1
|
Romashin DD, Tolstova TV, Varshaver AM, Kozhin PM, Rusanov AL, Luzgina NG. Keratins 6, 16, and 17 in Health and Disease: A Summary of Recent Findings. Curr Issues Mol Biol 2024; 46:8627-8641. [PMID: 39194725 DOI: 10.3390/cimb46080508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Keratins 6, 16, and 17 occupy unique positions within the keratin family. These proteins are not commonly found in the healthy, intact epidermis, but their expression increases in response to damage, inflammation, and hereditary skin conditions, as well as cancerous cell transformations and tumor growth. As a result, there is an active investigation into the potential use of these proteins as biomarkers for different pathologies. Recent studies have revealed the role of these keratins in regulating keratinocyte migration, proliferation, and growth, and more recently, their nuclear functions, including their role in maintaining nuclear structure and responding to DNA damage, have also been identified. This review aims to summarize the latest research on keratins 6, 16, and 17, their regulation in the epidermis, and their potential use as biomarkers in various skin conditions.
Collapse
Affiliation(s)
| | | | | | - Peter M Kozhin
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | | | |
Collapse
|
2
|
Li L, Zhang J, Cheng W, Di F, Wang C, An Q. Saponins of Paris polyphylla for the Improvement of Acne: Anti-Inflammatory, Antibacterial, Antioxidant and Immunomodulatory Effects. Molecules 2024; 29:1793. [PMID: 38675613 PMCID: PMC11052371 DOI: 10.3390/molecules29081793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Acne is a chronic inflammatory skin disease with a recurring nature that seriously impacts patients' quality of life. Currently, antibiotic resistance has made it less effective in treating acne. However, Paris polyphylla (P. polyphylla) is a valuable medicinal plant with a wide range of chemical components. Of these, P. polyphylla saponins modulate the effects in vivo and in vitro through antibacterial, anti-inflammatory, immunomodulatory, and antioxidant effects. Acne is primarily associated with inflammatory reactions, abnormal sebum function, micro-ecological disorders, hair follicle hyperkeratosis, and, in some patients, immune function. Therefore, the role of P. polyphylla saponins and their values in treating acne is worthy of investigation. Overall, this review first describes the distribution and characteristics of P. polyphylla and the pathogenesis of acne. Then, the potential mechanisms of P. polyphylla saponins in treating acne are listed in detail (reduction in the inflammatory response, antibacterial action, modulation of immune response and antioxidant effects, etc.). In addition, a brief description of the chemical composition of P. polyphylla saponins and its available extraction methods are described. We hope this review can serve as a quick and detailed reference for future studies on their potential acne treatment.
Collapse
Affiliation(s)
- Luyao Li
- College of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (L.L.); (W.C.); (F.D.); (C.W.)
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Jiachan Zhang
- College of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (L.L.); (W.C.); (F.D.); (C.W.)
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Wenjing Cheng
- College of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (L.L.); (W.C.); (F.D.); (C.W.)
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Feiqian Di
- College of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (L.L.); (W.C.); (F.D.); (C.W.)
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Changtao Wang
- College of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (L.L.); (W.C.); (F.D.); (C.W.)
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Quan An
- Yunnan Baiyao Group Co., Ltd., Kunming 650000, China;
| |
Collapse
|
3
|
O'Toole EA, Kelsell DP, Caterina MJ, de Brito M, Hansen D, Hickerson RP, Hovnanian A, Kaspar R, Lane EB, Paller AS, Schwartz J, Shroot B, Teng J, Titeux M, Coulombe PA, Sprecher E. Pachyonychia Congenita: A Research Agenda Leading to New Therapeutic Approaches. J Invest Dermatol 2024; 144:748-754. [PMID: 38099888 DOI: 10.1016/j.jid.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/23/2023] [Indexed: 03/24/2024]
Abstract
Pachyonychia congenita (PC) is a dominantly inherited genetic disorder of cornification. PC stands out among other genodermatoses because despite its rarity, it has been the focus of a very large number of pioneering translational research efforts over the past 2 decades, mostly driven by a patient support organization, the Pachyonychia Congenita Project. These efforts have laid the ground for innovative strategies that may broadly impact approaches to the management of other inherited cutaneous and noncutaneous diseases. This article outlines current avenues of research in PC, expected outcomes, and potential hurdles.
Collapse
Affiliation(s)
- Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - David P Kelsell
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael J Caterina
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Marianne de Brito
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - David Hansen
- Department of Dermatology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Robyn P Hickerson
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Alain Hovnanian
- INSERM UMR 1163, Laboratory of genetic skin diseases, Institut Imagine, Université Paris Cité, Paris, France; Department of Genomic Medicine of Rare Diseases, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | - E Birgitte Lane
- A∗STAR Skin Research Laboratories, Skin Research Institute of Singapore, Singapore, Singapore
| | - Amy S Paller
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | - Joyce Teng
- Pediatric Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Matthias Titeux
- INSERM UMR 1163, Laboratory of genetic skin diseases, Institut Imagine, Université Paris Cité, Paris, France
| | - Pierre A Coulombe
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Bläsius K, Ludwig L, Knapp S, Flaßhove C, Sonnabend F, Keller D, Tacken N, Gao X, Kahveci-Türköz S, Grannemann C, Babendreyer A, Adrain C, Huth S, Baron JM, Ludwig A, Düsterhöft S. Pathological mutations reveal the key role of the cytosolic iRhom2 N-terminus for phosphorylation-independent 14-3-3 interaction and ADAM17 binding, stability, and activity. Cell Mol Life Sci 2024; 81:102. [PMID: 38409522 PMCID: PMC10896983 DOI: 10.1007/s00018-024-05132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 02/28/2024]
Abstract
The protease ADAM17 plays an important role in inflammation and cancer and is regulated by iRhom2. Mutations in the cytosolic N-terminus of human iRhom2 cause tylosis with oesophageal cancer (TOC). In mice, partial deletion of the N-terminus results in a curly hair phenotype (cub). These pathological consequences are consistent with our findings that iRhom2 is highly expressed in keratinocytes and in oesophageal cancer. Cub and TOC are associated with hyperactivation of ADAM17-dependent EGFR signalling. However, the underlying molecular mechanisms are not understood. We have identified a non-canonical, phosphorylation-independent 14-3-3 interaction site that encompasses all known TOC mutations. Disruption of this site dysregulates ADAM17 activity. The larger cub deletion also includes the TOC site and thus also dysregulated ADAM17 activity. The cub deletion, but not the TOC mutation, also causes severe reductions in stimulated shedding, binding, and stability of ADAM17, demonstrating the presence of additional regulatory sites in the N-terminus of iRhom2. Overall, this study contrasts the TOC and cub mutations, illustrates their different molecular consequences, and reveals important key functions of the iRhom2 N-terminus in regulating ADAM17.
