1
|
Tian C, Liu X, Hao Y, Fu H, Shao X, Cai W. Flexible Tail of Antimicrobial Peptide PGLa Facilitates Water Pore Formation in Membranes. J Phys Chem B 2025; 129:1453-1461. [PMID: 39847609 DOI: 10.1021/acs.jpcb.4c06190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
PGLa, an antimicrobial peptide (AMP), primarily exerts its antibacterial effects by disrupting bacterial cell membrane integrity. Previous theoretical studies mainly focused on the binding mechanism of PGLa with membranes, while the mechanism of water pore formation induced by PGLa peptides, especially the role of structural flexibility in the process, remains unclear. In this study, using all-atom simulations, we investigated the entire process of membrane deformation caused by the interaction of PGLa with an anionic cell membrane composed of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG). Using a deep learning-based key intermediate identification algorithm, we found that the C-terminal tail plays a crucial role for PGLa insertion into the membrane, and that with its assistance, a variety of water pores formed inside the membrane. Mutation of the tail residues revealed that, in addition to electrostatic and hydrophobic interactions, the flexibility of the tail residues is crucial for peptide insertion and pore formation. The full extension of these flexible residues enhances peptide-peptide and peptide-membrane interactions, guiding the transmembrane movement of PGLa and the aggregation of PGLa monomers within the membrane, ultimately leading to the formation of water-filled pores in the membrane. Overall, this study provides a deep understanding of the transmembrane mechanism of PGLa and similar AMPs, particularly elucidating for the first time the importance of C-terminal flexibility in both insertion and oligomerization processes.
Collapse
Affiliation(s)
- Chunsuo Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuyang Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuelei Hao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haohao Fu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
2
|
Wang Y, Song M, Chang W. Antimicrobial peptides and proteins against drug-resistant pathogens. Cell Surf 2024; 12:100135. [PMID: 39687062 PMCID: PMC11646788 DOI: 10.1016/j.tcsw.2024.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The rise of drug-resistant pathogens, driven by the misuse and overuse of antibiotics, has created a formidable challenge for global public health. Antimicrobial peptides and proteins have garnered considerable attention as promising candidates for novel antimicrobial agents. These bioactive molecules, whether derived from natural sources, designed synthetically, or predicted using artificial intelligence, can induce lethal effects on pathogens by targeting key microbial structures or functional components, such as cell membranes, cell walls, biofilms, and intracellular components. Additionally, they may enhance overall immune defenses by modulating innate or adaptive immune responses in the host. Of course, development of antimicrobial peptides and proteins also face some limitations, including high toxicity, lack of selectivity, insufficient stability, and potential immunogenicity. Despite these challenges, they remain a valuable resource in the fight against drug-resistant pathogens. Future research should focus on overcoming these limitations to fully realize the therapeutic potential of antimicrobial peptides in the infection control.
Collapse
Affiliation(s)
- Yeji Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minghui Song
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
3
|
Chen CH. Membrane-active peptides for anticancer therapies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 212:67-116. [PMID: 40122653 DOI: 10.1016/bs.pmbts.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Membrane-active peptides are found in many living organisms and play a critical role in their immune systems by combating various infectious diseases. These host defense peptides employ multiple mechanisms against different microorganisms and possess unique functions, such as anti-inflammatory and immunomodulatory effects, often working in synergy with other antimicrobial agents. Despite extensive research over the past few decades and the identification of thousands of sequences, only a few have been successfully applied in clinical settings and received approval from the U.S. Food and Drug Administration. In this chapter, we explore all peptide therapeutics that have reached the market, as well as candidates in preclinical and clinical trials, to understand their success and potential applications in cancer therapy. Our findings indicate that at least four membrane-active peptide drugs have progressed to preclinical or clinical phases, dmonstrating promising results for cancer treatment. We summarize our insights in this chapter, highlighting the potential of membrane-active anticancer peptide therapeutics and their applications as targeting ligands in various biomedical fields.
Collapse
Affiliation(s)
- Charles H Chen
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States.
| |
Collapse
|
4
|
Zhao PH, Cai JW, Li Y, Li QH, Niu MM, Meng XC, Liu F. An insight into structure-activity relationships in subclass IIb bacteriocins: Plantaricin EvF. Int J Biol Macromol 2024; 278:134656. [PMID: 39134194 DOI: 10.1016/j.ijbiomac.2024.134656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
This study reports the structure-activity relationships of a unique subclass IIb bacteriocin, plantaricin EvF, which consists of two peptide chains and possesses potent antimicrobial activity. Because the plantaricin Ev peptide chain lacks an α-helix structure, plantaricin EvF is unable to exert its antimicrobial activity through helix-helix interactions like typical subclass IIb bacteriocins. We have shown by various structural evaluation methods that plantaricin Ev can be stabilized by hydrogen bonding at amino acid residues R3, V12, and R13 to the N-terminal region of plantaricin F. This binding gives plantaricin EvF a special spade-shaped structure that exerts antimicrobial activity. In addition, the root-mean-square deviations (RMSDs) of the amino acid residues Y6, F8, and R13 of plantaricin Ev pre- and post-binding were 1.512, 1.723, and 1.369, respectively, indicating that they underwent large structural changes. The alanine scanning experiments demonstrated the important role of the above key amino acids in maintaining the structural integrity of plantaricin EvF. This study not only reveals the unique structural features of plantaricin EvF, but also provides an insight into the structure-activity relationships of subclass IIb bacteriocins.
Collapse
Affiliation(s)
- Peng-Hao Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Jun-Wu Cai
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yan Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Qiao-Hui Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Meng-Meng Niu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xiang-Chen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Rangubpit W, Sungted S, Wong-Ekkabut J, Distaffen HE, Nilsson BL, Dias CL. Pore Formation by Amyloid-like Peptides: Effects of the Nonpolar-Polar Sequence Pattern. ACS Chem Neurosci 2024; 15:3354-3362. [PMID: 39172951 PMCID: PMC11443323 DOI: 10.1021/acschemneuro.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
One of the mechanisms accounting for the toxicity of amyloid peptides in diseases like Alzheimer's and Parkinson's is the formation of pores on the plasma membrane of neurons. Here, we perform unbiased all-atom simulations of the full membrane damaging pathway, which includes adsorption, aggregation, and perforation of the lipid bilayer accounting for pore-like structures. Simulations are performed using four peptides made with the same amino acids. Differences in the nonpolar-polar sequence pattern of these peptides prompt them to adsorb into the membrane with the extended conformations oriented either parallel [peptide labeled F1, Ac-(FKFE)2-NH2], perpendicular (F4, Ac-FFFFKKEE-NH2), or with an intermediate orientation (F2, Ac-FFKKFFEE-NH2, and F3, Ac-FFFKFEKE-NH2) in regard to the membrane surface. At the water-lipid interface, only F1 fully self-assembles into β-sheets, and F2 peptides partially fold into an α-helical structure. The β-sheets of F1 emerge as electrostatic interactions attract neighboring peptides to intermediate distances where nonpolar side chains can interact within the dry core of the bilayer. This complex interplay between electrostatic and nonpolar interactions is not observed for the other peptides. Although β-sheets of F1 peptides are mostly parallel to the membrane, some of their edges penetrate deep inside the bilayer, dragging water molecules with them. This precedes pore formation, which starts with the flow of two water layers through the membrane that expand into a stable cylindrical pore delimited by polar faces of β-sheets spanning both leaflets of the bilayer.
Collapse
Affiliation(s)
- Warin Rangubpit
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Siwaporn Sungted
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jirasak Wong-Ekkabut
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Hannah E Distaffen
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
- Materials Science Program, University of Rochester, Rochester, New York 14627-0166, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
6
|
Wang S, Xu H, Li Y, Zhang L, Xu S. Aggression to Biomembranes by Hydrophobic Tail Chains under the Stimulus of Reductant. Molecules 2024; 29:4001. [PMID: 39274849 PMCID: PMC11396224 DOI: 10.3390/molecules29174001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Stimulus-responsive materials hold significant promise for antitumor applications due to their variable structures and physical properties. In this paper, a series of peptides with a responsive viologen derivative, Pep-CnV (n = 1, 2, 3) were designed and synthesized. The process and mechanism of the interaction were studied and discussed. An ultraviolet-visible (UV) spectrophotometer and fluorescence spectrophotometer were used to study their redox responsiveness. Additionally, their secondary structures were measured by Circular Dichroism (CD) in the presence or absence of the reductant, Na2SO3. DPPC and DPPG liposomes were prepared to mimic normal and tumor cell membranes. The interaction between Pep-CnV and biomembranes was investigated by the measurements of surface tension and cargo leakage. Results proved Pep-CnV was more likely to interact with the DPPG liposome and destroy its biomembrane under the stimulus of the reductant. And the destruction increased with the length of the hydrophobic tail chain. Pep-CnV showed its potential as an intelligent antitumor agent.
Collapse
Affiliation(s)
- Sijia Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Huifang Xu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yuanyuan Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lingyi Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shouhong Xu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Ulmschneider JP, Ulmschneider MB. Melittin can permeabilize membranes via large transient pores. Nat Commun 2024; 15:7281. [PMID: 39179607 PMCID: PMC11343860 DOI: 10.1038/s41467-024-51691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
Membrane active peptides are known to porate lipid bilayers, but their exact permeabilization mechanism and the structure of the nanoaggregates they form in membranes have often been difficult to determine experimentally. For many sequences at lower peptide concentrations, transient leakage is observed in experiments, suggesting the existence of transient pores. For two well-know peptides, alamethicin and melittin, we show here that molecular mechanics simulations i) can directly distinguish equilibrium poration and non-equilibrium transient leakage processes, and ii) can be used to observe the detailed pore structures and mechanism of permeabilization in both cases. Our results are in very high agreement with numerous experimental evidence for these two peptides. This suggests that molecular simulations can capture key membrane poration phenomena directly and in the future may develop to be a useful tool that can assist experimental peptide design.
