016 DOI: 10.1016/j.heliyon.2024.e36235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a highly aggressive cancer associated with higher death rates. However, traditional anti-angiogenic therapies have limited effectiveness due to drug resistance. Vascular mimicry (VM) provides a different way for tumors to develop blood vessels without relying on endothelial cells or angiogenesis. However, the intricate mechanisms and interplay between it and the immune microenvironment in ccRCC remain unclear. Methods A PubMed and GeneCards literature review was conducted to identify VM-related genes (VMRGs). VMRGs expression profiles were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), developing a novel VM risk score model and nomogram for ccRCC. The EBI ArrayExpress database (the validation set) was obtained to validate the prognostic model. The relationship between VMRGs risk score clinical characteristics and immune infiltration was investigated. Finally, the expression of six model VMRGs was validated using single-cell analysis, GEPIA, Human Protein Atlas (HPA), and quantitative Real-time PCR (qRT-PCR). Results Cox regression analysis and nomogram identified L1CAM, TEK, CLDN4, EFNA1, SERPINF1, and MALAT1 as independent prognostic risk factors, which could be used to stratify the ccRCC population into two risk groups with distinct immune profiles and responsiveness to immunotherapy. The results of single-cell analysis, GEPIA, HPA, and qRT-PCR validated the model genes' expression. Conclusions Our novel findings constructed a convenient and reliable 6 gene signatures as potential immunologic and prognostic biomarkers of VM in ccRCC.
Collapse
Affiliation(s)
- Junyong Ou
- Department of Urology, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, 100191, China
| | - Haoming Yin
- Department of Urology, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, 100191, China
| | - Fan Shu
- Department of Urology, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, 100191, China
| | - Zonglong Wu
- Department of Urology, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, 100191, China
| | - Shuai Liu
- Department of Urology, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, 100191, China
| | - Jianfei Ye
- Department of Urology, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, 100191, China
| | - Shudong Zhang
- Department of Urology, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, 100191, China
| |
Collapse
|
13
|
Chen J, Dai SY, Wu S, Wu MK, Yu KK, Liu JC, Chang JY, Liu YQ. COE targets EphA2 to inhibit vasculogenic mimicry formation induced by hypoxia in hepatocellular carcinoma. Front Pharmacol 2024; 15:1421470. [PMID: 39050762 PMCID: PMC11266089 DOI: 10.3389/fphar.2024.1421470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Background Vasculogenic Mimicry (VM) can reduce the efficacy of anti-angiogenesis and promote distant metastasis in hepatocellular carcinoma (HCC). Our previous studies have found that Celastrus orbiculatus extract (COE) can inhibit the VM formation in HCC by reducing EphA2 expression. However the underlying mechanism related to EphA2 in VM formation is unclear. Purpose This study aimed to confirm that EphA2 is one of the potential targets of COE, and to explore the effect of EphA2 in VM formation in hypoxia context in HCC. Methods TCM Systems Pharmacology database and proteomics analysis were used to explore the key targets of COE in HCC treatment. CD31-PAS double staining and VE-CAD staining were used to indicate vasculogenic mimicry. The localization of EphA2 and VE-CAD was examined through fluorescent microscopy. CCK8 assay, cell invasion assay, and tube formation assay were used to indicate the formation of VM under hypoxic conditions. The regulatory relationship of EphA2 upstream and downstream molecules were evaluated through COIP and Western Blot. The nude mouse xenograft tumor models were used to observe the VM formation after knocking down or overexpressing EphA2. Results EphA2 is identified to the target of COE, and the driving gene of HCC. In HCC surgical specimens, EphA2 expression is closely associated with the VM formation of HCC. COE-regulated EphA2 is involved in hypoxia-induced VM formation in HCC cells in vitro. EphA2 is regulated by HIF directly or indirectly by C-MYC. Overexpression of EphA2 can promote the VM formation of HCC in nude mice, while knocking down EphA2 can inhibit the VM formation. Conclusion EphA2, as a target of COE, plays a crucial regulatory role in the formation of vasculogenic mimicry in HCC, involving upstream HIF/MYC transcriptional promotion and downstream PI3K/FAK/VE-CAD expression regulation.
Collapse
Affiliation(s)
- Jue Chen
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Integrated Traditional Chinese and Western Medicine, Medical College of Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Geriatric Diseases, Yangzhou, China
| | - Shu-Ying Dai
- Department of Integrated Traditional Chinese and Western Medicine, Medical College of Yangzhou University, Yangzhou, China
| | - Su Wu
- Department of Integrated Traditional Chinese and Western Medicine, Medical College of Yangzhou University, Yangzhou, China
| | - Meng-Ke Wu
- Department of Integrated Traditional Chinese and Western Medicine, Medical College of Yangzhou University, Yangzhou, China
| | - Ke-Ke Yu
- Department of Integrated Traditional Chinese and Western Medicine, Medical College of Yangzhou University, Yangzhou, China
| | - Jun-Chi Liu
- Department of Integrated Traditional Chinese and Western Medicine, Medical College of Yangzhou University, Yangzhou, China
| | - Jia-Yu Chang
- Department of Integrated Traditional Chinese and Western Medicine, Medical College of Yangzhou University, Yangzhou, China
| | - Yan-Qing Liu
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Integrated Traditional Chinese and Western Medicine, Medical College of Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Geriatric Diseases, Yangzhou, China
| |
Collapse
|
14
|
Shuai Q, Xu X, Liang Y, Halbiyat Z, Lu X, Hu Z, Peng Z, An J, Feng Z, Huang T, Zhao H, Liu Z, Xu J, Xie J. Engineered in vivo and in vitro tumor model recapitulates vasculogenic mimicry signatures in melanoma. Bioeng Transl Med 2024; 9:e10648. [PMID: 39036079 PMCID: PMC11256191 DOI: 10.1002/btm2.10648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 07/23/2024] Open
Abstract
Vasculogenic mimicry (VM) describes a process by which tumor cells formed a novel microcirculation pattern in an endothelial cell-free manner. Clinically, VM is associated with aggressive phenotype and poor patient survival. However, the current models for investigating VM include 2D monolayer cultures, Matrigel-based cultures, and animal models, each of which has limitations. Matrigel-based models often exhibit batch-to-batch variations, while in vivo tumor models currently produce insufficient amounts of VM. There is currently no suitable tumor model to discover new therapeutic targets against VM. Herein, we establish an extracellular matrix (ECM)-based engineered tumor model in vivo and in vitro. In this study, we demonstrate that matrix proteins enhanced the VM formation in the engineered xenograft model. Furthermore, we also investigated the role of collagen/fibronectin (FN) in melanoma progression and VM formation. Compared with cells cultured on TCPS plates, the B16F10 cells cultured on collagen/FN coated plates showed increased proliferation and stemness, and significantly enhanced invasion and formation of VM networks. Molecular mechanism analysis showed that Integrin/VE-cadherin/EphA2/PI3K/MMP-2 signaling pathways are responsible for VM formation. Our results indicate that collagen/FN matrix plays an important role in VM formation in melanoma, suggesting that ECM protein is a potential therapeutic target for anti-VM therapy for melanoma.
Collapse
Affiliation(s)
- Qizhi Shuai
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanChina
| | - Xinrui Xu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanChina
- Laboratory of Ethnopharmacology, Tissue‐Orientated Property of Chinese Medicine Key Laboratory of Sichuan ProvinceWest China School of Medicine, West China Hospital, Sichuan UniversityChengduChina
| | - Yuxiang Liang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanChina
- Experimental Animal Center of Shanxi Medical UniversityShanxi Key Laboratory of Human Disease and Animal ModelsTaiyuanChina
| | - Zulala Halbiyat
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanChina
| | - Xin Lu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanChina
| | - Zixuan Hu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanChina
| | - Zhiwei Peng
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanChina
| | - Jie An
- Department of Nuclear MedicineThe First Hospital of Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical UniversityTaiyuanChina
| | - Zhiwei Feng
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanChina
| | - Tingjuan Huang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanChina
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanChina
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanChina
| | - Jun Xu
- Department of Hepatopancreatobiliary SurgeryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
15
|
Lund LM, Marchi AN, Alderfer L, Hall E, Hammer J, Trull KJ, Hanjaya-Putra D, White KA. Intracellular pH dynamics respond to microenvironment stiffening and mediate vasculogenic mimicry through β-catenin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597454. [PMID: 38895391 PMCID: PMC11185592 DOI: 10.1101/2024.06.04.597454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Dysregulated intracellular pH (pHi) dynamics and an altered tumor microenvironment have emerged as drivers of cancer cell phenotypes. However, the molecular integration between the physical properties of the microenvironment and dynamic intracellular signaling responses remains unclear. Here, we use two metastatic cell models, one breast and one lung, to assess pHi response to varying extracellular matrix (ECM) stiffness. To experimentally model ECM stiffening, we use two tunable-stiffness hydrogel systems: Matrigel and hyaluronic acid (HA) gels, which mimic the increased protein secretion and crosslinking associated with ECM stiffening. We find that single-cell pHi decreases with increased ECM stiffness in both hydrogel systems and both metastatic cell types. We also observed that stiff ECM promotes vasculogenic mimicry (VM), a phenotype associated with metastasis and resistance. Importantly, we show that decreased pHi is both a necessary and sufficient mediator of VM, as raising pHi on stiff ECM reduces VM phenotypes and lowering pHi on soft ECM drives VM. We characterize β-catenin as a pH-dependent molecular mediator of pH-dependent VM, where stiffness-driven changes in β-catenin abundance can be overridden by increased pHi. We uncover a dynamic relationship between matrix stiffness and pHi, thus suggesting pHi dynamics can override mechanosensitive cell responses to the extracellular microenvironment.
