1
|
Liu H, Hamaia SW, Dobson L, Weng J, Hernández FL, Beaudoin CA, Salvage SC, Huang CLH, Machesky LM, Jackson AP. The voltage-gated sodium channel β3 subunit modulates C6 glioma cell motility independently of channel activity. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167844. [PMID: 40245999 DOI: 10.1016/j.bbadis.2025.167844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/17/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Voltage-gated sodium channels (VGSCs) initiate action potentials in nerve and muscle cells and are regulated by auxiliary β subunits. VGSC β subunits are also expressed in some cancer types, suggesting potential functions distinct from their role in electrophysiological excitability. This study investigated the occurrence and functional implications of the VGSC β3 subunit (the product of SCN3B gene) in glioma, focusing on the role of its extracellular immunoglobulin domain (β3 Ig). METHODS Data mining explored associations between β3 expression and glioma severity at patient, tissue, and single-cell levels. Using C6 glioma cells expressing β3 or β3 without its Ig domain, we examined the effects on cell viability, mobility, and actin-based cell protrusions. A single-chain variable fragment (scFv) antibody targeting the β3 Ig was selected by phage display to interfere with its functions. The interacting proteins with β3 Ig were identified by immunoprecipitation-mass spectrometry. RESULTS Data mining revealed negative correlations between β3 expression and glioma severity and aggressiveness. Expression of β3 in C6 cells reduced cell migration and invasion without affecting cell viability. Filopodia were significantly increased while lamellipodia/ruffles were decreased, producing striking cell morphological changes. These effects were abrogated by expression of the β3 subunit lacking the β3 Ig domain or exogenous application of an scFv targeting β3 Ig. Most of the plasma membrane-associated proteins immunoprecipitated with the β3 subunit are known regulators of actin polymerization. CONCLUSION Our data reveals a novel and unexpected role for the VGSC β3 subunit in orchestrating actin organization and negatively regulating cell migration in glioma cells which may potentially explain clinical correlations with glioma severity.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Samir W Hamaia
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Lisa Dobson
- Department of Biochemistry, Sanger Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Federico López Hernández
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Christopher A Beaudoin
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Samantha C Salvage
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3DY, UK
| | - Laura M Machesky
- Department of Biochemistry, Sanger Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Antony P Jackson
- Department of Biochemistry, Hopkin's Building, 80 Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
2
|
Li X, Chen W, Jiang S, Zhang L, Huang H, Ji Y, Ni Q, Ling C. Low Expression of SCN4B Predicts Poor Prognosis in Non-small Cell Lung Cancer. Curr Cancer Drug Targets 2025; 25:445-466. [PMID: 38956906 DOI: 10.2174/0115680096293516240607071915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Sodium voltage-gated channel beta subunit 4 (SCN4B) plays a suppressive role in various tumors. However, the role of SCN4B in non-small cell lung cancer (NSCLC) is not yet clear. This study aims to investigate the expression of SCN4B in NSCLC patients and its correlation with prognosis. METHODS Firstly, the expression of SCN4B in non-small cell lung cancer (NSCLC) was analyzed using The Cancer Genome Atlas (TCGA) database. Then, differential expression genes (DEGs) were identified using R software. Next, DEG enrichment pathways were analyzed using the R package clusterProfiler. Protein-protein interaction networks were revealed through STRING analysis. A heatmap showed significant differential expression of SCN4B. Further analysis included examining SCN4B expression in a pan-cancer context and its correlation with 24 types of immune cells in NSCLC. Subsequently, quantitative real-time polymerase chain reaction (qRT-PCR), Western Blot, immunohistochemistry, and clinical data were used to validate SCN4B expression and prognostic value in NSCLC patients. RESULTS SCN4B mRNA expression in non-small cell lung cancer tissues was significantly lower than in adjacent normal tissues (p < 0.001). Clinical correlation analysis confirmed its association with clinical pathology. Gene set enrichment analysis (GSEA) and tumor immune-related analyses indicated that SCN4B is involved in NSCLC-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and participates in immune infiltration. qRT-PCR, Western Blot, and immunohistochemistry also confirmed that SCN4B is downregulated in NSCLC patients and is associated with poor prognosis. CONCLUSION SCN4B is downregulated in tumor tissues of NSCLC patients and is associated with a poor prognosis.
Collapse
Affiliation(s)
- Xia Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, PR China
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, 224000, PR China
| | - Weiwei Chen
- Department of Radiation Therapy, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, 224000, PR China
| | - Shu Jiang
- Department of Magnetic Resonance, Yancheng Clinical College of Xuzhou Medical University, Yancheng No 1 people's Hospital, Yancheng, 224000, PR China
| | - Lianlian Zhang
- Department of Ultrasound Imaging, Yancheng Clinical College of Xuzhou Medical University, Yancheng No 1 people's Hospital, Yancheng, 224000, PR China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yanan Ji
- The Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, 224000, PR China
| | - Qinggan Ni
- Department of Burns and Plastic Surgery, Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, 224000, PR China
| | - Chunhua Ling
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, PR China
| |
Collapse
|
3
|
Zhang J, Zou L, Tan F, Wang H, Wen Z, Wang H, Li L. Screening of co-expressed genes in hypopharyngeal carcinoma with esophageal carcinoma based on RNA sequencing and Clinical Research. Sci Rep 2024; 14:13796. [PMID: 38877096 PMCID: PMC11178892 DOI: 10.1038/s41598-024-64162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
To explore the hub comorbidity genes and potential pathogenic mechanisms of hypopharyngeal carcinoma with esophageal carcinoma, and evaluate their diagnostic value for hypopharyngeal carcinoma with co-morbid esophageal carcinoma. We performed gene sequencing on tumor tissues from 6 patients with hypopharyngeal squamous cell carcinoma with esophageal squamous cell carcinoma (hereafter referred to as "group A") and 6 patients with pure hypopharyngeal squamous cell carcinoma (hereafter referred to as "group B"). We analyzed the mechanism of hub genes in the development and progression of hypopharyngeal squamous cell carcinoma with esophageal squamous cell carcinoma through bioinformatics, and constructed an ROC curve and Nomogram prediction model to analyze the value of hub genes in clinical diagnosis and treatment. 44,876 genes were sequenced in 6 patients with group A and 6 patients with group B. Among them, 76 genes showed significant statistical differences between the group A and the group B.47 genes were expressed lower in the group A than in the group B, and 29 genes were expressed higher. The top five hub genes were GABRG2, CACNA1A, CNTNAP2, NOS1, and SCN4B. GABRG2, CNTNAP2, and SCN4B in the hub genes have high diagnostic value in determining whether hypopharyngeal carcinoma patients have combined esophageal carcinoma (AUC: 0.944, 0.944, 0.972). These genes could possibly be used as potential molecular markers for assessing the risk of co-morbidity of hypopharyngeal carcinoma combined with esophageal carcinoma.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, 122000, China
| | - Liangyu Zou
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, 122000, China
| | - Fuxian Tan
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, 122000, China
| | - Hongmin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, 122000, China
| | - Zhenlei Wen
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, 122000, China
| | - Hongmei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, 122000, China
| | - Lianhe Li
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, 122000, China.
| |
Collapse
|
4
|
Liu Y. CWGCNA: an R package to perform causal inference from the WGCNA framework. NAR Genom Bioinform 2024; 6:lqae042. [PMID: 38666214 PMCID: PMC11044439 DOI: 10.1093/nargab/lqae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
WGCNA (weighted gene co-expression network analysis) is a very useful tool for identifying co-expressed gene modules and detecting their correlations to phenotypic traits. Here, we explored more possibilities about it and developed the R package CWGCNA (causal WGCNA), which works from the traditional WGCNA pipeline but mines more information. It couples a mediation model with WGCNA, so the causal relationships among WGCNA modules, module features, and phenotypes can be found, demonstrating whether the module change causes the phenotype change or vice versa. After that, when annotating the module gene set functions, it uses a novel network-based method, considering the modules' topological structures and capturing their influence on the gene set functions. In addition to conducting these biological explorations, CWGCNA also contains a machine learning section to perform clustering and classification on multi-omics data, given the increasing popularity of this data type. Some basic functions, such as differential feature identification, are also available in our package. Its effectiveness is proved by the performance on three single or multi-omics datasets, showing better performance than existing methods. CWGCNA is available at: https://github.com/yuabrahamliu/CWGCNA.
Collapse
Affiliation(s)
- Yu Liu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Yang X, Liu Q, Li G. Anti-NSCLC role of SCN4B by negative regulation of the cGMP-PKG pathway: Integrated utilization of bioinformatics analysis and in vitro assay validation. Drug Dev Res 2024; 85:e22192. [PMID: 38678552 DOI: 10.1002/ddr.22192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a malignant tumor with low overall cure and survival rates. Uncovering abnormally expressed genes is significantly important for developing novel targeted therapies in NSCLC. This study aimed to discover new differentially expressed genes (DEGs) of NSCLC. The DEGs of NSCLC were identified in eight data sets from Gene Expression Omnibus (GEO) database. The expression profiles and the prognostic significance of SCN4B in LUAD and LUSC were analyzed using GEPIA database. LinkedOmics was used to identify co-expressed genes with SCN4B, which were further subjected to KEGG pathway enrichment analysis. SCN4B-overexpressing plasmid (pcDNA/SCN4B) was transfected into A549 and NCI-H2170 cells to elevate the expression of SCN4B. MTT and TUNEL assays were performed to evaluate cell viability and apoptosis. Relying on the screened DEGs from GEO database, we identified that SCN4B was significantly downregulated in LUAD and LUSC. We confirmed the downregulation of SCN4B in NSCLC tissues using GEPIA database. SCN4B has a prognostic value in LUAD, but not LUSC. KEGG pathway enrichment analysis of SCN4B-related genes showed that cGMP-PKG signaling pathway might be involved in the role of SCN4B in NSCLC. Overexpression of SCN4B in A549 and NCI-H2170 cells inhibited the cell viability. Besides, SCN4B overexpression induced apoptosis of A549 and NCI-H2170 cells. SCN4B inhibited the expression of PKG1 and p-CREB in NSCLC cells. Moreover, the inhibitory effects of SCN4B on tumor malignancy were attenuated by the activator of PKG. In conclusion, integrated bioinformatical analysis proved that SCN4B was downregulated and had a prognostic significance in NSCLC. In vitro experimental studies demonstrated that SCN4B regulated NSCLC cells viability and apoptosis via inhibiting cGMP-PKG signaling pathway.
Collapse
Affiliation(s)
- Xiujun Yang
- Department of Respiratory and Critical Care Medicine, Huai'an People's Hospital of Hongze District, Huai'an, China
| | - Qun Liu
- Medical Ward 20, Lianshui County People's Hospital, Huai'an, China
| | - Gang Li
- Department of Respiratory and Critical Care Medicine, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
6
|
Janin M, Davalos V, Esteller M. Cancer metastasis under the magnifying glass of epigenetics and epitranscriptomics. Cancer Metastasis Rev 2023; 42:1071-1112. [PMID: 37369946 PMCID: PMC10713773 DOI: 10.1007/s10555-023-10120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Most of the cancer-associated mortality and morbidity can be attributed to metastasis. The role of epigenetic and epitranscriptomic alterations in cancer origin and progression has been extensively demonstrated during the last years. Both regulations share similar mechanisms driven by DNA or RNA modifiers, namely writers, readers, and erasers; enzymes responsible of respectively introducing, recognizing, or removing the epigenetic or epitranscriptomic modifications. Epigenetic regulation is achieved by DNA methylation, histone modifications, non-coding RNAs, chromatin accessibility, and enhancer reprogramming. In parallel, regulation at RNA level, named epitranscriptomic, is driven by a wide diversity of chemical modifications in mostly all RNA molecules. These two-layer regulatory mechanisms are finely controlled in normal tissue, and dysregulations are associated with every hallmark of human cancer. In this review, we provide an overview of the current state of knowledge regarding epigenetic and epitranscriptomic alterations governing tumor metastasis, and compare pathways regulated at DNA or RNA levels to shed light on a possible epi-crosstalk in cancer metastasis. A deeper understanding on these mechanisms could have important clinical implications for the prevention of advanced malignancies and the management of the disseminated diseases. Additionally, as these epi-alterations can potentially be reversed by small molecules or inhibitors against epi-modifiers, novel therapeutic alternatives could be envisioned.