Collapse
Affiliation(s)
- Jakob P Ulmschneider
- Institute of Natural Sciences and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
| | | |
Collapse
|
8
|
Deb R, Torres MDT, Boudný M, Koběrská M, Cappiello F, Popper M, Dvořáková
Bendová K, Drabinová M, Hanáčková A, Jeannot K, Petřík M, Mangoni ML, Balíková Novotná G, Mráz M, de la Fuente-Nunez C, Vácha R. Computational Design of Pore-Forming Peptides with Potent Antimicrobial and Anticancer Activities. J Med Chem 2024; 67:14040-14061. [PMID: 39116273 PMCID: PMC11345766 DOI: 10.1021/acs.jmedchem.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Peptides that form transmembrane barrel-stave pores are potential alternative therapeutics for bacterial infections and cancer. However, their optimization for clinical translation is hampered by a lack of sequence-function understanding. Recently, we have de novo designed the first synthetic barrel-stave pore-forming antimicrobial peptide with an identified function of all residues. Here, we systematically mutate the peptide to improve pore-forming ability in anticipation of enhanced activity. Using computer simulations, supported by liposome leakage and atomic force microscopy experiments, we find that pore-forming ability, while critical, is not the limiting factor for improving activity in the submicromolar range. Affinity for bacterial and cancer cell membranes needs to be optimized simultaneously. Optimized peptides more effectively killed antibiotic-resistant ESKAPEE bacteria at submicromolar concentrations, showing low cytotoxicity to human cells and skin model. Peptides showed systemic anti-infective activity in a preclinical mouse model of Acinetobacter baumannii infection. We also demonstrate peptide optimization for pH-dependent antimicrobial and anticancer activity.
Collapse
Affiliation(s)
- Rahul Deb
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Marcelo D. T. Torres
- Machine
Biology Group, Departments of Psychiatry and Microbiology, Institute
for Biomedical Informatics, Institute for Translational Medicine and
Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, School
of Engineering and Applied Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn
Institute for Computational Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Miroslav Boudný
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department
of Internal Medicine, Hematology and Oncology, University Hospital
Brno and Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Markéta Koběrská
- Institute
of Microbiology, Czech Academy of Sciences,
BIOCEV, Vestec 252 50, Czech Republic
| | - Floriana Cappiello
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | - Miroslav Popper
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
| | - Kateřina Dvořáková
Bendová
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
| | - Martina Drabinová
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Adelheid Hanáčková
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Katy Jeannot
- University
of Franche-Comté, CNRS, Chrono-environment, Besançon 25030, France
- National Reference Centre for Antibiotic
Resistance, Besançon 25030, France
| | - Miloš Petřík
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Czech
Advanced Technology and Research Institute, Palacký University, Olomouc 779 00, Czech Republic
| | - Maria Luisa Mangoni
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | | | - Marek Mráz
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department
of Internal Medicine, Hematology and Oncology, University Hospital
Brno and Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Cesar de la Fuente-Nunez
- Machine
Biology Group, Departments of Psychiatry and Microbiology, Institute
for Biomedical Informatics, Institute for Translational Medicine and
Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, School
of Engineering and Applied Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn
Institute for Computational Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert Vácha
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- Department
of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic
| |
Collapse
|
9
|
Park P, Matsubara DK, Barzotto DR, Lima FS, Chaimovich H, Marrink SJ, Cuccovia IM. Vesicle protrusion induced by antimicrobial peptides suggests common carpet mechanism for short antimicrobial peptides. Sci Rep 2024; 14:9701. [PMID: 38678109 PMCID: PMC11055889 DOI: 10.1038/s41598-024-60601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
Short-cationic alpha-helical antimicrobial peptides (SCHAMPs) are promising candidates to combat the growing global threat of antimicrobial resistance. They are short-sequenced, selective against bacteria, and have rapid action by destroying membranes. A full understanding of their mechanism of action will provide key information to design more potent and selective SCHAMPs. Molecular Dynamics (MD) simulations are invaluable tools that provide detailed insights into the peptide-membrane interaction at the atomic- and meso-scale level. We use atomistic and coarse-grained MD to look into the exact steps that four promising SCHAMPs-BP100, Decoralin, Neurokinin-1, and Temporin L-take when they interact with membranes. Following experimental set-ups, we explored the effects of SCHAMPs on anionic membranes and vesicles at multiple peptide concentrations. Our results showed all four peptides shared similar binding steps, initially binding to the membrane through electrostatic interactions and then flipping on their axes, dehydrating, and inserting their hydrophobic moieties into the membrane core. At higher concentrations, fully alpha-helical peptides induced membrane budding and protrusions. Our results suggest the carpet mode of action is fit for the description of SCHAMPs lysis activity and discuss the importance of large hydrophobic residues in SCHAMPs design and activity.
Collapse
Affiliation(s)
- Peter Park
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG, Groningen, the Netherlands
| | - Danilo K Matsubara
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Domenico R Barzotto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Filipe S Lima
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Brazil
| | - Hernan Chaimovich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG, Groningen, the Netherlands.
| | - Iolanda M Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Cherniavskyi YK, Oliva R, Stellato M, Del Vecchio P, Galdiero S, Falanga A, Dames SA, Tieleman DP. Structural characterization of the antimicrobial peptides myxinidin and WMR in bacterial membrane mimetic micelles and bicelles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184272. [PMID: 38211645 DOI: 10.1016/j.bbamem.2024.184272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Antimicrobial peptides are a promising class of potential antibiotics that interact selectively with negatively charged lipid bilayers. This paper presents the structural characterization of the antimicrobial peptides myxinidin and WMR associated with bacterial membrane mimetic micelles and bicelles by NMR, CD spectroscopy, and molecular dynamics simulations. Both peptides adopt a different conformation in the lipidic environment than in aqueous solution. The location of the peptides in micelles and bicelles has been studied by paramagnetic relaxation enhancement experiments with paramagnetic tagged 5- and 16-doxyl stearic acid (5-/16-SASL). Molecular dynamics simulations of multiple copies of the peptides were used to obtain an atomic level of detail on membrane-peptide and peptide-peptide interactions. Our results highlight an essential role of the negatively charged membrane mimetic in the structural stability of both myxinidin and WMR. The peptides localize predominantly in the membrane's headgroup region and have a noticeable membrane thinning effect on the overall bilayer structure. Myxinidin and WMR show a different tendency to self-aggregate, which is also influenced by the membrane composition (DOPE/DOPG versus DOPE/DOPG/CL) and can be related to the previously observed difference in the ability of the peptides to disrupt different types of model membranes.
Collapse
Affiliation(s)
- Yevhen K Cherniavskyi
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Marco Stellato
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, 80126 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples 'Federico II', Via dell' Università 100, 80055 Portici, Naples, Italy
| | - Sonja A Dames
- Chair of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany; Hausdorff Center for Mathematics, University of Bonn, Endenicher Allee 62, 53115 Bonn, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
11
|
Feijoo-Coronel ML, Mendes B, Ramírez D, Peña-Varas C, de los Monteros-Silva NQE, Proaño-Bolaños C, de Oliveira LC, Lívio DF, da Silva JA, da Silva JMSF, Pereira MGAG, Rodrigues MQRB, Teixeira MM, Granjeiro PA, Patel K, Vaiyapuri S, Almeida JR. Antibacterial and Antiviral Properties of Chenopodin-Derived Synthetic Peptides. Antibiotics (Basel) 2024; 13:78. [PMID: 38247637 PMCID: PMC10812719 DOI: 10.3390/antibiotics13010078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Antimicrobial peptides have been developed based on plant-derived molecular scaffolds for the treatment of infectious diseases. Chenopodin is an abundant seed storage protein in quinoa, an Andean plant with high nutritional and therapeutic properties. Here, we used computer- and physicochemical-based strategies and designed four peptides derived from the primary structure of Chenopodin. Two peptides reproduce natural fragments of 14 amino acids from Chenopodin, named Chen1 and Chen2, and two engineered peptides of the same length were designed based on the Chen1 sequence. The two amino acids of Chen1 containing amide side chains were replaced by arginine (ChenR) or tryptophan (ChenW) to generate engineered cationic and hydrophobic peptides. The evaluation of these 14-mer peptides on Staphylococcus aureus and Escherichia coli showed that Chen1 does not have antibacterial activity up to 512 µM against these strains, while other peptides exhibited antibacterial effects at lower concentrations. The chemical substitutions of glutamine and asparagine by amino acids with cationic or aromatic side chains significantly favoured their antibacterial effects. These peptides did not show significant hemolytic activity. The fluorescence microscopy analysis highlighted the membranolytic nature of Chenopodin-derived peptides. Using molecular dynamic simulations, we found that a pore is formed when multiple peptides are assembled in the membrane. Whereas, some of them form secondary structures when interacting with the membrane, allowing water translocations during the simulations. Finally, Chen2 and ChenR significantly reduced SARS-CoV-2 infection. These findings demonstrate that Chenopodin is a highly useful template for the design, engineering, and manufacturing of non-toxic, antibacterial, and antiviral peptides.
Collapse
Affiliation(s)
- Marcia L. Feijoo-Coronel
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Carlos Peña-Varas
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | | | - Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
| | - Leonardo Camilo de Oliveira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Diego Fernandes Lívio
- Campus Centro Oeste, Federal University of São João Del-Rei, Rua Sebastião Gonçalves Filho, n 400, Chanadour, Divinópolis 35501-296, Brazil
| | - José Antônio da Silva
- Campus Centro Oeste, Federal University of São João Del-Rei, Rua Sebastião Gonçalves Filho, n 400, Chanadour, Divinópolis 35501-296, Brazil
| | - José Maurício S. F. da Silva
- Departamento de Bioquímica, Centro de Ciências Biomédicas, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Sala E209, Alfenas 37130-001, Brazil
| | - Marília Gabriella A. G. Pereira
- Departamento de Bioquímica, Centro de Ciências Biomédicas, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Sala E209, Alfenas 37130-001, Brazil
| | - Marina Q. R. B. Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biomédicas, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Sala E209, Alfenas 37130-001, Brazil
- Departamento de Engenharia de Biossistemas, Campus Dom Bosco, Federal University of São João Del-Rei, Praça Dom Helvécio, 74, Fábricas, São João del-Rei 36301-160, Brazil
| | - Mauro M. Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Paulo Afonso Granjeiro
- Campus Centro Oeste, Federal University of São João Del-Rei, Rua Sebastião Gonçalves Filho, n 400, Chanadour, Divinópolis 35501-296, Brazil
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK
| | | | - José R. Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| |
Collapse
|
12
|
Jorgensen C, Troendle EP, Ulmschneider JP, Searson PC, Ulmschneider MB. A least-squares-fitting procedure for an efficient preclinical ranking of passive transport across the blood-brain barrier endothelium. J Comput Aided Mol Des 2023; 37:537-549. [PMID: 37573260 PMCID: PMC10505096 DOI: 10.1007/s10822-023-00525-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
The treatment of various disorders of the central nervous system (CNS) is often impeded by the limited brain exposure of drugs, which is regulated by the human blood-brain barrier (BBB). The screening of lead compounds for CNS penetration is challenging due to the biochemical complexity of the BBB, while experimental determination of permeability is not feasible for all types of compounds. Here we present a novel method for rapid preclinical screening of libraries of compounds by utilizing advancements in computing hardware, with its foundation in transition-based counting of the flux. This method has been experimentally validated for in vitro permeabilities and provides atomic-level insights into transport mechanisms. Our approach only requires a single high-temperature simulation to rank a compound relative to a library, with a typical simulation time converging within 24 to 72 h. The method offers unbiased thermodynamic and kinetic information to interpret the passive transport of small-molecule drugs across the BBB.