Collapse
Affiliation(s)
- Leah M Lund
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
| | - Angelina N Marchi
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
| | - Laura Alderfer
- Bioengineering Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, 153 Multidisciplinary Engineering Research Building, Notre Dame, IN 46556 USA
- Current: Vivodyne, Suite 775 601 Walnut Street, Philadelphia PA 19106 USA
| | - Eva Hall
- Bioengineering Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, 153 Multidisciplinary Engineering Research Building, Notre Dame, IN 46556 USA
| | - Jacob Hammer
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
| | - Keelan J Trull
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
| | - Donny Hanjaya-Putra
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
- Bioengineering Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, 153 Multidisciplinary Engineering Research Building, Notre Dame, IN 46556 USA
- Chemical and Biomolecular Engineering, University of Notre Dame, 250 Nieuwland Hall, Notre Dame, IN 46556 USA
| | - Katharine A White
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617 USA
| |
Collapse
|
16
|
Metsäniitty M, Hasnat S, Öhman C, Salo T, Eklund KK, Oscarsson J, Salem A. Extracellular vesicles from Aggregatibacter actinomycetemcomitans exhibit potential antitumorigenic effects in oral cancer: a comparative in vitro study. Arch Microbiol 2024; 206:244. [PMID: 38702412 PMCID: PMC11068833 DOI: 10.1007/s00203-024-03976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Aggregatibacter actinomycetemcomitans is an opportunistic Gram-negative periodontopathogen strongly associated with periodontitis and infective endocarditis. Recent evidence suggests that periodontopathogens can influence the initiation and progression of oral squamous cell carcinoma (OSCC). Herein we aimed to investigate the effect of A. actinomycetemcomitans-derived extracellular vesicles (EVs) on OSCC cell behavior compared with EVs from periodontopathogens known to associate with carcinogenesis. EVs were isolated from: A. actinomycetemcomitans and its mutant strains lacking the cytolethal distending toxin (CDT) or lipopolysaccharide (LPS) O-antigen; Porphyromonas gingivalis; Fusobacterium nucleatum; and Parvimonas micra. The effect of EVs on primary and metastatic OSCC cells was assessed using cell proliferation, apoptosis, migration, invasion, and tubulogenesis assays. A. actinomycetemcomitans-derived EVs reduced the metastatic cancer cell proliferation, invasion, tubulogenesis, and increased apoptosis, mostly in CDT- and LPS O-antigen-dependent manner. EVs from F. nucleatum impaired the metastatic cancer cell proliferation and induced the apoptosis rates in all OSCC cell lines. EVs enhanced cancer cell migration regardless of bacterial species. In sum, this is the first study demonstrating the influence of A. actinomycetemcomitans-derived EVs on oral cancer in comparison with other periodontopathogens. Our findings revealed a potential antitumorigenic effect of these EVs on metastatic OSCC cells, which warrants further in vivo investigations.
Collapse
Affiliation(s)
- Marjut Metsäniitty
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Shrabon Hasnat
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Carina Öhman
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, 90187, Sweden
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Kari K Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, 00014, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, 90187, Sweden
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
| |
Collapse
|
17
|
Provance OK, Oria VO, Tran TT, Caulfield JI, Zito CR, Aguirre-Ducler A, Schalper KA, Kluger HM, Jilaveanu LB. Vascular mimicry as a facilitator of melanoma brain metastasis. Cell Mol Life Sci 2024; 81:188. [PMID: 38635031 PMCID: PMC11026261 DOI: 10.1007/s00018-024-05217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Melanoma has the highest propensity among solid tumors to metastasize to the brain. Melanoma brain metastases (MBM) are a leading cause of death in melanoma and affect 40-60% of patients with late-stage disease. Therefore, uncovering the molecular mechanisms behind MBM is necessary to enhance therapeutic interventions. Vascular mimicry (VM) is a form of neovascularization linked to invasion, increased risk of metastasis, and poor prognosis in many tumor types, but its significance in MBM remains poorly understood. We found that VM density is elevated in MBM compared to paired extracranial specimens and is associated with tumor volume and CNS edema. In addition, our studies indicate a relevant role of YAP and TAZ, two transcriptional co-factors scarcely studied in melanoma, in tumor cell-vasculogenesis and in brain metastasis. We recently demonstrated activation of the Hippo tumor suppressor pathway and increased degradation of its downstream targets YAP and TAZ in a metastasis impaired cell line model. In the current study we establish the utility of anti-YAP/TAZ therapy in mouse models of metastatic melanoma whereby treatment effectively inhibits VM and prolongs survival of mice with MBM. The data presented herein suggest that VM may be an important and targetable mechanism in melanoma and that VM inhibition might be useful for treating MBM, an area of high unmet clinical need, thus having important implications for future treatment regimens for these patients.
Collapse
Affiliation(s)
- Olivia K Provance
- Department of Medicine, Section of Medical Oncology, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA
| | - Victor O Oria
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Thuy T Tran
- Department of Medicine, Section of Medical Oncology, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA
| | - Jasmine I Caulfield
- Department of Medicine, Section of Medical Oncology, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA
| | - Christopher R Zito
- Department of Medicine, Section of Medical Oncology, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA
- Department of Biology, School of Arts, Sciences, Business, and Education, University of Saint Joseph, West Hartford, CT, USA
| | - Adam Aguirre-Ducler
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Harriet M Kluger
- Department of Medicine, Section of Medical Oncology, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA
| | - Lucia B Jilaveanu
- Department of Medicine, Section of Medical Oncology, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA.
| |
Collapse
|
18
|
Yu X, Du Z, Zhu P, Liao B. Diagnostic, prognostic, and therapeutic potential of exosomal microRNAs in renal cancer. Pharmacol Rep 2024; 76:273-286. [PMID: 38388810 DOI: 10.1007/s43440-024-00568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Renal cell carcinoma (RCC) arises from the tubular epithelial cells of the nephron. It has the highest mortality rate among urological cancers. There are no effective therapeutic approaches and no non-invasive biomarkers for diagnosis and follow-up. Thus, suitable novel biomarkers and therapeutic targets are essential for improving RCC diagnosis/prognosis and treatment. Circulating exosomes such as exosomal microRNAs (Exo-miRs) provide non-invasive prognostic/diagnostic biomarkers and valuable therapeutic targets, as they can be easily isolated and quantified and show high sensitivity and specificity. Exosomes secreted by an RCC can exhibit alterations in the miRs' profile that may reflect the cellular origin and (patho)physiological state, as a ''signature'' or ''fingerprint'' of the donor cell. It has been shown that the transportation of renal-specific miRs in exosomes can be rapidly detected and measured, holding great potential as biomarkers in RCC. The present review highlights the studies reporting tumor microenvironment-derived Exo-miRs with therapeutic potential as well as circulating Exo-miRs as potential diagnostic/prognostic biomarkers in patients with RCC.
Collapse
Affiliation(s)
- Xiaodong Yu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Zhongbo Du
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Pingyu Zhu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Bo Liao
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
19
|
Liu Y, Li G, Ning J, Zhao Y. Unveiling the experimental proof of the anticancer potential of ginsenoside Rg3 (Review). Oncol Lett 2024; 27:182. [PMID: 38476209 PMCID: PMC10928969 DOI: 10.3892/ol.2024.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Ginsenoside Rg3 (GS-Rg3), a sterol molecule isolated from ginseng, has demonstrated various immunological properties, including inhibition of cancer cell proliferation and metastasis, reversal of drug resistance and enhancement of chemotherapy sensitivity. The recent surge in attention towards GS-Rg3 can be attributed to its potential as an antitumor angiogenesis agent and as a therapeutic candidate for immunotherapy. The development of GS-Rg3 as an agent for these purposes has accelerated research on its mechanisms of action. The present review summarizes recent studies investigating the antitumor activity of GS-Rg3 and its underlying mechanisms, as well as providing essential information for future studies on GS-Rg3.
Collapse
Affiliation(s)
- Yongmin Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Guanchu Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jinyue Ning
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yi Zhao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
20
|
Fasano R, Serratì S, Rafaschieri T, Longo V, Di Fonte R, Porcelli L, Azzariti A. Small-Cell Lung Cancer: Is Liquid Biopsy a New Tool Able to Predict the Efficacy of Immunotherapy? Biomolecules 2024; 14:396. [PMID: 38672414 PMCID: PMC11048475 DOI: 10.3390/biom14040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Small-cell lung cancer (SCLC) cases represent approximately 15% of all lung cancer cases, remaining a recalcitrant malignancy with poor survival and few treatment options. In the last few years, the addition of immunotherapy to chemotherapy improved clinical outcomes compared to chemotherapy alone, resulting in the current standard of care for SCLC. However, the advantage of immunotherapy only applies to a few SCLC patients, and predictive biomarkers selection are lacking for SCLC. In particular, due to some features of SCLC, such as high heterogeneity, elevated cell plasticity, and low-quality tissue samples, SCLC biopsies cannot be used as biomarkers. Therefore, the characterization of the tumor and, subsequently, the selection of an appropriate therapeutic combination may benefit greatly from liquid biopsy. Soluble factors, circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) are now useful tools in the characterization of SCLC. This review summarizes the most recent data on biomarkers detectable with liquid biopsy, emphasizing their role in supporting tumor detection and their potential role in SCLC treatment choice.
Collapse
Affiliation(s)
- Rossella Fasano
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124 Bari, Italy; (R.F.); (T.R.); (R.D.F.); (L.P.); (A.A.)
| | - Simona Serratì
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124 Bari, Italy; (R.F.); (T.R.); (R.D.F.); (L.P.); (A.A.)
| | - Tania Rafaschieri
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124 Bari, Italy; (R.F.); (T.R.); (R.D.F.); (L.P.); (A.A.)
| | - Vito Longo
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Roberta Di Fonte
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124 Bari, Italy; (R.F.); (T.R.); (R.D.F.); (L.P.); (A.A.)
| | - Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124 Bari, Italy; (R.F.); (T.R.); (R.D.F.); (L.P.); (A.A.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124 Bari, Italy; (R.F.); (T.R.); (R.D.F.); (L.P.); (A.A.)
| |
Collapse
|
21
|
Yang Y, Guo J, Li M, Chu G, Jin H, Ma J, Jia Q. Cancer stem cells and angiogenesis. Pathol Res Pract 2024; 253:155064. [PMID: 38160481 DOI: 10.1016/j.prp.2023.155064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Cancer remains the primary cause of mortality in developed nations. Although localized tumors can be effectively addressed through surgery, radiotherapy, and other targeted methods, drug efficacy often wanes in the context of metastatic diseases. As a result, significant efforts are being made to develop drugs capable of not only inhibiting tumor growth but also impeding the metastasis of malignant tumors, with a focus on hindering their migration to adjacent organs. Cancer stem cells metastasize via blood and lymphatic vessels, exhibiting a high mutation rate, significant variability, and a predisposition to drug resistance. In contrast, endothelial cells, being less prone to mutation, are less likely to give rise to drug-resistant clones. Furthermore, the direct contact of circulating anti-angiogenic drugs with vascular endothelial cells expedites their therapeutic impact. Hence, anti-angiogenesis targeted therapy assumes a pivotal role in cancer treatment. This paper provides a succinct overview of the molecular mechanisms governing the interaction between cancer stem cells and angiogenesis.