Collapse
Affiliation(s)
- Katharina Bläsius
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Lena Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Sarah Knapp
- Institute of Biochemistry and Molecular Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Charlotte Flaßhove
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Friederike Sonnabend
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Diandra Keller
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Nikola Tacken
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Xintong Gao
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Selcan Kahveci-Türköz
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Caroline Grannemann
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Colin Adrain
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, Northern Ireland
| | - Sebastian Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Dulloo I, Tellier M, Levet C, Chikh A, Zhang B, Blaydon DC, Webb CM, Kelsell DP, Freeman M. Cleavage of the pseudoprotease iRhom2 by the signal peptidase complex reveals an ER-to-nucleus signaling pathway. Mol Cell 2024; 84:277-292.e9. [PMID: 38183983 DOI: 10.1016/j.molcel.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/18/2023] [Accepted: 12/08/2023] [Indexed: 01/08/2024]
Abstract
iRhoms are pseudoprotease members of the rhomboid-like superfamily and are cardinal regulators of inflammatory and growth factor signaling; they function primarily by recognizing transmembrane domains of their clients. Here, we report a mechanistically distinct nuclear function of iRhoms, showing that both human and mouse iRhom2 are non-canonical substrates of signal peptidase complex (SPC), the protease that removes signal peptides from secreted proteins. Cleavage of iRhom2 generates an N-terminal fragment that enters the nucleus and modifies the transcriptome, in part by binding C-terminal binding proteins (CtBPs). The biological significance of nuclear iRhom2 is indicated by elevated levels in skin biopsies of patients with psoriasis, tylosis with oesophageal cancer (TOC), and non-epidermolytic palmoplantar keratoderma (NEPPK); increased iRhom2 cleavage in a keratinocyte model of psoriasis; and nuclear iRhom2 promoting proliferation of keratinocytes. Overall, this work identifies an unexpected SPC-dependent ER-to-nucleus signaling pathway and demonstrates that iRhoms can mediate nuclear signaling.
Collapse
Affiliation(s)
- Iqbal Dulloo
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Michael Tellier
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Clémence Levet
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Anissa Chikh
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Boyan Zhang
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Diana C Blaydon
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Catherine M Webb
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - David P Kelsell
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
6
|
Murtough S, Babu D, Webb CM, Louis dit Picard H, McGinty LA, Chao-Chu J, Pink R, Silver AR, Smart HL, Field JK, Woodland P, Risk JM, Blaydon DC, Pennington DJ, Kelsell DP. Investigating iRHOM2-Associated Transcriptional Changes in Tylosis With Esophageal Cancer. GASTRO HEP ADVANCES 2023; 3:385-395. [PMID: 39131151 PMCID: PMC11307647 DOI: 10.1016/j.gastha.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/19/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Survival rates for esophageal squamous cell carcinoma (ESCC) are extremely low due to the late diagnosis of most cases. An understanding of the early molecular processes that lead to ESCC may facilitate opportunities for early diagnosis; however, these remain poorly defined. Tylosis with esophageal cancer (TOC) is a rare syndrome associated with a high lifetime risk of ESCC and germline mutations in RHBDF2, encoding iRhom2. Using TOC as a model of ESCC predisposition, this study aimed to identify early-stage transcriptional changes in ESCC development. Methods Esophageal biopsies were obtained from control and TOC individuals, the latter undergoing surveillance endoscopy, and adjacent diagnostic biopsies were graded as having no dysplasia or malignancy. Bulk RNA-Seq was performed, and findings were compared with sporadic ESCC vs normal RNA-Seq datasets. Results Multiple transcriptional changes were identified in TOC samples, relative to controls, and many were detected in ESCC. Accordingly, pathway analyses predicted an enrichment of cancer-associated processes linked to cellular proliferation and metastasis, and several transcription factors were predicted to be associated with TOC and ESCC, including negative enrichment of GRHL2. Subsequently, a filtering strategy revealed 22 genes that were significantly dysregulated in both TOC and ESCC. Moreover, Keratin 17, which was upregulated in TOC and ESCC, was also found to be overexpressed at the protein level in 'normal' TOC esophagus tissue. Conclusion Transcriptional changes occur in TOC esophagus prior to the onset of dysplasia, many of which are associated with ESCC. These findings support the utility of TOC to help reveal the early molecular processes that lead to sporadic ESCC.
Collapse
Affiliation(s)
- Stephen Murtough
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Deepak Babu
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Catherine M. Webb
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Hélène Louis dit Picard
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Lisa A. McGinty
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Jennifer Chao-Chu
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Ryan Pink
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Andrew R. Silver
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Howard L. Smart
- Gastroenterology and Liver Services, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - John K. Field
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Philip Woodland
- Endoscopy Unit, Barts Health NHS Trust, The Royal London Hospital, London, UK
| | - Janet M. Risk
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Diana C. Blaydon
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Daniel J. Pennington
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - David P. Kelsell
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
7
|
Chien WC, Tsai TF. The Pressurized Skin: A Review on the Pathological Effect of Mechanical Pressure on the Skin from the Cellular Perspective. Int J Mol Sci 2023; 24:15207. [PMID: 37894888 PMCID: PMC10607711 DOI: 10.3390/ijms242015207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Since human skin is the primary interface responding to external mechanical stimuli, extrinsic forces can disrupt its balanced microenvironment and lead to cutaneous lesions. We performed this review to delve into the pathological effects of mechanical pressure on skin from the cellular perspective. Fibroblasts of different subsets act as heterogeneous responders to mechanical load and express diverse functionalities. Keratinocytes relay mechanical signals through mechanosensitive receptors and the ensuing neurochemical cascades to work collaboratively with other cells and molecules in response to pressure. Mast cells release cytokines and neuropeptides, promoting inflammation and facilitating interaction with sensory neurons, while melanocytes can be regulated by pressure through cellular and molecular crosstalk. Adipocytes and stem cells sense pressure to fine-tune their regulations of mechanical homeostasis and cell differentiation. Applying mechanical pressure to the skin can induce various changes in its microenvironment that potentially lead to pathological alterations, such as ischemia, chronic inflammation, proliferation, regeneration, degeneration, necrosis, and impaired differentiation. The heterogeneity of each cellular lineage and subset from different individuals with various underlying skin conditions must be taken into consideration when discussing the pathological effects of pressure on the skin. Thus, elucidating the mechanotransduction and mechanoresponsive pathways from the cellular viewpoint is crucial in diagnosing and managing relevant dermatological disorders.