Collapse
Affiliation(s)
- Christian Jorgensen
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark.
| | | | | | - Peter C Searson
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
13
|
Khan A, Killick R, Wirth D, Hoogland D, Hristova K, Ulmschneider JP, King CR, Ulmschneider MB. Masking the transmembrane region of the amyloid β precursor protein as a safe means to lower amyloid β production. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12428. [PMID: 37954165 PMCID: PMC10632552 DOI: 10.1002/trc2.12428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 11/14/2023]
Abstract
Introduction Reducing brain levels of both soluble and insoluble forms of amyloid beta (Aβ) remains the primary goal of most therapies that target Alzheimer's disease (AD). However, no treatment has so far resulted in patient benefit, and clinical trials of the most promising drug candidates have generally failed due to significant adverse effects. This highlights the need for safer and more selective ways to target and modulate Aβ biogenesis. Methods Peptide technology has advanced to allow reliable synthesis, purification, and delivery of once-challenging hydrophobic sequences. This is opening up new routes to target membrane processes associated with disease. Here we deploy a combination of atomic detail molecular dynamics (MD) simulations, living-cell Förster resonance energy transfer (FRET), and in vitro assays to elucidate the atomic-detail dynamics, molecular mechanisms, and cellular activity and selectivity of a membrane-active peptide that targets the Aβ precursor protein (APP). Results We demonstrate that Aβ biogenesis can be downregulated selectively using an APP occlusion peptide (APPOP). APPOP inhibits Aβ production in a dose-dependent manner, with a mean inhibitory concentration (IC50) of 450 nM toward exogenous APP and 50 nM toward endogenous APP in primary rat cortical neuronal cultures. APPOP does not impact the γ-secretase cleavage of Notch-1, or exhibit toxicity toward cultured primary rat neurons, suggesting that it selectively shields APP from proteolysis. Discussion Drugs targeting AD need to be given early and for very long periods to prevent the onset of clinical symptoms. This necessitates being able to target Aβ production precisely and without affecting the activity of key cellular enzymes such as γ-secretase for other substrates. Peptides offer a powerful way for targeting key pathways precisely, thereby reducing the risk of adverse effects. Here we show that protecting APP from proteolytic processing offers a promising route to safely and specifically lower Aβ burden. In particular, we show that the amyloid pathway can be targeted directly and specificically. This reduces the risk of off-target effects and paves the way for a safe prophylactic treatment.
Collapse
Affiliation(s)
| | - Richard Killick
- Living Systems InstituteUniversity of ExeterExeterUK
- King's College LondonMaurice Wohl Clinical Neuroscience InstituteCamberwellLondonUK
| | - Daniel Wirth
- Department of Materials Science and Engineering and Institute for NanoBioTechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Christopher R. King
- National Institutes of HealthNational Institute of Neurological Disorders and StrokeBethesdaMarylandUSA
| | | |
Collapse
|
14
|
Cao Z, Zhao L, Yan T, Liu L. Effects of C-Terminal Lys-Arg Residue of AapA1 Protein on Toxicity and Structural Mechanism. Toxins (Basel) 2023; 15:542. [PMID: 37755968 PMCID: PMC10537873 DOI: 10.3390/toxins15090542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Previous experimental investigations have established the indispensability of the C-terminal Lys-Arg residues in the toxic activity of the AapA1 toxin protein. AapA1 is classified as a type I toxin-antitoxin (TA) bacterial toxin, and the precise impact of the C-terminal Lys-Arg residues on its structure and mechanism of action remains elusive. To address this knowledge gap, the present study employed molecular dynamics (MD) and enhanced sampling Well-tempered Two-dimensional Metadynamics (2D-MetaD) simulations to examine the behavior of the C-terminal Lys-Arg residues of truncated AapA1 toxin (AapA1-28) within the inner membrane of Escherichia coli. Specifically, the study focused on the elucidation of possible conformation states of AapA1-28 protein in POPE/POPG (3:1) bilayers and their interactions between the protein and POPE/POPG (3:1) bilayers. The findings of our investigation indicate that the AapA1-28 protein does not adopt a vertical orientation upon membrane insertion; rather, it assumes an angled conformation, with the side chain of Lys-23 directed toward the upper layer of the membrane. This non-transmembrane conformation of AapA1-28 protein impedes its ability to form pores within the membrane, resulting in reduced toxicity towards Escherichia coli. These results suggest that C-Terminal positively charged residues are essential for electrostatic binding to the negatively charged head group of bottom bilayer membrane, which stabilize the transmembrane conformation. These outcomes contribute to our comprehension of the impact of C-terminal charged residues on the structure and functionality of membrane-associated proteins, and provide an improved understanding of how protein sequence influences the antimicrobial effect.
Collapse
Affiliation(s)
- Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (L.Z.); (T.Y.)
| | - Liling Zhao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (L.Z.); (T.Y.)
- College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China
| | - Tingting Yan
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (L.Z.); (T.Y.)
| | - Lei Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (L.Z.); (T.Y.)
| |
Collapse
|
15
|
Matching amino acids membrane preference profile to improve activity of antimicrobial peptides. Commun Biol 2022; 5:1199. [PMID: 36347951 PMCID: PMC9643456 DOI: 10.1038/s42003-022-04164-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are cationic antibiotics that can kill multidrug-resistant bacteria via membrane insertion. However, their weak activity limits their clinical use. Ironically, the cationic charge of AMPs is essential for membrane binding, but it obstructs membrane insertion. In this study, we postulate that this problem can be overcome by locating cationic amino acids at the energetically preferred membrane surface. All amino acids have an energetically preferred or less preferred membrane position profile, and this profile is strongly related to membrane insertion. However, most AMPs do not follow this profile. One exception is protegrin-1, a powerful but neglected AMP. In the present study, we found that a potent AMP, WCopW5, strongly resembles protegrin-1 and that the match between its sequence and the preferred position profile closely correlates with its antimicrobial activity. One of its derivatives, WCopW43, has antimicrobial activity comparable to that of the most effective AMPs in clinical use.
Collapse
|
16
|
Doolan JA, Williams GT, Hilton KLF, Chaudhari R, Fossey JS, Goult BT, Hiscock JR. Advancements in antimicrobial nanoscale materials and self-assembling systems. Chem Soc Rev 2022; 51:8696-8755. [PMID: 36190355 PMCID: PMC9575517 DOI: 10.1039/d1cs00915j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Antimicrobial resistance is directly responsible for more deaths per year than either HIV/AIDS or malaria and is predicted to incur a cumulative societal financial burden of at least $100 trillion between 2014 and 2050. Already heralded as one of the greatest threats to human health, the onset of the coronavirus pandemic has accelerated the prevalence of antimicrobial resistant bacterial infections due to factors including increased global antibiotic/antimicrobial use. Thus an urgent need for novel therapeutics to combat what some have termed the 'silent pandemic' is evident. This review acts as a repository of research and an overview of the novel therapeutic strategies being developed to overcome antimicrobial resistance, with a focus on self-assembling systems and nanoscale materials. The fundamental mechanisms of action, as well as the key advantages and disadvantages of each system are discussed, and attention is drawn to key examples within each field. As a result, this review provides a guide to the further design and development of antimicrobial systems, and outlines the interdisciplinary techniques required to translate this fundamental research towards the clinic.
Collapse
Affiliation(s)
- Jack A Doolan
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - George T Williams
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - Rajas Chaudhari
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| |
Collapse
|
17
|
Yang Y, Distaffen H, Jalali S, Nieuwkoop AJ, Nilsson BL, Dias CL. Atomic Insights into Amyloid-Induced Membrane Damage. ACS Chem Neurosci 2022; 13:2766-2777. [PMID: 36095304 DOI: 10.1021/acschemneuro.2c00446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amphipathic peptides can cause biological membranes to leak either by dissolving their lipid content via a detergent-like mechanism or by forming pores on the membrane surface. These modes of membrane damage have been related to the toxicity of amyloid peptides and to the activity of antimicrobial peptides. Here, we perform the first all-atom simulations in which membrane-bound amphipathic peptides self-assemble into β-sheets that subsequently either form stable pores inside the bilayer or drag lipids out of the membrane surface. An analysis of these simulations shows that the acyl tail of lipids interact strongly with non-polar side chains of peptides deposited on the membrane. These strong interactions enable lipids to be dragged out of the bilayer by oligomeric structures accounting for detergent-like damage. They also disturb the orientation of lipid tails in the vicinity of peptides. These distortions are minimized around pore structures. We also show that membrane-bound β-sheets become twisted with one of their extremities partially penetrating the lipid bilayer. This allows peptides on opposite leaflets to interact and form a long transmembrane β-sheet, which initiates poration. In simulations, where peptides are deposited on a single leaflet, the twist in β-sheets allows them to penetrate the membrane and form pores. In addition, our simulations show that fibril-like structures produce little damage to lipid membranes, as non-polar side chains in these structures are unavailable to interact with the acyl tail of lipids.
Collapse
Affiliation(s)
- Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Hannah Distaffen
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Sharareh Jalali
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
18
|
Li H, Wang Z, Fang X, Zeng W, Yang Y, Jin L, Wei X, Qin Y, Wang C, Liang W. Poroptosis: A form of cell death depending on plasma membrane nanopores formation. iScience 2022; 25:104481. [PMID: 35712073 PMCID: PMC9194171 DOI: 10.1016/j.isci.2022.104481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immunogenic cell death (ICD) in malignant cells can decrease tumor burden and activate antitumor immune response to obtain lasting antitumor immunity, leading to the elimination of distant metastases and prevention of recurrence. Here, we reveal that ppM1 peptide is capable of forming irreparable transmembrane pores on tumor cell membrane, leading to ICD which we name poroptosis. Poroptosis is directly dependent on cell membrane nanopores regardless of the upstream signaling of cell death. ppM1-induced poroptosis was characterized by the sustained release of intracellular LDH. This unique feature is distinct from other well-characterized types of acute necrosis induced by freezing-thawing (F/T) and detergents, which leads to the burst release of intracellular LDH. Our results suggested that steady transmembrane-nanopore-mediated subacute cell death played a vital role in subsequent activated immunity that transforms to an antitumor immune microenvironment. Selectively generating poroptosis in cancer cell could be a promise strategy for cancer therapy.