Collapse
Affiliation(s)
- Yanru Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingyu Guo
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingyang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guangxin Chu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Jing Ma
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
22
|
Li S, Yang Z, Li Y, Zhao N, Yang Y, Zhang S, Jiang M, Wang J, Sun H, Xie Z. Preoperative prediction of vasculogenic mimicry in lung adenocarcinoma using a CT radiomics model. Clin Radiol 2024; 79:e164-e173. [PMID: 37940444 DOI: 10.1016/j.crad.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023]
Abstract
AIM To develop and validate a non-invasive computed tomography (CT)-based radiomics model for predicting vasculogenic mimicry (VM) status in lung adenocarcinoma (LA). MATERIALS AND METHODS Two hundred and three patients with LA were enrolled retrospectively and grouped into training and test groups with a ratio of 7:3. Uni- and multivariate logistic regression analyses were performed in the training cohort to screen the independent clinical and radiological factors for VM, and the clinical model was then established. A radiomics model was established based on the rad-scores through support vector machine (SVM). A radiomics nomogram model was subsequently constructed by combining the rad-score with clinical-radiological factors. The receiver operating characteristic curve (ROC), calibration curves, and decision curve analysis (DCA) were conducted to evaluate the performance of the three models. RESULTS Nine selected radiomics features were selected for the radiomics model and the maximum length and spiculation sign were constructed for the clinical model. The radiomics nomogram model integrating the maximum length, spiculation sign, and rad-score yielded the best AUC in both the training (AUC = 0.925) and test cohorts (AUC = 0.978), in comparison with the radiomics model (AUC = 0.907 and 0.964, in both the training and test cohorts) and the clinical model (AUC = 0.834 and 0.836 in both training and test cohorts). CONCLUSIONS The CT-based radiomics nomogram model showed satisfying discriminating performance for preoperatively and non-invasively predicting VM expression status in LA patients.
Collapse
Affiliation(s)
- S Li
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Medical Imaging Diagnostics, Bengbu Medical College, Bengbu, China
| | - Z Yang
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Y Li
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - N Zhao
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Y Yang
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - S Zhang
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - M Jiang
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - J Wang
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - H Sun
- Department of Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.
| | - Z Xie
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Medical Imaging Diagnostics, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
23
|
Yan L, Li R, Li D, Zhu Y, Lv Z, Wang B. Development of a novel vasculogenic mimicry-associated gene signature for the prognostic assessment of osteosarcoma patients. Clin Transl Oncol 2023; 25:3501-3518. [PMID: 37219824 DOI: 10.1007/s12094-023-03218-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Osteosarcoma (OS) is a form of primary bone malignancy associated with poor prognostic outcomes. Recent work has highlighted vasculogenic mimicry (VM) as a key mechanism that supports aggressive tumor growth. The patterns of VM-associated gene expression in OS and the relationship between these genes and patient outcomes, however, have yet to be defined. METHODS Here, 48 VM-related genes were systematically assessed to examine correlations between the expression of these genes and OS patient prognosis in the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) cohort. Patients were classified into three OS subtypes. Differentially expressed genes for these three OS subtypes were then compared with hub genes detected in a weighted gene co-expression network analysis, leading to the identification of 163 overlapping genes that were subject to further biological activity analyses. A three-gene signature (CGREF1, CORT, and GALNT14) was ultimately constructed through a least absolute shrinkage and selection operator Cox regression analysis, and this signature was used to separate patients into low- and high-risk groups. The K-M survival analysis, receiver operating characteristic analysis, and decision curve analysis were adopted to evaluate the prognostic prediction performance of the signature. Furthermore, the expression patterns of three genes derived from the prognostic model were validated by quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS VM-associated gene expression patterns were successfully established, and three VM subtypes of OS that were associated with patient prognosis and copy number variants were defined. The developed three-gene signature was constructed, which served as independent prognostic markers and prediction factors for the clinicopathological features of OS. Finally, lastly, the signature may also have a guiding effect on the sensitivity of different chemotherapeutic drugs. CONCLUSION Overall, these analyses facilitated the development of a prognostic VM-associated gene signature capable of predicting OS patient outcomes. This signature may be of value for both studies of the mechanistic basis for VM and clinical decision-making in the context of OS patient management.
Collapse
Affiliation(s)
- Lei Yan
- Department of Orthopaedic Surgery, The First Affliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, China
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, China
| | - Ruoqi Li
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Dijun Li
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, China
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, China
| | - Yuanyuan Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Zhi Lv
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, China.
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, China.
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
24
|
Shie WY, Chu PH, Kuo MYP, Chen HW, Lin MT, Su XJ, Hong YL, Chou HYE. Acidosis promotes the metastatic colonization of lung cancer via remodeling of the extracellular matrix and vasculogenic mimicry. Int J Oncol 2023; 63:136. [PMID: 37888615 PMCID: PMC10631766 DOI: 10.3892/ijo.2023.5584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/12/2023] [Indexed: 10/28/2023] Open
Abstract
Acidosis is a hallmark of the tumor microenvironment caused by the metabolic switch from glucose oxidative phosphorylation to glycolysis. It has been associated with tumor growth and progression; however, the precise mechanism governing how acidosis promotes metastatic dissemination has yet to be elucidated. In the present study, a long‑term acidosis model was established using patient‑derived lung cancer cells, to identify critical components of metastatic colonization via transcriptome profiling combined with both in vitro and in vivo functional assays, and association analysis using clinical samples. Xenograft inoculates of 1 or 10 acidotic cells mimicking circulating tumor cell clusters were shown to exhibit increased tumor incidence compared with their physiological pH counterparts. Transcriptomics revealed that profound remodeling of the extracellular matrix (ECM) occurred in the acidotic cells, including upregulation of the integrin subunit α‑4 (ITGA4) gene. In clinical lung cancer, ITGA4 expression was found to be upregulated in primary tumors with metastatic capability, and this trait was retained in the corresponding secondary tumors. Expression of ITGA4 was markedly upregulated around the vasculogenic mimicry structures of the acidotic tumors, while acidotic cells exhibited a higher ability of vasculogenic mimicry in vitro. Acidosis was also found to induce the enrichment of side population cells, suggesting an enhanced resistance to noxious attacks of the tumor microenvironment. Taken together, these results demonstrated that acidosis actively contributed to tumor metastatic colonization, and novel mechanistic insights into the therapeutic management and prognosis of lung cancer were discussed.
Collapse
Affiliation(s)
- Wan-Yi Shie
- Graduate Institute of Oral Biology, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Pin-Hsuan Chu
- Graduate Institute of Oral Biology, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Mark Yen-Ping Kuo
- Department of Dentistry, College of Medicine, National Taiwan University, Taipei 106, Taiwan, R.O.C
- Department of Dentistry, National Taiwan University Hospital, Taipei 106, Taiwan, R.O.C
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taipei 106, Taiwan, R.O.C
| | - Meng-Tie Lin
- Graduate Institute of Oral Biology, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Xuan-Jie Su
- Graduate Institute of Oral Biology, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Yi-Ling Hong
- Graduate Institute of Oral Biology, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Han-Yi Elizabeth Chou
- Graduate Institute of Oral Biology, National Taiwan University, Taipei 106, Taiwan, R.O.C
- Department of Dentistry, National Taiwan University Hospital, Taipei 106, Taiwan, R.O.C
- Center for Biotechnology, National Taiwan University, Taipei 106, Taiwan, R.O.C
| |
Collapse
|
25
|
Huang J, Wang C, Hou Y, Tian Y, Li Y, Zhang H, Zhang L, Li W. Molecular mechanisms of Thrombospondin-2 modulates tumor vasculogenic mimicry by PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother 2023; 167:115455. [PMID: 37696083 DOI: 10.1016/j.biopha.2023.115455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
Vasculogenic mimicry (VM) differs from the classical tumor angiogenesis model. VM does not depend on endothelial cells; instead, highly aggressive tumor cells mimic endothelial cells to form a vascular-like channel structure. VM mediated by tumor cells is significantly and positively associated with a poor prognosis and low survival rates in patients with highly aggressive cancer. In the treatment of highly aggressive malignancies, the presence of VM is considered an important reason for the unsatisfactory clinical efficacy of anti-tumor-angiogenesis therapy (e.g., therapy targeting vascular endothelial growth factor A). Many targeted therapeutic drugs based on traditional tumor blood vessels have been used clinically. Although some progress has been made in certain tumors, problems such as drug resistance have restricted the expected therapeutic effects. Thrombospondin 2 (THBS2) is one of the most important genes associated with angiogenesis, and this gene exerts angiogenesis-related functions through the PI3K/AKT signaling pathway. Although the PI3K/AKT/mTOR signaling pathway is closely related to the progression of VM, the mechanism by which the promising biomarker THBS2 participates in and regulates tumor VM by activating the PI3K/AKT/mTOR signaling pathway is unclear. In this review, we analyze the monomer structure and biological activity of THBS2, the structure and potential synthesis mechanisms of VM, and the complex mechanisms between THBS2, the PI3K/AKT/mTOR signaling pathway, and VM.
