1
|
Li K, Chen Y, Sheng Y, Tang D, Cao Y, He X. Defects in mRNA splicing and implications for infertility: a comprehensive review and in silico analysis. Hum Reprod Update 2025; 31:218-239. [PMID: 39953708 DOI: 10.1093/humupd/dmae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND mRNA splicing is a fundamental process in the reproductive system, playing a pivotal role in reproductive development and endocrine function, and ensuring the proper execution of meiosis, mitosis, and gamete function. Trans-acting factors and cis-acting elements are key players in mRNA splicing whose dysfunction can potentially lead to male and female infertility. Although hundreds of trans-acting factors have been implicated in mRNA splicing, the mechanisms by which these factors influence reproductive processes are fully understood for only a subset. Furthermore, the clinical impact of variations in cis-acting elements on human infertility has not been comprehensively characterized, leading to probable omissions of pathogenic variants in standard genetic analyses. OBJECTIVE AND RATIONALE This review aimed to summarize our current understanding of the factors involved in mRNA splicing regulation and their association with infertility disorders. We introduced methods for prioritizing and functionally validating splicing variants associated with human infertility. Additionally, we explored corresponding abnormal splicing therapies that could potentially provide insight into treating human infertility. SEARCH METHODS Systematic literature searches of human and model organisms were performed in the PubMed database between May 1977 and July 2024. To identify mRNA splicing-related genes and pathogenic variants in infertility, the search terms 'splice', 'splicing', 'variant', and 'mutation' were combined with azoospermia, oligozoospermia, asthenozoospermia, multiple morphological abnormalities of the sperm flagella, acephalic spermatozoa, disorders of sex development, early embryonic arrest, reproductive endocrine disorders, oocyte maturation arrest, premature ovarian failure, primary ovarian insufficiency, zona pellucida, fertilization defects, infertile, fertile, infertility, fertility, reproduction, and reproductive. OUTCOMES Our search identified 5014 publications, of which 291 were included in the final analysis. This review provided a comprehensive overview of the biological mechanisms of mRNA splicing, with a focus on the roles of trans-acting factors and cis-acting elements. We highlighted the disruption of 52 trans-acting proteins involved in spliceosome assembly and catalytic activity and recognized splicing regulatory regions and epigenetic regulation associated with infertility. The 73 functionally validated splicing variants in the cis-acting elements of 54 genes have been reported in 20 types of human infertility; 27 of them were located outside the canonical splice sites and potentially overlooked in standard genetic analysis due to likely benign or of uncertain significance. The in silico prediction of splicing can prioritize potential splicing abnormalities that may be true pathogenic mechanisms. We also summarize the methods for prioritizing splicing variants and strategies for functional validation and review splicing therapy approaches for other diseases, providing a reference for abnormal reproduction treatment. WIDER IMPLICATIONS Our comprehensive review of trans-acting factors and cis-acting elements in mRNA splicing will further promote a more thorough understanding of reproductive regulatory processes, leading to improved pathogenic variant identification and potential treatments for human infertility. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Kuokuo Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Yuge Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Yuying Sheng
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Dongdong Tang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Wang W, Xing J, Zhang X, Liu H, Liu X, Jiang H, Xu C, Zhao X, Hu Z. Control of ciliary transcriptional programs during spermatogenesis by antagonistic transcription factors. eLife 2025; 13:RP94754. [PMID: 40009443 PMCID: PMC11864758 DOI: 10.7554/elife.94754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Existence of cilia in the last eukaryotic common ancestor raises a fundamental question in biology: how the transcriptional regulation of ciliogenesis has evolved? One conceptual answer to this question is by an ancient transcription factor regulating ciliary gene expression in both uni- and multicellular organisms, but examples of such transcription factors in eukaryotes are lacking. Previously, we showed that an ancient transcription factor X chromosome-associated protein 5 (Xap5) is required for flagellar assembly in Chlamydomonas. Here, we show that Xap5 and Xap5-like (Xap5l) are two conserved pairs of antagonistic transcription regulators that control ciliary transcriptional programs during spermatogenesis. Male mice lacking either Xap5 or Xap5l display infertility, as a result of meiotic prophase arrest and sperm flagella malformation, respectively. Mechanistically, Xap5 positively regulates the ciliary gene expression by activating the key regulators including Foxj1 and Rfx families during the early stage of spermatogenesis. In contrast, Xap5l negatively regulates the expression of ciliary genes via repressing these ciliary transcription factors during the spermiogenesis stage. Our results provide new insights into the mechanisms by which temporal and spatial transcription regulators are coordinated to control ciliary transcriptional programs during spermatogenesis.
Collapse
Affiliation(s)
- Weihua Wang
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Junqiao Xing
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Xiqi Zhang
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Hongni Liu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Xingyu Liu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- No.1 Middle School Affiliated to Central China Normal UniversityWuhanChina
| | - Haochen Jiang
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Cheng Xu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Xue Zhao
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
| | - Zhangfeng Hu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan UniversityWuhanChina
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan UniversityWuhanChina
| |
Collapse
|
3
|
Chen Y, Sun S, Lu C, Li Y, Fang B, Tang X, Li X, Yu W, Lei Y, Sun L, Zhang M, Sun J, Liu P, Luo Y, Zhao X, Zhan J, Liu L, Liu R, Huang J, Yi Z, Yu Y, Xiao W, Ding Z, Li L, Su D, Ren F, Cao C, Wang R, Shi W, Chen J. The RNA Binding Protein Bcas2 is Required for Antibody Class Switch in Activated‐B Cells. EXPLORATION 2025. [DOI: 10.1002/exp.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 03/18/2025]
Abstract
ABSTRACTIn children, hyper‐IgM syndrome type 1 (HIGM1) is a type of severe antibody disorder, the pathogenesis of which remains unclear. The antibody diversity is partially determined by the alternative splicing (AS) in the germline, which is mainly regulated by RNA‐binding proteins, including Breast cancer amplified sequence 2 (Bcas2). However, the effect of Bcas2 on AS and antibody production in activated B cells, the main immune cell type in the germline, remains unknown. To fill this gap, we created a conditional knockout (cKO, B cell‐specific AID‐Cre Bcas2fl/fl) mouse model and performed integrated mechanistic analysis on alternative splicing (AS) and CSR in B cells through the RNA‐sequencing approach, cross‐linking immunoprecipitation and sequencing (CLIP‐seq) analysis, and interactome proteomics. The results demonstrate that Bcas2‐cKO significantly decreased CSR in activated B cells without inhibiting the B cell development. Mechanistically, Bcas2 interacts with SRSF7 at a conservative circular domain, forming a complex to regulate the AS of genes involved in the post‐switch transcription, thereby causing broad‐spectrum changes in antibody production. Importantly, we identified GAAGAA as the binding motif of Bcas2 to RNAs and revealed its essential role in the regulation of Bcas2‐dependent AS and CSR. In addition, we detected a mutation of at the 3’UTR of Bcas2 gene in children with HIGM1 and observed similar patterns of AS events and CSR in the patient that were discovered in the Bcas2‐cKO B cells. Combined, our study elucidates the mechanism by which Bcas2‐mediated AS affects CSR, offering potential insights into the clinical implications of Bcas2 in HIGM1.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Siyuan Sun
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Chenxu Lu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Xiangfeng Tang
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology Beijing Key Laboratory of Pediatric Organ Failure Department of Pediatrics The Seventh Medical Center of PLA General Hospital Beijing China
| | - Xuepeng Li
- College of Food Science and Engineering Bohai University Liaoning China
| | - Weiru Yu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yumei Lei
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding College of Biological Sciences China Agricultural University Beijing China
| | - Ming Zhang
- School of Food and Health Beijing Technology and Business University Beijing China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Ping Liu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Xingwang Zhao
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Libing Liu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Rong Liu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Ziwei Yi
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yifei Yu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Weihan Xiao
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Zheng Ding
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Dan Su
- Department of Chemistry and Chemical Biology Cornell University Ithaca New York USA
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Changchang Cao
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Wenbiao Shi
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| |
Collapse
|
4
|
Jiang N, Li Y, Yin L, Yuan S, Wang F. The Intricate Functional Networks of Pre-mRNA Alternative Splicing in Mammalian Spermatogenesis. Int J Mol Sci 2024; 25:12074. [PMID: 39596142 PMCID: PMC11594017 DOI: 10.3390/ijms252212074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Spermatogenesis is a highly coordinated process that requires the precise expression of specific subsets of genes in different types of germ cells, controlled both temporally and spatially. Among these genes, those that can exert an indispensable influence in spermatogenesis via participating in alternative splicing make up the overwhelming majority. mRNA alternative-splicing (AS) events can generate various isoforms with distinct functions from a single DNA sequence, based on specific AS codes. In addition to enhancing the finite diversity of the genome, AS can also regulate the transcription and translation of certain genes by directly binding to their cis-elements or by recruiting trans-elements that interact with consensus motifs. The testis, being one of the most complex tissue transcriptomes, undergoes unparalleled transcriptional and translational activity, supporting the dramatic and dynamic transitions that occur during spermatogenesis. Consequently, AS plays a vital role in producing an extensive array of transcripts and coordinating significant changes throughout this process. In this review, we summarize the intricate functional network of alternative splicing in spermatogenesis based on the integration of current research findings.
Collapse
Affiliation(s)
| | | | | | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| |
Collapse
|
5
|
Sun L, Ye R, Cao C, Lv Z, Wang C, Xie X, Chen X, Yao X, Tian S, Yan L, Shao Y, Cui S, Chen C, Xue Y, Li L, Chen J, Liu J. BCAS2 and hnRNPH1 orchestrate alternative splicing for DNA double-strand break repair and synapsis in meiotic prophase I. Cell Mol Life Sci 2024; 81:449. [PMID: 39520542 PMCID: PMC11550311 DOI: 10.1007/s00018-024-05479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Understanding the intricacies of homologous recombination during meiosis is crucial for reproductive biology. However, the role of alternative splicing (AS) in DNA double-strand breaks (DSBs) repair and synapsis remains elusive. In this study, we investigated the impact of conditional knockout (cKO) of the splicing factor gene Bcas2 in mouse germ cells, revealing impaired DSBs repair and synapsis, resulting in non-obstructive azoospermia (NOA). Employing crosslinking immunoprecipitation and sequencing (CLIP-seq), we globally mapped BCAS2 binding sites in the testis, uncovering its predominant association with 5' splice sites (5'SS) of introns and a preference for GA-rich regions. Notably, BCAS2 exhibited direct binding and regulatory influence on Trp53bp1 (codes for 53BP1) and Six6os1 through AS, unveiling novel insights into DSBs repair and synapsis during meiotic prophase I. Furthermore, the interaction between BCAS2, hnRNPH1, and SRSF3 was discovered to orchestrate Trp53bp1 expression via AS, underscoring its role in meiotic prophase I DSBs repair. In summary, our findings delineate the indispensable role of BCAS2-mediated post-transcriptional regulation in DSBs repair and synapsis during male meiosis. This study provides a comprehensive framework for unraveling the molecular mechanisms governing the post-transcriptional network in male meiosis, contributing to the broader understanding of reproductive biology.