Collapse
Affiliation(s)
- Hao Li
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zihao Wang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaocui Fang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenfeng Zeng
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlian Yang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lingtao Jin
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Xiuli Wei
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yan Qin
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Chen Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Liang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Chen CH, Liu Y, Eskandari A, Ghimire J, Lin LC, Fang Z, Wimley WC, Ulmschneider JP, Suntharalingam K, Hu CJ, Ulmschneider MB. Integrated Design of a Membrane-Lytic Peptide-Based Intravenous Nanotherapeutic Suppresses Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105506. [PMID: 35246961 PMCID: PMC9069370 DOI: 10.1002/advs.202105506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Indexed: 05/30/2023]
Abstract
Membrane-lytic peptides offer broad synthetic flexibilities and design potential to the arsenal of anticancer therapeutics, which can be limited by cytotoxicity to noncancerous cells and induction of drug resistance via stress-induced mutagenesis. Despite continued research efforts on membrane-perforating peptides for antimicrobial applications, success in anticancer peptide therapeutics remains elusive given the muted distinction between cancerous and normal cell membranes and the challenge of peptide degradation and neutralization upon intravenous delivery. Using triple-negative breast cancer as a model, the authors report the development of a new class of anticancer peptides. Through function-conserving mutations, the authors achieved cancer cell selective membrane perforation, with leads exhibiting a 200-fold selectivity over non-cancerogenic cells and superior cytotoxicity over doxorubicin against breast cancer tumorspheres. Upon continuous exposure to the anticancer peptides at growth-arresting concentrations, cancer cells do not exhibit resistance phenotype, frequently observed under chemotherapeutic treatment. The authors further demonstrate efficient encapsulation of the anticancer peptides in 20 nm polymeric nanocarriers, which possess high tolerability and lead to effective tumor growth inhibition in a mouse model of MDA-MB-231 triple-negative breast cancer. This work demonstrates a multidisciplinary approach for enabling translationally relevant membrane-lytic peptides in oncology, opening up a vast chemical repertoire to the arms race against cancer.
Collapse
Affiliation(s)
- Charles H. Chen
- Department of ChemistryKing's College LondonLondonSE1 1DBUK
- Synthetic Biology GroupResearch Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Yu‐Han Liu
- Institute of Biomedical SciencesAcademia SinicaTaipei115Taiwan
| | | | - Jenisha Ghimire
- Department of Biochemistry and Molecular BiologyTulane UniversityNew OrleansLA70112USA
| | | | - Zih‐Syun Fang
- Institute of Biomedical SciencesAcademia SinicaTaipei115Taiwan
| | - William C. Wimley
- Department of Biochemistry and Molecular BiologyTulane UniversityNew OrleansLA70112USA
| | - Jakob P. Ulmschneider
- Department of PhysicsInstitute of Natural SciencesShanghai Jiao Tong UniversityShanghai200240China
| | | | | | | |
Collapse
|
20
|
Chen CH, Bepler T, Pepper K, Fu D, Lu TK. Synthetic molecular evolution of antimicrobial peptides. Curr Opin Biotechnol 2022; 75:102718. [PMID: 35395425 DOI: 10.1016/j.copbio.2022.102718] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 01/18/2023]
Abstract
As we learn more about how peptide structure and activity are related, we anticipate that antimicrobial peptides will be engineered to have strong potency and distinct functions and that synthetic peptides will have new biomedical applications, such as treatments for emerging infectious diseases. As a result of the enormous number of possible amino acid sequences and the low-throughput nature of antimicrobial peptide assays, computational tools for peptide design and optimization are needed for direct experimentation toward obtaining functional sequences. Recent developments in computational tools have improved peptide design, saving labor, reagents, costs, and time. At the same time, improvements in peptide synthesis and experimental platforms continue to reduce the cost and increase the throughput of peptide-drug screening. In this review, we discuss the current methods of peptide design and engineering, including in silico methods and peptide synthesis and screening, and highlight areas of potential improvement.
Collapse
Affiliation(s)
- Charles H Chen
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Tristan Bepler
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Karen Pepper
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Debbie Fu
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Timothy K Lu
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA; Senti Biosciences, South San Francisco, CA 94080, USA.
| |
Collapse
|
21
|
Chen CH, Pepper K, Ulmschneider JP, Ulmschneider MB, Lu TK. Predicting Membrane-Active Peptide Dynamics in Fluidic Lipid Membranes. Methods Mol Biol 2022; 2405:115-136. [PMID: 35298811 DOI: 10.1007/978-1-0716-1855-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the interactions between peptides and lipid membranes could not only accelerate the development of antimicrobial peptides as treatments for infections but also be applied to finding targeted therapies for cancer and other diseases. However, designing biophysical experiments to study molecular interactions between flexible peptides and fluidic lipid membranes has been an ongoing challenge. Recently, with hardware advances, algorithm improvements, and more accurate parameterizations (i.e., force fields), all-atom molecular dynamics (MD) simulations have been used as a "computational microscope" to investigate the molecular interactions and mechanisms of membrane-active peptides in cell membranes (Chen et al., Curr Opin Struct Biol 61:160-166, 2020; Ulmschneider and Ulmschneider, Acc Chem Res 51(5):1106-1116, 2018; Dror et al., Annu Rev Biophys 41:429-452, 2012). In this chapter, we describe how to utilize MD simulations to predict and study peptide dynamics and how to validate the simulations by circular dichroism, intrinsic fluorescent probe, membrane leakage assay, electrical impedance, and isothermal titration calorimetry. Experimentally validated MD simulations open a new route towards peptide design starting from sequence and structure and leading to desirable functions.
Collapse
Affiliation(s)
- Charles H Chen
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Karen Pepper
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jakob P Ulmschneider
- Department of Physics, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | | | - Timothy K Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
22
|
Wang C, Dou X, Li J, Wu J, Cheng Y, An N. Composition and Diversity of the Ocular Surface Microbiota in Patients With Blepharitis in Northwestern China. Front Med (Lausanne) 2021; 8:768849. [PMID: 34950683 PMCID: PMC8688757 DOI: 10.3389/fmed.2021.768849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose: To investigate the composition and diversity of the microbiota on the ocular surface of patients with blepharitis in northwestern China via 16S rDNA amplicon sequencing. Methods: Thirty-seven patients with blepharitis divided into groups of anterior, posterior and mixed blepharitis and twenty healthy controls from northwestern China were enrolled in the study. Samples were collected from the eyelid margin and conjunctival sac of each participant. The V3–V4 region of bacterial 16S rDNA in each sample was amplified and sequenced on the Illumina HiSeq 2500 sequencing platform, and the differences in taxonomy and diversity among different groups were compared. Results: The composition of the ocular surface microbiota of patients with blepharitis was similar to that of healthy subjects, but there were differences in the relative abundance of each bacterium. At the phylum level, the abundances of Actinobacteria, Cyanobacteria, Verrucomicrobia, Acidobacteria, Chloroflexi, and Atribacteria were significantly higher in the blepharitis group than in the healthy control group, while the relative abundance of Firmicutes was significantly lower (p < 0.05, Mann-Whitney U). At the genus level, the abundances of Lactobacillus, Ralstonia, Bacteroides, Akkermansia, Bifidobacterium, Escherichia-Shigella, Faecalibacterium, and Brevibacterium were significantly higher in the blepharitis group than in the healthy control group, while the relative abundances of Bacillus, Staphylococcus, Streptococcus, and Acinetobacter were significantly lower in the blepharitis group (p < 0.05, Mann-Whitney U). The microbiota of anterior blepharitis was similar to that of mixed blepharitis but different from that of posterior blepharitis. Lactobacillus and Bifidobacterium are biomarkers of posterior blepharitis, and Ralstonia is a biomarker of mixed blepharitis. There was no significant difference in the ocular surface microbiota between the eyelid margin and conjunctival sac with or without blepharitis. Conclusion: The ocular surface microbiota of patients with blepharitis varied among different study groups, according to 16S rDNA amplicon sequencing analysis. The reason might be due to the participants being from different environments and having different lifestyles. Lactobacillus, Bifidobacterium, Akkermansia, Ralstonia, and Bacteroides may play important roles in the pathogenesis of blepharitis.
Collapse
Affiliation(s)
- Changhao Wang
- College of Life Science, Northwest University, Xi'an, China
| | - Xiuhong Dou
- College of Life Science, Northwest University, Xi'an, China
| | - Jian Li
- College of Life Science, Northwest University, Xi'an, China
| | - Jie Wu
- Department of Ophthalmology, Xi'an No.1 Hospital, First Affiliated Hospital of Northwest University, Xi'an, China.,Shaanxi Key Laboratory of Ophthalmology, Shaanxi Provincial Clinical Research Center for Ophthalmic Diseases, Shaanxi Institute of Ophthalmology, Xi'an, China
| | - Yan Cheng
- Department of Ophthalmology, Xi'an No.1 Hospital, First Affiliated Hospital of Northwest University, Xi'an, China.,Shaanxi Key Laboratory of Ophthalmology, Shaanxi Provincial Clinical Research Center for Ophthalmic Diseases, Shaanxi Institute of Ophthalmology, Xi'an, China
| | - Na An
- Department of Ophthalmology, Xi'an No.1 Hospital, First Affiliated Hospital of Northwest University, Xi'an, China.,Shaanxi Key Laboratory of Ophthalmology, Shaanxi Provincial Clinical Research Center for Ophthalmic Diseases, Shaanxi Institute of Ophthalmology, Xi'an, China
| |
Collapse
|
23
|
Rocha-Roa C, Orjuela JD, Leidy C, Cossio P, Aponte-Santamaría C. Cardiolipin prevents pore formation in phosphatidylglycerol bacterial membrane models. FEBS Lett 2021; 595:2701-2714. [PMID: 34633077 DOI: 10.1002/1873-3468.14206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
Several antimicrobial peptides, including magainin and the human cathelicidin LL-37, act by forming pores in bacterial membranes. Bacteria such as Staphylococcus aureus modify their membrane's cardiolipin composition to resist such types of perturbations that compromise their membrane stability. Here, we used molecular dynamic simulations to quantify the role of cardiolipin on the formation of pores in simple bacterial-like membrane models composed of phosphatidylglycerol and cardiolipin mixtures. Cardiolipin modified the structure and ordering of the lipid bilayer, making it less susceptible to mechanical changes. Accordingly, the free-energy barrier for the formation of a transmembrane pore and its kinetic instability augmented by increasing the cardiolipin concentration. This is attributed to the unfavorable positioning of cardiolipin near the formed pore, due to its small polar head and bulky hydrophobic body. Overall, our study demonstrates how cardiolipin prevents membrane-pore formation and this constitutes a plausible mechanism used by bacteria to act against stress perturbations and, thereby, gain resistance to antimicrobial agents.