Collapse
Affiliation(s)
- Ju Huang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Congcong Wang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yixuan Hou
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yuanyuan Tian
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lihong Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
26
|
Zhang M, Zhao Y, Liu X, Ruan X, Wang P, Liu L, Wang D, Dong W, Yang C, Xue Y. Pseudogene MAPK6P4-encoded functional peptide promotes glioblastoma vasculogenic mimicry development. Commun Biol 2023; 6:1059. [PMID: 37853052 PMCID: PMC10584926 DOI: 10.1038/s42003-023-05438-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Glioma is the most common primary malignancy of the central nervous system. Glioblastoma (GBM) has the highest degree of malignancy among the gliomas and the strongest resistance to chemotherapy and radiotherapy. Vasculogenic mimicry (VM) provides tumor cells with a blood supply independent of endothelial cells and greatly restricts the therapeutic effect of anti-angiogenic tumor therapy for glioma patients. Vascular endothelial growth factor receptor 2 (VEGFR2) and vascular endothelial cadherin (VE-cadherin) are currently recognized molecular markers of VM in tumors. In the present study, we show that pseudogene MAPK6P4 deficiency represses VEGFR2 and VE-cadherin protein expression levels, as well as inhibits the proliferation, migration, invasion, and VM development of GBM cells. The MAPK6P4-encoded functional peptide P4-135aa phosphorylates KLF15 at the S238 site, promoting KLF15 protein stability and nuclear entry to promote GBM VM formation. KLF15 was further confirmed as a transcriptional activator of LDHA, where LDHA binds and promotes VEGFR2 and VE-cadherin lactylation, thereby increasing their protein expression. Finally, we used orthotopic and subcutaneous xenografted nude mouse models of GBM to verify the inhibitory effect of the above factors on GBM VM development. In summary, this study may represent new targets for the comprehensive treatment of glioma.
Collapse
Affiliation(s)
- Mengyang Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, PR China
| | - Yubo Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, PR China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, PR China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, PR China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, PR China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, PR China
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, PR China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, PR China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, PR China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, PR China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, PR China
| | - Weiwei Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, PR China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, PR China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
- Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, PR China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, PR China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, PR China.
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, PR China.
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
27
|
Qu F, Brough SC, Michno W, Madubata CJ, Hartmann GG, Puno A, Drainas AP, Bhattacharya D, Tomasich E, Lee MC, Yang D, Kim J, Peiris-Pagès M, Simpson KL, Dive C, Preusser M, Toland A, Kong C, Das M, Winslow MM, Pasca AM, Sage J. Crosstalk between small-cell lung cancer cells and astrocytes mimics brain development to promote brain metastasis. Nat Cell Biol 2023; 25:1506-1519. [PMID: 37783795 PMCID: PMC11230587 DOI: 10.1038/s41556-023-01241-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/25/2023] [Indexed: 10/04/2023]
Abstract
Brain metastases represent an important clinical problem for patients with small-cell lung cancer (SCLC). However, the mechanisms underlying SCLC growth in the brain remain poorly understood. Here, using intracranial injections in mice and assembloids between SCLC aggregates and human cortical organoids in culture, we found that SCLC cells recruit reactive astrocytes to the tumour microenvironment. This crosstalk between SCLC cells and astrocytes drives the induction of gene expression programmes that are similar to those found during early brain development in neurons and astrocytes. Mechanistically, the brain development factor Reelin, secreted by SCLC cells, recruits astrocytes to brain metastases. These astrocytes in turn promote SCLC growth by secreting neuronal pro-survival factors such as SERPINE1. Thus, SCLC brain metastases grow by co-opting mechanisms involved in reciprocal neuron-astrocyte interactions during brain development. Targeting such developmental programmes activated in this cancer ecosystem may help prevent and treat brain metastases.
Collapse
Affiliation(s)
- Fangfei Qu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Siqi C Brough
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Wojciech Michno
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Chioma J Madubata
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Griffin G Hartmann
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alyssa Puno
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Debadrita Bhattacharya
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Erwin Tomasich
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Dian Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jun Kim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria Peiris-Pagès
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Kathryn L Simpson
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Caroline Dive
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Angus Toland
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Millie Das
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anca M Pasca
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Li D, Zhang Q, Tang Y, Mao F, Zeng J, Ji A. LncRNAs associated with vascular mimicry establish a novel molecular subtype and prognostic model for pancreatic cancer. J Cancer Res Clin Oncol 2023; 149:11571-11584. [PMID: 37400573 DOI: 10.1007/s00432-023-05015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Vascular mimicry (VM) epitomizes an innovative tumor angiogenesis pathway, potentially serving as an alternate conduit under the assumption of traditional tumor angiogenesis pathway inhibition. The role of VM in pancreatic cancer (PC), however, remains unexplored. METHODS Using differential analysis and Spearman correlation, we identified key long non-coding RNAs (lncRNAs) signatures in PC from the collected set of VM-associated genes in the literature. We identified optimal clusters using the non-negative matrix decomposition (NMF) algorithm, and then compared clinicopathological features and prognostic differences between clusters. We also assessed tumor microenvironmental (TME) differences between clusters using multiple algorithms. Using univariate Cox regression analyses as well as lasso regression, we constructed and validated new lncRNA prognostic risk models for PC. We used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze model-enriched functions and pathways. Nomograms were then developed to predict patient survival in association with clinicopathological factors. In addition, single-cell RNA-sequencing (scRNA-seq) analysis was used to analyze the expression patterns of VM-related genes and lncRNAs in the PC of TME. Finally, we used the Connectivity Map (cMap) database to predict local anaesthetics that could modify the VM of PC. RESULTS In this study, we developed a novel three-cluster molecular subtype using the identified VM-associated lncRNA signatures of PC. The different subtypes have significantly different clinical characteristics and prognostic value, and also show differential treatment response and TME. Following an in-depth analysis, we constructed and validated a novel prognostic risk model for PC based on the VM-associated lncRNA signatures. Enrichment analysis suggested that high riskscores were significantly associated with functions and pathways, including extracellular matrix remodeling, et al. In addition, we predicted eight local anaesthetics that could modulate VM in PC. Finally, we discovered differential expression of VM-related genes and lncRNAs across various cell types within pancreatic cancer. CONCLUSION VM has a critical role in PC. This study pioneers the development of a VM-based molecular subtype that demonstrates substantial differentiation in PC populations. Furthermore, we highlighted the significance of VM within the immune microenvironment of PC. Moreover, VM might contribute to PC tumorigenesis through its mediation of mesenchymal remodeling and endothelial transdifferentiation-related pathways, which offers a new perspective on its role in PC.
Collapse
Affiliation(s)
- Da Li
- Hepatobiliary Surgery Department, Yangzhou University Affiliated Hospital, Yangzhou, 225000, Jiangsu, China
| | - Qiang Zhang
- Medical College of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yubao Tang
- Medical College of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Feiyu Mao
- Hepatobiliary Surgery Department, Yangzhou University Affiliated Hospital, Yangzhou, 225000, Jiangsu, China
| | - Jia Zeng
- Hepatobiliary Surgery Department, Yangzhou University Affiliated Hospital, Yangzhou, 225000, Jiangsu, China
| | - Anlai Ji
- Hepatobiliary Surgery Department, Yangzhou University Affiliated Hospital, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
29
|
Pearsall SM, Williamson SC, Humphrey S, Hughes E, Morgan D, García Marqués FJ, Awanis G, Carroll R, Burks L, Shue YT, Bermudez A, Frese KK, Galvin M, Carter M, Priest L, Kerr A, Zhou C, Oliver TG, Humphries JD, Humphries MJ, Blackhall F, Cannell IG, Pitteri SJ, Hannon GJ, Sage J, Dive C, Simpson KL. Lineage Plasticity in SCLC Generates Non-Neuroendocrine Cells Primed for Vasculogenic Mimicry. J Thorac Oncol 2023; 18:1362-1385. [PMID: 37455012 PMCID: PMC10561473 DOI: 10.1016/j.jtho.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Vasculogenic mimicry (VM), the process of tumor cell transdifferentiation to endow endothelial-like characteristics supporting de novo vessel formation, is associated with poor prognosis in several tumor types, including SCLC. In genetically engineered mouse models (GEMMs) of SCLC, NOTCH, and MYC co-operate to drive a neuroendocrine (NE) to non-NE phenotypic switch, and co-operation between NE and non-NE cells is required for metastasis. Here, we define the phenotype of VM-competent cells and molecular mechanisms underpinning SCLC VM using circulating tumor cell-derived explant (CDX) models and GEMMs. METHODS We analyzed perfusion within VM vessels and their association with NE and non-NE phenotypes using multiplex immunohistochemistry in CDX, GEMMs, and patient biopsies. We evaluated their three-dimensional structure and defined collagen-integrin interactions. RESULTS We found that VM vessels are present in 23/25 CDX models, 2 GEMMs, and in 20 patient biopsies of SCLC. Perfused VM vessels support tumor growth and only NOTCH-active non-NE cells are VM-competent in vivo and ex vivo, expressing pseudohypoxia, blood vessel development, and extracellular matrix organization signatures. On Matrigel, VM-primed non-NE cells remodel extracellular matrix into hollow tubules in an integrin β1-dependent process. CONCLUSIONS We identified VM as an exemplar of functional heterogeneity and plasticity in SCLC and these findings take considerable steps toward understanding the molecular events that enable VM. These results support therapeutic co-targeting of both NE and non-NE cells to curtail SCLC progression and to improve the outcomes of patients with SCLC in the future.