Collapse
Affiliation(s)
- Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changchang Cao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yujing Shao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China.
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Ren J, Liu J, Zuo J, Zhang Z, Huang D, Liu X, Lu M, Zhang Y, Su Y, Ma Y. Flaxseed oil attenuates PFOS-induced testicular damage by regulating RNA alternative splicing. Food Funct 2024; 15:10007-10019. [PMID: 39282919 DOI: 10.1039/d4fo03486d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background: Perfluorooctane sulfonate (PFOS) is a persistent, widely present environmental pollutant, and its toxicity to male reproduction has gradually attracted attention. Flaxseed oil (FO) is a dietary oil abundant in α-linolenic acid and has been demonstrated to possess multiple health benefits. However, whether FO protects against PFOS-induced testicular injury and its mechanism remain unclear. Methods: C57/BL6 mice were gavaged with different concentrations of FO or PFOS (10 mg kg-1) for 28 days. Blood and testicular tissues were collected for histopathology, proteomics, and biochemical and molecular analyses. Results: Our results showed that FO supplementation significantly attenuated PFOS-induced testicular injury, as indicated by histopathological changes, decreased oxidative stress level, increased sperm count, decreased rate of sperm malformation, and improved functional markers of spermatogenesis. Proteomic analysis showed that differentially expressed proteins were notably enriched in spliceosome pathways. Machine learning algorithms were used to screen the hub gene, and PRPF3 and PUF60 proteins were found to be important for FO to exert protective benefits to testicular injury. Western blot results confirmed that FO supplementation could increase the protein expression of PRPF3 and decrease the protein expression of PUF60 in PFOS-exposed mice. Conclusions: This study revealed that FO can alleviate PFOS-induced testicular dysfunction by regulating RNA alternative splicing. The spliceosome-related proteins PRPF3 and PUF60 may be the potential targets for FO to alleviate PFOS-induced testicular injury. FO supplementation may be an effective dietary intervention to prevent adverse effects of PFOS on testes.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Jiarui Liu
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinshi Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Zhenao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Dan Huang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuanyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Miaomiao Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Yang Su
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| |
Collapse
|
7
|
Wang S, Cai Y, Li T, Wang Y, Bao Z, Wang R, Qin J, Wang Z, Liu Y, Liu Z, Chan W, Chen X, Lu G, Chen Z, Huang T, Liu H. CWF19L2 is Essential for Male Fertility and Spermatogenesis by Regulating Alternative Splicing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403866. [PMID: 38889293 PMCID: PMC11336944 DOI: 10.1002/advs.202403866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/12/2024] [Indexed: 06/20/2024]
Abstract
The progression of spermatogenesis along specific developmental trajectories depends on the coordinated regulation of pre-mRNA alternative splicing (AS) at the post-transcriptional level. However, the fundamental mechanism of AS in spermatogenesis remains to be investigated. Here, it is demonstrated that CWF19L2 plays a pivotal role in spermatogenesis and male fertility. In germline conditional Cwf19l2 knockout mice exhibiting male sterility, impaired spermatogenesis characterized by increased apoptosis and decreased differentiated spermatogonia and spermatocytes is observed. That CWF19L2 interacted with several spliceosome proteins to participate in the proper assembly and stability of the spliceosome is discovered. By integrating RNA-seq and LACE-seq data, it is further confirmed CWF19L2 directly bound and regulated the splicing of genes related to spermatogenesis (Znhit1, Btrc, and Fbxw7) and RNA splicing (Rbfox1, Celf1, and Rbm10). Additionally, CWF19L2 can indirectly amplify its effect on splicing regulation through modulating RBFOX1. Collectively, this research establishes that CWF19L2 orchestrates a splicing factor network to ensure accurate pre-mRNA splicing during the early steps of spermatogenesis.
Collapse
|
8
|
Cui L, Zheng Y, Xu R, Lin Y, Zheng J, Lin P, Guo B, Sun S, Zhao X. Alternative pre-mRNA splicing in stem cell function and therapeutic potential: A critical review of current evidence. Int J Biol Macromol 2024; 268:131781. [PMID: 38657924 DOI: 10.1016/j.ijbiomac.2024.131781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Alternative splicing is a crucial regulator in stem cell biology, intricately influencing the functions of various biological macromolecules, particularly pre-mRNAs and the resultant protein isoforms. This regulatory mechanism is vital in determining stem cell pluripotency, differentiation, and proliferation. Alternative splicing's role in allowing single genes to produce multiple protein isoforms facilitates the proteomic diversity that is essential for stem cells' functional complexity. This review delves into the critical impact of alternative splicing on cellular functions, focusing on its interaction with key macromolecules and how this affects cellular behavior. We critically examine how alternative splicing modulates the function and stability of pre-mRNAs, leading to diverse protein expressions that govern stem cell characteristics, including pluripotency, self-renewal, survival, proliferation, differentiation, aging, migration, somatic reprogramming, and genomic stability. Furthermore, the review discusses the therapeutic potential of targeting alternative splicing-related pathways in disease treatment, particularly focusing on the modulation of RNA and protein interactions. We address the challenges and future prospects in this field, underscoring the need for further exploration to unravel the complex interplay between alternative splicing, RNA, proteins, and stem cell behaviors, which is crucial for advancing our understanding and therapeutic approaches in regenerative medicine and disease treatment.
Collapse
Affiliation(s)
- Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; Hospital of Stomatology, Zunyi Medical University, Zunyi 563000, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuyu Sun
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
9
|
Verma S, Lin X, Coulson-Thomas VJ. The Potential Reversible Transition between Stem Cells and Transient-Amplifying Cells: The Limbal Epithelial Stem Cell Perspective. Cells 2024; 13:748. [PMID: 38727284 PMCID: PMC11083486 DOI: 10.3390/cells13090748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Stem cells (SCs) undergo asymmetric division, producing transit-amplifying cells (TACs) with increased proliferative potential that move into tissues and ultimately differentiate into a specialized cell type. Thus, TACs represent an intermediary state between stem cells and differentiated cells. In the cornea, a population of stem cells resides in the limbal region, named the limbal epithelial stem cells (LESCs). As LESCs proliferate, they generate TACs that move centripetally into the cornea and differentiate into corneal epithelial cells. Upon limbal injury, research suggests a population of progenitor-like cells that exists within the cornea can move centrifugally into the limbus, where they dedifferentiate into LESCs. Herein, we summarize recent advances made in understanding the mechanism that governs the differentiation of LESCs into TACs, and thereafter, into corneal epithelial cells. We also outline the evidence in support of the existence of progenitor-like cells in the cornea and whether TACs could represent a population of cells with progenitor-like capabilities within the cornea. Furthermore, to gain further insights into the dynamics of TACs in the cornea, we outline the most recent findings in other organ systems that support the hypothesis that TACs can dedifferentiate into SCs.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Xiao Lin
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
| | | |
Collapse
|
10
|
Romeo-Cardeillac C, Trovero MF, Radío S, Smircich P, Rodríguez-Casuriaga R, Geisinger A, Sotelo-Silveira J. Uncovering a multitude of stage-specific splice variants and putative protein isoforms generated along mouse spermatogenesis. BMC Genomics 2024; 25:295. [PMID: 38509455 PMCID: PMC10953240 DOI: 10.1186/s12864-024-10170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Mammalian testis is a highly complex and heterogeneous tissue. This complexity, which mostly derives from spermatogenic cells, is reflected at the transcriptional level, with the largest number of tissue-specific genes and long noncoding RNAs (lncRNAs) compared to other tissues, and one of the highest rates of alternative splicing. Although it is known that adequate alternative-splicing patterns and stage-specific isoforms are critical for successful spermatogenesis, so far only a very limited number of reports have addressed a detailed study of alternative splicing and isoforms along the different spermatogenic stages. RESULTS In the present work, using highly purified stage-specific testicular cell populations, we detected 33,002 transcripts expressed throughout mouse spermatogenesis not annotated so far. These include both splice variants of already annotated genes, and of hitherto unannotated genes. Using conservative criteria, we uncovered 13,471 spermatogenic lncRNAs, which reflects the still incomplete annotation of lncRNAs. A distinctive feature of lncRNAs was their lower number of splice variants compared to protein-coding ones, adding to the conclusion that lncRNAs are, in general, less complex than mRNAs. Besides, we identified 2,794 unannotated transcripts with high coding potential (including some arising from yet unannotated genes), many of which encode unnoticed putative testis-specific proteins. Some of the most interesting coding splice variants were chosen, and validated through RT-PCR. Remarkably, the largest number of stage-specific unannotated transcripts are expressed during early meiotic prophase stages, whose study has been scarcely addressed in former transcriptomic analyses. CONCLUSIONS We detected a high number of yet unannotated genes and alternatively spliced transcripts along mouse spermatogenesis, hence showing that the transcriptomic diversity of the testis is considerably higher than previously reported. This is especially prominent for specific, underrepresented stages such as those of early meiotic prophase, and its unveiling may constitute a step towards the understanding of their key events.
Collapse
Affiliation(s)
- Carlos Romeo-Cardeillac
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - María Fernanda Trovero
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Santiago Radío
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Pablo Smircich
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
| | - Adriana Geisinger
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay.
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11,400, Montevideo, Uruguay.
| | - José Sotelo-Silveira
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay.
- Department of Cell and Molecular Biology, Facultad de Ciencias, UdelaR, 11,400, Montevideo, Uruguay.
| |
Collapse
|
11
|
Ye X, Yang S, Tu J, Xu L, Wang Y, Chen H, Yu R, Huang P. Leveraging baseline transcriptional features and information from single-cell data to power the prediction of influenza vaccine response. Front Cell Infect Microbiol 2024; 14:1243586. [PMID: 38384303 PMCID: PMC10879619 DOI: 10.3389/fcimb.2024.1243586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction Vaccination is still the primary means for preventing influenza virus infection, but the protective effects vary greatly among individuals. Identifying individuals at risk of low response to influenza vaccination is important. This study aimed to explore improved strategies for constructing predictive models of influenza vaccine response using gene expression data. Methods We first used gene expression and immune response data from the Immune Signatures Data Resource (IS2) to define influenza vaccine response-related transcriptional expression and alteration features at different time points across vaccination via differential expression analysis. Then, we mapped these features to single-cell resolution using additional published single-cell data to investigate the possible mechanism. Finally, we explored the potential of these identified transcriptional features in predicting influenza vaccine response. We used several modeling strategies and also attempted to leverage the information from single-cell RNA sequencing (scRNA-seq) data to optimize the predictive models. Results The results showed that models based on genes showing differential expression (DEGs) or fold change (DFGs) at day 7 post-vaccination performed the best in internal validation, while models based on DFGs had a better performance in external validation than those based on DEGs. In addition, incorporating baseline predictors could improve the performance of models based on days 1-3, while the model based on the expression profile of plasma cells deconvoluted from the model that used DEGs at day 7 as predictors showed an improved performance in external validation. Conclusion Our study emphasizes the value of using combination modeling strategy and leveraging information from single-cell levels in constructing influenza vaccine response predictive models.