Collapse
Affiliation(s)
- Maxime Janin
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Veronica Davalos
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
- Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
7
|
Ma M, Guo B, Lu H, Hong L. SCN4B inhibits the progression of lung adenocarcinoma and is associated with better prognosis. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:1233-1245. [PMID: 37826914 PMCID: PMC10730470 DOI: 10.1111/crj.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
INTRODUCTION Lung adenocarcinoma (LUAD) is the major type of non-small cell lung cancer with low a survival rate caused by metastasis. SCN4B encoding voltage-gated sodium channel β subunit is regarded as a metastasis-suppressor gene. We aim to explore how SCN4B influences the progression and prognosis of LUAD. METHODS The gene expression profiles of 585 LUAD samples in TCGA and GSE31210, GSE116959, and GSE72094 datasets from the GEO database were downloaded for analysis. Differentially expressed genes were obtained through the "limma" package. The "clusterProfiler" package was used to conduct GSEA. Survival analysis was conducted via "survival" and "survminer" packages. Transcription factors regulating SCN4B expression were screened by correlation analysis and further predicted by FIMO. Infiltration of immune cells was analyzed by CIBERSORT. ESTIMATE algorithm was used to evaluate the immune-related scores. RESULTS SCN4B expressed higher in normal samples than in LUAD samples and higher in female samples than male samples. One hundred and twenty-six pathways were significantly enriched between high and low SCN4B expression groups. Six transcription factors' expressions were positively related to SCN4B expression, and ChIP-seq data from "Cistrome" verified that TAL1 and ERG might bind to the upstream sequence of SCN4B. SCN4B expression was significantly correlated with activated memory CD4 T cells, resting mast cells, and monocytes. TMB status, three scores based on ESTIMATE algorithm, and expression of three immune checkpoints showed significant differences between SCN4B high- and low-expression groups. SCN4B could be considered as an independent prognostic signature of LUAD patients that higher expression represents a better prognosis. CONCLUSION SCN4B expresses higher in normal samples, and SCN4B is able to be an independent prognostic signature for LUAD patients. TAL1 and ERG may regulate the expression of SCN4B by binding its upstream sequences. Our research is valuable in improving the effectiveness of treatment in LUAD.
Collapse
Affiliation(s)
- Minting Ma
- Department of OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceChina
| | - Bin Guo
- Department of Thoracic SurgeryThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceChina
| | - Hongwei Lu
- Department of OphthalmologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceChina
| | - Lei Hong
- Department of OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebei ProvinceChina
| |
Collapse
|
8
|
Malcolm JR, Sajjaboontawee N, Yerlikaya S, Plunkett-Jones C, Boxall PJ, Brackenbury WJ. Voltage-gated sodium channels, sodium transport and progression of solid tumours. CURRENT TOPICS IN MEMBRANES 2023; 92:71-98. [PMID: 38007270 DOI: 10.1016/bs.ctm.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Sodium (Na+) concentration in solid tumours of different origin is highly dysregulated, and this corresponds to the aberrant expression of Na+ transporters. In particular, the α subunits of voltage gated Na+ channels (VGSCs) raise intracellular Na+ concentration ([Na+]i) in malignant cells, which influences the progression of solid tumours, predominantly driving cancer cells towards a more aggressive and metastatic phenotype. Conversely, re-expression of VGSC β subunits in cancer cells can either enhance tumour progression or promote anti-tumourigenic properties. Metastasis is the leading cause of cancer-related mortality, highlighting an important area of research which urgently requires improved therapeutic interventions. Here, we review the extent to which VGSC subunits are dysregulated in solid tumours, and consider the implications of such dysregulation on solid tumour progression. We discuss current understanding of VGSC-dependent mechanisms underlying increased invasive and metastatic potential of solid tumours, and how the complex relationship between the tumour microenvironment (TME) and VGSC expression may further drive tumour progression, in part due to the interplay of infiltrating immune cells, cancer-associated fibroblasts (CAFs) and insufficient supply of oxygen (hypoxia). Finally, we explore past and present clinical trials that investigate utilising existing VGSC modulators as potential pharmacological options to support adjuvant chemotherapies to prevent cancer recurrence. Such research demonstrates an exciting opportunity to repurpose therapeutics in order to improve the disease-free survival of patients with aggressive solid tumours.
Collapse
Affiliation(s)
- Jodie R Malcolm
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Nattanan Sajjaboontawee
- Department of Biology, University of York, Heslington, York, United Kingdom; York Biomedical Research Institute, University of York, Heslington, York, United Kingdom
| | - Serife Yerlikaya
- Department of Biology, University of York, Heslington, York, United Kingdom; Istanbul Medipol University, Research Institute for Health Sciences and Technologies, Istanbul, Turkey
| | | | - Peter J Boxall
- Department of Biology, University of York, Heslington, York, United Kingdom; York and Scarborough Teaching Hospitals NHS Foundation Trust, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, United Kingdom; York Biomedical Research Institute, University of York, Heslington, York, United Kingdom.
| |
Collapse
|
9
|
Sanchez-Sandoval AL, Hernández-Plata E, Gomora JC. Voltage-gated sodium channels: from roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets. Front Pharmacol 2023; 14:1206136. [PMID: 37456756 PMCID: PMC10348687 DOI: 10.3389/fphar.2023.1206136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
During the second half of the last century, the prevalent knowledge recognized the voltage-gated sodium channels (VGSCs) as the proteins responsible for the generation and propagation of action potentials in excitable cells. However, over the last 25 years, new non-canonical roles of VGSCs in cancer hallmarks have been uncovered. Their dysregulated expression and activity have been associated with aggressive features and cancer progression towards metastatic stages, suggesting the potential use of VGSCs as cancer markers and prognostic factors. Recent work has elicited essential information about the signalling pathways modulated by these channels: coupling membrane activity to transcriptional regulation pathways, intracellular and extracellular pH regulation, invadopodia maturation, and proteolytic activity. In a promising scenario, the inhibition of VGSCs with FDA-approved drugs as well as with new synthetic compounds, reduces cancer cell invasion in vitro and cancer progression in vivo. The purpose of this review is to present an update regarding recent advances and ongoing efforts to have a better understanding of molecular and cellular mechanisms on the involvement of both pore-forming α and auxiliary β subunits of VGSCs in the metastatic processes, with the aim at proposing VGSCs as new oncological markers and targets for anticancer treatments.
Collapse
Affiliation(s)
- Ana Laura Sanchez-Sandoval
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Medicina Genómica, Hospital General de México “Dr Eduardo Liceaga”, Mexico City, Mexico
| | - Everardo Hernández-Plata
- Consejo Nacional de Humanidades, Ciencias y Tecnologías and Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
Leslie TK, Brackenbury WJ. Sodium channels and the ionic microenvironment of breast tumours. J Physiol 2023; 601:1543-1553. [PMID: 36183245 PMCID: PMC10953337 DOI: 10.1113/jp282306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022] Open
Abstract
Cancers of epithelial origin such as breast, prostate, cervical, gastric, colon and lung cancer account for a large proportion of deaths worldwide. Better treatment of metastasis, the main cause of cancer deaths, is therefore urgently required. Several of these tumours have been shown to have an abnormally high concentration of Na+ ([Na+ ]) and emerging evidence points to this accumulation being due to elevated intracellular [Na+ ]. This poses intriguing questions about the cellular mechanisms underlying Na+ dysregulation in cancer, and its pathophysiological significance. Elevated intracellular [Na+ ] may be due to alterations in activity of the Na+ /K+ -ATPase, and/or increased influx via Na+ channels and Na+ -linked transporters. Maintenance of the electrochemical Na+ gradient across the plasma membrane is vital to power many cellular processes that are highly active in cancer cells, including glucose and glutamine import. Na+ channels are also upregulated in cancer cells, which in turn promotes tumour growth and metastasis. For example, ENaC and ASICs are overexpressed in cancers, increasing invasion and proliferation. In addition, voltage-gated Na+ channels are also upregulated in a range of tumour types, where they promote metastatic cell behaviours via various mechanisms, including membrane potential depolarisation and altered pH regulation. Together, recent findings relating to elevated Na+ in the tumour microenvironment and how this may be regulated by several classes of Na+ channels provide a link between altered Na+ handling and poor clinical outcome. There are new opportunities to leverage this altered Na+ microenvironment for therapeutic benefit, as exemplified by several ongoing clinical trials.
Collapse
Affiliation(s)
- Theresa K. Leslie
- Department of BiologyUniversity of YorkHeslingtonYorkUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkHeslingtonYorkUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkUK
| |
Collapse
|
11
|
James AD, Unthank KP, Jones I, Sajjaboontawee N, Sizer RE, Chawla S, Evans GJO, Brackenbury WJ. Sodium regulates PLC and IP 3 R-mediated calcium signaling in invasive breast cancer cells. Physiol Rep 2023; 11:e15663. [PMID: 37017052 PMCID: PMC10074044 DOI: 10.14814/phy2.15663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Intracellular Ca2+ signaling and Na+ homeostasis are inextricably linked via ion channels and co-transporters, with alterations in the concentration of one ion having profound effects on the other. Evidence indicates that intracellular Na+ concentration ([Na+ ]i ) is elevated in breast tumors, and that aberrant Ca2+ signaling regulates numerous key cancer hallmark processes. The present study therefore aimed to determine the effects of Na+ depletion on intracellular Ca2+ handling in metastatic breast cancer cell lines. The relationship between Na+ and Ca2+ was probed using fura-2 and SBFI fluorescence imaging and replacement of extracellular Na+ with equimolar N-methyl-D-glucamine (0Na+ /NMDG) or choline chloride (0Na+ /ChoCl). In triple-negative MDA-MB-231 and MDA-MB-468 cells and Her2+ SKBR3 cells, but not ER+ MCF-7 cells, 0Na+ /NMDG and 0Na+ /ChoCl resulted in a slow, sustained depletion in [Na+ ]i that was accompanied by a rapid and sustained increase in intracellular Ca2+ concentration ([Ca2+ ]i ). Application of La3+ in nominal Ca2+ -free conditions had no effect on this response, ruling out reverse-mode NCX activity and Ca2+ entry channels. Moreover, the Na+ -linked [Ca2+ ]i increase was independent of membrane potential hyperpolarization (NS-1619), but was inhibited by pharmacological blockade of IP3 receptors (2-APB), phospholipase C (PLC, U73122) or following depletion of endoplasmic reticulum Ca2+ stores (cyclopiazonic acid). Thus, Na+ is linked to PLC/IP3 -mediated activation of endoplasmic reticulum Ca2+ release in metastatic breast cancer cells and this may have an important role in breast tumors where [Na+ ]i is perturbed.