Collapse
Affiliation(s)
- Sarah M Pearsall
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Stuart C Williamson
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Sam Humphrey
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Ellyn Hughes
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Derrick Morgan
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | | | - Griselda Awanis
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Rebecca Carroll
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Laura Burks
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Yan Ting Shue
- Department of Pediatrics, Stanford University, Stanford, California; Department of Genetics, Stanford University, Stanford, California
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford, California
| | - Kristopher K Frese
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Melanie Galvin
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Mathew Carter
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Lynsey Priest
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Alastair Kerr
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Cong Zhou
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Trudy G Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Jonathan D Humphries
- Faculty of Biology Medicine and Health, Wellcome Centre for Cell-Matrix Research, University of Manchester, United Kingdom; Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Martin J Humphries
- Faculty of Biology Medicine and Health, Wellcome Centre for Cell-Matrix Research, University of Manchester, United Kingdom
| | - Fiona Blackhall
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom; Medical Oncology, Christie Hospital National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Ian G Cannell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford, California
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, California; Department of Genetics, Stanford University, Stanford, California
| | - Caroline Dive
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom.
| | - Kathryn L Simpson
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, United Kingdom; Cancer Research UK Manchester Institute, University of Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| |
Collapse
|
30
|
Zhu DQ, Su C, Li JJ, Li AW, Luv Y, Fan Q. Update on Radiotherapy Changes of Nasopharyngeal Carcinoma Tumor Microenvironment. World J Oncol 2023; 14:350-357. [PMID: 37869238 PMCID: PMC10588496 DOI: 10.14740/wjon1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
The utilization of radiotherapy (RT) serves as the principal approach for managing nasopharyngeal carcinoma (NPC). Consequently, it is imperative to investigate the correlation between the radiation microenvironment and radiation resistance in NPC. PubMed and China National Knowledge Infrastructure (CNKI) databases were accessed to perform a search utilizing the English keywords "nasopharyngeal cancer", "radiotherapy", and "microenvironment". The search time spanned from the establishment of the database until January 20, 2023. A total of 82 articles were included. The post-radiation tumor microenvironment (TME), or the radiation microenvironment, includes several components, such as the radiation-immune microenvironment and the radiation-hypoxic microenvironment. The radiation-immune microenvironment includes various factors like immune cells, signaling molecules, and extracellular matrix. RT can reshape the TME, leading to immune responses with both cytotoxic effects (T cells, B cells, natural killer (NK) cells) and immune escape mechanisms (regulatory T cells (Tregs), macrophages). RT enhances immune responses through DNA release, type I interferons, and immune cell recruitment. Radiation-hypoxic microenvironment affects metabolism and molecular changes. RT-induced hypoxia causes vascular changes, fibrosis, and vessel compression, leading to tissue hypoxia. Hypoxia activates hypoxia-inducible factor (HIF)-1α/2α, promoting angiogenesis and glycolysis in tumor cells. TME changes due to hypoxia also involve immune suppressive cells like myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and Tregs. The radiation microenvironment is involved in radiation resistance and holds a significant effect on the prognosis of patients with NPC. Exploring the radiation microenvironment provides new insights into RT and NPC research.
Collapse
Affiliation(s)
- Dao Qi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chao Su
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jing Jun Li
- NanFang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ai Wu Li
- NanFang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ying Luv
- NanFang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
31
|
Jung E, Lee YH, Ou S, Kim TY, Shin SY. EGR1 Regulation of Vasculogenic Mimicry in the MDA-MB-231 Triple-Negative Breast Cancer Cell Line through the Upregulation of KLF4 Expression. Int J Mol Sci 2023; 24:14375. [PMID: 37762678 PMCID: PMC10532327 DOI: 10.3390/ijms241814375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Vasculogenic mimicry (VM) is an intriguing phenomenon observed in tumor masses, in which cancer cells organize themselves into capillary-like channels that closely resemble the structure and function of blood vessels. Although VM is believed to contribute to alternative tumor vascularization, the detailed regulatory mechanisms controlling these cellular processes remain poorly understood. Our study aimed to investigate the role of Early Growth Response 1 (EGR1) in regulating VM in aggressive cancer cells, specifically MDA-MB-231 triple-negative breast cancer cells. Our study revealed that EGR1 promotes the formation of capillary-like tubes by MDA-MB-231 cells in a 3-dimensional Matrigel matrix. EGR1 was observed to upregulate Kruppel-like factor 4 (KLF4) expression, which regulates the formation of the capillary-like tube structure. Additionally, our findings highlight the involvement of the ERK1/2 and p38 mitogen-activated protein kinase pathways in mediating the expression of EGR1 and KLF4, underscoring their crucial role in VM in MDA-MB-231 cells. Understanding these regulatory mechanisms will provide valuable insights into potential therapeutic targets for preventing VM during the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Euitaek Jung
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea; (E.J.); (Y.H.L.); (S.O.); (T.Y.K.)
| | - Young Han Lee
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea; (E.J.); (Y.H.L.); (S.O.); (T.Y.K.)
- Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Sukjin Ou
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea; (E.J.); (Y.H.L.); (S.O.); (T.Y.K.)
| | - Tae Yoon Kim
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea; (E.J.); (Y.H.L.); (S.O.); (T.Y.K.)
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea; (E.J.); (Y.H.L.); (S.O.); (T.Y.K.)
- Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
32
|
Cannell IG, Sawicka K, Pearsall I, Wild SA, Deighton L, Pearsall SM, Lerda G, Joud F, Khan S, Bruna A, Simpson KL, Mulvey CM, Nugent F, Qosaj F, Bressan D, Dive C, Caldas C, Hannon GJ. FOXC2 promotes vasculogenic mimicry and resistance to anti-angiogenic therapy. Cell Rep 2023; 42:112791. [PMID: 37499655 DOI: 10.1016/j.celrep.2023.112791] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/09/2022] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Vasculogenic mimicry (VM) describes the formation of pseudo blood vessels constructed of tumor cells that have acquired endothelial-like properties. VM channels endow the tumor with a tumor-derived vascular system that directly connects to host blood vessels, and their presence is generally associated with poor patient prognosis. Here we show that the transcription factor, Foxc2, promotes VM in diverse solid tumor types by driving ectopic expression of endothelial genes in tumor cells, a process that is stimulated by hypoxia. VM-proficient tumors are resistant to anti-angiogenic therapy, and suppression of Foxc2 augments response. This work establishes co-option of an embryonic endothelial transcription factor by tumor cells as a key mechanism driving VM proclivity and motivates the search for VM-inhibitory agents that could form the basis of combination therapies with anti-angiogenics.
Collapse
Affiliation(s)
- Ian G Cannell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| | - Kirsty Sawicka
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Isabella Pearsall
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Sophia A Wild
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Lauren Deighton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Sarah M Pearsall
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Cancer Research UK Cancer Biomarker Centre, Manchester M20 4BX, UK; CRUK Manchester Institute, Manchester M20 4BX, UK
| | - Giulia Lerda
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fadwa Joud
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Showkhin Khan
- New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Preclinical Modelling of Paediatric Cancer Evolution Team, The Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5N, UK
| | - Kathryn L Simpson
- Cancer Research UK Cancer Biomarker Centre, Manchester M20 4BX, UK; CRUK Manchester Institute, Manchester M20 4BX, UK
| | - Claire M Mulvey
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fiona Nugent
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fatime Qosaj
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Dario Bressan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Caroline Dive
- Cancer Research UK Cancer Biomarker Centre, Manchester M20 4BX, UK; CRUK Manchester Institute, Manchester M20 4BX, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Department of Oncology and Breast Cancer Programme, CRUK Cambridge Centre, Cambridge University Hospitals NHS and University of Cambridge, Cambridge CB2 2QQ, UK
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| |
Collapse
|
33
|
Welter L, Zheng S, Setayesh SM, Morikado M, Agrawal A, Nevarez R, Naghdloo A, Pore M, Higa N, Kolatkar A, Thiele JA, Sharma P, Moore HCF, Richer JK, Elias A, Pienta KJ, Zurita AJ, Gross ME, Shishido SN, Hicks J, Velasco CR, Kuhn P. Cell State and Cell Type: Deconvoluting Circulating Tumor Cell Populations in Liquid Biopsies by Multi-Omics. Cancers (Basel) 2023; 15:3949. [PMID: 37568766 PMCID: PMC10417732 DOI: 10.3390/cancers15153949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Bi-directional crosstalk between the tumor and the tumor microenvironment (TME) has been shown to increase the rate of tumor evolution and to play a key role in neoplastic progression, therapeutic resistance, and a patient's overall survival. Here, we set out to use a comprehensive liquid-biopsy analysis to study cancer and specific TME cells in circulation and their association with disease status. Cytokeratin+, CD45- circulating rare cells (CRCs) from nine breast and four prostate cancer patients were characterized through morphometrics, single-cell copy number analysis, and targeted multiplexed proteomics to delineate cancer cell lineage from other rare cells originating in the TME. We show that we can detect epithelial circulating tumor cells (EPI.CTC), CTCs undergoing epithelial-to-mesenchymal transition (EMT.CTC) and circulating endothelial cells (CECs) using a universal rare event detection platform (HDSCA). Longitudinal analysis of an index patient finds that CTCs are present at the time of disease progression, while CECs are predominately present at the time of stable disease. In a small cohort of prostate and breast cancer patients, we find high inter-patient and temporal intra-patient variability in the expression of tissue specific markers such as ER, HER2, AR, PSA and PSMA and EpCAM. Our study stresses the importance of the multi-omic characterization of circulating rare cells in patients with breast and prostate carcinomas, specifically highlighting overlapping and cell type defining proteo-genomic characteristics of CTCs and CECs.
Collapse
Affiliation(s)
- Lisa Welter
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Serena Zheng
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Sonia Maryam Setayesh
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael Morikado
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Arushi Agrawal
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Rafael Nevarez
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Amin Naghdloo
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Milind Pore
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Nikki Higa
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Anand Kolatkar
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Jana-Aletta Thiele
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Priyanka Sharma
- University of Kansas Medical Center, Westwood, KS 66205, USA;
| | - Halle C. F. Moore
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH 44195, USA;
| | - Jennifer K. Richer
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.R.); (A.E.)
| | - Anthony Elias
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.R.); (A.E.)
| | - Kenneth J. Pienta
- The Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Amado J. Zurita
- Department of Genitourinary Medical Oncology, MD Anderson, Houston, TX 77230, USA;
| | - Mitchell E. Gross
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, USA;
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephanie N. Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Carmen Ruiz Velasco
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.W.); (S.Z.); (S.M.S.); (M.M.); (A.A.); (R.N.); (A.N.); (M.P.); (N.H.); (A.K.); (J.-A.T.); (S.N.S.); (C.R.V.)