Collapse
Affiliation(s)
- Wei-Chen Chien
- Department of Medical Education, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital, College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
8
|
Badenes M, Burbridge E, Oikonomidi I, Amin A, de Carvalho É, Kosack L, Mariano C, Domingos P, Faísca P, Adrain C. The ADAM17 sheddase complex regulator iTAP/Frmd8 modulates inflammation and tumor growth. Life Sci Alliance 2023; 6:e202201644. [PMID: 36720499 PMCID: PMC9889915 DOI: 10.26508/lsa.202201644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/02/2023] Open
Abstract
The metalloprotease ADAM17 is a sheddase of key molecules, including TNF and epidermal growth factor receptor ligands. ADAM17 exists within an assemblage, the "sheddase complex," containing a rhomboid pseudoprotease (iRhom1 or iRhom2). iRhoms control multiple aspects of ADAM17 biology. The FERM domain-containing protein iTAP/Frmd8 is an iRhom-binding protein that prevents the precocious shunting of ADAM17 and iRhom2 to lysosomes and their consequent degradation. As pathophysiological role(s) of iTAP/Frmd8 have not been addressed, we characterized the impact of iTAP/Frmd8 loss on ADAM17-associated phenotypes in mice. We show that iTAP/Frmd8 KO mice exhibit defects in inflammatory and intestinal epithelial barrier repair functions, but not the collateral defects associated with global ADAM17 loss. Furthermore, we show that iTAP/Frmd8 regulates cancer cell growth in a cell-autonomous manner and by modulating the tumor microenvironment. Our work suggests that pharmacological intervention at the level of iTAP/Frmd8 may be beneficial to target ADAM17 activity in specific compartments during chronic inflammatory diseases or cancer, while avoiding the collateral impact on the vital functions associated with the widespread inhibition of ADAM17.
Collapse
Affiliation(s)
- Marina Badenes
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculty of Veterinary Medicine, Lusofona University, Lisbon, Portugal
- Faculty of Veterinary Nursing, Polytechnic Institute of Lusofonia, Lisbon, Portugal
| | - Emma Burbridge
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | | | - Abdulbasit Amin
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Érika de Carvalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | | | | | - Pedro Domingos
- Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | - Pedro Faísca
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Colin Adrain
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| |
Collapse
|
9
|
Wiedemann J, Billi AC, Bocci F, Kashgari G, Xing E, Tsoi LC, Meller L, Swindell WR, Wasikowski R, Xing X, Ma F, Gharaee-Kermani M, Kahlenberg JM, Harms PW, Maverakis E, Nie Q, Gudjonsson JE, Andersen B. Differential cell composition and split epidermal differentiation in human palm, sole, and hip skin. Cell Rep 2023; 42:111994. [PMID: 36732947 PMCID: PMC9939370 DOI: 10.1016/j.celrep.2023.111994] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/31/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Palmoplantar skin is structurally and functionally unique, but the transcriptional programs driving this specialization are unclear. Here, we use bulk and single-cell RNA sequencing of human palm, sole, and hip skin to describe the distinguishing characteristics of palmoplantar and non-palmoplantar skin while also uncovering differences between palmar and plantar sites. Our approach reveals an altered immune environment in palmoplantar skin, with downregulation of diverse immunological processes and decreased immune cell populations. Further, we identify specific fibroblast populations that appear to orchestrate key differences in cell-cell communication in palm, sole, and hip. Dedicated keratinocyte analysis highlights major differences in basal cell fraction among the three sites and demonstrates the existence of two spinous keratinocyte populations constituting parallel, site-selective epidermal differentiation trajectories. In summary, this deep characterization of highly adapted palmoplantar skin contributes key insights into the fundamental biology of human skin and provides a valuable data resource for further investigation.
Collapse
Affiliation(s)
- Julie Wiedemann
- Mathematical, Computational and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Federico Bocci
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Ghaidaa Kashgari
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Enze Xing
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Leo Meller
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - William R Swindell
- Department of Internal Medicine, The Jewish Hospital, Cincinnati, OH, USA
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Feiyang Ma
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mehrnaz Gharaee-Kermani
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - J Michelle Kahlenberg
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA; Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
10
|
Tang S, Liu W, Yong L, Liu D, Lin X, Huang Y, Wang H, Cai F. Reduced Expression of KRT17 Predicts Poor Prognosis in HER2high Breast Cancer. Biomolecules 2022; 12:biom12091183. [PMID: 36139022 PMCID: PMC9496156 DOI: 10.3390/biom12091183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC) is one of the most common types of malignancies in women and greatly threatens female health. KRT17 is a member of the keratin (KRT) protein family that is abundant in the outer layer of the skin, where it protects epithelial cells from damage. Although KRT17 has been studied in many types of cancer, the expression of KRT17 in specific subtypes of BC remains to be determined. In our study, we explored the expression and prognostic implications of KRT17 in BC patients using mRNA transcriptome data and clinical BC data from The Cancer Genome Atlas (TCGA). Receiver operating characteristic (ROC) curves and the chi-square test were used to assess the diagnostic value of KRT17 expression. Quantitative real-time PCR (qRT−PCR) analysis of BC cells and tissues and immunohistochemistry (IHC) analysis of clinical tissues were used for external validation. Furthermore, the relationship between KRT17 and immune function was studied by using the CIBERSORT algorithm to predict the proportions of tumor-infiltrating immune cells (TIICs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore the potential mechanisms by which KRT17 expression influences patient survival. We found that KRT17 expression was significantly lower in BC tissues than in normal tissues, especially in the luminal-A, luminal-B and human epidermal growth factor receptor-2 (HER2)+ subtypes of BC. ROC analysis revealed that KRT17 expression had moderate diagnostic value. Interestingly, decreased expression of KRT17 was significantly correlated with poor prognosis in BC patients, especially in HER2high and ERhigh patients. This trend was also verified by tissue microarray (TMA) analysis. KRT17 was found to be involved in some antitumor immune pathways, especially the IL-17 signaling pathway, and associated with multiple immune cells, such as natural killer (NK) and CD4+ T cells. In conclusion, high expression of KRT17 predicted favorable prognosis in BC patients with higher HER2 expression. This result may indicate that KRT17 plays a different role depending on the level of HER2 expression and could serve as a promising and sensitive biomarker for the diagnosis and prognostication of HER2high BC.
Collapse
Affiliation(s)
- Shasha Tang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, No.450 Tengyue Road, Shanghai 200090, China
| | - Wenjing Liu
- Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 201100, China
| | - Liyun Yong
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, No.450 Tengyue Road, Shanghai 200090, China
| | - Dongyang Liu
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, No.450 Tengyue Road, Shanghai 200090, China
| | - Xiaoyan Lin
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, No.450 Tengyue Road, Shanghai 200090, China
| | - Yuan Huang
- Cellomics International Limited, Hong Kong, China
| | - Hui Wang
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, No.279 Zhouzhu Highway, Shanghai 201318, China
- Correspondence: (H.W.); (F.C.)