Collapse
Affiliation(s)
- Cristian Rocha-Roa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia
| | - Juan David Orjuela
- Max Planck Tandem Group in Computational Biophysics, Universidad de los Andes, Bogotá, Colombia
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Chad Leidy
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá, Colombia
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
| | | |
Collapse
|
24
|
Ting DSJ, Li J, Verma CS, Goh ETL, Nubile M, Mastropasqua L, Said DG, Beuerman RW, Lakshminarayanan R, Mohammed I, Dua HS. Evaluation of Host Defense Peptide (CaD23)-Antibiotic Interaction and Mechanism of Action: Insights From Experimental and Molecular Dynamics Simulations Studies. Front Pharmacol 2021; 12:731499. [PMID: 34690770 PMCID: PMC8528955 DOI: 10.3389/fphar.2021.731499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background/Aim: Host defense peptides (HDPs) have the potential to provide a novel solution to antimicrobial resistance (AMR) in view of their unique and broad-spectrum antimicrobial activities. We had recently developed a novel hybrid HDP based on LL-37 and human beta-defensin-2, named CaD23, which was shown to exhibit good in vivo antimicrobial efficacy against Staphylococcus aureus in a bacterial keratitis murine model. This study aimed to examine the potential CaD23-antibiotic synergism and the secondary structure and underlying mechanism of action of CaD23. Methods: Peptide-antibiotic interaction was evaluated against S. aureus, methicillin-resistant S. aureus (MRSA), and Pseudomonas aeruginosa using established checkerboard and time-kill assays. Fractional inhibitory concentration index (FICI) was calculated and interpreted as synergistic (FIC<0.5), additive (FIC between 0.5-1.0), indifferent (FIC between >1.0 and ≤4), or antagonistic (FIC>4). SYTOX green uptake assay was performed to determine the membrane-permeabilising action of CaD23. Molecular dynamics (MD) simulations were performed to evaluate the interaction of CaD23 with bacterial and mammalian mimetic membranes. Circular dichroism (CD) spectroscopy was also performed to examine the secondary structures of CaD23. Results: CaD23-amikacin and CaD23-levofloxacin combination treatment exhibited a strong additive effect against S. aureus SH1000 (FICI = 0.60-0.69) and MRSA43300 (FICI = 0.56-0.60) but an indifferent effect against P. aeruginosa (FIC = 1.03-1.15). CaD23 (at 25 μg/ml; 2xMIC) completely killed S. aureus within 30 min. When used at sub-MIC concentration (3.1 μg/ml; 0.25xMIC), it was able to expedite the antimicrobial action of amikacin against S. aureus by 50%. The rapid antimicrobial action of CaD23 was attributed to the underlying membrane-permeabilising mechanism of action, evidenced by the SYTOX green uptake assay and MD simulations studies. MD simulations revealed that cationicity, alpha-helicity, amphiphilicity and hydrophobicity (related to the Trp residue at C-terminal) play important roles in the antimicrobial action of CaD23. The secondary structures of CaD23 observed in MD simulations were validated by CD spectroscopy. Conclusion: CaD23 is a novel alpha-helical, membrane-active synthetic HDP that can enhance and expedite the antimicrobial action of antibiotics against Gram-positive bacteria when used in combination. MD simulations serves as a powerful tool in revealing the peptide secondary structure, dissecting the mechanism of action, and guiding the design and optimisation of HDPs.
Collapse
Affiliation(s)
- Darren Shu Jeng Ting
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom.,Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Jianguo Li
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore.,Bioinformatics Institute (AStar), Singapore, Singapore
| | - Chandra S Verma
- Bioinformatics Institute (AStar), Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Eunice T L Goh
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Mario Nubile
- Ophthalmic Clinic, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Dalia G Said
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
| | - Roger W Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | | | - Imran Mohammed
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Harminder S Dua
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
25
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
26
|
Luo D, Tang J, Shen X, Ji F, Yang J, Weathersby S, Kozina ME, Chen Z, Xiao J, Ye Y, Cao T, Zhang G, Wang X, Lindenberg AM. Twist-Angle-Dependent Ultrafast Charge Transfer in MoS 2-Graphene van der Waals Heterostructures. NANO LETTERS 2021; 21:8051-8057. [PMID: 34529439 DOI: 10.1021/acs.nanolett.1c02356] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Vertically stacked transition metal dichalcogenide-graphene heterostructures provide a platform for novel optoelectronic applications with high photoresponse speeds. Photoinduced nonequilibrium carrier and lattice dynamics in such heterostructures underlie these applications but have not been understood. In particular, the dependence of these photoresponses on the twist angle, a key tuning parameter, remains elusive. Here, using ultrafast electron diffraction, we report the simultaneous visualization of charge transfer and electron-phonon coupling in MoS2-graphene heterostructures with different stacking configurations. We find that the charge transfer timescale from MoS2 to graphene varies strongly with twist angle, becoming faster for smaller twist angles, and show that the relaxation timescale is significantly shorter in a heterostructure as compared to a monolayer. These findings illustrate that twist angle constitutes an additional tuning knob for interlayer charge transfer in heterobilayers and deepen our understanding of fundamental photophysical processes in heterostructures, of importance for future applications in optoelectronics and light harvesting.
Collapse
Affiliation(s)
- Duan Luo
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jian Tang
- Beijing National Laboratory for Condensed Matter Physics, Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Fuhao Ji
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jie Yang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Stephen Weathersby
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michael E Kozina
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Zhijiang Chen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jun Xiao
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yusen Ye
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ting Cao
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
27
|
Teimouri H, Nguyen TN, Kolomeisky AB. Single-cell stochastic modelling of the action of antimicrobial peptides on bacteria. J R Soc Interface 2021; 18:20210392. [PMID: 34520689 PMCID: PMC8440028 DOI: 10.1098/rsif.2021.0392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/18/2021] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) produced by multi-cellular organisms as their immune system's defence against microbes are actively considered as natural alternatives to conventional antibiotics. Although substantial progress has been achieved in studying the AMPs, the microscopic mechanisms of their functioning remain not well understood. Here, we develop a new theoretical framework to investigate how the AMPs are able to efficiently neutralize bacteria. In our minimal theoretical model, the most relevant processes, AMPs entering into and the following inhibition of the single bacterial cell, are described stochastically. Using complementary master equations approaches, all relevant features of bacteria clearance dynamics by AMPs, such as the probability of inhibition and the mean times before the clearance, are explicitly evaluated. It is found that both processes, entering and inhibition, are equally important for the efficient functioning of AMPs. Our theoretical method naturally explains a wide spectrum of efficiencies of existing AMPs and their heterogeneity at the single-cell level. Theoretical calculations are also consistent with existing single-cell measurements. Thus, the presented theoretical approach clarifies some microscopic aspects of the action of AMPs on bacteria.
Collapse
Affiliation(s)
- Hamid Teimouri
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Thao N. Nguyen
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Anatoly B. Kolomeisky
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| |
Collapse
|
28
|
Aronica PGA, Reid LM, Desai N, Li J, Fox SJ, Yadahalli S, Essex JW, Verma CS. Computational Methods and Tools in Antimicrobial Peptide Research. J Chem Inf Model 2021; 61:3172-3196. [PMID: 34165973 DOI: 10.1021/acs.jcim.1c00175] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The evolution of antibiotic-resistant bacteria is an ongoing and troubling development that has increased the number of diseases and infections that risk going untreated. There is an urgent need to develop alternative strategies and treatments to address this issue. One class of molecules that is attracting significant interest is that of antimicrobial peptides (AMPs). Their design and development has been aided considerably by the applications of molecular models, and we review these here. These methods include the use of tools to explore the relationships between their structures, dynamics, and functions and the increasing application of machine learning and molecular dynamics simulations. This review compiles resources such as AMP databases, AMP-related web servers, and commonly used techniques, together aimed at aiding researchers in the area toward complementing experimental studies with computational approaches.
Collapse
Affiliation(s)
- Pietro G A Aronica
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Lauren M Reid
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Chemistry, University of Southampton, Highfield Southampton, Hampshire, U.K. SO17 1BJ.,MedChemica Ltd, Alderley Park, Macclesfield, Cheshire, U.K. SK10 4TG
| | - Nirali Desai
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Division of Biological and Life Sciences, Ahmedabad University, Central Campus, Ahmedabad, Gujarat, India 380009
| | - Jianguo Li
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Singapore Eye Research Institute, 20 College Road Discovery Tower, Singapore 169856
| | - Stephen J Fox
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Shilpa Yadahalli
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Jonathan W Essex
- School of Chemistry, University of Southampton, Highfield Southampton, Hampshire, U.K. SO17 1BJ
| | - Chandra S Verma
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore.,School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, 637551 Singapore
| |
Collapse
|
29
|
Marzuoli I, Cruz CHB, Lorenz CD, Fraternali F. Nanocapsule designs for antimicrobial resistance. NANOSCALE 2021; 13:10342-10355. [PMID: 34137751 DOI: 10.1039/d0nr08146a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The pressing need of new antimicrobial products is growing stronger, particularly because of widespread antimicrobial resistance, endangering our ability to treat common infections. The recent coronavirus pandemic has dramatically highlighted the necessity of effective antibacterial and antiviral protection. This work explores at the molecular level the mechanism of action of antibacterial nanocapsules assembled in virus-like particles, their stability and their interaction with mammal and antimicrobial model membranes. We use Molecular Dynamics with force-fields of different granularity and protein design strategies to study the stability, self-assembly and membrane poration properties of these nanocapsules.
Collapse
Affiliation(s)
- Irene Marzuoli
- Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
| | - Carlos H B Cruz
- Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
| | | | - Franca Fraternali
- Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
| |
Collapse
|
30
|
Recent developments on production, purification and biological activity of marine peptides. Food Res Int 2021; 147:110468. [PMID: 34399466 DOI: 10.1016/j.foodres.2021.110468] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022]
Abstract
Marine peptides are one of the richest sources of structurally diverse bioactive compounds and a considerable attention has been drawn towards their production and bioactivity. However, there is a paucity in consolidation of emerging trends encompassing both production techniques and biological application. Herein, we intend to review the recent advancements on different production, purification and identification technologies used for marine peptides along with presenting their potential health benefits. Bibliometric analysis revealed a growing number of scientific publications on marine peptides (268 documents per year) with both Asia (37.2%) and Europe (33.1%) being the major contributors. Extraction and purification by ultrafiltration and enzymatic hydrolysis, followed by identification by chromatographic techniques coupled with an appropriate detector could yield a high content of peptides with improved bioactivity. Moreover, the multifunctional health benefits exerted by marine peptides including anti-microbial, antioxidant, anti-hypertension, anti-diabetes and anti-cancer along with their structure-activity relationship were presented. The future perspective on marine peptide research should focus on finding improved separation and purification technologies with enhanced selectivity and resolution for obtaining more novel peptides with high yield and low cost. In addition, by employing encapsulation strategies such as nanoemulsion and nanoliposome, oral bioavailability and bioactivity of peptides can be greatly enhanced. Also, the potential health benefits that are demonstrated by in vitro and in vivo models should be validated by conducting human clinical trials for a technology transfer from bench to bedside.