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
34
|
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023; 26:313-347. [PMID: 37060495 PMCID: PMC10105163 DOI: 10.1007/s10456-023-09876-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 04/16/2023]
Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Seo J, Kumar M, Mason J, Blackhall F, Matsumoto N, Dive C, Hicks J, Kuhn P, Shishido SN. Plasticity of circulating tumor cells in small cell lung cancer. Sci Rep 2023; 13:11775. [PMID: 37479829 PMCID: PMC10362013 DOI: 10.1038/s41598-023-38881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor with low five-year survival rates. Recently described molecular phenotypes of SCLC exhibit differential vulnerabilities heralding potential for stratified treatment. Whilst tumor biopsy in SCLC is challenging, circulating tumor cells in the liquid biopsy are prevalent and can be repeatedly sampled accommodating the dynamic plasticity of SCLC phenotypes. The aim of this study was to characterize the heterogeneity of rare circulating cells with confirmed tumor origin and to explore a liquid biopsy approach for future clinical trials of targeted therapies. This study applied the 3rd generation of a previously validated direct imaging platform to 14 chemo-naive SCLC patients and 10 non-cancerous normal donor (ND) samples. Phenotypic heterogeneity of circulating rare cells in SCLC was observed and a patient-level classification model was established to stratify SCLC patients from non-cancerous donors. Eight rare cell groups, with combinations of epithelial, endothelial, and mesenchymal biomarker expression patterns, were phenotypically characterized. The single-cell genomic analysis confirmed the cancer cell plasticity in every rare cell group harboring clonal genomic alterations. This study shows rare cell heterogeneity and confirms cellular plasticity in SCLC providing a valuable resource for better opportunities to discover novel therapeutic targets in SCLC.
Collapse
Affiliation(s)
- Jiyoun Seo
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mihir Kumar
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jeremy Mason
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Fiona Blackhall
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Nicholas Matsumoto
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Caroline Dive
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester and University College London, Manchester, UK
- CRUK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
36
|
Beik SP, Harris LA, Kochen MA, Sage J, Quaranta V, Lopez CF. Unified tumor growth mechanisms from multimodel inference and dataset integration. PLoS Comput Biol 2023; 19:e1011215. [PMID: 37406008 DOI: 10.1371/journal.pcbi.1011215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
Mechanistic models of biological processes can explain observed phenomena and predict responses to a perturbation. A mathematical model is typically constructed using expert knowledge and informal reasoning to generate a mechanistic explanation for a given observation. Although this approach works well for simple systems with abundant data and well-established principles, quantitative biology is often faced with a dearth of both data and knowledge about a process, thus making it challenging to identify and validate all possible mechanistic hypothesis underlying a system behavior. To overcome these limitations, we introduce a Bayesian multimodel inference (Bayes-MMI) methodology, which quantifies how mechanistic hypotheses can explain a given experimental datasets, and concurrently, how each dataset informs a given model hypothesis, thus enabling hypothesis space exploration in the context of available data. We demonstrate this approach to probe standing questions about heterogeneity, lineage plasticity, and cell-cell interactions in tumor growth mechanisms of small cell lung cancer (SCLC). We integrate three datasets that each formulated different explanations for tumor growth mechanisms in SCLC, apply Bayes-MMI and find that the data supports model predictions for tumor evolution promoted by high lineage plasticity, rather than through expanding rare stem-like populations. In addition, the models predict that in the presence of cells associated with the SCLC-N or SCLC-A2 subtypes, the transition from the SCLC-A subtype to the SCLC-Y subtype through an intermediate is decelerated. Together, these predictions provide a testable hypothesis for observed juxtaposed results in SCLC growth and a mechanistic interpretation for tumor treatment resistance.
Collapse
Affiliation(s)
- Samantha P Beik
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Leonard A Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
- Interdisciplinary Graduate Program in Cell & Molecular Biology, University of Arkansas, Fayetteville, Arkansas, United States of America
- Cancer Biology Program, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Michael A Kochen
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Julien Sage
- Departments of Pediatrics, Stanford University, Stanford, California, United States of America
- Departments of Genetics, Stanford University, Stanford, California, United States of America
| | - Vito Quaranta
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Carlos F Lopez
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Altos Laboratories, Redwood City, California, United States of America
| |
Collapse
|
37
|
Hamilton G, Rath B, Stickler S. Significance of circulating tumor cells in lung cancer: a narrative review. Transl Lung Cancer Res 2023; 12:877-894. [PMID: 37197632 PMCID: PMC10183408 DOI: 10.21037/tlcr-22-712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023]
Abstract
Background and Objective In cancer patients, circulating tumor cells (CTCs) are employed as "Liquid Biopsy" for tumor detection, prognosis and assessment of the response to therapy. CTCs are responsible for tumor dissemination but the mechanisms involved in intravasation, survival in the circulation and extravasation at secondary sites to establish metastases are not fully characterized. In lung cancer patients, CTCs are present in very high numbers in small cell lung cancer (SCLC) that is found disseminated in most patients upon first presentation and has a dismal prognosis. This review aims at the discussion of recent work on metastatic SCLC and novel insights into the process of dissemination derived from the access to a panel of unique SCLC CTC lines. Methods PubMed and Euro PMC were searched from January 1st, 2015 to September 23th, 2022 using the following key words: "SCLC", "NSCLC", "CTC" and "Angiogenesis" and supplemented by data from our own work. Key Content and Findings Experimental and clinical data indicate that the intravasation of single, apoptotic or clustered CTCs occur via leaky neoangiogenetic vessels in the tumor core and not via crossing of the adjacent tumor stroma after EMT. Furthermore, in lung cancer only EpCAM-positive CTCs have been found to have prognostic impact. All our established SCLC CTC lines form spontaneously EpCAM-positive large and chemoresistant spheroids (tumorospheres) that may become trapped in microvessels in vivo and are suggested to extravasate by physical force. The rate-limiting step of the shedding of CTCs is most likely the presence of irregular and leaky tumor vessels or in case of SCLC, also via vessels formed by vasculogenic mimicry. Therefore, lower microvessel densities (MVD) in NSCLC can explain the relative rarity of CTCs in NSCLC versus SCLC. Conclusions The detection of CTCs lacks standardized techniques, is difficult in non-metastatic patients and important cell biological mechanisms of dissemination need still to be resolved, especially in respect to the actual metastasis-inducing cells. Expression of VEGF and the MVD are key prognostic indicators for tumors and ultimately, enumeration of CTCs seems to reflect neoangiogenetic vascular supply of tumors and prognosis.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Cheng B, Xie M, Zhou Y, Li T, Liu W, Yu W, Jia M, Yu S, Chen L, Dai R, Wang R. Vascular mimicry induced by m 6A mediated IGFL2-AS1/AR axis contributes to pazopanib resistance in clear cell renal cell carcinoma. Cell Death Discov 2023; 9:121. [PMID: 37037853 PMCID: PMC10086028 DOI: 10.1038/s41420-023-01423-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
Metastatic clear cell renal cell carcinoma (ccRCC) is a lethal sub-type of kidney cancer. Vascular mimicry (VM) has been postulated as an alternative route to supply tumors with nutrients, playing key role in tumor development. Whether VM development is linked to pazopanib efficacy, however, remains unclear. Here, our in vitro and in vivo models identified that VM development was profoundly increased in pazopanib resistant ccRCC as compared to the sensitive controls, which was due to the activation of IGFL2-AS1/AR/TWIST1 signaling. IGFL2-AS1, a m6A modified long coding RNA, was demethylated by METTL3/METTL14 complex and stabilized owing to its failing recognition by YTHDF2 upon chronic pazopanib treatment. Further mechanistic dissection illustrated that IGFL2-AS1 physically interacted with the 5'-UTR AR mRNA and neutralized the negative regulation of 5'-uORF (upstream open reading frame) on AR translation. Indeed, IGFL2-AS1 short of AR binding region failed to promote AR expression, VM formation and pazopanib resistance. In vivo xenografted mouse model also elucidated that inhibition of AR activity with enzalutamide or silence of IGFL2-AS1 with siRNAs all led to retarded growth of pazopanib resistant ccRCC tumors. Together, these results suggest that IGFL2-AS1 may represent a key player to mediate pazopanib-induced VM formation of ccRCC cells via regulating AR expression and targeting this newly identified IGFL2-AS1/AR signaling may help us to better suppress ccRCC VM formation and to increase the therapeutic efficacy of pazopanib.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Mingyue Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Yong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Tian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Wanting Liu
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Shuang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Lixuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
39
|
Zhu Z, Hu E, Shen H, Tan J, Zeng S. The functional and clinical roles of liquid biopsy in patient-derived models. J Hematol Oncol 2023; 16:36. [PMID: 37031172 PMCID: PMC10082989 DOI: 10.1186/s13045-023-01433-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
The liquid biopsy includes the detection of circulating tumor cells (CTCs) and CTC clusters in blood, as well as the detection of, cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA) and extracellular vesicles (EVs) in the patient's body fluid. Liquid biopsy has important roles in translational research. But its clinical utility is still under investigation. Newly emerged patient-derived xenograft (PDX) and CTC-derived xenograft (CDX) faithfully recapitulate the genetic and morphological features of the donor patients' tumor and patient-derived organoid (PDO) can mostly mimic tumor growth, tumor microenvironment and its response to drugs. In this review, we describe how the development of these patient-derived models has assisted the studies of CTCs and CTC clusters in terms of tumor biological behavior exploration, genomic analysis, and drug testing, with the help of the latest technology. We then summarize the studies of EVs and cfDNA/ctDNA in PDX and PDO models in early cancer diagnosis, tumor burden monitoring, drug test and response monitoring, and molecular profiling. The challenges faced and future perspectives of research related to liquid biopsy using patient-derived models are also discussed.