Collapse
Affiliation(s)
- Andrew D. James
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | | | | | - Nattanan Sajjaboontawee
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | | | - Sangeeta Chawla
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Gareth J. O. Evans
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| |
Collapse
|
12
|
Lopez-Charcas O, Poisson L, Benouna O, Lemoine R, Chadet S, Pétereau A, Lahlou W, Guyétant S, Ouaissi M, Pukkanasut P, Dutta S, Velu SE, Besson P, Moussata D, Roger S. Voltage-Gated Sodium Channel Na V1.5 Controls NHE-1-Dependent Invasive Properties in Colon Cancer Cells. Cancers (Basel) 2022; 15:cancers15010046. [PMID: 36612049 PMCID: PMC9817685 DOI: 10.3390/cancers15010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of death worldwide, with 0.9 million deaths per year. The metastatic stage of the disease is identified in about 20% of cases at the first diagnosis and is associated with low patient-survival rates. Voltage-gated sodium channels (NaV) are abnormally overexpressed in several carcinomas including CRC and are strongly associated with the metastatic behavior of cancer cells. Acidification of the extracellular space by Na+/H+ exchangers (NHE) contributes to extracellular matrix degradation and cell invasiveness. In this study, we assessed the expression levels of pore-forming α-subunits of NaV channels and NHE exchangers in tumor and adjacent non-malignant tissues from colorectal cancer patients, CRC cell lines and primary tumor cells. In all cases, SCN5A (gene encoding for NaV1.5) was overexpressed and positively correlated with cancer stage and poor survival prognosis for patients. In addition, we identified an anatomical differential expression of SCN5A and SLC9A1 (gene encoding for NHE-1) being particularly relevant for tumors that originated on the sigmoid colon epithelium. The functional activity of NaV1.5 channels was characterized in CRC cell lines and the primary cells of colon tumors obtained using tumor explant methodologies. Furthermore, we assessed the performance of two new small-molecule NaV1.5 inhibitors on the reduction of sodium currents, as well as showed that silencing SCN5A and SLC9A1 substantially reduced the 2D invasive capabilities of cancer cells. Thus, our findings show that both NaV1.5 and NHE-1 represent two promising targetable membrane proteins against the metastatic progression of CRC.
Collapse
Affiliation(s)
- Osbaldo Lopez-Charcas
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
- Correspondence: (O.L.-C.); (S.R.); Tel.: +33-2-47-36-61-30 (S.R.)
| | - Lucile Poisson
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
| | - Oumnia Benouna
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
| | - Roxane Lemoine
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
| | - Stéphanie Chadet
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
| | - Adrien Pétereau
- Service D’anatomie et de Cytologie Pathologiques, Hôpital Trousseau, CHU de Tours, 37170 Tours, France
| | - Widad Lahlou
- Service D’hépato-Gastroentérologie et de Cancérologie Digestive, Hôpital Trousseau, CHU de Tours, 37170 Tours, France
| | - Serge Guyétant
- Service D’anatomie et de Cytologie Pathologiques, Hôpital Trousseau, CHU de Tours, 37170 Tours, France
| | - Mehdi Ouaissi
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
- Service de Chirurgie Viscérale et Oncologique, Hôpital Trousseau, CHU de Tours, 37170 Tours, France
| | - Piyasuda Pukkanasut
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294-1240, USA
| | - Shilpa Dutta
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294-1240, USA
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294-1240, USA
| | - Pierre Besson
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
| | - Driffa Moussata
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
- Service D’hépato-Gastroentérologie et de Cancérologie Digestive, Hôpital Trousseau, CHU de Tours, 37170 Tours, France
| | - Sébastien Roger
- EA4245, Transplantation, Immunologie et Inflammation, Faculté de Médecine, Université de Tours, 37032 Tours, France
- Correspondence: (O.L.-C.); (S.R.); Tel.: +33-2-47-36-61-30 (S.R.)
| |
Collapse
|
13
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
14
|
Diržiuvienė R, Šlekienė L, Palubinskienė J, Balnytė I, Lasienė K, Stakišaitis D, Valančiūtė A. Tumors derived from lung cancer cells respond differently to treatment with sodium valproate (a HDAC inhibitor) in a chicken embryo chorioallantoic membrane model. Histol Histopathol 2022; 37:1201-1212. [PMID: 35703146 DOI: 10.14670/hh-18-482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lung cancer is the most frequent cause of cancer death. Some human lung malignant tumors have a combined small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) histology, with tumor cell phenotype changing during tumor progression. Valproic acid is used as an anti-seizure medication to treat migraine, and bipolar mood disorders. Recently, its efficacy as an adjuvant therapy was shown in cancer due to its histone deacetylase (HDAC) inhibitory property. HDACs are upregulated in lung tumors, and HDAC inhibitors, including valproic acid, inhibit endothelial cell proliferation in vitro and in vivo and have antiproliferative and antimigratory properties. We tested valproic acid for possible antiangiogenic and antimigratory effects on experimental lung tumors grafted onto the chicken embryo chorioallantoic membrane (CAM). Tumors were formed from two NSCLC cell lines and a single SCLC cell line. To investigate tumor and CAM interactions, in vivo biomicroscopy, visualization of blood vessels with injected fluorescent dextran, histological, immunohistochemical and histomorphometric methods were applied. Our results showed that a sodium valproate (NaVP) treatment-induced a dose-dependent decrease of experimental tumor invasion into the CAM mesenchyme and a reduction in angiogenesis. Both the invasion and the angiogenic response were dependent on the type of cell line used: invasion and angiogenesis of tumors derived from A549 and NCI-H146 cell lines responded to increasing doses of NaVP from 4 to 8 mM, whereas Sk_Lu_1 cells response were antimigratory and antiangiogenic when NaVP was used up to 6 mM. When 8mM NaVP was used, stimulated invasion and angiogenesis in tumors from Sk_Lu_1 cells were observed.
Collapse
Affiliation(s)
- Raminta Diržiuvienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Lina Šlekienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jolita Palubinskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kristina Lasienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, Lithuania
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
15
|
Subcellular dynamics and functional activity of the cleaved intracellular domain of the Na + channel β1 subunit. J Biol Chem 2022; 298:102174. [PMID: 35752364 PMCID: PMC9304784 DOI: 10.1016/j.jbc.2022.102174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
The voltage-gated Na+ channel β1 subunit, encoded by SCN1B, regulates cell surface expression and gating of α subunits and participates in cell adhesion. β1 is cleaved by α/β and γ-secretases, releasing an extracellular domain and intracellular domain (ICD), respectively. Abnormal SCN1B expression/function is linked to pathologies including epilepsy, cardiac arrhythmia, and cancer. In this study, we sought to determine the effect of secretase cleavage on β1 function in breast cancer cells. Using a series of GFP-tagged β1 constructs, we show that β1-GFP is mainly retained intracellularly, particularly in the endoplasmic reticulum and endolysosomal pathway, and accumulates in the nucleus. Reduction in endosomal β1-GFP levels occurred following γ-secretase inhibition, implicating endosomes and/or the preceding plasma membrane as important sites for secretase processing. Using live-cell imaging, we also report β1ICD-GFP accumulation in the nucleus. Furthermore, β1-GFP and β1ICD-GFP both increased Na+ current, whereas β1STOP-GFP, which lacks the ICD, did not, thus highlighting that the β1-ICD is necessary and sufficient to increase Na+ current measured at the plasma membrane. Importantly, although the endogenous Na+ current expressed in MDA-MB-231 cells is tetrodotoxin (TTX)-resistant (carried by Nav1.5), the Na+ current increased by β1-GFP or β1ICD-GFP was TTX-sensitive. Finally, we found β1-GFP increased mRNA levels of the TTX-sensitive α subunits SCN1A/Nav1.1 and SCN9A/Nav1.7. Taken together, this work suggests that the β1-ICD is a critical regulator of α subunit function in cancer cells. Our data further highlight that γ-secretase may play a key role in regulating β1 function in breast cancer.
Collapse
|
16
|
Nav1.6 promotes the progression of human follicular thyroid carcinoma cells via JAK-STAT signaling pathway. Pathol Res Pract 2022; 236:153984. [PMID: 35753135 DOI: 10.1016/j.prp.2022.153984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022]
Abstract
Follicular thyroid carcinoma (FTC) is one of the most common malignant tumors of the endocrine system. Recent studies have shown that voltage-gated sodium channels (VGSCs) affect the proliferation, migration, and invasion of tumor cells. However, the expression and functions of VGSCs, and the molecular pathways activated by VGSCs in FTC cells remain unclear. Our studies revealed that the expression of Nav1.6, encoded by SCN8A, was the predominantly upregulated subtype of VGSCs in FTC tissues. Knockdown of Nav1.6 significantly inhibited the proliferation, epithelial-mesenchymal transition and invasiveness of FTC cells. Using gene set enrichment analysis and Kyoto Encyclopedia of Genes and Genomics, SCN8A was predicted to be related to the JAK-STAT signaling pathway. Hence, we targeted the JAK-STAT pathway and demonstrated that Nav1.6 enhanced FTC cell proliferation, epithelial-mesenchymal transition, and invasion by phosphorylating JAK2 to activate STAT3. Furthermore, downregulating the expression of Nav1.6 improve the susceptibility of FTC cells to ubenimex in vitro. These results suggest Nav1.6 accelerates FTC progression through JAK/STAT signaling and may be a potential target for FTC therapy.
Collapse
|
17
|
Mei C, Liu C, Gao Y, Dai WT, Zhang W, Li X, Liu ZQ. eIF3a Regulates Colorectal Cancer Metastasis via Translational Activation of RhoA and Cdc42. Front Cell Dev Biol 2022; 10:794329. [PMID: 35300416 PMCID: PMC8921074 DOI: 10.3389/fcell.2022.794329] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor metastasis is the major cause of tumor relapse and cancer-associated mortality in colorectal cancer, leading to poor therapeutic responses and reduced survival. eIF3a was previously described as an oncogene. However, its role in colorectal cancer progression and metastasis has not yet been fully investigated. In this study, the expression specificity and predictive value of eIF3a were investigated in clinical samples. The effects of eIF3a on cell proliferation and migration were verified in vivo and in vitro, respectively. The underlying molecular mechanism was revealed by western blotting, immunofluorescence, RNA-binding protein immunoprecipitation, and dual-luciferase reporter gene assays. The results showed that eIF3a was significantly overexpressed in tumor tissues compared with adjacent normal tissues. High eIF3a expression was correlated with tumor metastasis and overall survival. Downregulation of eIF3a obviously inhibited the proliferation and motility of malignant cells in vitro and in vivo. Mechanistically, eIF3a regulates Cdc42 and RhoA expression at the translation level, which further affects pseudopodia formation and actin cytoskeleton remodeling. Taken together, eIF3a accelerates the acquisition of the migratory phenotype of cancer cells by activating Cdc42 and RhoA expression at the translational level. Our study identified eIF3a as a promising target for inhibiting colorectal cancer metastasis.
Collapse
Affiliation(s)
- Chao Mei
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| | - Chong Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| | - Ying Gao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| | - Wen-Ting Dai
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| | - Xi Li
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
18
|
In Silico Analysis of Ion Channels and Their Correlation with Epithelial to Mesenchymal Transition in Breast Cancer. Cancers (Basel) 2022; 14:cancers14061444. [PMID: 35326596 PMCID: PMC8946083 DOI: 10.3390/cancers14061444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Breast cancer involves changes in the healthy cells of the breast resulting in rapid and abnormal division of cells that later spread to other parts of the body through the process of metastasis, which involves epithelial mesenchymal transition (EMT). Ion channels play a significant role in the switch from epithelial to mesenchymal transition through their contributions to cellular motility, cell volume regulation and cell cycle progression. Comprehensive computational analyses were performed to understand the role of ion channels in tumor/metastatic samples of breast cancer and their correlation with EMT. Abstract Uncontrolled growth of breast cells due to altered gene expression is a key feature of breast cancer. Alterations in the expression of ion channels lead to variations in cellular activities, thus contributing to attributes of cancer hallmarks. Changes in the expression levels of ion channels were observed as a consequence of EMT. Additionally, ion channels were reported in the activation of EMT and maintenance of a mesenchymal phenotype. Here, to identify altered ion channels in breast cancer patients, differential gene expression and weighted gene co-expression network analyses were performed using transcriptomic data. Protein–protein interactions network analysis was carried out to determine the ion channels interacting with hub EMT-related genes in breast cancer. Thirty-two ion channels were found interacting with twenty-six hub EMT-related genes. The identified ion channels were further correlated with EMT scores, indicating mesenchymal phenotype. Further, the pathway map was generated to represent a snapshot of deregulated cellular processes by altered ion channels and EMT-related genes. Kaplan–Meier five-year survival analysis and Cox regressions indicated the expression of CACNA1B, ANO6, TRPV3, VDAC1 and VDAC2 to be potentially associated with poor survival. Deregulated ion channels correlate with EMT-related genes and have a crucial role in breast cancer-associated tumorigenesis. Most likely, they are potential candidates for the determination of prognosis in patients with breast cancer.