Collapse
Affiliation(s)
- Xiangyu Ye
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sheng Yang
- Department of Biostatistics, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junlan Tu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yifan Wang
- Department of Infectious Disease, Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Hongbo Chen
- Department of Infectious Disease, Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Rongbin Yu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Huang
- Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Sun L, Lv Z, Chen X, Ye R, Tian S, Wang C, Xie X, Yan L, Yao X, Shao Y, Cui S, Chen J, Liu J. Splicing factor SRSF1 is essential for homing of precursor spermatogonial stem cells in mice. eLife 2024; 12:RP89316. [PMID: 38271475 PMCID: PMC10945694 DOI: 10.7554/elife.89316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for continuous spermatogenesis and male fertility. The underlying mechanisms of alternative splicing (AS) in mouse SSCs are still largely unclear. We demonstrated that SRSF1 is essential for gene expression and splicing in mouse SSCs. Crosslinking immunoprecipitation and sequencing data revealed that spermatogonia-related genes (e.g. Plzf, Id4, Setdb1, Stra8, Tial1/Tiar, Bcas2, Ddx5, Srsf10, Uhrf1, and Bud31) were bound by SRSF1 in the mouse testes. Specific deletion of Srsf1 in mouse germ cells impairs homing of precursor SSCs leading to male infertility. Whole-mount staining data showed the absence of germ cells in the testes of adult conditional knockout (cKO) mice, which indicates Sertoli cell-only syndrome in cKO mice. The expression of spermatogonia-related genes (e.g. Gfra1, Pou5f1, Plzf, Dnd1, Stra8, and Taf4b) was significantly reduced in the testes of cKO mice. Moreover, multiomics analysis suggests that SRSF1 may affect survival of spermatogonia by directly binding and regulating Tial1/Tiar expression through AS. In addition, immunoprecipitation mass spectrometry and co-immunoprecipitation data showed that SRSF1 interacts with RNA splicing-related proteins (e.g. SART1, RBM15, and SRSF10). Collectively, our data reveal the critical role of SRSF1 in spermatogonia survival, which may provide a framework to elucidate the molecular mechanisms of the posttranscriptional network underlying homing of precursor SSCs.
Collapse
Affiliation(s)
- Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Xuexue Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Lu Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Yujing Shao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou UniversityJiangsuChina
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China, Agricultural UniversityBeijingChina
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| |
Collapse
|
13
|
Cincotta SA, Richardson N, Foecke MH, Laird DJ. Differential susceptibility of male and female germ cells to glucocorticoid-mediated signaling. eLife 2024; 12:RP90164. [PMID: 38226689 PMCID: PMC10945581 DOI: 10.7554/elife.90164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
While physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models. These hormones are known to bind and activate the glucocorticoid receptor (GR), a ligand-inducible transcription factor, thus implicating GR-mediated signaling as a potential contributor to the transgenerational inheritance of stress-induced phenotypes. Here, we demonstrate dynamic spatiotemporal regulation of GR expression in the mouse germline, showing expression in the fetal oocyte as well as the perinatal and adult spermatogonia. Functionally, we find that fetal oocytes are intrinsically buffered against changes in GR signaling, as neither genetic deletion of GR nor GR agonism with dexamethasone altered the transcriptional landscape or the progression of fetal oocytes through meiosis. In contrast, our studies revealed that the male germline is susceptible to glucocorticoid-mediated signaling, specifically by regulating RNA splicing within the spermatogonia, although this does not abrogate fertility. Together, our work suggests a sexually dimorphic function for GR in the germline, and represents an important step towards understanding the mechanisms by which stress can modulate the transmission of genetic information through the germline.
Collapse
Affiliation(s)
- Steven A Cincotta
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Nainoa Richardson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Mariko H Foecke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
14
|
Hong R, Wu J, Chen X, Zhang Z, Liu X, Li M, Zuo F, Zhang GW. mRNA-Seq of testis and liver tissues reveals a testis-specific gene and alternative splicing associated with hybrid male sterility in dzo. J Anim Sci 2024; 102:skae091. [PMID: 38551023 PMCID: PMC11135213 DOI: 10.1093/jas/skae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
Alternative splicing (AS) plays an important role in the co-transcription and post-transcriptional regulation of gene expression during mammalian spermatogenesis. The dzo is the male F1 offspring of an interspecific hybrid between a domestic bull (Bos taurus ♂) and a yak (Bos grunniens ♀) which exhibits male sterility. This study aimed to identify the testis-specific genes and AS associated with hybrid male sterility in dzo. The iDEP90 program and rMATS software were used to identify the differentially expressed genes (DEG) and differential alternative splicing genes (DSG) based on RNA-seq data from the liver (n = 9) and testis (n = 6) tissues of domestic cattle, yak, and dzo. Splicing factors (SF) were obtained from the AmiGO2 and the NCBI databases, and Pearson correlation analysis was performed on the differentially expressed SFs and DSGs. We focused on the testis-specific DEGs and DSGs between dzo and cattle and yak. Among the top 3,000 genes with the most significant variations between these 15 samples, a large number of genes showed testis-specific expression involved with spermatogenesis. Cluster analysis showed that the expression levels of these testis-specific genes were dysregulated during mitosis with a burst downregulation during the pachynema spermatocyte stage. The occurrence of AS events in the testis was about 2.5 fold greater than in the liver, with exon skipping being the major AS event (81.89% to 82.73%). A total of 74 DSGs were specifically expressed in the testis and were significantly enriched during meiosis I, synapsis, and in the piRNA biosynthesis pathways. Notably, STAG3 and DDX4 were of the exon skipping type, and DMC1 was a mutually exclusive exon. A total of 36 SFs were significantly different in dzo testis, compared with cattle and yak. DDX4, SUGP1, and EFTUD2 were potential SFs leading to abnormal AS of testis-specific genes in dzo. These results show that AS of testis-specific genes can affect synapsis and the piRNA biosynthetic processes in dzo, which may be important factors associated with hybrid male sterility in dzo.
Collapse
Affiliation(s)
- Rui Hong
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Jiaxin Wu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Xining Chen
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Zhenghao Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Xinyue Liu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Meichen Li
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460 Chongqing, China
| | - Gong-Wei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460 Chongqing, China
| |
Collapse
|
15
|
Chen X, Xie X, Li J, Sun L, Lv Z, Yao X, Li L, Jin H, Cui S, Liu J. BCAS2 Participates in Insulin Synthesis and Secretion via mRNA Alternative Splicing in Mice. Endocrinology 2023; 165:bqad152. [PMID: 37820033 DOI: 10.1210/endocr/bqad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
Insulin secreted by pancreatic β cells is essential for maintaining blood glucose levels. Diabetes is caused primarily by a loss of β cells or impairment of β-cell function. A previous whole-transcriptome analysis of islets from a type 2 diabetes group and a control group showed that a splicing disorder occurred in approximately 25% of splicing events. Breast carcinoma amplified sequence 2 (BCAS2) is a spliceosome component whose function in islet β cells is unclear. Here, we report that knockdown of Bcas2 decreased glucose- and KCl-stimulated insulin secretion in the NIT-1 cell line. Pancreas weight, glucose tolerance, and insulin sensitivity were measured in normal chow-fed Bcas2 f/f-βKO mice, and β-cell mass and islet size were analyzed by immunohistochemistry. Glucose intolerance developed in Bcas2 f/f-βKO mice, but there were no significant differences in pancreas weight, insulin sensitivity, β-cell mass, or islet size. Furthermore, observation of glucose-stimulated insulin secretion and insulin secretion granules in normal chow-fed mice revealed that the insulin level in serum and the number of insulin secretion granules were decreased in Bcas2 f/f-βKO mice. These differences were related to abnormal splicing of Syt7 and Tcf7l2 pre-mRNA. Taken together, these results demonstrate that BCAS2 is involved in alternative splicing during insulin synthesis and secretion.
Collapse
Affiliation(s)
- Xuexue Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianhua Li
- Reproductive Medical Center, Department of Obstetrics and Gynecology, the Seventh Medical Center of PLA General Hospital, Beijing 100007, China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Jin
- Department of Pathology, the Seventh Medical Center of PLA General Hospital, Beijing 100007, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Tang Y, Zhang B, Shi H, Yan Z, Wang P, Yang Q, Huang X, Gun S. Molecular characterization, expression patterns and cellular localization of BCAS2 gene in male Hezuo pig. PeerJ 2023; 11:e16341. [PMID: 37901468 PMCID: PMC10607209 DOI: 10.7717/peerj.16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Background Breast carcinoma amplified sequence 2 (BCAS2) participates in pre-mRNA splicing and DNA damage response, which is implicated in spermatogenesis and meiosis initiation in mouse. Nevertheless, the physiological roles of BCAS2 in the testes of large mammals especially boars remain largely unknown. Methods In this study, testes were collected from Hezuo pig at three development stages including 30 days old (30 d), 120 days old (120 d), and 240 days old (240 d). BCAS2 CDS region was firstly cloned using RT-PCR method, and its molecular characteristics were identified using relevant bioinformatics software. Additionally, the expression patterns and cellular localization of BCAS2 were analyzed by quantitative real-time PCR (qRT-PCR), Western blot, immunohistochemistry and immunofluorescence. Results The cloning and sequence analysis indicated that the Hezuo pig BCAS2 CDS fragment encompassed 678 bp open reading frame (ORF) capable of encoding 225 amino acid residues, and possessed high identities with some other mammals. The results of qRT-PCR and Western blot displayed that BCAS2 levels both mRNA and protein were age-dependent increased (p < 0.01). Additionally, immunohistochemistry and immunofluorescence results revealed that BCAS2 protein was mainly observed in nucleus of gonocytes at 30 d testes as well as nucleus of spermatogonia and Sertoli cells at 120 and 240 d testes. Accordingly, we conclude that BCAS2 is critical for testicular development and spermatogenesis of Hezuo pig, perhaps by regulating proliferation or differentiation of gonocytes, pre-mRNA splicing of spermatogonia and functional maintenance of Sertoli cells, but specific mechanism still requires be further investigated.