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, No.450 Tengyue Road, Shanghai 200090, China
- Correspondence: (H.W.); (F.C.)
| |
Collapse
|
11
|
Lu Z, Peng H, Li R, Xu X, Peng J. BarH-like homeobox 2 represses the transcription of keratin 16 and affects Ras signaling pathway to suppress nasopharyngeal carcinoma progression. Bioengineered 2022; 13:3122-3136. [PMID: 35037835 PMCID: PMC8974228 DOI: 10.1080/21655979.2022.2026549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) refers to a malignancy initiating from the superior mucosal epithelium of the nasopharynx. Optimal therapies for NPC are still needed. In this investigation, we attempted to explore whether BarH-like homeobox 2 (BARX2), a well-known tumor suppressor, had anti-cancer properties on NPC, and the possible mechanisms. After searching for NPC-related databases, we determined BARX2 as one of the core genes in NPC. The results of RT-qPCR and immunohistochemistry or Western blot demonstrated that BARX2 was reduced in NPC patients and cells. Ectopic expression of BARX2 reverted the malignant phenotype of NPC cells. Mechanistically, BARX2 bound to the keratin 16 (KRT16) promoter to downregulate its expression. In addition, BARX2 was found to reduce the phosphorylation levels of MEK and ERK. Further KRT16 upregulation in cells overexpressing BARX2 promoted malignant aggressiveness of C666-1 and HNE3 cells and activated the Ras signaling pathway. BARX2 inhibited the growth and metastasis of tumors and suppressed the Ras signaling pathway in vivo. In conclusion, our findings indicate that BARX2 reverts malignant phenotypes of NPC cells by downregulating KRT16 in a Ras-dependent fashion. BARX2 might act as a possible therapeutic regulator for NPC.
Collapse
Affiliation(s)
- Zhibing Lu
- Department of Oncology, Jiangxi Pingxiang People's Hospital, Pingxiang, P.R. China
| | - Hui Peng
- Department of Oncology, Jiangxi Pingxiang People's Hospital, Pingxiang, P.R. China
| | - Ruijuan Li
- Department of Oncology, Jiangxi Pingxiang People's Hospital, Pingxiang, P.R. China
| | - Xinyan Xu
- Department of Oncology, Jiangxi Pingxiang People's Hospital, Pingxiang, P.R. China
| | - Jiyong Peng
- Department of Oncology, Jiangxi Pingxiang People's Hospital, Pingxiang, P.R. China
| |
Collapse
|
12
|
Masre SF, Rath N, Olson MF, Greenhalgh DA. Epidermal ROCK2 induces AKT1/GSK3β/β-catenin, NFκB and dermal tenascin C; but enhanced differentiation and p53/p21 inhibit papilloma. Carcinogenesis 2021; 41:1409-1420. [PMID: 31907522 DOI: 10.1093/carcin/bgz205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/21/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
ROCK2 roles in epidermal differentiation and carcinogenesis have been investigated in mice expressing an RU486-inducible, 4HT-activated ROCK2 transgene (K14.creP/lslROCKer). RU486/4HT-mediated ROCKer activation induced epidermal hyperplasia similar to cutaneous oncogenic rasHa (HK1.ras); however ROCKer did not elicit papillomas. Instead, anomalous basal-layer ROCKer expression corrupted normal ROCK2 roles underlying epidermal rigidity/stiffness and barrier maintanance, resulting in premature keratin K1, loricrin and filaggrin expression. Also, hyperproliferative/stress-associated keratin K6 was reduced; possibly reflecting altered ROCK2 roles in epidermal rigidity and keratinocyte flexibility/migration during wound healing. Consistent with increased proliferation, K14.creP/lslROCKer hyperplasia displayed supra-basal-to-basal increases in activated p-AKT1, inactivated p-GSK3β ser9 and membranous/nuclear β-catenin expression together with weak NFκB, which were absent in equivalent HK1.ras hyperplasia. Furthermore, ROCKer-mediated increases in epidermal rigidity via p-MypT1 inactivation/elevated MLC, coupled to anomalous β-catenin expression, induced tenascin C-positive dermal fibroblasts. Alongside an altered ECM, these latent tenascin C-positive dermal fibroblasts may become putative pre-cancer-associated fibroblasts (pre-CAFs) and establish a susceptibility that subsequently contributes to tumour progression. However, anomalous differentiation was also accompanied by an immediate increase in basal-layer p53/p21 expression; suggesting that while ROCK2/AKT1/β-catenin activation increased keratinocyte proliferation resulting in hyperplasia, compensatory p53/p21 and accelerated differentiation helped inhibit papillomatogenesis.
Collapse
Affiliation(s)
- Siti F Masre
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK
| | - Nicola Rath
- Molecular and Cellular Biology Laboratory, Cancer Research UK, Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Ryerson MaRS Research Facility MaRS Discovery District, West Tower 661 University Avenue Toronto, Ontario, Canada
| | - David A Greenhalgh
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK
| |
Collapse
|
13
|
Chao-Chu J, Murtough S, Zaman N, Pennington DJ, Blaydon DC, Kelsell DP. iRHOM2: A Regulator of Palmoplantar Biology, Inflammation, and Viral Susceptibility. J Invest Dermatol 2021; 141:722-726. [PMID: 33080304 PMCID: PMC7568177 DOI: 10.1016/j.jid.2020.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/04/2022]
Abstract
The palmoplantar epidermis is a specialized area of the skin that undergoes high levels of mechanical stress. The palmoplantar keratinization and esophageal cancer syndrome, tylosis with esophageal cancer, is linked to mutations in RHBDF2 encoding the proteolytically inactive rhomboid protein, iRhom2. Subsequently, iRhom2 was found to affect palmoplantar thickening to modulate the stress keratin response and to mediate context-dependent stress pathways by p63. iRhom2 is also a direct regulator of the sheddase, ADAM17, and the antiviral adaptor protein, stimulator of IFN genes. In this perspective, the pleiotropic functions of iRhom2 are discussed with respect to the skin, inflammation, and the antiviral response.
Collapse
Affiliation(s)
- Jennifer Chao-Chu
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stephen Murtough
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Najwa Zaman
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Diana C Blaydon
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - David P Kelsell
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
14
|
Adrain C, Cavadas M. The complex life of rhomboid pseudoproteases. FEBS J 2020; 287:4261-4283. [DOI: 10.1111/febs.15548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Colin Adrain
- Instituto Gulbenkian de Ciência (IGC) Oeiras Portugal
- Centre for Cancer Research and Cell Biology Queen's University Belfast UK
| | | |
Collapse
|
15
|
iRhom2: An Emerging Adaptor Regulating Immunity and Disease. Int J Mol Sci 2020; 21:ijms21186570. [PMID: 32911849 PMCID: PMC7554728 DOI: 10.3390/ijms21186570] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The rhomboid family are evolutionary conserved intramembrane proteases. Their inactive members, iRhom in Drosophila melanogaster and iRhom1 and iRhom2 in mammals, lack the catalytic center and are hence labelled “inactive” rhomboid family members. In mammals, both iRhoms are involved in maturation and trafficking of the ubiquitous transmembrane protease a disintegrin and metalloprotease (ADAM) 17, which through cleaving many biologically active molecules has a critical role in tumor necrosis factor alpha (TNFα), epidermal growth factor receptor (EGFR), interleukin-6 (IL-6) and Notch signaling. Accordingly, with iRhom2 having a profound influence on ADAM17 activation and substrate specificity it regulates these signaling pathways. Moreover, iRhom2 has a role in the innate immune response to both RNA and DNA viruses and in regulation of keratin subtype expression in wound healing and cancer. Here we review the role of iRhom2 in immunity and disease, both dependent and independent of its regulation of ADAM17.