Collapse
|
19
|
Voltage-Gated Sodium Channels as Potential Biomarkers and Therapeutic Targets for Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13215437. [PMID: 34771603 PMCID: PMC8582439 DOI: 10.3390/cancers13215437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Voltage-gated sodium channels are membrane proteins that change conformation in response to depolarization of the membrane potential, allowing sodium ions to flow into cells. While voltage-gated sodium channels are normally studied in terms of neuron impulses and skeletal or cardiac muscle contraction, abnormal ion channel expression is a feature of many cancer cells. The aim of our study was to assess the expression of voltage-gated sodium channels in ovarian cancer cells. We found that ovarian cancer cells generally express lower levels of voltage-gated sodium channels than normal cells and that two voltage-gated sodium channels, SCN8A and SCN1B, were prognostic biomarkers for ovarian cancer overall survival. In vitro studies suggested that drugs that block voltage-gated sodium channels, such as certain anti-epileptic drugs and local anesthetics, might sensitize ovarian cancer cells to chemotherapy. These findings suggest that voltage-gated sodium channels may be interesting targets for ovarian cancer therapy. Abstract Abnormal ion channel expression distinguishes several types of carcinoma. Here, we explore the relationship between voltage-gated sodium channels (VGSC) and epithelial ovarian cancer (EOC). We find that EOC cell lines express most VGSC, but at lower levels than fallopian tube secretory epithelial cells (the cells of origin for most EOC) or control fibroblasts. Among patient tumor samples, lower SCN8A expression was associated with improved overall survival (OS) (median 111 vs. 52 months; HR 2.04 95% CI: 1.21–3.44; p = 0.007), while lower SCN1B expression was associated with poorer OS (median 45 vs. 56 months; HR 0.69 95% CI 0.54–0.87; p = 0.002). VGSC blockade using either anti-epileptic drugs or local anesthetics (LA) decreased the proliferation of cancer cells. LA increased cell line sensitivity to platinum and taxane chemotherapies. While lidocaine had similar additive effects with chemotherapy among EOC cells and fibroblasts, bupivacaine showed a more pronounced impact on EOC than fibroblasts when combined with either carboplatin (ΔAUC −37% vs. −16%, p = 0.003) or paclitaxel (ΔAUC −37% vs. −22%, p = 0.02). Together, these data suggest VGSC are prognostic biomarkers in EOC and may inform new targets for therapy.
Collapse
|
20
|
Lenga Ma Bonda W, Lavergne M, Vasseur V, Brisson L, Roger S, Legras A, Guillon A, Guyétant S, Hiemstra PS, Si-Tahar M, Iochmann S, Reverdiau P. Kallikrein-related peptidase 5 contributes to the remodeling and repair of bronchial epithelium. FASEB J 2021; 35:e21838. [PMID: 34582061 DOI: 10.1096/fj.202002649r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Inflammation, oxidative stress, and protease/protease inhibitor imbalance with excessive production of proteases are factors associated with pathogenesis of the chronic obstructive pulmonary disease (COPD). In this study, we report that kallikrein-related peptidase 5 (KLK5) is a crucial protease involved in extracellular matrix (ECM) remodeling and bronchial epithelial repair after injury. First, we showed that KLK5 degrades the basal layer formed by culture of primary bronchial epithelial cells from COPD or non-COPD patients. Also, exogenous KLK5 acted differently on BEAS-2B cells already engaged in epithelial-to-mesenchymal transition (EMT) or on 16HBE 14o- cells harboring epithelial characteristics. Indeed, by inducing EMT, KLK5 reduced BEAS-2B cell adherence to the ECM. This effect, neutralized by tissue factor pathway inhibitor 2, a kunitz-type serine protease inhibitor, was due to a direct proteolytic activity of KLK5 on E-cadherin, β-catenin, fibronectin, and α5β1 integrin. Thus, KLK5 may strengthen EMT mechanisms and promote the migration of cells by activating the mitogen-activated protein kinase signaling pathway required for this function. In contrast, knockdown of endogenous KLK5 in 16HBE14o- cells, accelerated wound healing repair after injury, and exogenous KLK5 addition delayed the closure repair. These data suggest that among proteases, KLK5 could play a critical role in airway remodeling events associated with COPD during exposure of the pulmonary epithelium to inhaled irritants or smoking and the inflammation process.
Collapse
Affiliation(s)
- Woodys Lenga Ma Bonda
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France
| | - Marion Lavergne
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France
| | - Virginie Vasseur
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France
| | - Lucie Brisson
- Université de Tours, Tours, France.,Nutrition, Croissance et Cancer (N2C), INSERM, UMR 1069, Tours, France
| | - Sébastien Roger
- Université de Tours, Tours, France.,EA 4245 "Transplantation, Immunologie, Inflammation", Tours, France.,Institut Universitaire de France, Paris, France
| | - Antoine Legras
- Université de Tours, Tours, France.,Département de chirurgie thoracique, CHRU de Tours, Tours, France
| | - Antoine Guillon
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France.,Service de médecine intensive et réanimation, CHRU de Tours, Tours, France
| | - Serge Guyétant
- Université de Tours, Tours, France.,Département d'anatomie et cytologie pathologiques, CHRU de Tours, Tours, France
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mustapha Si-Tahar
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France
| | - Sophie Iochmann
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France.,Institut Universitaire de Technologie, Tours, France
| | - Pascale Reverdiau
- Université de Tours, Tours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM, UMR 1100, Tours, France.,Institut Universitaire de Technologie, Tours, France
| |
Collapse
|
21
|
Doray A, Lemoine R, Severin M, Chadet S, Lopez-Charcas O, Héraud A, Baron C, Besson P, Monteil A, Pedersen SF, Roger S. The Voltage-Gated Sodium Channel Beta4 Subunit Maintains Epithelial Phenotype in Mammary Cells. Cells 2021; 10:1624. [PMID: 34209614 PMCID: PMC8304757 DOI: 10.3390/cells10071624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
The SCN4B gene, coding for the NaVβ4 subunit of voltage-gated sodium channels, was recently found to be expressed in normal epithelial cells and down-regulated in several cancers. However, its function in normal epithelial cells has not been characterized. In this study, we demonstrated that reducing NaVβ4 expression in MCF10A non-cancer mammary epithelial cells generated important morphological changes observed both in two-dimensional cultures and in three-dimensional cysts. Most notably, the loss of NaVβ4 induced a complete loss of epithelial organisation in cysts and increased proteolytic activity towards the extracellular matrix. Loss of epithelial morphology was associated with an increased degradation of β-catenin, reduced E-cadherin expression and induction of mesenchymal markers N-cadherin, vimentin, and α-SMA expression. Overall, our results suggest that Navβ4 may participate in the maintenance of the epithelial phenotype in mammary cells and that its downregulation might be a determining step in early carcinogenesis.
Collapse
Affiliation(s)
- Adélaïde Doray
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
| | - Roxane Lemoine
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
| | - Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (S.F.P.)
| | - Stéphanie Chadet
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
| | - Osbaldo Lopez-Charcas
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
| | - Audrey Héraud
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
| | - Christophe Baron
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
| | - Pierre Besson
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS UMR 5203, INSERM U1191, 34094 Montpellier, France;
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (S.F.P.)
| | - Sébastien Roger
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
22
|
Wang G, Jia Y, Ye Y, Kang E, Chen H, Wang J, He X. Identification of key methylation differentially expressed genes in posterior fossa ependymoma based on epigenomic and transcriptome analysis. J Transl Med 2021; 19:174. [PMID: 33902636 PMCID: PMC8077736 DOI: 10.1186/s12967-021-02834-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background Posterior fossa ependymoma (EPN-PF) can be classified into Group A posterior fossa ependymoma (EPN-PFA) and Group B posterior fossa ependymoma (EPN-PFB) according to DNA CpG island methylation profile status and gene expression. EPN-PFA usually occurs in children younger than 5 years and has a poor prognosis. Methods Using epigenome and transcriptome microarray data, a multi-component weighted gene co-expression network analysis (WGCNA) was used to systematically identify the hub genes of EPN-PF. We downloaded two microarray datasets (GSE66354 and GSE114523) from the Gene Expression Omnibus (GEO) database. The Limma R package was used to identify differentially expressed genes (DEGs), and ChAMP R was used to analyze the differential methylation genes (DMGs) between EPN-PFA and EPN-PFB. GO and KEGG enrichment analyses were performed using the Metascape database. Results GO analysis showed that enriched genes were significantly enriched in the extracellular matrix organization, adaptive immune response, membrane raft, focal adhesion, NF-kappa B pathway, and axon guidance, as suggested by KEGG analysis. Through WGCNA, we found that MEblue had a significant correlation with EPN-PF (R = 0.69, P = 1 × 10–08) and selected the 180 hub genes in the blue module. By comparing the DEGs, DMGs, and hub genes in the co-expression network, we identified five hypermethylated, lower expressed genes in EPN-PFA (ATP4B, CCDC151, DMKN, SCN4B, and TUBA4B), and three of them were confirmed by IHC. Conclusion ssGSEA and GSVA analysis indicated that these five hub genes could lead to poor prognosis by inducing hypoxia, PI3K-Akt-mTOR, and TNFα-NFKB pathways. Further study of these dysmethylated hub genes in EPN-PF and the pathways they participate in may provides new ideas for EPN-PF treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02834-1.
Collapse
Affiliation(s)
- Guanyi Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Yibin Jia
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Yuqin Ye
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China.,Department of Neurosurgery, PLA 163Rd Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha, 410000, China
| | - Enming Kang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Huijun Chen
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Jiayou Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China.
| |
Collapse
|
23
|
Lopez-Charcas O, Pukkanasut P, Velu SE, Brackenbury WJ, Hales TG, Besson P, Gomora JC, Roger S. Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers. iScience 2021; 24:102270. [PMID: 33817575 PMCID: PMC8010468 DOI: 10.1016/j.isci.2021.102270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voltage-gated sodium (NaV) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, and cervix, whereas they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both in vitro and in vivo, whereas their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes NaV channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing NaV-inhibitors or developing new pharmacological and nutritional interventions.