Collapse
Affiliation(s)
- Yuran Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bo Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Haixia Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, Gansu, China
| |
Collapse
|
17
|
Lei WL, Du Z, Meng TG, Su R, Li YY, Liu W, Sun SM, Liu MY, Hou Y, Zhang CH, Gui Y, Schatten H, Han Z, Liu C, Sun F, Wang ZB, Qian WP, Sun QY. SRSF2 is required for mRNA splicing during spermatogenesis. BMC Biol 2023; 21:231. [PMID: 37867192 PMCID: PMC10591377 DOI: 10.1186/s12915-023-01736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND RNA splicing plays significant roles in fundamental biological activities. However, our knowledge about the roles of alternative splicing and underlying mechanisms during spermatogenesis is limited. RESULTS Here, we report that Serine/arginine-rich splicing factor 2 (SRSF2), also known as SC35, plays critical roles in alternative splicing and male reproduction. Male germ cell-specific deletion of Srsf2 by Stra8-Cre caused complete infertility and defective spermatogenesis. Further analyses revealed that deletion of Srsf2 disrupted differentiation and meiosis initiation of spermatogonia. Mechanistically, by combining RNA-seq data with LACE-seq data, we showed that SRSF2 regulatory networks play critical roles in several major events including reproductive development, spermatogenesis, meiotic cell cycle, synapse organization, DNA recombination, chromosome segregation, and male sex differentiation. Furthermore, SRSF2 affected expression and alternative splicing of Stra8, Stag3 and Atr encoding critical factors for spermatogenesis in a direct manner. CONCLUSIONS Taken together, our results demonstrate that SRSF2 has important functions in spermatogenesis and male fertility by regulating alternative splicing.
Collapse
Affiliation(s)
- Wen-Long Lei
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, 1120 Lianhua Rd, Futian District, Shenzhen, 518000, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, #3 Qingchun East Road, Shangcheng District, Hangzhou, 310016, China
| | - Zongchang Du
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tie-Gang Meng
- Fertility Preservation Lab, Guangdong-Hongkong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, #466 Xin-Gang-Zhong-Lu, Haizhu District, Guangzhou, 510317, China
| | - Ruibao Su
- Fertility Preservation Lab, Guangdong-Hongkong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, #466 Xin-Gang-Zhong-Lu, Haizhu District, Guangzhou, 510317, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Wenbo Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Si-Min Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Meng-Yu Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Chun-Hui Zhang
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, 1120 Lianhua Rd, Futian District, Shenzhen, 518000, China
| | - Yaoting Gui
- Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Chenli Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fei Sun
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, #3 Qingchun East Road, Shangcheng District, Hangzhou, 310016, China.
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Wei-Ping Qian
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, 1120 Lianhua Rd, Futian District, Shenzhen, 518000, China.
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hongkong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, #466 Xin-Gang-Zhong-Lu, Haizhu District, Guangzhou, 510317, China.
| |
Collapse
|
18
|
Cincotta SA, Richardson N, Foecke MH, Laird DJ. Differential susceptibility of male and female germ cells to glucocorticoid-mediated signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547215. [PMID: 37425891 PMCID: PMC10327205 DOI: 10.1101/2023.06.30.547215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
While physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models. These hormones are known to bind and activate the glucocorticoid receptor (GR), a ligand-inducible transcription factor, thus implicating GR-mediated signaling as a potential contributor to the transgenerational inheritance of stress-induced phenotypes. Here we demonstrate dynamic spatiotemporal regulation of GR expression in the mouse germline, showing expression in the fetal oocyte as well as the perinatal and adult spermatogonia. Functionally, we find that fetal oocytes are intrinsically buffered against changes in GR signaling, as neither genetic deletion of GR nor GR agonism with dexamethasone altered the transcriptional landscape or the progression of fetal oocytes through meiosis. In contrast, our studies revealed that the male germline is susceptible to glucocorticoid-mediated signaling, specifically by regulating RNA splicing within the spermatogonia, although this does not abrogate fertility. Together, our work suggests a sexually dimorphic function for GR in the germline, and represents an important step towards understanding the mechanisms by which stress can modulate the transmission of genetic information through the germline.
Collapse
Affiliation(s)
- Steven A. Cincotta
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Nainoa Richardson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Mariko H. Foecke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Diana J. Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Laseca N, Cánovas Á, Valera M, Id-Lahoucine S, Perdomo-González DI, Fonseca PAS, Demyda-Peyrás S, Molina A. Genomic screening of allelic and genotypic transmission ratio distortion in horse. PLoS One 2023; 18:e0289066. [PMID: 37556504 PMCID: PMC10411798 DOI: 10.1371/journal.pone.0289066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
The phenomenon in which the expected Mendelian inheritance is altered is known as transmission ratio distortion (TRD). The TRD analysis relies on the study of the transmission of one of the two alleles from a heterozygous parent to the offspring. These distortions are due to biological mechanisms affecting gametogenesis, embryo development and/or postnatal viability, among others. In this study, TRD phenomenon was characterized in horses using SNP-by-SNP model by TRDscan v.2.0 software. A total of 1,041 Pura Raza Español breed horses were genotyped with 554,634 SNPs. Among them, 277 horses genotyped in trios (stallion-mare-offspring) were used to perform the TRD analysis. Our results revealed 140 and 42 SNPs with allelic and genotypic patterns, respectively. Among them, 63 displayed stallion-TRD and 41 exhibited mare-TRD, while 36 SNPs showed overall TRD. In addition, 42 SNPs exhibited heterosis pattern. Functional analyses revealed that the annotated genes located within the TRD regions identified were associated with biological processes and molecular functions related to spermatogenesis, oocyte division, embryonic development, and hormonal activity. A total of 10 functional candidate genes related to fertility were found. To our knowledge, this is the most extensive study performed to evaluate the presence of alleles and functional candidate genes with transmission ratio distortion affecting reproductive performance in the domestic horse.
Collapse
Affiliation(s)
- Nora Laseca
- Department of Genetics, University of Cordoba, Córdoba, Spain
| | - Ángela Cánovas
- Center of Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Mercedes Valera
- Department of Agronomy, School of Agronomy Engineering, University of Seville, Seville, Spain
| | - Samir Id-Lahoucine
- Department of Animal and Veterinary Science, Scotland’s Rural College, Aberdeen, Scotland, United Kingdom
| | | | | | | | - Antonio Molina
- Department of Genetics, University of Cordoba, Córdoba, Spain
| |
Collapse
|
20
|
Yao X, Wang C, Sun L, Yan L, Chen X, Lv Z, Xie X, Tian S, Liu W, Li L, Zhang H, Liu J. BCAS2 regulates granulosa cell survival by participating in mRNA alternative splicing. J Ovarian Res 2023; 16:104. [PMID: 37248466 DOI: 10.1186/s13048-023-01187-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/14/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Granulosa cell proliferation and differentiation are essential for follicle development. Breast cancer amplified sequence 2 (BCAS2) is necessary for spermatogenesis, oocyte development, and maintaining the genome integrity of early embryos in mice. However, the function of BCAS2 in granulosa cells is still unknown. RESULTS We show that conditional disruption of Bcas2 in granulosa cells caused follicle development failure; the ratio of the positive cells of the cell proliferation markers PCNA and Ki67 were unchanged in granulosa cells. Specific deletion of Bcas2 caused a decrease in the BrdU-positive cell ratio, cell cycle arrest, DNA damage, and an increase in apoptosis in granulosa cells, and RPA1 was abnormally stained in granulosa cells. RNA-seq results revealed that knockout of Bcas2 results in unusual expression of cellular senescence genes. BCAS2 participated in the PRP19 complex to mediate alternative splicing (AS) of E2f3 and Flt3l mRNA to inhibit the cell cycle. Knockout of Bcas2 resulted in a significant decrease in the ratio of BrdU-positive cells in the human granulosa-like tumour (KGN) cell line. CONCLUSIONS Our results suggest that BCAS2 may influence the proliferation and survival of granulosa cells through regulating pre-mRNA splicing of E2f3 and Flt3l by forming the splicing complex with CDC5L and PRP19.
Collapse
Affiliation(s)
- Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenbo Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Qin J, Huang T, Wang Z, Zhang X, Wang J, Dang Q, Cui D, Wang X, Zhai Y, Zhao L, Lu G, Shao C, Li S, Liu H, Liu Z. Bud31-mediated alternative splicing is required for spermatogonial stem cell self-renewal and differentiation. Cell Death Differ 2023; 30:184-194. [PMID: 36114296 PMCID: PMC9883385 DOI: 10.1038/s41418-022-01057-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 02/01/2023] Open
Abstract
Alternative splicing (AS) is tightly regulated during cell differentiation and development. AS events are prevalent in the testis, but the splicing regulation in spermatogenesis remains unclear. Here we report that the spliceosome component Bud31 plays a crucial role during spermatogenesis in mice. Germ cell-specific knockout of Bud31 led to loss of spermatogonia and to male infertility. We further demonstrate that Bud31 is required for both spermatogonial stem cell pool maintenance and the initiation of spermatogenesis. SMART-seq revealed that deletion of Bud31 in germ cells causes widespread exon-skipping and intron retention. Particularly, we identified Cdk2 as one of the direct splicing targets of Bud31, knockout of Bud31 resulted in retention of the first intron of Cdk2, which led to a decrease in Cdk2 expression. Our findings suggest that Bud31-mediated AS within spermatogonial stem cells regulates the self-renewal and differentiation of male germ cells in mammals.
Collapse
Affiliation(s)
- Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zixiang Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qianli Dang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Donghai Cui
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyu Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunjiao Zhai
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ling Zhao
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Shiyang Li
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
22
|
Xiong Y, Wang DY, Guo W, Gong G, Chen ZX, Tang Q, Mei J. Sexually Dimorphic Gene Expression in X and Y Sperms Instructs Sexual Dimorphism of Embryonic Genome Activation in Yellow Catfish ( Pelteobagrus fulvidraco). BIOLOGY 2022; 11:1818. [PMID: 36552327 PMCID: PMC9775105 DOI: 10.3390/biology11121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Paternal factors play an important role in embryonic morphogenesis and contribute to sexual dimorphism in development. To assess the effect of paternal DNA on sexual dimorphism of embryonic genome activation, we compared X and Y sperm and different sexes of embryos before sex determination. Through transcriptome sequencing (RNA-seq) and whole-genome bisulfite sequencing (WGBS) of X and Y sperm, we found a big proportion of upregulated genes in Y sperm, supported by the observation that genome-wide DNA methylation level is slightly lower than in X sperm. Cytokine-cytokine receptor interaction, TGF-beta, and toll-like receptor pathways play important roles in spermatogenesis. Through whole-genome re-sequencing (WGRS) of parental fish and RNA-seq of five early embryonic stages, we found the low-blastocyst time point is a key to maternal transcriptome degradation and zygotic genome activation. Generally, sexual differences emerged from the bud stage. Moreover, through integrated analysis of paternal SNPs and gene expression, we evaluated the influence of paternal inheritance on sexual dimorphism of genome activation. Besides, we screened out gata6 and ddx5 as potential instructors for early sex determination and gonad development in yellow catfish. This work is meaningful for revealing the molecular mechanisms of sex determination and sexual dimorphism of fish species.