Collapse
|
16
|
Teodorescu P, Pasca S, Jurj A, Gafencu G, Joelsson JP, Selicean S, Moldovan C, Munteanu R, Onaciu A, Tigu AB, Buse M, Zimta AA, Stiufiuc R, Petrushev B, Desmirean M, Dima D, Vlad C, Bergthorsson JT, Berce C, Ciurea S, Ghiaur G, Tomuleasa C. Transforming growth factor β-mediated micromechanics modulates disease progression in primary myelofibrosis. J Cell Mol Med 2020; 24:11100-11110. [PMID: 32889753 PMCID: PMC7576271 DOI: 10.1111/jcmm.15526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Primary myelofibrosis (PMF) is a Ph‐negative myeloproliferative neoplasm (MPN), characterized by advanced bone marrow fibrosis and extramedullary haematopoiesis. The bone marrow fibrosis results from excessive proliferation of fibroblasts that are influenced by several cytokines in the microenvironment, of which transforming growth factor‐β (TGF‐β) is the most important. Micromechanics related to the niche has not yet been elucidated. In this study, we hypothesized that mechanical stress modulates TGF‐β signalling leading to further activation and subsequent proliferation and invasion of bone marrow fibroblasts, thus showing the important role of micromechanics in the development and progression of PMF, both in the bone marrow and in extramedullary sites. Using three PMF‐derived fibroblast cell lines and transforming growth factor‐β receptor (TGFBR) 1 and 2 knock‐down PMF‐derived fibroblasts, we showed that mechanical stress does stimulate the collagen synthesis by the fibroblasts in patients with myelofibrosis, through the TGFBR1, which however seems to be activated through alternative pathways, other than TGFBR2.
Collapse
Affiliation(s)
- Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Grigore Gafencu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Molecular Haematology Unit - Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jon-Petur Joelsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.,Department of Laboratory Hematology, Landspitali University Hospital, Reykjavík, Iceland
| | - Sonia Selicean
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Graduate School for Cellular and Biomedical Sciences, Universität Bern, Bern, Switzerland
| | - Cristian Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Mihail Buse
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Rares Stiufiuc
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Bobe Petrushev
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Minodora Desmirean
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Pathology, Constantin Papilian Military Hospital, Cluj Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Research Center, Cluj Napoca, Romania
| | - Cristina Vlad
- Department of Cardiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Cardiology, Rehabilitation Hospital, Cluj Napoca, Romania
| | - Jon Thor Bergthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.,Department of Laboratory Hematology, Landspitali, University Hospital, Reykjavík, Iceland
| | - Cristian Berce
- Animal Facility, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Stefan Ciurea
- Department of Cellular Therapies and Stem Cell Transplantation, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Ghiaur
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.,Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| |
Collapse
|
17
|
Chakraborty A, Lin WC, Lin YT, Huang KJ, Wang PY, Chang IYF, Wang HI, Ma KT, Wang CY, Huang XR, Lee YH, Chen BC, Hsieh YJ, Chien KY, Lin TY, Liu JL, Sung LY, Yu JS, Chang YS, Pai LM. SNAP29 mediates the assembly of histidine-induced CTP synthase filaments in proximity to the cytokeratin network. J Cell Sci 2020; 133:jcs240200. [PMID: 32184263 DOI: 10.1242/jcs.240200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/06/2020] [Indexed: 01/08/2023] Open
Abstract
Under metabolic stress, cellular components can assemble into distinct membraneless organelles for adaptation. One such example is cytidine 5'-triphosphate synthase (CTPS, for which there are CTPS1 and CTPS2 forms in mammals), which forms filamentous structures under glutamine deprivation. We have previously demonstrated that histidine (His)-mediated methylation regulates the formation of CTPS filaments to suppress enzymatic activity and preserve the CTPS protein under glutamine deprivation, which promotes cancer cell growth after stress alleviation. However, it remains unclear where and how these enigmatic structures are assembled. Using CTPS-APEX2-mediated in vivo proximity labeling, we found that synaptosome-associated protein 29 (SNAP29) regulates the spatiotemporal filament assembly of CTPS along the cytokeratin network in a keratin 8 (KRT8)-dependent manner. Knockdown of SNAP29 interfered with assembly and relaxed the filament-induced suppression of CTPS enzymatic activity. Furthermore, APEX2 proximity labeling of keratin 18 (KRT18) revealed a spatiotemporal association of SNAP29 with cytokeratin in response to stress. Super-resolution imaging suggests that during CTPS filament formation, SNAP29 interacts with CTPS along the cytokeratin network. This study links the cytokeratin network to the regulation of metabolism by compartmentalization of metabolic enzymes during nutrient deprivation.
Collapse
Affiliation(s)
- Archan Chakraborty
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wei-Cheng Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Tsun Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kuang-Jing Huang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pei-Yu Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Bioinformatics Core Laboratory, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiang-Iu Wang
- Bioinformatics Core Laboratory, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kung-Ting Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Yen Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Xuan-Rong Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yen-Hsien Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Ju Hsieh
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Clinical Proteomics Core laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ji-Long Liu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Li-Ying Sung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Mei Pai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
18
|
Zieman AG, Poll BG, Ma J, Coulombe PA. Altered keratinocyte differentiation is an early driver of keratin mutation-based palmoplantar keratoderma. Hum Mol Genet 2020; 28:2255-2270. [PMID: 31220272 DOI: 10.1093/hmg/ddz050] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
The type I intermediate filament keratin 16 (KRT16 gene; K16 protein) is constitutively expressed in ectoderm-derived appendages and in palmar/plantar epidermis and is robustly induced when the epidermis experiences chemical, mechanical or environmental stress. Missense mutations at the KRT16 locus can cause pachyonychia congenita (PC, OMIM:167200) or focal non-epidermolytic palmoplantar keratoderma (FNEPPK, OMIM:613000), which each entail painful calluses on palmar and plantar skin. Krt16-null mice develop footpad lesions that mimic PC-associated PPK, providing an opportunity to decipher its pathophysiology, and develop therapies. We report on insight gained from a genome-wide analysis of gene expression in PPK-like lesions of Krt16-null mice. Comparison of this data set with publicly available microarray data of PPK lesions from individuals with PC revealed significant synergies in gene expression profiles. Keratin 9 (Krt9/K9), the most robustly expressed gene in differentiating volar keratinocytes, is markedly downregulated in Krt16-null paw skin, well-ahead of lesion onset, and is paralleled by pleiotropic defects in terminal differentiation. Effective prevention of PPK-like lesions in Krt16-null paw skin (via topical delivery of the Nrf2 inducer sulforaphane) involves the stimulation of Krt9 expression. These findings highlight a role for defective terminal differentiation and loss of Krt9/K9 expression as additional drivers of PC-associated PPK and highlight restoration of KRT9 expression as a worthy target for therapy. Further, we report on the novel observation that keratin 16 can localize to the nucleus of epithelial cells, implying a potential nuclear function that may be relevant to PC and FNEPPK.