Collapse
Affiliation(s)
- Osbaldo Lopez-Charcas
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, CHEM 280. 901, 14th Street S, Birmingham, AL 35294, USA
| | - William J. Brackenbury
- Department of Biology, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Tim G. Hales
- Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, the University of Dundee, DD1 9SY, Dundee, UK
| | - Pierre Besson
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Juan Carlos Gomora
- Instituto de Fisiología Celular, Circuito Exterior s/n Ciudad Universitaria, Universidad Nacional Autónoma de México, Mexico City, 04510 México
| | - Sébastien Roger
- Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
24
|
Kim S, Kim K, Choe J, Lee I, Kang J. Improved survival analysis by learning shared genomic information from pan-cancer data. Bioinformatics 2021; 36:i389-i398. [PMID: 32657401 PMCID: PMC7355236 DOI: 10.1093/bioinformatics/btaa462] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Motivation Recent advances in deep learning have offered solutions to many biomedical tasks. However, there remains a challenge in applying deep learning to survival analysis using human cancer transcriptome data. As the number of genes, the input variables of survival model, is larger than the amount of available cancer patient samples, deep-learning models are prone to overfitting. To address the issue, we introduce a new deep-learning architecture called VAECox. VAECox uses transfer learning and fine tuning. Results We pre-trained a variational autoencoder on all RNA-seq data in 20 TCGA datasets and transferred the trained weights to our survival prediction model. Then we fine-tuned the transferred weights during training the survival model on each dataset. Results show that our model outperformed other previous models such as Cox Proportional Hazard with LASSO and ridge penalty and Cox-nnet on the 7 of 10 TCGA datasets in terms of C-index. The results signify that the transferred information obtained from entire cancer transcriptome data helped our survival prediction model reduce overfitting and show robust performance in unseen cancer patient samples. Availability and implementation Our implementation of VAECox is available at https://github.com/dmis-lab/VAECox. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sunkyu Kim
- Department of Computer Science and Engineering, College of Informatics, Korea University, Seoul 02841, Republic of Korea
| | - Keonwoo Kim
- Department of Computer Science and Engineering, College of Informatics, Korea University, Seoul 02841, Republic of Korea
| | - Junseok Choe
- Department of Computer Science and Engineering, College of Informatics, Korea University, Seoul 02841, Republic of Korea
| | - Inggeol Lee
- Department of Computer Science and Engineering, College of Informatics, Korea University, Seoul 02841, Republic of Korea
| | - Jaewoo Kang
- Department of Computer Science and Engineering, College of Informatics, Korea University, Seoul 02841, Republic of Korea.,Interdisciplinary Graduate Program in Bioinformatics, College of Informatics, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
25
|
Buschur KL, Chikina M, Benos PV. Causal network perturbations for instance-specific analysis of single cell and disease samples. Bioinformatics 2020; 36:2515-2521. [PMID: 31873725 PMCID: PMC7178399 DOI: 10.1093/bioinformatics/btz949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/22/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
MOTIVATION Complex diseases involve perturbation in multiple pathways and a major challenge in clinical genomics is characterizing pathway perturbations in individual samples. This can lead to patient-specific identification of the underlying mechanism of disease thereby improving diagnosis and personalizing treatment. Existing methods rely on external databases to quantify pathway activity scores. This ignores the data dependencies and that pathways are incomplete or condition-specific. RESULTS ssNPA is a new approach for subtyping samples based on deregulation of their gene networks. ssNPA learns a causal graph directly from control data. Sample-specific network neighborhood deregulation is quantified via the error incurred in predicting the expression of each gene from its Markov blanket. We evaluate the performance of ssNPA on liver development single-cell RNA-seq data, where the correct cell timing is recovered; and two TCGA datasets, where ssNPA patient clusters have significant survival differences. In all analyses ssNPA consistently outperforms alternative methods, highlighting the advantage of network-based approaches. AVAILABILITY AND IMPLEMENTATION http://www.benoslab.pitt.edu/Software/ssnpa/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kristina L Buschur
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.,Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA 15260, USA
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| |
Collapse
|
26
|
Leslie TK, Brückner L, Chawla S, Brackenbury WJ. Inhibitory Effect of Eslicarbazepine Acetate and S-Licarbazepine on Na v1.5 Channels. Front Pharmacol 2020; 11:555047. [PMID: 33123007 PMCID: PMC7567166 DOI: 10.3389/fphar.2020.555047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Eslicarbazepine acetate (ESL) is a dibenzazepine anticonvulsant approved as adjunctive treatment for partial-onset epileptic seizures. Following first pass hydrolysis of ESL, S-licarbazepine (S-Lic) represents around 95% of circulating active metabolites. S-Lic is the main enantiomer responsible for anticonvulsant activity and this is proposed to be through the blockade of voltage-gated Na+ channels (VGSCs). ESL and S-Lic both have a voltage-dependent inhibitory effect on the Na+ current in N1E-115 neuroblastoma cells expressing neuronal VGSC subtypes including Nav1.1, Nav1.2, Nav1.3, Nav1.6, and Nav1.7. ESL has not been associated with cardiotoxicity in healthy volunteers, although a prolongation of the electrocardiographic PR interval has been observed, suggesting that ESL may also inhibit cardiac Nav1.5 isoform. However, this has not previously been studied. Here, we investigated the electrophysiological effects of ESL and S-Lic on Nav1.5 using whole-cell patch clamp recording. We interrogated two model systems: (1) MDA-MB-231 metastatic breast carcinoma cells, which endogenously express the "neonatal" Nav1.5 splice variant, and (2) HEK-293 cells stably over-expressing the "adult" Nav1.5 splice variant. We show that both ESL and S-Lic inhibit transient and persistent Na+ current, hyperpolarise the voltage-dependence of fast inactivation, and slow the recovery from channel inactivation. These findings highlight, for the first time, the potent inhibitory effects of ESL and S-Lic on the Nav1.5 isoform, suggesting a possible explanation for the prolonged PR interval observed in patients on ESL treatment. Given that numerous cancer cells have also been shown to express Nav1.5, and that VGSCs potentiate invasion and metastasis, this study also paves the way for future investigations into ESL and S-Lic as potential invasion inhibitors.
Collapse
Affiliation(s)
| | - Lotte Brückner
- Department of Biology, University of York, York, United Kingdom
| | - Sangeeta Chawla
- Department of Biology, University of York, York, United Kingdom.,York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom.,York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
27
|
Investigation of gene-gene interactions in cardiac traits and serum fatty acid levels in the LURIC Health Study. PLoS One 2020; 15:e0238304. [PMID: 32915819 PMCID: PMC7485803 DOI: 10.1371/journal.pone.0238304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 08/13/2020] [Indexed: 01/25/2023] Open
Abstract
Epistasis analysis elucidates the effects of gene-gene interactions (G×G) between multiple loci for complex traits. However, the large computational demands and the high multiple testing burden impede their discoveries. Here, we illustrate the utilization of two methods, main effect filtering based on individual GWAS results and biological knowledge-based modeling through Biofilter software, to reduce the number of interactions tested among single nucleotide polymorphisms (SNPs) for 15 cardiac-related traits and 14 fatty acids. We performed interaction analyses using the two filtering methods, adjusting for age, sex, body mass index (BMI), waist-hip ratio, and the first three principal components from genetic data, among 2,824 samples from the Ludwigshafen Risk and Cardiovascular (LURIC) Health Study. Using Biofilter, one interaction nearly met Bonferroni significance: an interaction between rs7735781 in XRCC4 and rs10804247 in XRCC5 was identified for venous thrombosis with a Bonferroni-adjusted likelihood ratio test (LRT) p: 0.0627. A total of 57 interactions were identified from main effect filtering for the cardiac traits G×G (10) and fatty acids G×G (47) at Bonferroni-adjusted LRT p < 0.05. For cardiac traits, the top interaction involved SNPs rs1383819 in SNTG1 and rs1493939 (138kb from 5’ of SAMD12) with Bonferroni-adjusted LRT p: 0.0228 which was significantly associated with history of arterial hypertension. For fatty acids, the top interaction between rs4839193 in KCND3 and rs10829717 in LOC107984002 with Bonferroni-adjusted LRT p: 2.28×10−5 was associated with 9-trans 12-trans octadecanoic acid, an omega-6 trans fatty acid. The model inflation factor for the interactions under different filtering methods was evaluated from the standard median and the linear regression approach. Here, we applied filtering approaches to identify numerous genetic interactions related to cardiac-related outcomes as potential targets for therapy. The approaches described offer ways to detect epistasis in the complex traits and to improve precision medicine capability.
Collapse
|
28
|
Bigan E, Sasidharan Nair S, Lejeune FX, Fragnaud H, Parmentier F, Mégret L, Verny M, Aaronson J, Rosinski J, Neri C. Genetic cooperativity in multi-layer networks implicates cell survival and senescence in the striatum of Huntington's disease mice synchronous to symptoms. Bioinformatics 2020; 36:186-196. [PMID: 31228193 PMCID: PMC6956776 DOI: 10.1093/bioinformatics/btz514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Motivation Huntington’s disease (HD) may evolve through gene deregulation. However, the impact of gene deregulation on the dynamics of genetic cooperativity in HD remains poorly understood. Here, we built a multi-layer network model of temporal dynamics of genetic cooperativity in the brain of HD knock-in mice (allelic series of Hdh mice). To enhance biological precision and gene prioritization, we integrated three complementary families of source networks, all inferred from the same RNA-seq time series data in Hdh mice, into weighted-edge networks where an edge recapitulates path-length variation across source-networks and age-points. Results Weighted edge networks identify two consecutive waves of tight genetic cooperativity enriched in deregulated genes (critical phases), pre-symptomatically in the cortex, implicating neurotransmission, and symptomatically in the striatum, implicating cell survival (e.g. Hipk4) intertwined with cell proliferation (e.g. Scn4b) and cellular senescence (e.g. Cdkn2a products) responses. Top striatal weighted edges are enriched in modulators of defective behavior in invertebrate models of HD pathogenesis, validating their relevance to neuronal dysfunction in vivo. Collectively, these findings reveal highly dynamic temporal features of genetic cooperativity in the brain of Hdh mice where a 2-step logic highlights the importance of cellular maintenance and senescence in the striatum of symptomatic mice, providing highly prioritized targets. Availability and implementation Weighted edge network analysis (WENA) data and source codes for performing spectral decomposition of the signal (SDS) and WENA analysis, both written using Python, are available at http://www.broca.inserm.fr/HD-WENA/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Erwan Bigan
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| | - Satish Sasidharan Nair
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| | - François-Xavier Lejeune
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| | - Hélissande Fragnaud
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| | - Frédéric Parmentier
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| | - Lucile Mégret
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| | - Marc Verny
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| | | | | | - Christian Neri
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| |
Collapse
|
29
|
Huang H, Qing XY, Zhou Q, Li HD, Hu ZY. Silencing of microRNA-3175 represses cell proliferation and invasion in prostate cancer by targeting the potential tumor-suppressor SCN4B. Kaohsiung J Med Sci 2020; 37:20-26. [PMID: 32833340 DOI: 10.1002/kjm2.12292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/19/2020] [Accepted: 07/19/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-3175 (miR-3175) expression is upregulated in prostate cancer, but its roles and the underlying mechanisms in prostate cancer cell growth and invasion need to be elucidated. This study aimed to uncover the roles of miR-3175 in regulating cell growth and migration, as well as the expression of its predicted target gene cardiac sodium channel β4-subunit gene (SCN4B). Real-time quantitative PCR (RT-qPCR) and/or western blotting techniques were used to measure miR-3175 and SCN4B expression levels in prostate cancer cells. Inhibitor or mimics transfections were used to overexpress or silence miR-3175 in prostate cancer cells. MTT and Edu assays were applied to assess cell viability. Scratch assay and transwell chambers were used to examine cell migration and invasion abilities. The interaction between miR-3175 and SCN4B was determined by means of luciferase gene reporter, RT-qPCR, and western blotting assays. The results showed that miR-3175 expression was increased and SCN4B expression was decreased in prostate cancer cell lines as compared with normal human prostatic epithelial cells. Compared with the control group, knockdown of miR-3175 resulted in strong inhibitions of cell growth, migration, invasion, and N-cadherin expression, together with an increase in E-cadherin expression. In addition, knockdown of miR-3175 dramatically increased the luciferase activity of the luciferase vector of SCN4B, and increased SCN4B expression. Together, this study illustrated that downregulation of miR-3175 repressed the proliferation and invasion of prostate cancer cells, which might be induced by SCN4B downregulation.
Collapse
Affiliation(s)
- He Huang
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Yan Qing
- Department of Oncology, Chengdu Seventh People's Hospital, Chengdu, China
| | - Qiong Zhou
- Department of Medical, the Third Hospital of Nanchang, Nanchang, China
| | - Han-Dan Li
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhu-Yun Hu
- Department of Urology, the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
30
|
Brisson L, Chadet S, Lopez-Charcas O, Jelassi B, Ternant D, Chamouton J, Lerondel S, Le Pape A, Couillin I, Gombault A, Trovero F, Chevalier S, Besson P, Jiang LH, Roger S. P2X7 Receptor Promotes Mouse Mammary Cancer Cell Invasiveness and Tumour Progression, and Is a Target for Anticancer Treatment. Cancers (Basel) 2020; 12:cancers12092342. [PMID: 32825056 PMCID: PMC7565976 DOI: 10.3390/cancers12092342] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
The P2X7 receptor is an ATP-gated cation channel with a still ambiguous role in cancer progression, proposed to be either pro- or anti-cancerous, depending on the cancer or cell type in the tumour. Its role in mammary cancer progression is not yet defined. Here, we show that P2X7 receptor is functional in highly aggressive mammary cancer cells, and induces a change in cell morphology with fast F-actin reorganization and formation of filopodia, and promotes cancer cell invasiveness through both 2- and 3-dimensional extracellular matrices in vitro. Furthermore, P2X7 receptor sustains Cdc42 activity and the acquisition of a mesenchymal phenotype. In an immunocompetent mouse mammary cancer model, we reveal that the expression of P2X7 receptor in cancer cells, but not in the host mice, promotes tumour growth and metastasis development, which were reduced by treatment with specific P2X7 antagonists. Our results demonstrate that P2X7 receptor drives mammary tumour progression and represents a pertinent target for mammary cancer treatment.