Collapse
Affiliation(s)
- Yang Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan-Yang Wang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjie Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen-Xia Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qin Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
23
|
Liu W, Lu X, Zhao ZH, SU R, Li QNL, Xue Y, Gao Z, Sun SMS, Lei WL, Li L, An G, Liu H, Han Z, Ouyang YC, Hou Y, Wang ZB, Sun QY, Liu J. SRSF10 is essential for progenitor spermatogonia expansion by regulating alternative splicing. eLife 2022; 11:e78211. [PMID: 36355419 PMCID: PMC9648972 DOI: 10.7554/elife.78211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Alternative splicing expands the transcriptome and proteome complexity and plays essential roles in tissue development and human diseases. However, how alternative splicing regulates spermatogenesis remains largely unknown. Here, using a germ cell-specific knockout mouse model, we demonstrated that the splicing factor Srsf10 is essential for spermatogenesis and male fertility. In the absence of SRSF10, spermatogonial stem cells can be formed, but the expansion of Promyelocytic Leukemia Zinc Finger (PLZF)-positive undifferentiated progenitors was impaired, followed by the failure of spermatogonia differentiation (marked by KIT expression) and meiosis initiation. This was further evidenced by the decreased expression of progenitor cell markers in bulk RNA-seq, and much less progenitor and differentiating spermatogonia in single-cell RNA-seq data. Notably, SRSF10 directly binds thousands of genes in isolated THY+ spermatogonia, and Srsf10 depletion disturbed the alternative splicing of genes that are preferentially associated with germ cell development, cell cycle, and chromosome segregation, including Nasp, Bclaf1, Rif1, Dazl, Kit, Ret, and Sycp1. These data suggest that SRSF10 is critical for the expansion of undifferentiated progenitors by regulating alternative splicing, expanding our understanding of the mechanism underlying spermatogenesis.
Collapse
Affiliation(s)
- Wenbo Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ruibao SU
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Qian-Nan Li Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yue Xue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Si-Min Sun Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Geng An
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hanyan Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
24
|
Impact of bisphenol-A on the spliceosome and meiosis of sperm in the testis of adolescent mice. BMC Vet Res 2022; 18:278. [PMID: 35841026 PMCID: PMC9284711 DOI: 10.1186/s12917-022-03336-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bisphenol-A (BPA) has estrogenic activity and adversely affects humans and animals' reproductive systems and functions. There has been a disagreement with the safety of BPA exposure at Tolerable daily intake (TDI) (0.05 mg/kg/d) value and non-observed adverse effect level (5 mg/kg/d). The current study investigated the effects of BPA exposure at various doses starting from Tolerable daily intake (0.05 mg/kg/d) to the lowest observed adverse effect level (50 mg/kg/d) on the testis development in male mice offspring. The BPA exposure lasted for 63 days from pregnancy day 0 of the dams to post-natal day (PND) 45 of the offspring. RESULTS The results showed that BPA exposure significantly increased testis (BPA ≥ 20 mg/kg/d) and serum (BPA ≥ 10 mg/kg/d) BPA contents of PND 45 mice. The spermatogenic cells became loose, and the lumen of seminiferous tubules enlarged when BPA exposure at 0.05 mg/kg/d TDI. BPA exposure at a low dose (0.05 mg/kg/d) significantly reduced the expression of Scp3 proteins and elevated sperm abnormality. The significant decrease in Scp3 suggested that BPA inhibits the transformation of spermatogonia into spermatozoa in the testis. The RNA-seq proved that the spliceosome was significantly inhibited in the testes of mice exposed to BPA. According to the RT-qPCR, BPA exposure significantly reduced the expression of Snrpc (BPA ≥ 20 mg/kg/d) and Hnrnpu (BPA ≥ 0.5 mg/kg/d). CONCLUSIONS This study indicated that long-term BPA exposure at Tolerable daily intake (0.05 mg/kg/d) is not safe because low-dose long-term exposure to BPA inhibits spermatogonial meiosis in mice testis impairs reproductive function in male offspring.
Collapse
|
25
|
Zhou S, Dong J, Xiong M, Gan S, Wen Y, Zhang J, Wang X, Yuan S, Gui Y. UHRF1 interacts with snRNAs and regulates alternative splicing in mouse spermatogonial stem cells. Stem Cell Reports 2022; 17:1859-1873. [PMID: 35905740 PMCID: PMC9391524 DOI: 10.1016/j.stemcr.2022.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/22/2022] Open
Abstract
Life-long male fertility relies on exquisite homeostasis and the development of spermatogonial stem cells (SSCs); however, the underlying molecular genetic and epigenetic regulation in this equilibrium process remains unclear. Here, we document that UHRF1 interacts with snRNAs to regulate pre-mRNA alternative splicing in SSCs and is required for the homeostasis of SSCs in mice. Genetic deficiency of UHRF1 in mouse prospermatogonia results in gradual loss of spermatogonial stem cells, eventually leading to Sertoli-cell-only syndrome (SCOS) and male infertility. Comparative RNA-seq data provide evidence that Uhrf1 ablation dysregulates previously reported SSC maintenance- and differentiation-related genes. We further found that UHRF1 could act as an alternative RNA splicing regulator and interact with Tle3 transcripts to regulate its splicing event in spermatogonia. Collectively, our data reveal a multifunctional role for UHRF1 in regulating gene expression programs and alternative splicing during SSC homeostasis, which may provide clues for treating human male infertility.
Collapse
Affiliation(s)
- Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiming Gan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China.
| | - Yaoting Gui
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China.
| |
Collapse
|
26
|
Chen L, Wang WJ, Liu Q, Wu YK, Wu YW, Jiang Y, Liao XQ, Huang F, Li Y, Shen L, Yu C, Zhang SY, Yan LY, Qiao J, Sha QQ, Fan HY. NAT10-mediated N4-acetylcytidine modification is required for meiosis entry and progression in male germ cells. Nucleic Acids Res 2022; 50:10896-10913. [PMID: 35801907 PMCID: PMC9638909 DOI: 10.1093/nar/gkac594] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 12/03/2022] Open
Abstract
Post-transcriptional RNA modifications critically regulate various biological processes. N4-acetylcytidine (ac4C) is an epi-transcriptome, which is highly conserved in all species. However, the in vivo physiological functions and regulatory mechanisms of ac4C remain poorly understood, particularly in mammals. In this study, we demonstrate that the only known ac4C writer, N-acetyltransferase 10 (NAT10), plays an essential role in male reproduction. We identified the occurrence of ac4C in the mRNAs of mouse tissues and showed that ac4C undergoes dynamic changes during spermatogenesis. Germ cell-specific ablation of Nat10 severely inhibits meiotic entry and leads to defects in homologous chromosome synapsis, meiotic recombination and repair of DNA double-strand breaks during meiosis. Transcriptomic profiling revealed dysregulation of functional genes in meiotic prophase I after Nat10 deletion. These findings highlight the crucial physiological functions of ac4C modifications in male spermatogenesis and expand our understanding of its role in the regulation of specific physiological processes in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Yun-Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yu Jiang
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiu-Quan Liao
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Fei Huang
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yang Li
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chao Yu
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Song-Ying Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Li-Ying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Jie Qiao
- Correspondence may also be addressed to Jie Qiao. Tel: +86 571 88981751;
| | - Qian-Qian Sha
- Correspondence may also be addressed to Qian-Qian Sha. Tel: +86 20 89169199;
| | - Heng-Yu Fan
- To whom correspondence should be addressed. Tel: +86 571 88981370;
| |
Collapse
|
27
|
hnRNPH1 recruits PTBP2 and SRSF3 to modulate alternative splicing in germ cells. Nat Commun 2022; 13:3588. [PMID: 35739118 PMCID: PMC9226075 DOI: 10.1038/s41467-022-31364-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
Coordinated regulation of alternative pre-mRNA splicing is essential for germ cell development. However, the underlying molecular mechanism that controls alternative mRNA expression during germ cell development remains elusive. Herein, we show that hnRNPH1 is highly expressed in the reproductive system and recruits the PTBP2 and SRSF3 to modulate the alternative splicing in germ cells. Conditional knockout Hnrnph1 in spermatogenic cells causes many abnormal splicing events, thus affecting the genes related to meiosis and communication between germ cells and Sertoli cells. This is characterized by asynapsis of chromosomes and impairment of germ-Sertoli communications, which ultimately leads to male sterility. Markedly, Hnrnph1 germline-specific mutant female mice are also infertile, and Hnrnph1-deficient oocytes exhibit a similar defective synapsis and cell-cell junction as seen in Hnrnph1-deficient male germ cells. Collectively, our data support a molecular model wherein hnRNPH1 governs a network of alternative splicing events in germ cells via recruitment of PTBP2 and SRSF3. Coordinated regulation of alternative splicing is essential for germ cell development. Here, the authors report that hnRNPH1 interacts with alternative splicing factors PTBP2 and SRSF3 in the germline to regulate pre-mRNA alternative splicing.
Collapse
|
28
|
Song H, Chen D, Bai R, Feng Y, Wu S, Wang T, Xia X, Li J, Miao YL, Zuo B, Li F. BCL2-associated athanogene 6 exon24 contributes to testosterone synthesis and male fertility in mammals. Cell Prolif 2022; 55:e13281. [PMID: 35688694 PMCID: PMC9251057 DOI: 10.1111/cpr.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
Objectives BCL2‐associated athanogene 6 (BAG6) plays critical roles in spermatogenesis by maintaining testicular cell survival. Our previous data showed porcine BAG6 exon24‐skipped transcript is highly expressed in immature testes compared with mature testes. The objective of this study is to reveal the functional significance of BAG6 exon24 in mammalian spermatogenesis. Materials and Methods CRISPR/Cas9 system was used to generate Bag6 exon24 knockout mice. Testes and cauda epididymal sperm were collected from mice. TMT proteomics analysis was used to discover the protein differences induced by Bag6 exon24 deletion. Testosterone enanthate was injected into mice to generate a high‐testosterone mice model. H&E staining, qRT‐PCR, western blotting, vector/siRNA transfection, immunofluorescence, immunoprecipitation, transmission electron microscopy, TUNEL and ELISA were performed to investigate the phenotypes and molecular basis. Results Bag6 exon24 knockout mice show sub‐fertility along with partially impaired blood‐testis barrier, increased apoptotic testicular cell rate and abnormal sperm morphology. Endoplasmic reticulum stress occurs in Bag6 exon24‐deficient testes and sterol regulatory element‐binding transcription factor 2 is activated; as a result, cytochrome P450 family 51 subfamily A member 1 expression is up‐regulated, which causes a high serum testosterone level. Additionally, serine/arginine‐rich splicing factor 1 down‐regulates BAG6 exon24‐skipped transcripts in porcine Sertoli cells by binding to 35–51 nt on BAG6 exon24 via its N‐terminal RNA‐recognition domain. Conclusions Our findings reveal the critical roles of BAG6 exon24 in testosterone biosynthesis and male fertility, which provides new insights into the regulation of spermatogenesis and pathogenesis of subfertility in mammals.