Collapse
Affiliation(s)
- Abigail G Zieman
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brian G Poll
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jingqun Ma
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Dulloo I, Muliyil S, Freeman M. The molecular, cellular and pathophysiological roles of iRhom pseudoproteases. Open Biol 2020; 9:190003. [PMID: 30890028 PMCID: PMC6451368 DOI: 10.1098/rsob.190003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
iRhom proteins are catalytically inactive relatives of rhomboid intramembrane proteases. There is a rapidly growing body of evidence that these pseudoenzymes have a central function in regulating inflammatory and growth factor signalling and consequent roles in many diseases. iRhom pseudoproteases have evolved new domains from their proteolytic ancestors, which are integral to their modular regulation and functions. Although we cannot yet conclude the full extent of their molecular and cellular mechanisms, there is a clearly emerging theme that they regulate the stability and trafficking of other membrane proteins. In the best understood case, iRhoms act as regulatory cofactors of the ADAM17 protease, controlling its function of shedding cytokines and growth factors. It seems likely that as the involvement of iRhoms in human diseases is increasingly recognized, they will become the focus of pharmaceutical interest, and here we discuss what is known about their molecular mechanisms and relevance in known pathologies.
Collapse
Affiliation(s)
- Iqbal Dulloo
- Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE , UK
| | - Sonia Muliyil
- Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE , UK
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE , UK
| |
Collapse
|
20
|
Funk T, Hansen C, Paller A, O'Toole E. Update on pachyonychia congenita research. Br J Dermatol 2019; 182:788-789. [DOI: 10.1111/bjd.18630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- T. Funk
- Dermatology Oregon Health& Science University Portland OR 97239‐3098 U.S.A
| | - C.D. Hansen
- Dermatology University of Utah Salt Lake City UT U.S.A
| | - A. Paller
- Northwestern University Feinberg School of Medicine Chicago IL U.S.A
| | - E.A. O'Toole
- Centre for Cell Biology and Cutaneous Research Blizard Institute, Barts and the London School of Medicine and Dentistry Queen Mary University of London London U.K
| |
Collapse
|
21
|
Sundaram B, Behnke K, Belancic A, Al-Salihi MA, Thabet Y, Polz R, Pellegrino R, Zhuang Y, Shinde PV, Xu HC, Vasilevska J, Longerich T, Herebian D, Mayatepek E, Bock HH, May P, Kordes C, Aghaeepour N, Mak TW, Keitel V, Häussinger D, Scheller J, Pandyra AA, Lang KS, Lang PA. iRhom2 inhibits bile duct obstruction-induced liver fibrosis. Sci Signal 2019; 12:12/605/eaax1194. [PMID: 31662486 DOI: 10.1126/scisignal.aax1194] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic liver disease can induce prolonged activation of hepatic stellate cells, which may result in liver fibrosis. Inactive rhomboid protein 2 (iRhom2) is required for the maturation of A disintegrin and metalloprotease 17 (ADAM17, also called TACE), which is responsible for the cleavage of membrane-bound tumor necrosis factor-α (TNF-α) and its receptors (TNFRs). Here, using the murine bile duct ligation (BDL) model, we showed that the abundance of iRhom2 and activation of ADAM17 increased during liver fibrosis. Consistent with this, concentrations of ADAM17 substrates were increased in plasma samples from mice after BDL and in patients suffering from liver cirrhosis. We observed increased liver fibrosis, accelerated disease progression, and an increase in activated stellate cells after BDL in mice lacking iRhom2 (Rhbdf2-/- ) compared to that in controls. In vitro primary mouse hepatic stellate cells exhibited iRhom2-dependent shedding of the ADAM17 substrates TNFR1 and TNFR2. In vivo TNFR shedding after BDL also depended on iRhom2. Treatment of Rhbdf2-/- mice with the TNF-α inhibitor etanercept reduced the presence of activated stellate cells and alleviated liver fibrosis after BDL. Together, these data suggest that iRhom2-mediated inhibition of TNFR signaling protects against liver fibrosis.
Collapse
Affiliation(s)
- Balamurugan Sundaram
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Kristina Behnke
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Andrea Belancic
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Mazin A Al-Salihi
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Yasser Thabet
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Robin Polz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Rossella Pellegrino
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Yuan Zhuang
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Prashant V Shinde
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Jelena Vasilevska
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Hans H Bock
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Petra May
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Kordes
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.,Institute for Experimental Regenerative Hepatology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nima Aghaeepour
- Stanford University, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA
| | - Tak W Mak
- Department of Medical Biophysics, University of Toronto, 1 King's Circle, Toronto, ON M5S 1A8, Canada.,Department of Pathology, University of Hong Kong, Hong Kong
| | - Verena Keitel
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.,Institute for Experimental Regenerative Hepatology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
22
|
Status update on iRhom and ADAM17: It's still complicated. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1567-1583. [PMID: 31330158 DOI: 10.1016/j.bbamcr.2019.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Several membrane-bound proteins with a single transmembrane domain are subjected to limited proteolysis at the cell surface. This cleavage leads to the release of their biologically active ectodomains, which can trigger different signalling pathways. In many cases, this ectodomain shedding is mediated by members of the family of a disintegrins and metalloproteinases (ADAMs). ADAM17 in particular is responsible for the cleavage of several proinflammatory mediators, growth factors, receptors and adhesion molecules. Due to its direct involvement in the release of these signalling molecules, ADAM17 can be positively and negatively involved in various physiological processes as well as in inflammatory, fibrotic and malignant pathologies. This central role of ADAM17 in a variety of processes requires strict multi-level regulation, including phosphorylation, various conformational changes and endogenous inhibitors. Recent research has shown that an early, crucial control mechanism is interaction with certain adapter proteins identified as iRhom1 and iRhom2, which are pseudoproteases of the rhomboid superfamily. Thus, iRhoms have also a decisive influence on physiological and pathophysiological signalling processes regulated by ADAM17. Their characteristic gene expression profiles, the specific consequences of gene knockouts and finally the occurrence of disease-associated mutations suggest that iRhom1 and iRhom2 undergo different gene regulation in order to fulfil their function in different cell types and are therefore only partially redundant. Therefore, there is not only interest in ADAM17, but also in iRhoms as therapeutic targets. However, to exploit the therapeutic potential, the regulation of ADAM17 activity and in particular its interaction with iRhoms must be well understood.