Collapse
Affiliation(s)
- Lucie Brisson
- Inserm UMR1069-Nutrition, Growth and Cancer, University of Tours, 37032 Tours, France; (L.B.); (J.C.); (S.C.)
| | - Stéphanie Chadet
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
| | - Osbaldo Lopez-Charcas
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
| | - Bilel Jelassi
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
| | - David Ternant
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
| | - Julie Chamouton
- Inserm UMR1069-Nutrition, Growth and Cancer, University of Tours, 37032 Tours, France; (L.B.); (J.C.); (S.C.)
| | - Stéphanie Lerondel
- CNRS UPS44 TAAM, PHENOMIN, Centre d’Imagerie du Petit Animal, 45071 Orléans, France; (S.L.); (A.L.P.)
| | - Alain Le Pape
- CNRS UPS44 TAAM, PHENOMIN, Centre d’Imagerie du Petit Animal, 45071 Orléans, France; (S.L.); (A.L.P.)
| | - Isabelle Couillin
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS, University of Orléans, 45071 Orléans, France; (I.C.); (A.G.)
| | - Aurélie Gombault
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS, University of Orléans, 45071 Orléans, France; (I.C.); (A.G.)
| | | | - Stéphan Chevalier
- Inserm UMR1069-Nutrition, Growth and Cancer, University of Tours, 37032 Tours, France; (L.B.); (J.C.); (S.C.)
| | - Pierre Besson
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
| | - Lin-Hua Jiang
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China
| | - Sébastien Roger
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
- Institut Universitaire de France, 75005 Paris, France
- Correspondence: ; Tel.: +33-2-47-36-61-30
| |
Collapse
|
31
|
Poisson L, Lopez-Charcas O, Chadet S, Bon E, Lemoine R, Brisson L, Ouaissi M, Baron C, Besson P, Roger S, Moussata D. Rock inhibition promotes Na V1.5 sodium channel-dependent SW620 colon cancer cell invasiveness. Sci Rep 2020; 10:13350. [PMID: 32770034 PMCID: PMC7414216 DOI: 10.1038/s41598-020-70378-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
The acquisition of invasive capacities by carcinoma cells, i.e. their ability to migrate through and to remodel extracellular matrices, is a determinant process leading to their dissemination and to the development of metastases. these cancer cell properties have often been associated with an increased Rho-ROCK signalling, and ROCK inhibitors have been proposed for anticancer therapies. In this study we used the selective ROCK inhibitor, Y-27632, to address the participation of the Rho-ROCK signalling pathway in the invasive properties of SW620 human colon cancer cells. Contrarily to initial assumptions, Y-27632 induced the acquisition of a pro-migratory cell phenotype and increased cancer cell invasiveness in both 3- and 2-dimensions assays. This effect was also obtained using the other ROCK inhibitor Fasudil as well as with knocking down the expression of ROCK-1 or ROCK-2, but was prevented by the inhibition of NaV1.5 voltage-gated sodium channel activity. Indeed, ROCK inhibition enhanced the activity of the pro-invasive NaV1.5 channel through a pathway that was independent of gene expression regulation. In conclusions, our evidence identifies voltage-gated sodium channels as new targets of the ROCK signalling pathway, as well as responsible for possible deleterious effects of the use of ROCK inhibitors in the treatment of cancers.
Collapse
Affiliation(s)
- Lucile Poisson
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,Inserm UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | - Osbaldo Lopez-Charcas
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Emeline Bon
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Roxane Lemoine
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Lucie Brisson
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | - Mehdi Ouaissi
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,CHRU de Tours, Tours, France
| | - Christophe Baron
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,CHRU de Tours, Tours, France
| | - Pierre Besson
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Sébastien Roger
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France. .,Institut Universitaire de France, Paris, France.
| | - Driffa Moussata
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France.,CHRU de Tours, Tours, France
| |
Collapse
|
32
|
Yao J, Czaplinska D, Ialchina R, Schnipper J, Liu B, Sandelin A, Pedersen SF. Cancer Cell Acid Adaptation Gene Expression Response Is Correlated to Tumor-Specific Tissue Expression Profiles and Patient Survival. Cancers (Basel) 2020; 12:cancers12082183. [PMID: 32764426 PMCID: PMC7463722 DOI: 10.3390/cancers12082183] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
The acidic pH of the tumor microenvironment plays a critical role in driving cancer development toward a more aggressive phenotype, but the underlying mechanisms are unclear. To this end, phenotypic and genotypic changes induced by adaptation of cancer cells to chronic acidosis have been studied. However, the generality of acid adaptation patterns across cell models and their correlation to the molecular phenotypes and aggressiveness of human cancers are essentially unknown. Here, we define an acid adaptation expression response shared across three cancer cell models, dominated by metabolic rewiring, extracellular matrix remodeling, and altered cell cycle regulation and DNA damage response. We find that many genes which are upregulated by acid adaptation are significantly correlated to patient survival, and more generally, that there are clear correlations between acid adaptation expression response and gene expression change between normal and tumor tissues, for a large subset of cancer patients. Our data support the notion that tumor microenvironment acidity is one of the key factors driving the selection of aggressive cancer cells in human patient tumors, yet it also induces a growth-limiting genotype that likely limits cancer cell growth until the cells are released from acidosis, for instance during invasion.
Collapse
Affiliation(s)
- Jiayi Yao
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, DK2200 Copenhagen, Denmark;
- Biotech Research and Innovation Centre, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Dominika Czaplinska
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, DK2100 Copenhagen, Denmark; (D.C.); (R.I.); (J.S.)
| | - Renata Ialchina
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, DK2100 Copenhagen, Denmark; (D.C.); (R.I.); (J.S.)
| | - Julie Schnipper
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, DK2100 Copenhagen, Denmark; (D.C.); (R.I.); (J.S.)
| | - Bin Liu
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK2100 Copenhagen, Denmark;
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, DK2200 Copenhagen, Denmark;
- Biotech Research and Innovation Centre, University of Copenhagen, DK2200 Copenhagen, Denmark
- Correspondence: (A.S.); (S.F.P.)
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, DK2100 Copenhagen, Denmark; (D.C.); (R.I.); (J.S.)
- Correspondence: (A.S.); (S.F.P.)
| |
Collapse
|
33
|
Almasi S, El Hiani Y. Exploring the Therapeutic Potential of Membrane Transport Proteins: Focus on Cancer and Chemoresistance. Cancers (Basel) 2020; 12:cancers12061624. [PMID: 32575381 PMCID: PMC7353007 DOI: 10.3390/cancers12061624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Improving the therapeutic efficacy of conventional anticancer drugs represents the best hope for cancer treatment. However, the shortage of druggable targets and the increasing development of anticancer drug resistance remain significant problems. Recently, membrane transport proteins have emerged as novel therapeutic targets for cancer treatment. These proteins are essential for a plethora of cell functions ranging from cell homeostasis to clinical drug toxicity. Furthermore, their association with carcinogenesis and chemoresistance has opened new vistas for pharmacology-based cancer research. This review provides a comprehensive update of our current knowledge on the functional expression profile of membrane transport proteins in cancer and chemoresistant tumours that may form the basis for new cancer treatment strategies.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON KIH 8M5, Canada;
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
34
|
Liu Q, Huang X, Li Q, He L, Li S, Chen X, Ouyang Y, Wang X, Lin C. Rhophilin-associated tail protein 1 promotes migration and metastasis in triple negative breast cancer via activation of RhoA. FASEB J 2020; 34:9959-9971. [PMID: 32427399 DOI: 10.1096/fj.201903281r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 01/17/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype with high motile and invasive capacity that contributes to metastasis. Understanding the mechanisms for the motility of TNBC might provide novel targetable vulnerabilities of the tumors. Herein, we find that Rhophilin-associated tail protein 1 (ROPN1) is selectively overexpressed in human TNBC cell lines and tissues. Overexpression of ROPN1 promotes, while silencing of ROPN1 inhibits the robust migration, invasion, and in vivo metastasis of TNBC cells. Moreover, we find that ROPN1 activates RhoA signaling via rhophilin-1 (RHPN1), leading to enhanced actin stress fibers formation in TNBC cells. RhoA signaling is demonstrated to be essential for ROPN1-mediated migration and metastasis of TNBC cells. Finally, we find that high levels of ROPN1 are significantly associated distant metastasis and predicted poor prognosis in patients with breast cancer. These findings reveal a novel mechanism for the high motility and metastasis of TNBC cells, suggesting that ROPN1 might be a potential prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Qinghua Liu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinjian Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Breast Surgery, Sun Yat-sen University, Guangzhou, China
| | - Qingyuan Li
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Lixin He
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Siqi Li
- Department of Breast Surgery, Sun Yat-sen University, Guangzhou, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xi Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Breast Surgery, Sun Yat-sen University, Guangzhou, China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
35
|
Ben Hassen C, Gutierrez-Pajares JL, Guimaraes C, Guibon R, Pinault M, Fromont G, Frank PG. Apolipoprotein-mediated regulation of lipid metabolism induces distinctive effects in different types of breast cancer cells. Breast Cancer Res 2020; 22:38. [PMID: 32321558 PMCID: PMC7178965 DOI: 10.1186/s13058-020-01276-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The highest incidence of breast cancer is in the Western world. Several aspects of the Western lifestyle are known risk factors for breast cancer. In particular, previous studies have shown that cholesterol levels can play an important role in the regulation of tumor progression. METHODS In the present study, we modulated cholesterol metabolism in the human breast cancer cell lines MCF-7 and MDA-MB-231 using a genetic approach. Apolipoprotein A-I (apoA-I) and apolipoprotein E (apoE) were expressed in these cell lines to modulate cholesterol metabolism. The effects of these apolipoproteins on cancer cell properties were examined. RESULTS Our results show that both apolipoproteins can regulate cholesterol metabolism and can control the epithelial-to-mesenchymal transition process. However, these effects were different depending on the cell type. We show that expressing apoA-I or apoE stimulates proliferation, migration, and tumor growth of MCF-7 cells. However, apoA-I or apoE reduces proliferation and migration of MDA-MB-231 cells. CONCLUSIONS These data suggest that modulating sterol metabolism may be most effective at limiting tumor progression in models of triple-negative cancers.