Collapse
Affiliation(s)
- Huibin Song
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Dake Chen
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Rong Bai
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yue Feng
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shang Wu
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Tiansu Wang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xuanyan Xia
- College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jialian Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yi-Liang Miao
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Bo Zuo
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Fenge Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| |
Collapse
|
29
|
Chen HH, Lu HY, Chang CH, Lin SH, Huang CW, Wei PH, Chen YW, Lin YR, Huang HS, Wang PY, Tsao YP, Chen SL. Breast carcinoma-amplified sequence 2 regulates adult neurogenesis via β-catenin. Stem Cell Res Ther 2022; 13:160. [PMID: 35410459 PMCID: PMC8996563 DOI: 10.1186/s13287-022-02837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Breast carcinoma-amplified sequence 2 (BCAS2) regulates β-catenin gene splicing. The conditional knockout of BCAS2 expression in the forebrain (BCAS2 cKO) of mice confers impaired learning and memory along with decreased β-catenin expression. Because β-catenin reportedly regulates adult neurogenesis, we wondered whether BCAS2 could regulate adult neurogenesis via β-catenin. Methods BCAS2-regulating neurogenesis was investigated by characterizing BCAS2 cKO mice. Also, lentivirus-shBCAS2 was intracranially injected into the hippocampus of wild-type mice to knock down BCAS2 expression. We evaluated the rescue effects of BCAS2 cKO by intracranial injection of adeno-associated virus encoding BCAS2 (AAV-DJ8-BCAS2) and AAV-β-catenin gene therapy. Results To show that BCAS2-regulating adult neurogenesis via β-catenin, first, BCAS2 cKO mice showed low SRY-box 2-positive (Sox2+) neural stem cell proliferation and doublecortin-positive (DCX+) immature neurons. Second, stereotaxic intracranial injection of lentivirus-shBCAS2 knocked down BCAS2 in the hippocampus of wild-type mice, and we confirmed the BCAS2 regulation of adult neurogenesis via β-catenin. Third, AAV-DJ8-BCAS2 gene therapy in BCAS2 cKO mice reversed the low proliferation of Sox2+ neural stem cells and the decreased number of DCX+ immature neurons with increased β-catenin expression. Moreover, AAV-β-catenin gene therapy restored neuron stem cell proliferation and immature neuron differentiation, which further supports BCAS2-regulating adult neurogenesis via β-catenin. In addition, cells targeted by AAV-DJ8 injection into the hippocampus included Sox2 and DCX immature neurons, interneurons, and astrocytes. BCAS2 may regulate adult neurogenesis by targeting Sox2+ and DCX+ immature neurons for autocrine effects and interneurons or astrocytes for paracrine effects. Conclusions BCAS2 can regulate adult neurogenesis in mice via β-catenin. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02837-9.
Collapse
Affiliation(s)
- Hsin-Hsiung Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Hao-Yu Lu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Chao-Hsin Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Shih-Hao Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Chu-Wei Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Po-Han Wei
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Yi-Rou Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, No. 1, Section 1, Jen Ai Road, Taipei 100, Taiwan
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, No. 1, Section 1, Jen Ai Road, Taipei 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei 104, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan.
| |
Collapse
|
30
|
Qin J, Huang T, Wang J, Xu L, Dang Q, Xu X, Liu H, Liu Z, Shao C, Zhang X. RAD51 is essential for spermatogenesis and male fertility in mice. Cell Death Dis 2022; 8:118. [PMID: 35292640 PMCID: PMC8924220 DOI: 10.1038/s41420-022-00921-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022]
Abstract
The recombinase RAD51 catalyzes the DNA strand exchange reaction in homologous recombination (HR) during both mitosis and meiosis. However, the physiological role of RAD51 during spermatogenesis remains unclear since RAD51 null mutation is embryonic lethal in mice. In this study, we generated a conditional knockout mouse model to study the role of RAD51 in spermatogenesis. Conditional disruption of RAD51 in germ cells by Vasa-Cre led to spermatogonial loss and Sertoli cell-only syndrome. Furthermore, tamoxifen-inducible RAD51 knockout by UBC-CreERT2 confirmed that RAD51 deletion led to early spermatogenic cells loss and apoptosis. Notably, inducible knockout of RAD51 in adult mice caused defects in meiosis, with accumulated meiotic double-strand breaks (DSBs), reduced numbers of pachytene spermatocytes and less crossover formation. Our study revealed an essential role for Rad51 in the maintenance of spermatogonia as well as meiotic progression in mice.
Collapse
Affiliation(s)
- Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Limei Xu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qianli Dang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiuhua Xu
- Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaojian Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
31
|
Wu D, Khan FA, Huo L, Sun F, Huang C. Alternative splicing and MicroRNA: epigenetic mystique in male reproduction. RNA Biol 2022; 19:162-175. [PMID: 35067179 PMCID: PMC8786336 DOI: 10.1080/15476286.2021.2024033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Infertility is rarely life threatening, however, it poses a serious global health issue posing far-reaching socio-economic impacts affecting 12–15% of couples worldwide where male factor accounts for 70%. Functional spermatogenesis which is the result of several concerted coordinated events to produce sperms is at the core of male fertility, Alternative splicing and microRNA (miRNA) mediated RNA silencing (RNAi) constitute two conserved post-transcriptional gene (re)programming machinery across species. The former by diversifying transcriptome signature and the latter by repressing target mRNA activity orchestrate a spectrum of testicular events, and their dysfunctions has several implications in male infertility. This review recapitulates the knowledge of these mechanistic events in regulation of spermatogenesis and testicular homoeostasis. In addition, miRNA payload in sperm, vulnerable to paternal inputs, including unhealthy diet, infection and trauma, creates epigenetic memory to initiate intergenerational phenotype. Naive zygote injection of sperm miRNAs from stressed father recapitulates phenotypes of offspring of stressed father. The epigenetic inheritance of paternal pathologies through miRNA could be a tantalizing avenue to better appreciate ‘Paternal Origins of Health and Disease’ and the power of tiny sperm.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Faheem Ahmed Khan
- Laboratory of Molecular Biology and Genomics, Department of Zoology, Faculty of Science, University of Central Punjab, Lahore, Pakistan
| | - Lijun Huo
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
32
|
Zhang J, Liu W, Li G, Xu C, Nie X, Qin D, Wang Q, Lu X, Liu J, Li L. BCAS2 is involved in alternative splicing and mouse oocyte development. FASEB J 2022; 36:e22128. [PMID: 34972250 DOI: 10.1096/fj.202101279r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/11/2022]
Abstract
Alternative splicing (AS) is an important mechanism to regulate organogenesis and fertility. Breast carcinoma amplified sequence 2 (BCAS2) is one of the core components of the PRP19 complex, a multiple function complex including splicing, and it is involved in the initiation of meiosis through regulating AS in male mice. However, the role of BCAS2 in mouse oogenesis remains largely unknown. In this study, we found that BCAS2 was highly expressed in the oocytes of primordial follicles. Vasa-Cre-mediated deletion of Bcas2 caused poor oocyte quality, abnormal oogenesis and follicular development. The deletion of Bcas2 in mouse oocytes caused alteration in 991 AS events that corresponded to 706 genes, including Pabpc1l, Nobox, Zfp207, Mybl2, Prc1, and Spc25, which were associated with oogenesis and spindle assembly. Moreover, the disruption of BCAS2 led to degradation of PRP19 core proteins in mouse oocytes. These results suggested that BCAS2 was involved in the AS of functional genes through PRP19 complex during mouse oocyte development.
Collapse
Affiliation(s)
- Jiaqi Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenbo Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guangyue Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qizhi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Chen J, Gao C, Lin X, Ning Y, He W, Zheng C, Zhang D, Yan L, Jiang B, Zhao Y, Hossen MA, Han C. The microRNA miR-202 prevents precocious spermatogonial differentiation and meiotic initiation during mouse spermatogenesis. Development 2021; 148:273742. [PMID: 34913465 DOI: 10.1242/dev.199799] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
Spermatogonial differentiation and meiotic initiation during spermatogenesis are tightly regulated by a number of genes, including those encoding enzymes for miRNA biogenesis. However, whether and how single miRNAs regulate these processes remain unclear. Here, we report that miR-202, a member of the let-7 family, prevents precocious spermatogonial differentiation and meiotic initiation in spermatogenesis by regulating the timely expression of many genes, including those for key regulators such as STRA8 and DMRT6. In miR-202 knockout (KO) mice, the undifferentiated spermatogonial pool is reduced, accompanied by age-dependent decline of fertility. In KO mice, SYCP3, STRA8 and DMRT6 are expressed earlier than in wild-type littermates, and Dmrt6 mRNA is a direct target of miR-202-5p. Moreover, the precocious spermatogonial differentiation and meiotic initiation were also observed in KO spermatogonial stem cells when cultured and induced in vitro, and could be partially rescued by the knockdown of Dmrt6. Therefore, we have not only shown that miR-202 is a regulator of meiotic initiation but also identified a previously unknown module in the underlying regulatory network.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenxu Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunwei Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Daoqin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601 Anhui, China
| | - Binjie Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuting Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Md Alim Hossen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
34
|
Wu R, Zhan J, Zheng B, Chen Z, Li J, Li C, Liu R, Zhang X, Huang X, Luo M. SYMPK Is Required for Meiosis and Involved in Alternative Splicing in Male Germ Cells. Front Cell Dev Biol 2021; 9:715733. [PMID: 34434935 PMCID: PMC8380814 DOI: 10.3389/fcell.2021.715733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
SYMPK is a scaffold protein that supports polyadenylation machinery assembly on nascent transcripts and is also involved in alternative splicing in some mammalian somatic cells. However, the role of SYMPK in germ cells remains unknown. Here, we report that SYMPK is highly expressed in male germ cells, and germ cell-specific knockout (cKO) of Sympk in mouse leads to male infertility. Sympk cKODdx4–cre mice showed reduced spermatogonia at P4 and almost no germ cells at P18. Sympk cKOStra8–Cre spermatocytes exhibit defects in homologous chromosome synapsis, DNA double-strand break (DSB) repair, and meiotic recombination. RNA-Seq analyses reveal that SYMPK is associated with alternative splicing, besides regulating the expressions of many genes in spermatogenic cells. Importantly, Sympk deletion results in abnormal alternative splicing and a decreased expression of Sun1. Taken together, our results demonstrate that SYMPK is pivotal for meiotic progression by regulating pre-mRNA alternative splicing in male germ cells.