Collapse
|
23
|
Elliott PM, Anastasakis A, Asimaki A, Basso C, Bauce B, Brooke MA, Calkins H, Corrado D, Duru F, Green KJ, Judge DP, Kelsell D, Lambiase PD, McKenna WJ, Pilichou K, Protonotarios A, Saffitz JE, Syrris P, Tandri H, Te Riele A, Thiene G, Tsatsopoulou A, van Tintelen JP. Definition and treatment of arrhythmogenic cardiomyopathy: an updated expert panel report. Eur J Heart Fail 2019; 21:955-964. [PMID: 31210398 DOI: 10.1002/ejhf.1534] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022] Open
Abstract
It is 35 years since the first description of arrhythmogenic right ventricular cardiomyopathy (ARVC) and more than 20 years since the first reports establishing desmosomal gene mutations as a major cause of the disease. Early advances in the understanding of the clinical, pathological and genetic architecture of ARVC resulted in consensus diagnostic criteria, which proved to be sensitive but not entirely specific for the disease. In more recent years, clinical and genetic data from families and the recognition of a much broader spectrum of structural disorders affecting both ventricles and associated with a propensity to ventricular arrhythmia have raised many questions about pathogenesis, disease terminology and clinical management. In this paper, we present the conclusions of an expert round table that aimed to summarise the current state of the art in arrhythmogenic cardiomyopathies and to define future research priorities.
Collapse
Affiliation(s)
- Perry M Elliott
- University College London & St. Bartholomew's Hospital, London, UK
| | - Aris Anastasakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Angeliki Asimaki
- Molecular and Clinical Sciences Research Institute, St Georges University, London, UK
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua-Azienda Ospedaliera, Padua, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua-Azienda Ospedaliera, Padua, Italy
| | - Matthew A Brooke
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Domenico Corrado
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua-Azienda Ospedaliera, Padua, Italy
| | - Firat Duru
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel P Judge
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - David Kelsell
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Pier D Lambiase
- University College London & St. Bartholomew's Hospital, London, UK
| | - William J McKenna
- Institute of Cardiovascular Science, University College London, London, UK
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua-Azienda Ospedaliera, Padua, Italy
| | | | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, London, UK
| | - Hari Tandri
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anneline Te Riele
- Division of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gaetano Thiene
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua-Azienda Ospedaliera, Padua, Italy
| | | | - J Peter van Tintelen
- Department of Clinical Genetics, Amsterdam Cardiovascular Sciences, University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
24
|
Zhao Z, Kesti T, Uğurlu H, Baur AS, Fagerlund R, Saksela K. Tyrosine phosphorylation directs TACE into extracellular vesicles via unconventional secretion. Traffic 2019; 20:202-212. [PMID: 30569492 DOI: 10.1111/tra.12630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
Abstract
When studying how HIV-1 Nef can promote packaging of the proinflammatory transmembrane protease TACE (tumor necrosis factor-α converting enzyme) into extracellular vesicles (EVs) we have revealed a novel tyrosine kinase-regulated unconventional protein secretion (UPS) pathway for TACE. When TACE was expressed without its trafficking cofactor iRhom allosteric Hck activation by Nef triggered translocation of TACE into EVs. This process was insensitive to blocking of classical secretion by inhibiting endoplasmic reticulum (ER) to Golgi transport, and involved a distinct form of TACE devoid of normal glycosylation and incompletely processed for prodomain removal. Like most other examples of UPS this process was Golgi reassembly stacking protein (GRASP)-dependent but was not associated with ER stress. These data indicate that Hck-activated UPS provides an alternative pathway for TACE secretion that can bypass iRhom-dependent ER to Golgi transfer, and suggest that tyrosine phosphorylation might have a more general role in regulating UPS.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tapio Kesti
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hasan Uğurlu
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Andreas S Baur
- Department of Dermatology, Translational Research Center, University Hospital Erlangen, Erlangen, Germany
| | - Riku Fagerlund
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
25
|
Pereira Beserra F, Xue M, Maia GLDA, Leite Rozza A, Helena Pellizzon C, Jackson CJ. Lupeol, a Pentacyclic Triterpene, Promotes Migration, Wound Closure, and Contractile Effect In Vitro: Possible Involvement of PI3K/Akt and p38/ERK/MAPK Pathways. Molecules 2018; 23:molecules23112819. [PMID: 30380745 PMCID: PMC6278408 DOI: 10.3390/molecules23112819] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022] Open
Abstract
Skin wound healing is a dynamic and complex process involving several mediators at the cellular and molecular levels. Lupeol, a phytoconstituent belonging to the triterpenes class, is found in several fruit plants and medicinal plants that have been the object of study in the treatment of various diseases, including skin wounds. Various medicinal properties of lupeol have been reported in the literature, including anti-inflammatory, antioxidant, anti-diabetic, and anti-mutagenic effects. We investigated the effects of lupeol (0.1, 1, 10, and 20 μg/mL) on in vitro wound healing assays and signaling mechanisms in human neonatal foreskin keratinocytes and fibroblasts. Results showed that, at high concentrations, Lupeol reduced cell proliferation of both keratinocytes and fibroblasts, but increased in vitro wound healing in keratinocytes and promoted the contraction of dermal fibroblasts in the collagen gel matrix. This triterpene positively regulated matrix metalloproteinase (MMP)-2 and inhibited the NF-κB expression in keratinocytes, suggesting an anti-inflammatory effect. Lupeol also modulated the expression of keratin 16 according to the concentration tested. Additionally, in keratinocytes, lupeol treatment resulted in the activation of Akt, p38, and Tie-2, which are signaling proteins involved in cell proliferation and migration, angiogenesis, and tissue repair. These findings suggest that lupeol has therapeutic potential for accelerating wound healing.