Collapse
Affiliation(s)
- Ziqing Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Erya Hu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jun Tan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
40
|
Dong ZX, Chan SH, Chen SN, Li M, Zhang XD, Liu XQ. TJP1 promotes vascular mimicry in bladder cancer by facilitating VEGFA expression and transcriptional activity through TWIST1. Transl Oncol 2023; 32:101666. [PMID: 37031603 PMCID: PMC10119961 DOI: 10.1016/j.tranon.2023.101666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023] Open
Abstract
Tight junction protein 1 (TJP1) is a recently identified prominent regulator of bladder cancer (BLCA) angiogenesis and tumorigenesis. Vascular mimicry (VM) is a newly described tumor feature and is correlated with an increased risk of tumor metastasis. However, the relationship between TJP1 expression and VM in bladder cancer remains elusive. In the present study, we report a novel function for TJP1 in accommodating VM to promote tumor progression. We found that the elevated TJP1 expression was positively related to VM in patients and xenograft tumor models in bladder cancer. Enforced expression of TJP1 increased VM of BLCA cells in vitro and in vivo by elevating Vascular endothelial growth factor A (VEGFA) levels. Furthermore, VM induced by TJP1 overexpression was significantly blocked by the VEGFA and VEGFR inhibitors (Bevacizumab and Sunitinib). Mechanistically, TJP1 promoted VEGFA transcriptional and protein level in a TWIST1-dependent manner. Taken together, our study reveals that TJP1-regulated VEGFA overexpression may indicate a potential therapeutic target for clinical intervention in the early tumor neovascularization of bladder cancer.
Collapse
Affiliation(s)
- Zhao-Xia Dong
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Sze-Hoi Chan
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Shu-Na Chen
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Miao Li
- Department of Hematology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| | - Xing-Ding Zhang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
| | - Xue-Qi Liu
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
41
|
Huang Y, Zhu C, Liu P, Ouyang F, Luo J, Lu C, Tang B, Yang X. L1CAM promotes vasculogenic mimicry formation by miR-143-3p-induced expression of hexokinase 2 in glioma. Mol Oncol 2023; 17:664-685. [PMID: 36708044 PMCID: PMC10061292 DOI: 10.1002/1878-0261.13384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/17/2022] [Accepted: 01/26/2023] [Indexed: 01/29/2023] Open
Abstract
In recent decades, antiangiogenic therapy, which blocks the supply of oxygen and nutrition to tumor cells, has become a promising clinical strategy for the treatment of patients with tumors. However, recent studies revealed that vasculogenic mimicry (VM), which is the process by which vascular morphological structures are formed by highly invasive tumor cells, has been considered a potential factor for the failure of antiangiogenic therapy in patients with tumors. Thus, inhibition of VM formation might be a potential target for improving the outcome of antiangiogenic strategies. However, the mechanism underlying VM formation is still incompletely elucidated. Herein, we report that L1CAM might be a critical regulator of VM formation in glioma, and might be associated with the resistance of glioma to antiangiogenic therapy. We found that the tumor-invasion and tube-formation capabilities of L1CAM-overexpressing cells were significantly enhanced in vitro and in vivo. In addition, the results indicated that miR-143-3p, which might directly target the 3'UTR of the hexokinase 2 (HK2) gene to regulate its protein expression, was subsequently involved in L1CAM-mediated VM formation by glioma cells. Further study revealed that the regulation of MMP2, MMP9, and VEGFA expression was involved in this process. Moreover, we identified that activation of the downstream PI3K/AKT signaling pathway of the L1CAM/HK2 cascade is critical for VM formation by glioma cells. Furthermore, we found that the combined treatment of anti-L1CAM neutralizing monoclonal antibody and bevacizumab increases efficacy beyond that of bevacizumab alone, and suppresses glioma growth in vivo, indicating that the inhibition of L1CAM-mediated VM formation might efficiently improve the effect of antiangiogenic treatment for glioma patients. Together, our findings demonstrated a critical role of L1CAM in regulating VM formation in glioma, and that L1CAM might be a potential target for ameliorating tumor resistance to antiangiogenic therapy in glioma patients.
Collapse
Affiliation(s)
- Yishan Huang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular ImmunopathologyShantou University Medical CollegeChina
| | - Chenchen Zhu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular ImmunopathologyShantou University Medical CollegeChina
| | - Pei Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular ImmunopathologyShantou University Medical CollegeChina
| | - Fan Ouyang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular ImmunopathologyShantou University Medical CollegeChina
| | - Juanjuan Luo
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular ImmunopathologyShantou University Medical CollegeChina
| | - Chunjiao Lu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular ImmunopathologyShantou University Medical CollegeChina
| | - Bo Tang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular ImmunopathologyShantou University Medical CollegeChina
| |
Collapse
|
42
|
Wälchli T, Bisschop J, Carmeliet P, Zadeh G, Monnier PP, De Bock K, Radovanovic I. Shaping the brain vasculature in development and disease in the single-cell era. Nat Rev Neurosci 2023; 24:271-298. [PMID: 36941369 PMCID: PMC10026800 DOI: 10.1038/s41583-023-00684-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
43
|
Lin K, Huang L, Zhang Y, Chen M, Li Z, Yung KKL, Lv S, Pan Q, Zhang W, Fu J, Li W, Deng Q. The Antiangiogenic and Antitumor Effects of Scoparasin B in Non-Small-Cell Lung Cancer. JOURNAL OF NATURAL PRODUCTS 2023; 86:368-379. [PMID: 36692021 DOI: 10.1021/acs.jnatprod.2c00979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Angiogenesis and vasculogenic mimicry (VM) are crucial for the growth and metastasis of non-small-cell lung cancer (NSCLC). Most tumor angiogenesis inhibitors mainly target endothelial cell-mediated angiogenesis, ignoring tumor-cell-mediated VM and frequently leading to tumor recurrence and metastasis. Thus, development of bioactive molecules interfering with both tumor angiogenesis and VM is necessary. Identifying novel angiogenesis inhibitors from natural products is a promising strategy. Scoparasin B, a pimarane diterpene extracted from a marine-derived fungus, Eutypella sp. F0219, has an antibacterial effect. However, its effect on angiogenesis and VM remains unexplored. In this study, we first certified that scoparasin B showed a strong inhibition effect on angiogenesis and the VM process in vitro and ex vivo. Moreover, scoparasin B prominently impeded tumor growth, angiogenesis, and VM in an NCI-H1299 xenograft model. Further study revealed that scoparasin B restrained tumor angiogenesis and VM by reducing the VEGF-A level and suppressing the VEGF-A/VEGFR2 signaling pathway. This study first demonstrated scoparasin B inhibited tumor angiogenesis, VM, and tumor growth of NSCLC and revealed its underlying mechanism. These new findings further support the potential of scoparasin B as a novel angiogenesis inhibitor and give a hint for further exploring potential angiogenesis inhibitors from natural products.
Collapse
Affiliation(s)
- Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
- Golden Meditech Center for Neuro Regeneration Sciences, HKBU, Kowloon Tong, Hong Kong 999077, China
| | - Lijuan Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Minshan Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhan Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ken Kin Lam Yung
- Department of Biology & Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong, China
| | - Sha Lv
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qianrong Pan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Weisong Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jijun Fu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital and The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wanshan Li
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Qiudi Deng
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
44
|
Maddison K, Bowden NA, Graves MC, Tooney PA. Characteristics of vasculogenic mimicry and tumour to endothelial transdifferentiation in human glioblastoma: a systematic review. BMC Cancer 2023; 23:185. [PMID: 36823554 PMCID: PMC9948311 DOI: 10.1186/s12885-023-10659-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Glioblastoma, the most common primary malignant brain tumour in adults, is a highly vascular tumour characterised by abnormal angiogenesis. Additional mechanisms of tumour vascularisation have also been reported in glioblastoma, including the formation of tumour cell-derived vessels by vasculogenic mimicry (VM) or the transdifferentiation of tumour cells to endothelial cells. VM and endothelial transdifferentiation have frequently been reported as distinct processes, however, the use of both terms to describe a single process of vascularisation also occurs. Some overlapping characteristics have also been reported when identifying each process. We therefore aimed to determine the markers consistently attributed to VM and endothelial transdifferentiation in the glioblastoma literature. METHODS Ovid MEDLINE and Ovid Embase were searched for studies published between January 1999 and July 2021 that assessed VM or tumour to endothelial transdifferentiation in human glioblastoma. The online systematic review tool Covidence was used for screening and data extraction. Extracted data included type of tumour-derived vasculature reported, methods and techniques used, and markers investigated. Studies were grouped based on type of vasculature reported for further assessment. RESULTS One hundred and thirteen of the 419 unique records identified were included for analysis. VM was reported in 64/113 studies, while tumour to endothelial transdifferentiation was reported in 16/113 studies. The remaining studies used both terms to describe a single process, did not define the process that occurred, or concluded that neither VM nor endothelial transdifferentiation occurred. Absence of CD34 and/or CD31 in vascular structures was the most common indicator of VM, while expression of CD34 and/or CD31, in addition to various other endothelial, stem cell or tumour cell markers, indicated tumour to endothelial transdifferentiation. CONCLUSION Cells derived from tumour to endothelial transdifferentiation express typical endothelial markers including CD34 and CD31, while tumour cells contributing to VM lack CD34 and CD31 expression. Additional tumour markers are required to identify transdifferentiation in glioblastoma tissue, and this process requires further characterisation.