Collapse
Affiliation(s)
- Rui Wu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junfeng Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Zheng
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhen Chen
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Jianbo Li
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Changrong Li
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Rong Liu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
35
|
Integrated Analysis of the Roles of RNA Binding Proteins and Their Prognostic Value in Clear Cell Renal Cell Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5568411. [PMID: 34306592 PMCID: PMC8263288 DOI: 10.1155/2021/5568411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
Methods We downloaded the RNA sequencing data of ccRCC from the Cancer Genome Atlas (TCGA) database and identified differently expressed RBPs in different tissues. In this study, we used bioinformatics to analyze the expression and prognostic value of RBPs; then, we performed functional analysis and constructed a protein interaction network for them. We also screened out some RBPs related to the prognosis of ccRCC. Finally, based on the identified RBPs, we constructed a prognostic model that can predict patients' risk of illness and survival time. Also, the data in the HPA database were used for verification. Results In our experiment, we obtained 539 ccRCC samples and 72 normal controls. In the subsequent analysis, 87 upregulated RBPs and 38 downregulated RBPs were obtained. In addition, 9 genes related to the prognosis of patients were selected, namely, RPL36A, THOC6, RNASE2, NOVA2, TLR3, PPARGC1A, DARS, LARS2, and U2AF1L4. We further constructed a prognostic model based on these genes and plotted the ROC curve. This ROC curve performed well in judgement and evaluation. A nomogram that can judge the patient's life span is also made. Conclusion In conclusion, we have identified differentially expressed RBPs in ccRCC and carried out a series of in-depth research studies, the results of which may provide ideas for the diagnosis of ccRCC and the research of new targeted drugs.
Collapse
|
36
|
Abstract
Meiosis is a highly conserved and essential process in gametogenesis in sexually reproducing organisms. However, there are substantial sex-specific differences within individual species with respect to meiosis-related chromatin reorganization, recombination, and tolerance for meiotic defects. A wide range of murine models have been developed over the past two decades to study the complex regulatory processes governing mammalian meiosis. The present review article thus provides a comprehensive overview of the knockout mice that have been employed to study meiosis, with a particular focus on gene- and gametogenesis-related sexual dimorphism observed in these model animals. In so doing, we aim to provide a firm foundation for the future study of sex-specific differences in meiosis at the molecular level.
Collapse
Affiliation(s)
- Rong Hua
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Biamonti G, Amato A, Belloni E, Di Matteo A, Infantino L, Pradella D, Ghigna C. Alternative splicing in Alzheimer's disease. Aging Clin Exp Res 2021; 33:747-758. [PMID: 31583531 DOI: 10.1007/s40520-019-01360-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most frequent neurodegenerative disorder in the elderly, occurring in approximately 20% of people older than 80. The molecular causes of AD are still poorly understood. However, recent studies have shown that Alternative Splicing (AS) is involved in the gene expression reprogramming associated with the functional changes observed in AD patients. In particular, mutations in cis-acting regulatory sequences as well as alterations in the activity and sub-cellular localization of trans-acting splicing factors and components of the spliceosome machinery are associated with splicing abnormalities in AD tissues, which may influence the onset and progression of the disease. In this review, we discuss the current molecular understanding of how alterations in the AS process contribute to AD pathogenesis. Finally, recent therapeutic approaches targeting aberrant AS regulation in AD are also reviewed.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy.
| | - Angela Amato
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Anna Di Matteo
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Lucia Infantino
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Claudia Ghigna
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| |
Collapse
|
38
|
Yu L, Zhang H, Guan X, Qin D, Zhou J, Wu X. Loss of ESRP1 blocks mouse oocyte development and leads to female infertility. Development 2021; 148:dev196931. [PMID: 33318146 DOI: 10.1242/dev.196931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/24/2020] [Indexed: 01/08/2023]
Abstract
Alternative splicing (AS) contributes to gene diversification, but the AS program during germline development remains largely undefined. Here, we interrupted pre-mRNA splicing events controlled by epithelial splicing regulatory protein 1 (ESRP1) and found that it induced female infertility in mice. Esrp1 deletion perturbed spindle organization, chromosome alignment and metaphase-to-anaphase transformation in oocytes. The first polar body extrusion was blocked during oocyte meiosis owing to abnormal activation of spindle assembly checkpoint and insufficiency of anaphase-promoting complex/cyclosome in Esrp1-knockout oocytes. Esrp1-knockout hampered follicular development and ovulation; eventually, premature ovarian failure occurred in six-month-old Esrp1-knockout mouse. Using single-cell RNA-seq analysis, 528 aberrant AS events of maternal mRNA transcripts were revealed and were preferentially associated with microtubule cytoskeletal organization. Notably, we found that loss of ESRP1 disturbed a comprehensive set of gene-splicing sites - including those within Trb53bp1, Rac1, Bora, Kif2c, Kif23, Ndel1, Kif3a, Cenpa and Lsm14b - that potentially caused abnormal spindle organization. Collectively, our findings provide the first report elucidating the ESRP1-mediated AS program of maternal mRNA transcripts, which may contribute to oocyte meiosis and female fertility in mice.
Collapse
Affiliation(s)
- Luping Yu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huiru Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuebing Guan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dongdong Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Zhou
- Department of Pediatric Laboratory, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
39
|
Li Q, Li T, Xiao X, Ahmad DW, Zhang N, Li H, Chen Z, Hou J, Liao M. Specific expression and alternative splicing of mouse genes during spermatogenesis. Mol Omics 2020; 16:258-267. [PMID: 32211685 DOI: 10.1039/c9mo00163h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Considering the high abundance of spliced RNAs in testis compared to other tissues, it is needed to construct the landscape of alternative splicing during spermatogenesis. However, there is still a lack of the systematic analysis of alternative RNA splicing in spermatogenesis. Here, we constructed a landscape of alternative RNA splicing during mouse spermatogenesis based on integrated RNA-seq data sets. Our results presented several novel alternatively spliced genes (Eif2s3y, Erdr1 Uty and Zfy1) in the Y chromosome with a specific expression pattern. Remarkably, the alternative splicing genes were grouped into co-expression networks involved in the microtubule cytoskeleton organization and post-transcriptional regulation of the gene expression, indicating the potential pathway to germ cell generation. Furthermore, based on the co-expression networks, we identified Atxn2l as a potential key gene in spermatogenesis, which presented dynamic expression patterns in different alternative splicing types. Ultimately, we proposed splicing regulatory networks for understanding novel and innovative alternative splicing regulation mechanisms during spermatogenesis. In summary, our research provides a systematic analysis of alternative RNA splicing and some novel spliced genes related to spermatogenesis.
Collapse
Affiliation(s)
- Qun Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Naro C, Pellegrini L, Jolly A, Farini D, Cesari E, Bielli P, de la Grange P, Sette C. Functional Interaction between U1snRNP and Sam68 Insures Proper 3' End Pre-mRNA Processing during Germ Cell Differentiation. Cell Rep 2020; 26:2929-2941.e5. [PMID: 30865884 DOI: 10.1016/j.celrep.2019.02.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 01/02/2023] Open
Abstract
Male germ cells express the widest repertoire of transcript variants in mammalian tissues. Nevertheless, factors and mechanisms underlying such pronounced diversity are largely unknown. The splicing regulator Sam68 is highly expressed in meiotic cells, and its ablation results in defective spermatogenesis. Herein, we uncover an extensive splicing program operated by Sam68 across meiosis, primarily characterized by alternative last exon (ALE) regulation in genes of functional relevance for spermatogenesis. Lack of Sam68 preferentially causes premature transcript termination at internal polyadenylation sites, a feature observed also upon depletion of the spliceosomal U1snRNP in somatic cells. Notably, Sam68-regulated ALEs are characterized by proximity between U1snRNP and Sam68 binding motifs. We demonstrate a physical association between Sam68 and U1snRNP and show that U1snRNP recruitment to Sam68-regulated ALEs is impaired in Sam68-/- germ cells. Thus, our study reveals an unexpected cooperation between Sam68 and U1snRNP that insures proper processing of transcripts essential for male fertility.
Collapse
Affiliation(s)
- Chiara Naro
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Hearth, 00168 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Livia Pellegrini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Ariane Jolly
- GenoSplice Technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Donatella Farini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Eleonora Cesari
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Hearth, 00168 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Pierre de la Grange
- GenoSplice Technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Claudio Sette
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Hearth, 00168 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.
| |
Collapse
|
41
|
Song H, Wang L, Chen D, Li F. The Function of Pre-mRNA Alternative Splicing in Mammal Spermatogenesis. Int J Biol Sci 2020; 16:38-48. [PMID: 31892844 PMCID: PMC6930371 DOI: 10.7150/ijbs.34422] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023] Open
Abstract
Alternative pre-mRNA splicing plays important roles in co-transcriptional and post-transcriptional regulation of gene expression functioned during many developmental processes, such as spermatogenesis. The studies focusing on alternative splicing on spermatogenesis supported the notion that the development of testis is regulated by a higher level of alternative splicing than other tissues. Here, we aim to review the mechanisms underlying alternative splicing, particularly the splicing variants functioned in the process of spermatogenesis and the male infertility. There are five points regarding the alternative splicing including ⅰ) a brief introduction of alternative pre-mRNA splicing; ⅱ) the alternative splicing events in spermatogenesis-associated genes enriched in different stages of spermatogenesis; ⅲ) the mechanisms of alternative splicing regulation, such as splicing factors and m6A demethylation; ⅳ) the splice site recognition and alternative splicing, including the production and degradation of abnormal transcripts caused by gene variations and nonsense-mediated mRNA decay, respectively; ⅴ) abnormal alternative splicing correlated with male infertility. Taking together, this review highlights the impacts of alternative splicing and splicing variants in mammal spermatogenesis and provides new insights of the potential application of the alternative splicing into the therapy of male infertility.