Collapse
Affiliation(s)
- Fernando Pereira Beserra
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil.
| | - Meilang Xue
- Sutton Research Laboratory, Kolling Institute of Medical Research, the University of Sydney at Royal North Shore Hospital, St Leonard, NSW 2065, Australia.
| | | | - Ariane Leite Rozza
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil.
| | - Cláudia Helena Pellizzon
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil.
| | - Christopher John Jackson
- Sutton Research Laboratory, Kolling Institute of Medical Research, the University of Sydney at Royal North Shore Hospital, St Leonard, NSW 2065, Australia.
| |
Collapse
|
26
|
Hosur V, Farley ML, Low BE, Burzenski LM, Shultz LD, Wiles MV. RHBDF2-Regulated Growth Factor Signaling in a Rare Human Disease, Tylosis With Esophageal Cancer: What Can We Learn From Murine Models? Front Genet 2018; 9:233. [PMID: 30022999 PMCID: PMC6039722 DOI: 10.3389/fgene.2018.00233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Abstract
Tylosis with esophageal cancer syndrome (TOC) is a rare autosomal dominant proliferative skin disease caused by missense mutations in the rhomboid 5 homolog 2 (RHBDF2) gene. TOC is characterized by thickening of the skin in the palms and feet and is strongly linked with the development of esophageal squamous cell carcinoma. Murine models of human diseases have been valuable tools for investigating the underlying genetic and molecular mechanisms of a broad range of diseases. Although current mouse models do not fully recapitulate all aspects of human TOC, and the molecular mechanisms underlying TOC are still emerging, the available mouse models exhibit several key aspects of the disease, including a proliferative skin phenotype, a rapid wound healing phenotype, susceptibility to epithelial cancer, and aberrant epidermal growth factor receptor (EGFR) signaling. Furthermore, we and other investigators have used these models to generate new insights into the causes and progression of TOC, including findings suggesting a tissue-specific role of the RHBDF2-EGFR pathway, rather than a role of the immune system, in mediating TOC; and indicating that amphiregulin, an EGFR ligand, is a functional driver of the disease. This review highlights the mouse models of TOC available to researchers for use in investigating the disease mechanisms and possible therapies, and the significance of genetic modifiers of the disease identified in these models in delineating the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Vishnu Hosur
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | | | | | | | | |
Collapse
|
27
|
Guerra L, Castori M, Didona B, Castiglia D, Zambruno G. Hereditary palmoplantar keratodermas. Part II: syndromic palmoplantar keratodermas - Diagnostic algorithm and principles of therapy. J Eur Acad Dermatol Venereol 2018; 32:899-925. [DOI: 10.1111/jdv.14834] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/05/2018] [Indexed: 12/19/2022]
Affiliation(s)
- L. Guerra
- Laboratory of Molecular and Cell Biology; Istituto Dermopatico dell'Immacolata-IRCCS; Rome Italy
| | - M. Castori
- Division of Medical Genetics; Casa Sollievo della Sofferenza-IRCCS; San Giovanni Rotondo Italy
| | - B. Didona
- Rare Skin Disease Center; Istituto Dermopatico dell'Immacolata-IRCCS; Rome Italy
| | - D. Castiglia
- Laboratory of Molecular and Cell Biology; Istituto Dermopatico dell'Immacolata-IRCCS; Rome Italy
| | - G. Zambruno
- Genetic and Rare Diseases Research Area and Dermatology Unit; Bambino Gesù Children's Hospital-IRCCS; Rome Italy
| |
Collapse
|
28
|
Arcidiacono P, Webb CM, Brooke MA, Zhou H, Delaney PJ, Ng KE, Blaydon DC, Tinker A, Kelsell DP, Chikh A. p63 is a key regulator of iRHOM2 signalling in the keratinocyte stress response. Nat Commun 2018; 9:1021. [PMID: 29523849 PMCID: PMC5844915 DOI: 10.1038/s41467-018-03470-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 02/14/2018] [Indexed: 02/06/2023] Open
Abstract
Hyperproliferative keratinocytes induced by trauma, hyperkeratosis and/or inflammation display molecular signatures similar to those of palmoplantar epidermis. Inherited gain-of-function mutations in RHBDF2 (encoding iRHOM2) are associated with a hyperproliferative palmoplantar keratoderma and squamous oesophageal cancer syndrome (termed TOC). In contrast, genetic ablation of rhbdf2 in mice leads to a thinning of the mammalian footpad, and reduces keratinocyte hyperproliferation and migration. Here, we report that iRHOM2 is a novel target gene of p63 and that both p63 and iRHOM2 differentially regulate cellular stress-associated signalling pathways in normal and hyperproliferative keratinocytes. We demonstrate that p63-iRHOM2 regulates cell survival and response to oxidative stress via modulation of SURVIVIN and Cytoglobin, respectively. Furthermore, the antioxidant compound Sulforaphane downregulates p63-iRHOM2 expression, leading to reduced proliferation, inflammation, survival and ROS production. These findings elucidate a novel p63-associated pathway that identifies iRHOM2 modulation as a potential therapeutic target to treat hyperproliferative skin disease and neoplasia.
Collapse
Affiliation(s)
- Paola Arcidiacono
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Catherine M Webb
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Matthew A Brooke
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Huiqing Zhou
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, The Netherlands
| | - Paul J Delaney
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Keat-Eng Ng
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Diana C Blaydon
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Andrew Tinker
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - David P Kelsell
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| | - Anissa Chikh
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| |
Collapse
|
29
|
Hosur V, Lyons BL, Burzenski LM, Shultz LD. Tissue-specific role of RHBDF2 in cutaneous wound healing and hyperproliferative skin disease. BMC Res Notes 2017; 10:573. [PMID: 29116018 PMCID: PMC5678570 DOI: 10.1186/s13104-017-2899-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/01/2017] [Indexed: 12/11/2022] Open
Abstract
Objective Gain-of-function (GOF) mutations in RHBDF2 cause tylosis. Patients present with hyperproliferative skin, and keratinocytes from tylosis patients’ skin show an enhanced wound-healing phenotype. The curly bare mouse model of tylosis, carrying a GOF mutation in the Rhbdf2 gene (Rhbdf2cub), presents with epidermal hyperplasia and shows accelerated cutaneous wound-healing phenotype through enhanced secretion of the epidermal growth factor receptor family ligand amphiregulin. Despite these advances in our understanding of tylosis, key questions remain. For instance, it is not known whether the disease is skin-specific, whether the immune system or the surrounding microenvironment plays a role, and whether mouse genetic background influences the hyperproliferative-skin and wound-healing phenotypes observed in Rhbdf2cub mice. Results We performed bone marrow transfers and reciprocal skin transplants and found that bone marrow transfer from C57BL/6 (B6)-Rhbdf2cub/cub donor mice to B6 wildtype recipient mice failed to transfer the hyperproliferative-skin and wound-healing phenotypes in B6 mice. Furthermore, skin grafts from B6 mice to the dorsal skin of B6-Rhbdf2cub/cub mice maintained the phenotype of the donor mice. To test the influence of mouse genetic background, we backcrossed Rhbdf2cub onto the MRL/MpJ strain and found that the hyperproliferative-skin and wound-healing phenotypes caused by the Rhbdf2cub mutation persisted on the MRL/MpJ strain.
Collapse
Affiliation(s)
- Vishnu Hosur
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Bonnie L Lyons
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Lisa M Burzenski
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Leonard D Shultz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| |
Collapse
|