Collapse
|
31
|
Pirtskhalava M, Vishnepolsky B, Grigolava M, Managadze G. Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane. Pharmaceuticals (Basel) 2021; 14:471. [PMID: 34067510 PMCID: PMC8156082 DOI: 10.3390/ph14050471] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are anti-infectives that have the potential to be used as a novel and untapped class of biotherapeutics. Modes of action of antimicrobial peptides include interaction with the cell envelope (cell wall, outer- and inner-membrane). A comprehensive understanding of the peculiarities of interaction of antimicrobial peptides with the cell envelope is necessary to perform a rational design of new biotherapeutics, against which working out resistance is hard for microbes. In order to enable de novo design with low cost and high throughput, in silico predictive models have to be invoked. To develop an efficient predictive model, a comprehensive understanding of the sequence-to-function relationship is required. This knowledge will allow us to encode amino acid sequences expressively and to adequately choose the accurate AMP classifier. A shared protective layer of microbial cells is the inner, plasmatic membrane. The interaction of AMP with a biological membrane (native and/or artificial) has been comprehensively studied. We provide a review of mechanisms and results of interactions of AMP with the cell membrane, relying on the survey of physicochemical, aggregative, and structural features of AMPs. The potency and mechanism of AMP action are presented in terms of amino acid compositions and distributions of the polar and apolar residues along the chain, that is, in terms of the physicochemical features of peptides such as hydrophobicity, hydrophilicity, and amphiphilicity. The survey of current data highlights topics that should be taken into account to come up with a comprehensive explanation of the mechanisms of action of AMP and to uncover the physicochemical faces of peptides, essential to perform their function. Many different approaches have been used to classify AMPs, including machine learning. The survey of knowledge on sequences, structures, and modes of actions of AMP allows concluding that only possessing comprehensive information on physicochemical features of AMPs enables us to develop accurate classifiers and create effective methods of prediction. Consequently, this knowledge is necessary for the development of design tools for peptide-based antibiotics.
Collapse
Affiliation(s)
- Malak Pirtskhalava
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia; (B.V.); (M.G.); (G.M.)
| | | | | | | |
Collapse
|
32
|
Kabelka I, Vácha R. Advances in Molecular Understanding of α-Helical Membrane-Active Peptides. Acc Chem Res 2021; 54:2196-2204. [PMID: 33844916 DOI: 10.1021/acs.accounts.1c00047] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological membranes separate the interior of cells or cellular compartments from their outer environments. This barrier function of membranes can be disrupted by membrane-active peptides, some of which can spontaneously penetrate through the membranes or open leaky transmembrane pores. However, the origin of their activity/toxicity is not sufficiently understood for the development of more potent peptides. To this day, there are no design rules that would be generally valid, and the role of individual amino acids tends to be sequence-specific.In this Account, we describe recent progress in understanding the design principles that govern the activity of membrane-active peptides. We focus on α-helical amphiphilic peptides and their ability to (1) translocate across phospholipid bilayers, (2) form transmembrane pores, or (3) act synergistically, i.e., to produce a significantly more potent effect in a mixture than the individual components.We refined the description of peptide translocation using computer simulations and demonstrated the effect of selected residues. Our simulations showed the necessity to explicitly include charged residues in the translocation description to correctly sample the membrane perturbations they can cause. Using this description, we calculated the translocation of helical peptides with and without the kink induced by the proline/glycine residue. The presence of the kink had no effect on the translocation barrier, but it decreased the peptide affinity to the membrane and reduced the peptide stability inside the membrane. Interestingly, the effects were mainly caused by the peptide's increased polarity, not the higher flexibility of the kink.Flexibility plays a crucial role in pore formation and affects distinct pore structures in different ways. The presence of a kink destabilizes barrel-stave pores, because the kink prevents the tight packing of peptides in the bundle, which is characteristic of the barrel-stave structure. In contrast, the kink facilitates the formation of toroidal pores, where the peptides are only loosely arranged and do not need to closely assemble. The exact position of the kink in the sequence further determines the preferred arrangement of peptides in the pore, i.e., an hourglass or U-shaped structure. In addition, we demonstrated that two self-associated (via termini) helical peptides could mimic the behavior of peptides with a helix-kink-helix motif.Finally, we review the recent findings on the peptide synergism of the archetypal mixture of Magainin 2 and PGLa peptides. We focused on a bacterial plasma membrane mimic that contains negatively charged lipids and lipids with negative intrinsic curvature. We showed that the synergistic action of peptides was highly dependent on the lipid composition. When the lipid composition and peptide/lipid ratios were changed, the systems exhibited more complex behavior than just the previously reported pore formation. We observed membrane adhesion, fusion, and even the formation of the sponge phase in this regime. Furthermore, enhanced adhesion/partitioning to the membrane was reported to be caused by lipid-induced peptide aggregation.In conclusion, the provided molecular insight into the complex behavior of membrane-active peptides provides clues for the design and modification of antimicrobial peptides or toxins.
Collapse
Affiliation(s)
- Ivo Kabelka
- CEITEC − Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University Kamenice 5, 625 00 Brno, Czech Republic
| | - Robert Vácha
- CEITEC − Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University Kamenice 5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| |
Collapse
|
33
|
Tyagi A, Mishra A. Methacrylamide based antibiotic polymers with no detectable bacterial resistance. SOFT MATTER 2021; 17:3404-3416. [PMID: 33645619 DOI: 10.1039/d0sm02176h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The growing number of multidrug-resistant pathogens is a major healthcare concern. In search of alternatives to antibiotics, synthetic mimics of antimicrobial peptides (SMAMPs) in the form of antimicrobial polymers have gained tremendous attention. Here, we report the synthesis of a set of 7 amphiphilic water-soluble cationic copolymers using aminopropyl methacrylamide and benzyl methacrylamide repeat units that show significant antibacterial activity. The antibacterial activity was evaluated using a broth microdilution assay against S. aureus and E. coli, while toxicity to mammalian cells was quantified by hemolysis assay with human red blood cells (RBCs). We find that the antibacterial activity and selectivity of the polymers depends on the mole fraction of aromatic benzyl units (fbenzyl) and the average molecular weight (Mn). Polymers with fbenzyl of 0.10 and 0.19, named AB-10 and AB-19 respectively, exhibited the highest antibacterial efficacy without inducing hemolysis and were chosen for further study. Liposome dye leakage study and observations from confocal and scanning electron microscopy indicate that the AB polymers killed bacterial cells primarily by disrupting the cytoplasmic membrane. No resistant mutants of E. coli and S. aureus were obtained with AB-19 in a 30 day serial passage study.
Collapse
Affiliation(s)
- Anju Tyagi
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | | |
Collapse
|
34
|
Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, Biojone C, Cannarozzo C, Sahu MP, Kaurinkoski K, Brunello CA, Steinzeig A, Winkel F, Patil S, Vestring S, Serchov T, Diniz CRAF, Laukkanen L, Cardon I, Antila H, Rog T, Piepponen TP, Bramham CR, Normann C, Lauri SE, Saarma M, Vattulainen I, Castrén E. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 2021; 184:1299-1313.e19. [PMID: 33606976 PMCID: PMC7938888 DOI: 10.1016/j.cell.2021.01.034] [Citation(s) in RCA: 406] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.
Collapse
Affiliation(s)
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Senem M Fred
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Vera Kovaleva
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Rafael Moliner
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Caroline Biojone
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | | | | | - Katja Kaurinkoski
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | | | - Anna Steinzeig
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Frederike Winkel
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Sudarshan Patil
- Department of Biomedicine and KG Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Stefan Vestring
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tsvetan Serchov
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cassiano R A F Diniz
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paul, Brazil
| | - Liina Laukkanen
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Iseline Cardon
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Brain Master Program, Faculty of Science, Aix-Marseille Université, Marseille, France; Department of Psychiatry, University of Regensburg, Regenburg, Germany
| | - Hanna Antila
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomasz Rog
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Timo Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation (NeuroModul Basics), University of Freiburg, Freiburg, Germany
| | - Sari E Lauri
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland; Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Eero Castrén
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
35
|
Tuning of a Membrane-Perforating Antimicrobial Peptide to Selectively Target Membranes of Different Lipid Composition. J Membr Biol 2021; 254:75-96. [PMID: 33564914 DOI: 10.1007/s00232-021-00174-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/21/2021] [Indexed: 12/16/2022]
Abstract
The use of designed antimicrobial peptides as drugs has been impeded by the absence of simple sequence-structure-function relationships and design rules. The likely cause is that many of these peptides permeabilize membranes via highly disordered, heterogeneous mechanisms, forming aggregates without well-defined tertiary or secondary structure. We suggest that the combination of high-throughput library screening with atomistic computer simulations can successfully address this challenge by tuning a previously developed general pore-forming peptide into a selective pore-former for different lipid types. A library of 2916 peptides was designed based on the LDKA template. The library peptides were synthesized and screened using a high-throughput orthogonal vesicle leakage assay. Dyes of different sizes were entrapped inside vesicles with varying lipid composition to simultaneously screen for both pore size and affinity for negatively charged and neutral lipid membranes. From this screen, nine different LDKA variants that have unique activity were selected, sequenced, synthesized, and characterized. Despite the minor sequence changes, each of these peptides has unique functional properties, forming either small or large pores and being selective for either neutral or anionic lipid bilayers. Long-scale, unbiased atomistic molecular dynamics (MD) simulations directly reveal that rather than rigid, well-defined pores, these peptides can form a large repertoire of functional dynamic and heterogeneous aggregates, strongly affected by single mutations. Predicting the propensity to aggregate and assemble in a given environment from sequence alone holds the key to functional prediction of membrane permeabilization.