Collapse
Affiliation(s)
| | | | | | - Roseline Guibon
- INSERM N2C UMR1069, University of Tours, 37032, Tours, France
- Department of Pathology, CHRU Tours-University of Tours, Tours, 37032, France
| | | | - Gaëlle Fromont
- INSERM N2C UMR1069, University of Tours, 37032, Tours, France
- Department of Pathology, CHRU Tours-University of Tours, Tours, 37032, France
| | | |
Collapse
|
36
|
Gradek F, Lopez-Charcas O, Chadet S, Poisson L, Ouldamer L, Goupille C, Jourdan ML, Chevalier S, Moussata D, Besson P, Roger S. Sodium Channel Na v1.5 Controls Epithelial-to-Mesenchymal Transition and Invasiveness in Breast Cancer Cells Through its Regulation by the Salt-Inducible Kinase-1. Sci Rep 2019; 9:18652. [PMID: 31819138 PMCID: PMC6901527 DOI: 10.1038/s41598-019-55197-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Loss of epithelial polarity and gain in invasiveness by carcinoma cells are critical events in the aggressive progression of cancers and depend on phenotypic transition programs such as the epithelial-to-mesenchymal transition (EMT). Many studies have reported the aberrant expression of voltage-gated sodium channels (NaV) in carcinomas and specifically the NaV1.5 isoform, encoded by the SCN5A gene, in breast cancer. NaV1.5 activity, through an entry of sodium ions, in breast cancer cells is associated with increased invasiveness, but its participation to the EMT has to be clarified. In this study, we show that reducing the expression of NaV1.5 in highly aggressive human MDA-MB-231 breast cancer cells reverted the mesenchymal phenotype, reduced cancer cell invasiveness and the expression of the EMT-promoting transcription factor SNAI1. The heterologous expression of NaV1.5 in weakly invasive MCF-7 breast cancer cells induced their expression of both SNAI1 and ZEB1 and increased their invasive capacities. In MCF-7 cells the stimulation with the EMT-activator signal TGF-β1 increased the expression of SCN5A. Moreover, the reduction of the salt-inducible kinase 1 (SIK1) expression promoted NaV1.5-dependent invasiveness and expression of EMT-associated transcription factor SNAI1. Altogether, these results indicated a prominent role of SIK1 in regulating NaV1.5-dependent EMT and invasiveness.
Collapse
Affiliation(s)
- Frédéric Gradek
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France
| | - Osbaldo Lopez-Charcas
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France
| | - Lucile Poisson
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France.,Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France
| | - Lobna Ouldamer
- Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France.,CHRU de Tours, Tours, France
| | - Caroline Goupille
- Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France.,CHRU de Tours, Tours, France
| | - Marie-Lise Jourdan
- Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France.,CHRU de Tours, Tours, France
| | - Stéphan Chevalier
- Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France
| | - Driffa Moussata
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France.,CHRU de Tours, Tours, France
| | - Pierre Besson
- Inserm UMR1069, Nutrition, Croissance et Cancer; Université de Tours, Tours, France
| | - Sébastien Roger
- EA4245 Transplantation, Immunologie, Inflammation; Université de Tours, Tours, France. .,Institut Universitaire de France, Paris, France.
| |
Collapse
|
37
|
Dai W, Zhou J, Wang H, Zhang M, Yang X, Song W. miR-424-5p promotes the proliferation and metastasis of colorectal cancer by directly targeting SCN4B. Pathol Res Pract 2019; 216:152731. [PMID: 31785995 DOI: 10.1016/j.prp.2019.152731] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/22/2019] [Accepted: 11/10/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies worldwide usually diagnosed at advanced stages which causes poor prognosis of patients. Therefore, novel diagnostic biomarkers and therapeutic targets are urgently needed. MATERIALS AND METHODS miR-424-5p was identified through integrated analysis of three public databases. Loss-of-function experiments in HT29 and SW480 cells and mouse xenograft models were performed to explore the regulatory role of miR-424-5p in CRC. Bioinformatics analysis was used for predicting targets of miR-424-5p and its functional and pathway enrichment analysis. RESULTS miR-424-5p expression was significantly upregulated in CRC tissues and cell lines and associated with prognosis of CRC patients. Experiments in vitro and in vivo showed miR-424-5p promotes CRC cell proliferation and metastasis by directly inhibiting SCN4B. Besides, CRC cells secret miR-424-5p into peripheral blood through exosomes and circulating exosomal miR-424-5p could discriminate CRC patients with early stage from healthy people with AUC value of 0.82. CONCLUSIONS miR-424-5p serves as an oncogene in CRC and circulating exosomal miR-424-5p is a novel potential diagnostic biomarker of CRC patients.
Collapse
Affiliation(s)
- Weijie Dai
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Jiajie Zhou
- General Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Han Wang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Menghui Zhang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Xiaozhong Yang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Wei Song
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China.
| |
Collapse
|
38
|
Djamgoz MBA, Fraser SP, Brackenbury WJ. In Vivo Evidence for Voltage-Gated Sodium Channel Expression in Carcinomas and Potentiation of Metastasis. Cancers (Basel) 2019; 11:E1675. [PMID: 31661908 PMCID: PMC6895836 DOI: 10.3390/cancers11111675] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022] Open
Abstract
A wide body of evidence suggests that voltage-gated sodium channels (VGSCs) are expressed de novo in several human carcinomas where channel activity promotes a variety of cellular behaviours integral to the metastatic cascade. These include directional motility (including galvanotaxis), pH balance, extracellular proteolysis, and invasion. Contrary to the substantial in vitro data, however, evidence for VGSC involvement in the cancer process in vivo is limited. Here, we critically assess, for the first time, the available in vivo evidence, hierarchically from mRNA level to emerging clinical aspects, including protein-level studies, electrolyte content, animal tests, and clinical imaging. The evidence strongly suggests that different VGSC subtypes (mainly Nav1.5 and Nav1.7) are expressed de novo in human carcinoma tissues and generally parallel the situation in vitro. Consistent with this, tissue electrolyte (sodium) levels, quantified by clinical imaging, are significantly higher in cancer vs. matched non-cancer tissues. These are early events in the acquisition of metastatic potential by the cancer cells. Taken together, the multi-faceted evidence suggests that the VGSC expression has clinical (diagnostic and therapeutic) potential as a prognostic marker, as well as an anti-metastatic target. The distinct advantages offered by the VGSC include especially (1) its embryonic nature, demonstrated most clearly for the predominant neonatal Nav1.5 expression in breast and colon cancer, and (2) the specifically druggable persistent current that VGSCs develop under hypoxic conditions, as in growing tumours, which promotes invasiveness and metastasis.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Scott P Fraser
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - William J Brackenbury
- Department of Biology and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
39
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
40
|
Mao W, Zhang J, Körner H, Jiang Y, Ying S. The Emerging Role of Voltage-Gated Sodium Channels in Tumor Biology. Front Oncol 2019; 9:124. [PMID: 30895169 PMCID: PMC6414428 DOI: 10.3389/fonc.2019.00124] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/12/2019] [Indexed: 11/13/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are transmembrane proteins which function as gates that control the flux of ions across the cell membrane. They are key ion channels for action potentials in excitable tissues and have important physiological functions. Abnormal function of VGSCs will lead to dysfunction of the body and trigger a variety of diseases. Various studies have demonstrated the participation of VGSCs in the progression of different tumors, such as prostate cancer, cervical cancer, breast cancer, and others, linking VGSC to the invasive capacity of tumor cells. However, it is still unclear whether the VGSC regulate the malignant biological behavior of tumors. Therefore, this paper systematically addresses the latest research progress on VGSCs subunits and tumors and the underlying mechanisms, and it summarizes the potential of VGSCs subunits to serve as potential targets for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Weijia Mao
- Key Laboratory of Oral Disease Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.,Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jie Zhang
- Key Laboratory of Oral Disease Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.,Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Heinrich Körner
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Yong Jiang
- Key Laboratory of Oral Disease Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
41
|
Sanchez-Sandoval AL, Gomora JC. Contribution of voltage-gated sodium channel β-subunits to cervical cancer cells metastatic behavior. Cancer Cell Int 2019; 19:35. [PMID: 30814913 PMCID: PMC6377746 DOI: 10.1186/s12935-019-0757-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/12/2019] [Indexed: 01/23/2023] Open
Abstract
Background Voltage-gated sodium (NaV) channels are heteromeric proteins consisting of a single pore forming α-subunit associated with one or two auxiliary β-subunits. These channels are classically known for being responsible of action potential generation and propagation in excitable cells; but lately they have been reported as widely expressed and regulated in several human cancer types. We have previously demonstrated the overexpression of NaV1.6 channel in cervical cancer (CeCa) biopsies and primary cultures, and its contribution to cell migration and invasiveness. Here, we investigated the expression of NaV channels β-subunits (NaVβs) in the CeCa cell lines HeLa, SiHa and CaSki, and determined their contribution to cell proliferation, migration and invasiveness. Methods We assessed the expression of NaVβs in CeCa cell lines by performing RT-PCR and western blotting experiments. We also evaluated CeCa cell lines proliferation, migration, and invasion by in vitro assays, both in basal conditions and after inducing changes in NaVβs levels by transfecting specific cDNAs or siRNAs. The potential role of NaVβs in modulating the expression of NaV α-subunits in the plasma membrane of CeCa cells was examined by the patch-clamp whole-cell technique. Furthermore, we investigated the role of NaVβ1 on cell cycle in SiHa cells by flow cytometry. Results We found that the four NaVβs are expressed in the three CeCa cell lines, even in the absence of functional NaV α-subunit expression in the plasma membrane. Functional in vitro assays showed differential roles for NaVβ1 and NaVβ4, the latter as a cell invasiveness repressor and the former as a migration abolisher in CeCa cells. In silico analysis of NaVβ4 expression in cervical tissues corroborated the downregulation of this protein expression in CeCa vs normal cervix, supporting the evidence of NaVβ4’s role as a cell invasiveness repressor. Conclusions Our results contribute to the recent conception about NaVβs as multifunctional proteins involved in cell processes like ion channel regulation, cell adhesion and motility, and even in metastatic cell behaviors. These non-canonical functions of NaVβs are independent of the presence of functional NaV α-subunits in the plasma membrane and might represent a new therapeutic target for the treatment of cervical cancer. Electronic supplementary material The online version of this article (10.1186/s12935-019-0757-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Laura Sanchez-Sandoval
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| |
Collapse
|
42
|
Prevarskaya N, Skryma R, Shuba Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol Rev 2018; 98:559-621. [PMID: 29412049 DOI: 10.1152/physrev.00044.2016] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is a primary cause and fundamental feature of human cancer. However, all cancer cell genotypes generally translate into several common pathophysiological features, often referred to as cancer hallmarks. Although nowadays the catalog of cancer hallmarks is quite broad, the most common and obvious of them are 1) uncontrolled proliferation, 2) resistance to programmed cell death (apoptosis), 3) tissue invasion and metastasis, and 4) sustained angiogenesis. Among the genes affected by cancer, those encoding ion channels are present. Membrane proteins responsible for signaling within cell and among cells, for coupling of extracellular events with intracellular responses, and for maintaining intracellular ionic homeostasis ion channels contribute to various extents to pathophysiological features of each cancer hallmark. Moreover, tight association of these hallmarks with ion channel dysfunction gives a good reason to classify them as special type of channelopathies, namely oncochannelopathies. Although the relation of cancer hallmarks to ion channel dysfunction differs from classical definition of channelopathies, as disease states causally linked with inherited mutations of ion channel genes that alter channel's biophysical properties, in a broader context of the disease state, to which pathogenesis ion channels essentially contribute, such classification seems absolutely appropriate. In this review the authors provide arguments to substantiate such point of view.
Collapse
Affiliation(s)
- Natalia Prevarskaya
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Roman Skryma
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Yaroslav Shuba
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| |
Collapse
|
43
|
Phosphorylation of NHERF1 S279 and S301 differentially regulates breast cancer cell phenotype and metastatic organotropism. Biochim Biophys Acta Mol Basis Dis 2018; 1865:26-37. [PMID: 30326259 DOI: 10.1016/j.bbadis.2018.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/21/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
Metastatic cancer cells are highly plastic for the expression of different tumor phenotype hallmarks and organotropism. This plasticity is highly regulated but the dynamics of the signaling processes orchestrating the shift from one cell phenotype and metastatic organ pattern to another are still largely unknown. The scaffolding protein NHERF1 has been shown to regulate the expression of different neoplastic phenotypes through its PDZ domains, which forms the mechanistic basis for metastatic organotropism. This reprogramming activity was postulated to be dependent on its differential phosphorylation patterns. Here, we show that NHERF1 phosphorylation on S279/S301 dictates several tumor phenotypes such as in vivo invasion, NHE1-mediated matrix digestion, growth and vasculogenic mimicry. Remarkably, injecting mice with cells having differential NHERF1 expression and phosphorylation drove a shift from the predominantly lung colonization (WT NHERF1) to predominately bone colonization (double S279A/S301A mutant), indicating that NHERF1 phosphorylation also acts as a signaling switch in metastatic organotropism.