Collapse
Affiliation(s)
- Kelsey Maddison
- grid.266842.c0000 0000 8831 109XMedical Sciences Building, School of Biomedical Sciences and Pharmacy, The University of Newcastle, University Drive, 2308 Callaghan, NSW Australia ,grid.266842.c0000 0000 8831 109XMark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW Australia ,grid.413648.cDrug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Nikola A. Bowden
- grid.266842.c0000 0000 8831 109XSchool of Medicine and Public Health, The University of Newcastle, Callaghan, NSW Australia ,grid.413648.cDrug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Moira C. Graves
- grid.266842.c0000 0000 8831 109XSchool of Medicine and Public Health, The University of Newcastle, Callaghan, NSW Australia ,grid.266842.c0000 0000 8831 109XMark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW Australia ,grid.413648.cDrug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Paul A. Tooney
- grid.266842.c0000 0000 8831 109XMedical Sciences Building, School of Biomedical Sciences and Pharmacy, The University of Newcastle, University Drive, 2308 Callaghan, NSW Australia ,grid.266842.c0000 0000 8831 109XMark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW Australia ,grid.413648.cDrug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| |
Collapse
|
45
|
Nakajima M, Kawahara R, Simizu S. Cofilin promotes vasculogenic mimicry by regulating the actin cytoskeleton in human breast cancer cells. FEBS Lett 2023; 597:1114-1124. [PMID: 36737242 DOI: 10.1002/1873-3468.14594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Vasculogenic mimicry (VM) is the formation of microvascular channels by cancer cells. VM requires cellular processes that are regulated by changes in cellular migration and morphology. Cofilin (CFL), a key regulator of actin depolymerization, has been reported to affect malignant phenotypes of cancer. We show that treatment with inhibitors of actin dynamics suppresses VM in MDA-MB-231 human breast cancer cells. We established CFL-knockout (KO) MDA-MB-231 cells and found that VM was attenuated in CFL-KO cells. Although the re-expression of wild-type CFL restored VM in CFL-KO cells, inactive phosphomimetic CFL failed to do so. Collectively, our results demonstrate that CFL is a critical regulator of VM and implicate CFL as a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Minami Nakajima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Ryota Kawahara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
46
|
Lee MC, Cai H, Murray CW, Li C, Shue YT, Andrejka L, He AL, Holzem AME, Drainas AP, Ko JH, Coles GL, Kong C, Zhu S, Zhu C, Wang J, van de Rijn M, Petrov DA, Winslow MM, Sage J. A multiplexed in vivo approach to identify driver genes in small cell lung cancer. Cell Rep 2023; 42:111990. [PMID: 36640300 PMCID: PMC9972901 DOI: 10.1016/j.celrep.2023.111990] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/24/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Small cell lung cancer (SCLC) is a lethal form of lung cancer. Here, we develop a quantitative multiplexed approach on the basis of lentiviral barcoding with somatic CRISPR-Cas9-mediated genome editing to functionally investigate candidate regulators of tumor initiation and growth in genetically engineered mouse models of SCLC. We found that naphthalene pre-treatment enhances lentiviral vector-mediated SCLC initiation, enabling high multiplicity of tumor clones for analysis through high-throughput sequencing methods. Candidate drivers of SCLC identified from a meta-analysis across multiple human SCLC genomic datasets were tested using this approach, which defines both positive and detrimental impacts of inactivating 40 genes across candidate pathways on SCLC development. This analysis and subsequent validation in human SCLC cells establish TSC1 in the PI3K-AKT-mTOR pathway as a robust tumor suppressor in SCLC. This approach should illuminate drivers of SCLC, facilitate the development of precision therapies for defined SCLC genotypes, and identify therapeutic targets.
Collapse
Affiliation(s)
- Myung Chang Lee
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Hongchen Cai
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Chuan Li
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yan Ting Shue
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Laura Andrejka
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Andy L He
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Alessandra M E Holzem
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julie H Ko
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Garry L Coles
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Christina Kong
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Shirley Zhu
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - ChunFang Zhu
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Jason Wang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Matt van de Rijn
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Kim JW, Ko JH, Sage J. DLL3 regulates Notch signaling in small cell lung cancer. iScience 2022; 25:105603. [PMID: 36483011 PMCID: PMC9722452 DOI: 10.1016/j.isci.2022.105603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor heterogeneity plays a critical role in tumor development and response to treatment. In small-cell lung cancer (SCLC), intratumoral heterogeneity is driven in part by the Notch signaling pathway, which reprograms neuroendocrine cancer cells to a less/non-neuroendocrine state. Here we investigated the atypical Notch ligand DLL3 as a biomarker of the neuroendocrine state and a regulator of cell-cell interactions in SCLC. We first built a mathematical model to predict the impact of DLL3 expression on SCLC cell populations. We next tested this model using a single-chain variable fragment (scFv) to track DLL3 expression in vivo and a new mouse model of SCLC with inducible expression of DLL3 in SCLC tumors. We found that high levels of DLL3 promote the expansion of a SCLC cell population with lower expression levels of both neuroendocrine and non-neuroendocrine markers. This work may influence how DLL3-targeting therapies are used in SCLC patients.
Collapse
Affiliation(s)
- Jun W. Kim
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
- Department of Genetics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
| | - Julie H. Ko
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
- Department of Genetics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
- Department of Genetics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
| |
Collapse
|
48
|
Wang J, Xia W, Huang Y, Li H, Tang Y, Li Y, Yi B, Zhang Z, Yang J, Cao Z, Zhou J. A vasculogenic mimicry prognostic signature associated with immune signature in human gastric cancer. Front Immunol 2022; 13:1016612. [PMID: 36505458 PMCID: PMC9727221 DOI: 10.3389/fimmu.2022.1016612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most lethal malignant tumors worldwide with poor outcomes. Vascular mimicry (VM) is an alternative blood supply to tumors that is independent of endothelial cells or angiogenesis. Previous studies have shown that VM was associated with poor prognosis in patients with GC, but the underlying mechanisms and the relationship between VM and immune infiltration of GC have not been well studied. METHODS In this study, expression profiles from VM-related genes were retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Cox regression was performed to identify key VM-related genes for survival. Subsequently, a novel risk score model in GC named VM index and a nomogram was constructed. In addition, the expression of one key VM-related gene (serpin family F member 1, SERPINF1) was validated in 33 GC tissues and 23 paracancer tissues using immunohistochemistry staining. RESULTS Univariate and multivariate Cox regression suggested that SERPINF1 and tissue factor pathway inhibitor 2 (TFPI2) were independent risk factors for the prognosis of patients with GC. The AUC (> 0.7) indicated the satisfactory discriminative ability of the nomogram. SsGESA and ESTIMATE showed that higher expression of SERPINF1 and TFPI2 is associated with immune infiltration of GC. Immunohistochemistry staining confirmed that the expression of SERPINF1 protein was significantly higher in GC tissues than that in paracancer tissues. CONCLUSION A VM index and a nomogram were constructed and showed satisfactory predictive performance. In addition, VM was confirmed to be widely involved in immune infiltration, suggesting that VM could be a promising target in guiding immunotherapy. Taken together, we identified SERPINF1 and TFPI2 as immunologic and prognostic biomarkers related to VM in GC.
Collapse
Affiliation(s)
- Jie Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Xia
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yujie Huang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haoran Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuchen Tang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ye Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Yi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zixiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian Yang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhifei Cao
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
49
|
Zhu Y, Cui Y, Zheng X, Zhao Y, Sun G. Small-cell lung cancer brain metastasis: From molecular mechanisms to diagnosis and treatment. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166557. [PMID: 36162624 DOI: 10.1016/j.bbadis.2022.166557] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
Lung cancer is the most malignant human cancer worldwide, also with the highest incidence rate. However, small-cell lung cancer (SCLC) accounts for 14 % of all lung cancer cases. Approximately 10 % of patients with SCLC have brain metastasis at the time of diagnosis, which is the leading cause of death of patients with SCLC worldwide. The median overall survival is only 4.9 months, and a long-tern cure exists for patients with SCLC brain metastasis due to limited common therapeutic options. Recent studies have enhanced our understanding of the molecular mechanisms leading to meningeal metastasis, and multimodality treatments have brought new hopes for a better cure for the disease. This review aimed to offer an insight into the cellular processes of different metastatic stages of SCLC revealed by the established animal models, and into the major diagnostic methods of SCLC. Additionally, it provided in-depth information on the recent advances in SCLC treatments, and highlighted several new models and biomarkers with promises to improve the prognosis of SCLC.
Collapse
Affiliation(s)
- Yingze Zhu
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Yishuang Cui
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Xuan Zheng
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Yue Zhao
- Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.
| | - Guogui Sun
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China.
| |
Collapse
|
50
|
Yilmaz A, Loustau T, Salomé N, Poilil Surendran S, Li C, Tucker RP, Izzi V, Lamba R, Koch M, Orend G. Advances on the roles of tenascin-C in cancer. J Cell Sci 2022; 135:276631. [PMID: 36102918 PMCID: PMC9584351 DOI: 10.1242/jcs.260244] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The roles of the extracellular matrix molecule tenascin-C (TNC) in health and disease have been extensively reviewed since its discovery over 40 years ago. Here, we will describe recent insights into the roles of TNC in tumorigenesis, angiogenesis, immunity and metastasis. In addition to high levels of expression in tumors, and during chronic inflammation, and bacterial and viral infection, TNC is also expressed in lymphoid organs. This supports potential roles for TNC in immunity control. Advances using murine models with engineered TNC levels were instrumental in the discovery of important functions of TNC as a danger-associated molecular pattern (DAMP) molecule in tissue repair and revealed multiple TNC actions in tumor progression. TNC acts through distinct mechanisms on many different cell types with immune cells coming into focus as important targets of TNC in cancer. We will describe how this knowledge could be exploited for cancer disease management, in particular for immune (checkpoint) therapies.
Collapse
Affiliation(s)
- Alev Yilmaz
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Thomas Loustau
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Nathalie Salomé
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Suchithra Poilil Surendran
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Chengbei Li
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Richard P. Tucker
- University of California at Davis 4 Department of Cell Biology and Human Anatomy , , 95616 Davis, CA , USA
| | - Valerio Izzi
- University of Oulu 5 Faculty of Biochemistry and Molecular Medicine , , FI-90014 Oulu , Finland
- University of Oulu 6 Faculty of Medicine , , FI-90014 Oulu , Finland
| | - Rijuta Lamba
- University of Oulu 5 Faculty of Biochemistry and Molecular Medicine , , FI-90014 Oulu , Finland
- University of Oulu 6 Faculty of Medicine , , FI-90014 Oulu , Finland
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Research, Center for Biochemistry, Center for Molecular Medicine Cologne (CMMC) 7 , Faculty of Medicine and , Joseph-Stelzmann-Str. 52, 50931 Cologne , Germany
- University Hospital Cologne, University of Cologne 7 , Faculty of Medicine and , Joseph-Stelzmann-Str. 52, 50931 Cologne , Germany
| | - Gertraud Orend
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| |
Collapse
|