Collapse
|
36
|
Chakraborty A, Kobzev E, Chan J, de Zoysa GH, Sarojini V, Piggot TJ, Allison JR. Molecular Dynamics Simulation of the Interaction of Two Linear Battacin Analogs with Model Gram-Positive and Gram-Negative Bacterial Cell Membranes. ACS OMEGA 2021; 6:388-400. [PMID: 33458490 PMCID: PMC7807746 DOI: 10.1021/acsomega.0c04752] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Antimicrobial peptides (AMPs) are a potential solution to the increasing threat of antibiotic resistance, but successful design of active but nontoxic AMPs requires understanding their mechanism of action. Molecular dynamics (MD) simulations can provide atomic-level information regarding how AMPs interact with the cell membrane. Here, we have used MD simulations to study two linear analogs of battacin, a naturally occurring cyclic, lipidated, nonribosomal AMP. Like battacin, these analogs are active against Gram-negative multidrug resistant and Gram-positive bacteria, but they are less toxic than battacin. Our simulations show that this activity depends upon a combination of positively charged and hydrophobic moieties. Favorable interactions with negatively charged membrane lipid head groups drive association with the membrane and insertion of hydrophobic residues, and the N-terminal lipid anchors the peptides to the membrane surface. Both effects are required for stable membrane binding.
Collapse
Affiliation(s)
- Aparajita Chakraborty
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
- School
of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Centre
for Theoretical Chemistry and Physics, Massey
University Auckland, Auckland 0632, New Zealand
| | - Elisey Kobzev
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
- Centre
for Theoretical Chemistry and Physics, Massey
University Auckland, Auckland 0632, New Zealand
- School
of Computational and Natural Sciences, Massey
University Auckland, Auckland 0632, New Zealand
| | - Jonathan Chan
- School
of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Department
of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, United
Kingdom
| | | | - Vijayalekshmi Sarojini
- School of
Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Thomas J. Piggot
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Chemical
Biological and Radiological Sciences, Defence
Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | - Jane R Allison
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
- School
of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Centre
for Theoretical Chemistry and Physics, Massey
University Auckland, Auckland 0632, New Zealand
- Biomolecular
Interaction Centre, University of Canterbury, Christchurch 8041, New Zealand
- Digital
Life Institute, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
37
|
Velasco-Bolom JL, Garduño-Juárez R. Computational studies of membrane pore formation induced by Pin2. J Biomol Struct Dyn 2021; 40:5060-5068. [PMID: 33397200 DOI: 10.1080/07391102.2020.1867640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Understanding, at the molecular level, the effect of AMPs on biological membranes is of crucial importance given the increasing number of multidrug-resistant bacteria. Being part of an ancient type of innate immunity system, AMPs have emerged as a potential solution for which bacteria have not developed resistance. Traditional antibiotics specifically act on biosynthetic pathways, while AMPs may directly destabilize the lipid membrane, but it is unclear how AMPs affect the membrane's stability. We performed multiscale molecular dynamics simulations to investigate the structural features leading to membrane pores formation on zwitterionic and anionic membranes by the antimicrobial peptide (AMP) Pandinin 2 (Pin2). Some experimental reports propose that Pin2 could form barrel-stave pores, while others suggest that it could form toroidal pores. Since there is no conclusive evidence of which type of pore is formed by Pin2 on bilayers, performing molecular dynamics simulations on these systems could shed some light on whether or not or what type of pore Pin2 forms on model membranes. Our results are focused on a detailed description of the pore formation by Pin2 in POPC and POPE:POPG membranes., which strongly suggest that Pin2 forms a toroidal pore and not a barrel-shaped pore; this type of pore also affects the membrane properties. In the process, a phospholipid remodeling in the POPE:POPG membrane takes place. Moreover, the pores formed by Pin2 indicate that they are selective for the chlorine ion. There are no previous ion selectivity reports for other AMPs with similar physicochemical properties, such as melittin and magainin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- José-Luis Velasco-Bolom
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.,Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
38
|
Pore-forming proteins: From defense factors to endogenous executors of cell death. Chem Phys Lipids 2020; 234:105026. [PMID: 33309552 DOI: 10.1016/j.chemphyslip.2020.105026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Pore-forming proteins (PFPs) and small antimicrobial peptides (AMPs) represent a large family of molecules with the common ability to punch holes in cell membranes to alter their permeability. They play a fundamental role as infectious bacteria's defensive tools against host's immune system and as executors of endogenous machineries of regulated cell death in eukaryotic cells. Despite being highly divergent in primary sequence and 3D structure, specific folds of pore-forming domains have been conserved. In fact, pore formation is considered an ancient mechanism that takes place through a general multistep process involving: membrane partitioning and insertion, oligomerization and pore formation. However, different PFPs and AMPs assemble and form pores following different mechanisms that could end up either in the formation of protein-lined or protein-lipid pores. In this review, we analyze the current findings in the mechanism of action of different PFPs and AMPs that support a wide role of membrane pore formation in nature. We also provide the newest insights into the development of state-of-art techniques that have facilitated the characterization of membrane pores. To understand the physiological role of these peptides/proteins or develop clinical applications, it is essential to uncover the molecular mechanism of how they perforate membranes.
Collapse
|
39
|
Oberleitner L, Poschmann G, Macorano L, Schott-Verdugo S, Gohlke H, Stühler K, Nowack ECM. The Puzzle of Metabolite Exchange and Identification of Putative Octotrico Peptide Repeat Expression Regulators in the Nascent Photosynthetic Organelles of Paulinella chromatophora. Front Microbiol 2020; 11:607182. [PMID: 33329499 PMCID: PMC7729196 DOI: 10.3389/fmicb.2020.607182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
The endosymbiotic acquisition of mitochondria and plastids more than one billion years ago was central for the evolution of eukaryotic life. However, owing to their ancient origin, these organelles provide only limited insights into the initial stages of organellogenesis. The cercozoan amoeba Paulinella chromatophora contains photosynthetic organelles-termed chromatophores-that evolved from a cyanobacterium ∼100 million years ago, independently from plastids in plants and algae. Despite the more recent origin of the chromatophore, it shows tight integration into the host cell. It imports hundreds of nucleus-encoded proteins, and diverse metabolites are continuously exchanged across the two chromatophore envelope membranes. However, the limited set of chromatophore-encoded solute transporters appears insufficient for supporting metabolic connectivity or protein import. Furthermore, chromatophore-localized biosynthetic pathways as well as multiprotein complexes include proteins of dual genetic origin, suggesting that mechanisms evolved that coordinate gene expression levels between chromatophore and nucleus. These findings imply that similar to the situation in mitochondria and plastids, also in P. chromatophora nuclear factors evolved that control metabolite exchange and gene expression in the chromatophore. Here we show by mass spectrometric analyses of enriched insoluble protein fractions that, unexpectedly, nucleus-encoded transporters are not inserted into the chromatophore inner envelope membrane. Thus, despite the apparent maintenance of its barrier function, canonical metabolite transporters are missing in this membrane. Instead we identified several expanded groups of short chromatophore-targeted orphan proteins. Members of one of these groups are characterized by a single transmembrane helix, and others contain amphipathic helices. We hypothesize that these proteins are involved in modulating membrane permeability. Thus, the mechanism generating metabolic connectivity of the chromatophore fundamentally differs from the one for mitochondria and plastids, but likely rather resembles the poorly understood mechanism in various bacterial endosymbionts in plants and insects. Furthermore, our mass spectrometric analysis revealed an expanded family of chromatophore-targeted helical repeat proteins. These proteins show similar domain architectures as known organelle-targeted expression regulators of the octotrico peptide repeat type in algae and plants. Apparently these chromatophore-targeted proteins evolved convergently to plastid-targeted expression regulators and are likely involved in gene expression control in the chromatophore.
Collapse
Affiliation(s)
- Linda Oberleitner
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Medical Faculty, Institute for Molecular Medicine, Proteome Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Luis Macorano
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stephan Schott-Verdugo
- Department of Pharmacy, Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Faculty of Engineering, Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile
| | - Holger Gohlke
- Department of Pharmacy, Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Jülich Supercomputing Centre, John von Neumann Institute for Computing, Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kai Stühler
- Medical Faculty, Institute for Molecular Medicine, Proteome Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eva C. M. Nowack
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
40
|
Passive Internalization of Bioactive β-Casein Peptides into Phospholipid (POPC) Bilayers. Free Energy Landscapes from Unbiased Equilibrium MD Simulations at μs-Time Scale. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-020-09651-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Antimicrobial Mechanism of pBD2 against Staphylococcus aureus. Molecules 2020; 25:molecules25153513. [PMID: 32752087 PMCID: PMC7435708 DOI: 10.3390/molecules25153513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) show high antibacterial activity against pathogens, which makes them potential new therapeutics to prevent and cure diseases. Porcine beta defensin 2 (pBD2) is a newly discovered AMP and has shown antibacterial activity against different bacterial species including multi-resistant bacteria. In this study, the functional mechanism of pBD2 antibacterial activity against Staphylococcus aureus was investigated. After S. aureus cells were incubated with different concentrations of pBD2, the morphological changes in S. aureus and locations of pBD2 were detected by electron microscopy. The differentially expressed genes (DEGs) were also analyzed. The results showed that the bacterial membranes were broken, bulging, and perforated after treatment with pBD2; pBD2 was mainly located on the membranes, and some entered the cytoplasm. Furthermore, 31 DEGs were detected and confirmed by quantitative real-time PCR (qRT-PCR). The known functional DEGs were associated with transmembrane transport, transport of inheritable information, and other metabolic processes. Our data suggest that pBD2 might have multiple modes of action, and the main mechanism by which pBD2 kills S. aureus is the destruction of the membrane and interaction with DNA. The results imply that pBD2 is an effective bactericide for S. aureus, and deserves further study as a new therapeutic substance against S. aureus.
Collapse
|
42
|
Le Brun AP, Zhu S, Sani MA, Separovic F. The Location of the Antimicrobial Peptide Maculatin 1.1 in Model Bacterial Membranes. Front Chem 2020; 8:572. [PMID: 32733854 PMCID: PMC7358649 DOI: 10.3389/fchem.2020.00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Maculatin 1.1 (Mac1) is an antimicrobial peptide (AMP) from the skin secretions of Australian tree frogs. In this work, the interaction of Mac1 with anionic phospholipid bilayers was investigated by NMR, circular dichroism (CD) spectroscopy, neutron reflectometry (NR) and molecular dynamics (MD). In buffer, the peptide is unstructured but in the presence of anionic (DPC/LMPG) micelles or (DMPC/DMPG/DHPC) bicelles adopts a helical structure. Addition of the soluble paramagnetic agent gadolinium (Gd-DTPA) into the Mac1-DPC/LMPG micelle solution showed that the N-terminus is more exposed to the hydrophilic Gd-DTPA than the C-terminus in micelles. 2H and 31P solid-state NMR showed that Mac1 had a greater effect on the anionic lipid (DMPG). A deuterium labeled Mac1 used in NR experiments indicated that the AMP spanned across anionic (PC/PG) bilayers, which was compatible with MD simulations. Simulations also showed that Mac1 orientation remained transmembrane in bilayers and wrapped on the surface of the micelles regardless of the lipid or detergent charge. Thus, the peptide orientation appears to be more susceptible to curvature than charged surface. These results support the formation of transmembrane pores by Mac1 in model bacterial membranes.