Collapse
|
44
|
The invasiveness of human cervical cancer associated to the function of Na V1.6 channels is mediated by MMP-2 activity. Sci Rep 2018; 8:12995. [PMID: 30158710 PMCID: PMC6115389 DOI: 10.1038/s41598-018-31364-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022] Open
Abstract
Voltage-gated sodium (NaV) channels have been related with cell migration and invasiveness in human cancers. We previously reported the contribution of NaV1.6 channels activity with the invasion capacity of cervical cancer (CeCa) positive to Human Papilloma Virus type 16 (HPV16), which accounts for 50% of all CeCa cases. Here, we show that NaV1.6 gene (SCN8A) overexpression is a general characteristic of CeCa, regardless of the HPV type. In contrast, no differences were observed in NaV1.6 channel expression between samples of non-cancerous and cervical intraepithelial neoplasia. Additionally, we found that CeCa cell lines, C33A, SiHa, CaSki and HeLa, express mainly the splice variant of SCN8A that lacks exon 18, shown to encode for an intracellularly localized NaV1.6 channel, whereas the full-length adult form was present in CeCa biopsies. Correlatively, patch-clamp experiments showed no evidence of whole-cell sodium currents (INa) in CeCa cell lines. Heterologous expression of full-length NaV1.6 isoform in C33A cells produced INa, which were sufficient to significantly increase invasion capacity and matrix metalloproteinase type 2 (MMP-2) activity. These data suggest that upregulation of NaV1.6 channel expression occurs when cervical epithelium have been transformed into cancer cells, and that NaV1.6-mediated invasiveness of CeCa cells involves MMP-2 activity. Thus, our findings support the notion about using NaV channels as therapeutic targets against cancer metastasis.
Collapse
|
45
|
Preserved SCN4B expression is an independent indicator of favorable recurrence-free survival in classical papillary thyroid cancer. PLoS One 2018; 13:e0197007. [PMID: 29723302 PMCID: PMC5933725 DOI: 10.1371/journal.pone.0197007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/24/2018] [Indexed: 02/05/2023] Open
Abstract
Voltage-gated sodium channel β subunits (encoded by SCN1B to SCN4B genes) have been demonstrated as important multifunctional signaling molecules modulating cellular processes such as cell adhesion and cell migration. In this study, we aimed to explore the expression profiles of SCN4B in papillary thyroid cancer (PTC) and its prognostic value in terms of recurrence-free survival (RFS) in classical PTC. In addition, we also examined the potential effect of DNA methylation on its expression. A retrospective study was performed by using data from available large databases, including the Gene Expression Omnibus (GEO) datasets and the Cancer Genome Atlas (TCGA)-Thyroid Cancer (THCA). Results showed that SCN4B is downregulated at both RNA and protein level in PTC compared with normal thyroid tissues. Preserved SCN4B expression was an independent indicator of favorable RFS in patients with classical PTC, no matter as categorical variables (HR: 0.243, 95%CI: 0.107–0.551, p = 0.001) or as a continuous variable (HR: 0.684, 95%CI: 0.520–0.899, p = 0.007). The methylation status of one CpG site (Chr11: 118,022,316–318) in SCN4B DNA had a moderately negative correlation with SCN4B expression in all PTC cases (Pearson’s r = -0.48) and in classical PTC cases (Pearson’s r = -0.41). In comparison, SCN4B DNA copy number alterations (CNAs) were not frequent and might not influence its mRNA expression. In addition, no somatic mutation was found in SCN4B DNA. Based on these findings, we infer that preserved SCN4B expression might independently predict favorable RFS in classical PTC. Its expression might be suppressed by DNA hypermethylation, but is less likely to be influenced by DNA CNAs/mutations.
Collapse
|
46
|
Discovery and evaluation of nNa v1.5 sodium channel blockers with potent cell invasion inhibitory activity in breast cancer cells. Bioorg Med Chem 2018; 26:2428-2436. [PMID: 29673714 DOI: 10.1016/j.bmc.2018.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/25/2018] [Accepted: 04/01/2018] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels (VGSC) are a well-established drug target for anti-epileptic, anti-arrhythmic and pain medications due to their presence and the important roles that they play in excitable cells. Recently, their presence has been recognized in non-excitable cells such as cancer cells and their overexpression has been shown to be associated with metastatic behavior in a variety of human cancers. The neonatal isoform of the VGSC subtype, Nav1.5 (nNav1.5) is overexpressed in the highly aggressive human breast cancer cell line, MDA-MB-231. The activity of nNav1.5 is known to promote the breast cancer cell invasion in vitro and metastasis in vivo, and its expression in primary mammary tumors has been associated with metastasis and patient death. Metastasis development is responsible for the high mortality of breast cancer and currently there is no treatment available to specifically prevent or inhibit breast cancer metastasis. In the present study, a 3D-QSAR model is used to assist the development of low micromolar small molecule VGSC blockers. Using this model, we have designed, synthesized and evaluated five small molecule compounds as blockers of nNav1.5-dependent inward currents in whole-cell patch-clamp experiments in MDA-MB-231 cells. The most active compound identified from these studies blocked sodium currents by 34.9 ± 6.6% at 1 μM. This compound also inhibited the invasion of MDA-MB-231 cells by 30.3 ± 4.5% at 1 μM concentration without affecting the cell viability. The potent small molecule compounds presented here have the potential to be developed as drugs for breast cancer metastasis treatment.
Collapse
|
47
|
Khalid M, Brisson L, Tariq M, Hao Y, Guibon R, Fromont G, Mortadza SAS, Mousawi F, Manzoor S, Roger S, Jiang LH. Carcinoma-specific expression of P2Y11 receptor and its contribution in ATP-induced purinergic signalling and cell migration in human hepatocellular carcinoma cells. Oncotarget 2018; 8:37278-37290. [PMID: 28418839 PMCID: PMC5514908 DOI: 10.18632/oncotarget.16191] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 02/15/2017] [Indexed: 12/22/2022] Open
Abstract
Extracellular ATP-induced Ca2+ signalling is critical in regulating diverse physiological and disease processes. Emerging evidence suggests high concentrations of extracellular ATP in tumour tissues. In this study, we examined the P2 receptor for ATP-induced Ca2+ signalling in human hepatocellular carcinoma (HCC) cells. Fura-2-based measurements of the intracellular Ca2+ concentration ([Ca2+]i) showed that extracellular ATP induced an increase in the [Ca2+]i in human HCC Huh-7 and HepG2 cells. NF546, a P2Y11 receptor agonist was equally effective in inducing an increase in the [Ca2+]i. In contrast, agonists for the P2X receptors (αβmeATP and BzATP), P2Y1 receptor (MRS2365) or P2Y2 receptor (MRS2768) were ineffective. In addition, ATP/NF546-induced increases in the [Ca2+]i were strongly inhibited by treatment with NF340, a P2Y11 receptor antagonist. Immunofluorescent confocal imaging and western blotting analysis consistently demonstrated the P2Y11 receptor expression in Huh-7 and HepG2 cells. Transfection with P2Y11-specific siRNA attenuated the P2Y11 receptor protein expression level and also reduced NF546-induced increase in the [Ca2+]i. Importantly, immunohistochemistry revealed that the P2Y11 receptor was expressed at very high level in human HCC tissues and, by contrast, it was barely detected in normal liver tissues. Trans-well cell migration assay demonstrated that ATP and NF546 induced concentration-dependent stimulation of Huh-7 cell migration. Treatment with NF340 prevented ATP-induced stimulation of cell migration. Taken together, our results show carcinoma-specific expression of the P2Y11 receptor and its critical role in mediating ATP-inducing Ca2+ signalling and regulating cell migration in human HCC cells.
Collapse
Affiliation(s)
- Madiha Khalid
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Lucie Brisson
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, Tours, France
| | - Menahil Tariq
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Yunjie Hao
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | - Fatema Mousawi
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Sébastien Roger
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, Tours, France.,Institut Universitaire de France, Paris Cedex 05, France
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, Tours, France.,Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, P. R. China.,Sino-UK Joint Laboratory of Brain Function and Injury, Xinxiang Medical University, Xinxiang, P. R. China
| |
Collapse
|
48
|
Nav channel binder containing a specific conjugation-site based on a low toxicity β-scorpion toxin. Sci Rep 2017; 7:16329. [PMID: 29180755 PMCID: PMC5703725 DOI: 10.1038/s41598-017-16426-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022] Open
Abstract
Voltage-gated sodium (Nav) channels play a key role in generating action potentials which leads to physiological signaling in excitable cells. The availability of probes for functional studies of mammalian Nav is limited. Here, by introducing two amino acid substitutions into the beta scorpion toxin Ts1, we have chemically synthesized a novel binder [S14R, W50Pra]Ts1 for Nav with high affinity, low dissociation rate and reduced toxicity while retaining the capability of conjugating Ts1 with molecules of interests for different applications. Using the fluorescent-dye conjugate, [S14R, W50Pra(Bodipy)]Ts1, we confirmed its binding to Nav1.4 through Lanthanide-based Resonance Energy Transfer. Moreover, using the gold nanoparticle conjugate, [S14R, W50Pra(AuNP)]Ts1, we were able to optically stimulate dorsal root ganglia neurons and generate action potentials with visible light via the optocapacitive effect as previously reported. [S14R, W50Pra]Ts1 is a novel probe with great potential for wider applications in Nav-related neuroscience research.
Collapse
|
49
|
Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res 2017; 50:33. [PMID: 28969709 PMCID: PMC5625777 DOI: 10.1186/s40659-017-0140-9] [Citation(s) in RCA: 693] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/22/2017] [Indexed: 02/01/2023] Open
Abstract
Breast cancer remains a worldwide public health dilemma and is currently the most common tumour in the globe. Awareness of breast cancer, public attentiveness, and advancement in breast imaging has made a positive impact on recognition and screening of breast cancer. Breast cancer is life-threatening disease in females and the leading cause of mortality among women population. For the previous two decades, studies related to the breast cancer has guided to astonishing advancement in our understanding of the breast cancer, resulting in further proficient treatments. Amongst all the malignant diseases, breast cancer is considered as one of the leading cause of death in post menopausal women accounting for 23% of all cancer deaths. It is a global issue now, but still it is diagnosed in their advanced stages due to the negligence of women regarding the self inspection and clinical examination of the breast. This review addresses anatomy of the breast, risk factors, epidemiology of breast cancer, pathogenesis of breast cancer, stages of breast cancer, diagnostic investigations and treatment including chemotherapy, surgery, targeted therapies, hormone replacement therapy, radiation therapy, complementary therapies, gene therapy and stem-cell therapy etc for breast cancer.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, GC University Faisalabad, Old Campus, Allam Iqbal Road, Faisalabad, 38000 Pakistan
| | - Mehwish Iqbal
- Faculty of Eastern Medicine, Hamdard University Karachi, Main Campus, Sharea Madinat al-Hikmah, Mohammad Bin Qasim Avenue, Karachi, 74600 Sindh Pakistan
| | - Muhammad Daniyal
- Faculty of Eastern Medicine, Hamdard University Karachi, Main Campus, Sharea Madinat al-Hikmah, Mohammad Bin Qasim Avenue, Karachi, 74600 Sindh Pakistan
| | - Asmat Ullah Khan
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, RibeirãoPreto Medical School of the University of São Paulo, AV. Bandeirantes, 3900, RibeirãoPreto, 14049-900 São Paulo, Brazil
- Department of Eastern Medicine and Surgery, School of Medical and Health Sciences, University of Poonch Rawalakot, Hajira Road, Shamsabad, Rawalakot, 12350 Azad Jammu and Kashmir Pakistan
| |
Collapse
|
50
|
Bon E, Brisson L, Chevalier S, Besson P, Roger S. Navβ4 : un-suppresseur de métastases et un nouveau biomarqueur des cancers agressifs. Med Sci (Paris) 2017; 33:596-599. [DOI: 10.1051/medsci/20173306013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|