Collapse
Affiliation(s)
- Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Shiying Zhu
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
43
|
Su J, Marrink SJ, Melo MN. Localization Preference of Antimicrobial Peptides on Liquid-Disordered Membrane Domains. Front Cell Dev Biol 2020; 8:350. [PMID: 32509780 PMCID: PMC7248343 DOI: 10.3389/fcell.2020.00350] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/20/2020] [Indexed: 01/14/2023] Open
Abstract
We performed coarse-grained simulations of the antimicrobial peptides Magainin-2, BP100, MSI-103, and MSI-78 on a phase-separated membrane to study their preference for the different domains. All the peptides displayed a clear preference for the liquid-disordered (Ld) phase over the liquid-ordered (Lo) one. For BP100, MSI-103, and MSI-78 there was a further preference of the peptides for the domain interface. The peptides' preference toward the disordered phase was shown to reflect a penalization of lipid-lipid interaction enthalpy in the Lo phase, when in the vicinity of peptides. Similar results were observed at the two studied concentrations, although Ld phase saturation at the higher concentration drove some of the peptide excess to the Lo phase. Magainin-2 and MSI-103 were found to dimerize, in agreement with available experimental data. Interestingly, at high concentrations of Magainin-2 toroidal pores spontaneously formed in the Ld phase. We performed additional simulations to characterize this phenomenon, which is likely related to Magainin-2's membranolytic action.
Collapse
Affiliation(s)
- Juanjuan Su
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Siewert J. Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Manuel N. Melo
- Multiscale Modeling Lab, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
44
|
Feng L, Ma T, Zheng Y. Magneto-conductivity of Weyl semimetals: the roles of inter-valley scattering and high-order Feynman diagrams. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:205502. [PMID: 31905345 DOI: 10.1088/1361-648x/ab680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Within the theoretical framework of Kubo formula and self-consistent Born approximation, we theoretically study the transversal and longitudinal magneto-conductivity of a type-I Weyl semimetal. We focus mainly on the peculiar role of inter-valley scattering on linear transversal magnetoresistance (LTMR) and negative longitudinal magnetoresistance (NLMR). At first, we find that the contributions of high-order Feynman diagrams to the transversal magneto-conductivity play the distinct roles between the cases of intra- and inter-valley scatterings. The former suppresses the transversal conductivity whereas the latter enhances it. Then, with the increase of scattering strength, the LTMR is destroyed, accompanying a sizable increase of transversal conductivity, in particular, in the case of the tilted cone. For longitudinal magneto-transport, inter-valley scattering contributes only trivial magnetoresistance. In contrast, intra-valley scattering is invalid for longitudinal magneto-transport which means a very large NLMR. In addition, the high-order Feynman diagrams always play the nontrivial role on the longitudinal conductivity even in the weak scattering limit. Finally, when altering the Fermi energy among low-lying Landau level, the peaks of transversal conductivity just correspond to the valleys of the longitudinal conductivity.
Collapse
Affiliation(s)
- Lanting Feng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012, People's Republic of China
| | | | | |
Collapse
|
45
|
Deng Z, Lu X, Xu C, Yuan B, Yang K. Lipid-specific interactions determine the organization and dynamics of membrane-active peptide melittin. SOFT MATTER 2020; 16:3498-3504. [PMID: 32215386 DOI: 10.1039/d0sm00046a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cell membranes of different cells deviate significantly in lipid compositions and thus provide varying biological environments to modulate the diffusion, organization and the resultant function of biomacromolecules. However, the detailed modulation mechanism remains elusive especially in consideration of the current overuse of the simplified membrane models such as the pure phosphatidylcholine (PC) membrane. In this work, with the typical membrane-active peptide melittin, we demonstrated that a more complicated membrane environment, such as the bacterial (IME) or plasma membrane (PM), would significantly change the organization and dynamics of melittin, by using molecular dynamics simulations as a "computational microscope". It was found that in these membrane systems, adding melittin would cause a varying degree of reduction in the lateral diffusion of lipids due to the different assembly states of peptides. Melittin tended to aggregate to oligomers in the pure PC membrane, mostly as a tetramer or trimer, while in IME or PM, its degree of oligomerization was significantly reduced. More surprisingly, melittin displayed a strong affinity with ganglioside GM3 in PM, leading to the formation of melittin-GM3 nanoclusters, which hindered its diffusion and further oligomerization. Additionally, small changes in the residue sequence of melittin could modulate the degree or structure of the peptide oligomer. Our work provides a typical example of a study on the organization and dynamics of pore-forming peptides in specific membrane environments and has great significance on the optimization of peptide sequences and the design of helix bundles in the membrane for target biological function.
Collapse
Affiliation(s)
- Zhixiong Deng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | - Xuemei Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | - Cheng Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China. and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China. and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
46
|
Chen CH, Melo MC, Berglund N, Khan A, de la Fuente-Nunez C, Ulmschneider JP, Ulmschneider MB. Understanding and modelling the interactions of peptides with membranes: from partitioning to self-assembly. Curr Opin Struct Biol 2020; 61:160-166. [PMID: 32006812 DOI: 10.1016/j.sbi.2019.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/14/2022]
Abstract
Atomic detail simulations are starting to reveal how flexible polypeptides interact with fluid lipid bilayers. These insights are transforming our understanding of one of the fundamental processes in biology: membrane protein folding and assembly. Advanced molecular dynamics (MD) simulation techniques enable accurate prediction of protein structure, folding pathways and assembly in microsecond-timescales. Such simulations show how membrane-active peptides self-assemble in cell membranes, revealing their binding, folding, insertion, and aggregation, while at the same time providing atomic resolution details of peptide-lipid interactions. Essential to the impact of simulations are experimental approaches that enable calibration and validation of the computational models and techniques. In this review, we summarize the current development of applying unbiased atomic detail MD simulations and the relation to experimental techniques, to study peptide folding and provide our perspective of the field.
Collapse
Affiliation(s)
- Charles H Chen
- Department of Chemistry, King's College London, London, UK
| | - Marcelo Cr Melo
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nils Berglund
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Ayesha Khan
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Jakob P Ulmschneider
- Institute of Natural Sciences and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
| | | |
Collapse
|
47
|
Chen CH, Lu TK. Development and Challenges of Antimicrobial Peptides for Therapeutic Applications. Antibiotics (Basel) 2020; 9:antibiotics9010024. [PMID: 31941022 PMCID: PMC7168295 DOI: 10.3390/antibiotics9010024] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022] Open
Abstract
More than 3000 antimicrobial peptides (AMPs) have been discovered, seven of which have been approved by the U.S. Food and Drug Administration (FDA). Now commercialized, these seven peptides have mostly been utilized for topical medications, though some have been injected into the body to treat severe bacterial infections. To understand the translational potential for AMPs, we analyzed FDA-approved drugs in the FDA drug database. We examined their physicochemical properties, secondary structures, and mechanisms of action, and compared them with the peptides in the AMP database. All FDA-approved AMPs were discovered in Gram-positive soil bacteria, and 98% of known AMPs also come from natural sources (skin secretions of frogs and toxins from different species). However, AMPs can have undesirable properties as drugs, including instability and toxicity. Thus, the design and construction of effective AMPs require an understanding of the mechanisms of known peptides and their effects on the human body. This review provides an overview to guide the development of AMPs that can potentially be used as antimicrobial drugs.
Collapse
Affiliation(s)
- Charles H. Chen
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: (C.H.C.); (T.K.L.)
| | - Timothy K. Lu
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA
- Correspondence: (C.H.C.); (T.K.L.)
| |
Collapse
|
48
|
Chen CH, Ulmschneider JP, Ulmschneider MB. Mechanisms of a Small Membrane-Active Antimicrobial Peptide from Hyla punctata. Aust J Chem 2020. [DOI: 10.1071/ch19429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thousands of antimicrobial peptides have been observed and studied in the past decades; however, their membrane-active mechanisms are ambiguous due to their dynamic structure in the cell membrane. Here, we applied both molecular dynamics (MD) simulations and biophysical experiments to study the small membrane-active antimicrobial peptide Hylaseptin P1 (HSP1), which has significant selectivity towards anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (POPG) and bacterial model membranes. HSP1 does not bind and fold onto human red blood cell model membranes, and it only binds, but does not fold, in zwitterionic 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) membranes. This suggests that the lipid chemistry and membrane rigidity are key to prevent HSP1 binding onto membranes, and the lipid headgroup charge may further promote peptide folding in the membrane. Our experiment-validated MD simulations suggest a carpet-like model mechanism for HSP1 through peptide binding, folding, aggregation, and assembly. HSP1 is shorter than the membrane thickness; therefore, the folded peptides aggregate on the surface, cross the membrane, and the oligomeric structure is supported by several surface-bound peptides in both bilayer leaflets.
Collapse
|
49
|
Guan X, Wei DQ, Hu D. Free Energy Calculations on the Water-Chain-Assisted and the Dehydration Mechanisms of Transmembrane Ion Permeation. J Chem Theory Comput 2019; 16:700-710. [DOI: 10.1021/acs.jctc.9b00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Rončević T, Puizina J, Tossi A. Antimicrobial Peptides as Anti-Infective Agents in Pre-Post-Antibiotic Era? Int J Mol Sci 2019; 20:E5713. [PMID: 31739573 PMCID: PMC6887943 DOI: 10.3390/ijms20225713] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Resistance to antibiotics is one of the main current threats to human health and every year multi-drug resistant bacteria are infecting millions of people worldwide, with many dying as a result. Ever since their discovery, some 40 years ago, the antimicrobial peptides (AMPs) of innate defense have been hailed as a potential alternative to conventional antibiotics due to their relatively low potential to elicit resistance. Despite continued effort by both academia and start-ups, currently there are still no antibiotics based on AMPs in use. In this study, we discuss what we know and what we do not know about these agents, and what we need to know to successfully translate discovery to application. Understanding the complex mechanics of action of these peptides is the main prerequisite for identifying and/or designing or redesigning novel molecules with potent biological activity. However, other aspects also need to be well elucidated, i.e., the (bio)synthetic processes, physiological and pathological contexts of their activity, and a quantitative understanding of how physico-chemical properties affect activity. Research groups worldwide are using biological, biophysical, and algorithmic techniques to develop models aimed at designing molecules with the necessary blend of antimicrobial potency and low toxicity. Shedding light on some open questions may contribute toward improving this process.
Collapse
Affiliation(s)
- Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia;
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, 21000 Split, Croatia
| | - Jasna Puizina
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia;
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|