Collapse
Affiliation(s)
- Huibin Song
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ling Wang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dake Chen
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fenge Li
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| |
Collapse
|
42
|
Wang J, Tian GG, Zheng Z, Li B, Xing Q, Wu J. Comprehensive Transcriptomic Analysis of Mouse Gonadal Development Involving Sexual Differentiation, Meiosis and Gametogenesis. Biol Proced Online 2019; 21:20. [PMID: 31636514 PMCID: PMC6794783 DOI: 10.1186/s12575-019-0108-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background Mammalian gonadal development is crucial for fertility. Sexual differentiation, meiosis and gametogenesis are critical events in the process of gonadal development. Abnormalities in any of these events may cause infertility. However, owing to the complexity of these developmental events, the underlying molecular mechanisms are not fully understood and require further research. Results In this study, we employed RNA sequencing to examine transcriptome profiles of murine female and male gonads at crucial stages of these developmental events. By bioinformatics analysis, we identified a group of candidate genes that may participate in sexual differentiation, including Erbb3, Erbb4, and Prkg2. One hundred and two and 134 candidate genes that may be important for female and male gonadal development, respectively, were screened by analyzing the global gene expression patterns of developing female and male gonads. Weighted gene co-expression network analysis was performed on developing female gonads, and we identified a gene co-expression module related to meiosis. By alternative splicing analysis, we found that cassette-type exon and alternative start sites were the main forms of alternative splicing in developing gonads. A considerable portion of differentially expressed and alternatively spliced genes were involved in meiosis. Conclusion Taken together, our findings have enriched the gonadal transcriptome database and provided novel candidate genes and avenues to research the molecular mechanisms of sexual differentiation, meiosis, and gametogenesis. Supplementary information Supplementary information accompanies this paper at 10.1186/s12575-019-0108-y.
Collapse
Affiliation(s)
- Jian Wang
- 1Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032 China
| | - Geng G Tian
- 1Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032 China
| | - Zhuxia Zheng
- 1Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032 China
| | - Bo Li
- 2Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Qinghe Xing
- 4Children's Hospital & Institutes of Biomedical Sciences, Fudan University, 131 Dong-Chuan Road, Shanghai, 200032 China
| | - Ji Wu
- 1Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032 China.,2Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China.,3State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| |
Collapse
|
43
|
DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia. Nat Commun 2019; 10:2278. [PMID: 31123254 PMCID: PMC6533336 DOI: 10.1038/s41467-019-09972-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Mammalian spermatogenesis is sustained by mitotic germ cells with self-renewal potential known as undifferentiated spermatogonia. Maintenance of undifferentiated spermatogonia and spermatogenesis is dependent on tightly co-ordinated transcriptional and post-transcriptional mechanisms. The RNA helicase DDX5 is expressed by spermatogonia but roles in spermatogenesis are unexplored. Using an inducible knockout mouse model, we characterise an essential role for DDX5 in spermatogonial maintenance and show that Ddx5 is indispensable for male fertility. We demonstrate that DDX5 regulates appropriate splicing of key genes necessary for spermatogenesis. Moreover, DDX5 regulates expression of cell cycle genes in undifferentiated spermatogonia post-transcriptionally and is required for cell proliferation and survival. DDX5 can also act as a transcriptional co-activator and we demonstrate that DDX5 interacts with PLZF, a transcription factor required for germline maintenance, to co-regulate select target genes. Combined, our data reveal a critical multifunctional role for DDX5 in regulating gene expression programmes and activity of undifferentiated spermatogonia. Sustained sperm production is dependent on activity of undifferentiated spermatogonia. Here, the authors demonstrate an essential role for RNA helicase DDX5 in maintenance of spermatogonia in adults through control of gene transcription plus RNA processing and export.
Collapse
|
44
|
Lewandowska D, Zhang R, Colas I, Uzrek N, Waugh R. Application of a Sensitive and Reproducible Label-Free Proteomic Approach to Explore the Proteome of Individual Meiotic-Phase Barley Anthers. FRONTIERS IN PLANT SCIENCE 2019; 10:393. [PMID: 31001307 PMCID: PMC6454111 DOI: 10.3389/fpls.2019.00393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/14/2019] [Indexed: 05/02/2023]
Abstract
Meiosis is a highly dynamic and precisely regulated process of cell division, leading to the production of haploid gametes from one diploid parental cell. In the crop plant barley (Hordeum vulgare), male meiosis occurs in anthers, in specialized cells called meiocytes. Barley meiotic tissue is scarce and not easily accessible, making meiosis study a challenging task. We describe here a new micro-proteomics workflow that allows sensitive and reproducible genome-wide label-free proteomic analysis of individual staged barley anthers. This micro-proteomic approach detects more than 4,000 proteins from such small amounts of material as two individual anthers, covering a dynamic range of protein relative abundance levels across five orders of magnitude. We applied our micro-proteomics workflow to investigate the proteome of the developing barley anther containing pollen mother cells in the early stages of meiosis and we successfully identified 57 known and putative meiosis-related proteins. Meiotic proteins identified in our study were found to be key players of many steps and processes in early prophase such as: chromosome condensation, synapsis, DNA double-strand breaks or crossover formation. Considering the small amount of starting material, this work demonstrates an important technological advance in plant proteomics and can be applied for proteomic examination of many size-limited plant specimens. Moreover, it is the first insight into the proteome of individual barley anther at early meiosis. The proteomic data have been deposited to the ProteomeXchange with the accession number PXD010887.
Collapse
Affiliation(s)
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Nicola Uzrek
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- *Correspondence: Robbie Waugh,
| |
Collapse
|
45
|
BCAS2 is essential for hematopoietic stem and progenitor cell maintenance during zebrafish embryogenesis. Blood 2018; 133:805-815. [PMID: 30482793 DOI: 10.1182/blood-2018-09-876599] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) originate from the hemogenic endothelium via the endothelial-to-hematopoietic transition, are self-renewing, and replenish all lineages of blood cells throughout life. BCAS2 (breast carcinoma amplified sequence 2) is a component of the spliceosome and is involved in multiple biological processes. However, its role in hematopoiesis remains unknown. We established a bcas2 knockout zebrafish model by using transcription activator-like effector nucleases. The bcas2 -/- zebrafish showed severe impairment of HSPCs and their derivatives during definitive hematopoiesis. We also observed significant signs of HSPC apoptosis in the caudal hematopoietic tissue of bcas2 -/- zebrafish, which may be rescued by suppression of p53. Furthermore, we show that the bcas2 deletion induces an abnormal alternative splicing of Mdm4 that predisposes cells to undergo p53-mediated apoptosis, which provides a mechanistic explanation of the deficiency observed in HSPCs. Our findings revealed a novel and vital role for BCAS2 during HSPC maintenance in zebrafish.
Collapse
|
46
|
Toolee H, Rastegar T, Solhjoo S, Mortezaee K, Mohammadipour M, Kashani IR, Akbari M. Roles for Kisspeptin in proliferation and differentiation of spermatogonial cells isolated from mice offspring when the cells are cocultured with somatic cells. J Cell Biochem 2018; 120:5042-5054. [PMID: 30269376 DOI: 10.1002/jcb.27780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/26/2022]
Abstract
Kisspeptin (Kp) expression in testis has caused most of the recent research surveying its functional role in this organ. This peptide influences spermatogenesis and sperm capacitation, so it is considered as a regulator of reproduction. Kp roles exert through hypothalamic/pituitary/gonadal axis. We aimed to evaluate direct roles for Kp on proliferation and differentiation of spermatogonial cells (SCs) when the cells are cocultured with somatic cells. Somatic cells and SCs were isolated from adult azoospermic and newborn mice and then enriched using a differential attachment technique. After the evaluation of identity and colonization for SCs, the cells were cocultured with somatic cells, and three doses of Kp (10-8 -10-6 M) was assessed on proliferation (through evaluation of MVH and ID4 markers) and differentiation (via evaluation of c-Kit and SCP3 , TP1, TP2 , and, Prm1 markers) of the coculture system. Investigations were continued for four succeeding weeks. At the end of each level of testosterone in the culture media was also evaluated. We found positive influence from Kp on proliferative and differentiative markers in SCs cocultured with somatic cells. These effects were dose-dependent. There was no effect for Kp on testosterone level. From our findings, we simply conclude that Kp as a neuropeptide for influencing central part of reproductive axis could also positively affect peripheral processes related to spermatogenesis without having an effect on steroidogenesis.
Collapse
Affiliation(s)
- Heidar Toolee
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Solhjoo
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mahshid Mohammadipour
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Iraj Regerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
RNA processing in the male germline: Mechanisms and implications for fertility. Semin Cell Dev Biol 2018; 79:80-91. [DOI: 10.1016/j.semcdb.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
|
48
|
Mettl3-mediated m 6A regulates spermatogonial differentiation and meiosis initiation. Cell Res 2017; 27:1100-1114. [PMID: 28809392 DOI: 10.1038/cr.2017.100] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
METTL3 catalyzes the formation of N6-methyl-adenosine (m6A) which has important roles in regulating various biological processes. However, the in vivo function of Mettl3 remains largely unknown in mammals. Here we generated germ cell-specific Mettl3 knockout mice and demonstrated that Mettl3 was essential for male fertility and spermatogenesis. The ablation of Mettl3 in germ cells severely inhibited spermatogonial differentiation and blocked the initiation of meiosis. Transcriptome and m6A profiling analysis revealed that genes functioning in spermatogenesis had altered profiles of expression and alternative splicing. Our findings provide novel insights into the function and regulatory mechanisms of Mettl3-mediated m6A modification in spermatogenesis and reproduction in mammals.
Collapse
|
49
|
Gallego-Paez LM, Bordone MC, Leote AC, Saraiva-Agostinho N, Ascensão-Ferreira M, Barbosa-Morais NL. Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems. Hum Genet 2017; 136:1015-1042. [PMID: 28374191 PMCID: PMC5602094 DOI: 10.1007/s00439-017-1790-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/25/2017] [Indexed: 02/06/2023]
Abstract
Alternative pre-mRNA splicing is a tightly controlled process conducted by the spliceosome, with the assistance of several regulators, resulting in the expression of different transcript isoforms from the same gene and increasing both transcriptome and proteome complexity. The differences between alternative isoforms may be subtle but enough to change the function or localization of the translated proteins. A fine control of the isoform balance is, therefore, needed throughout developmental stages and adult tissues or physiological conditions and it does not come as a surprise that several diseases are caused by its deregulation. In this review, we aim to bring the splicing machinery on stage and raise the curtain on its mechanisms and regulation throughout several systems and tissues of the human body, from neurodevelopment to the interactions with the human microbiome. We discuss, on one hand, the essential role of alternative splicing in assuring tissue function, diversity, and swiftness of response in these systems or tissues, and on the other hand, what goes wrong when its regulatory mechanisms fail. We also focus on the possibilities that splicing modulation therapies open for the future of personalized medicine, along with the leading techniques in this field. The final act of the spliceosome, however, is yet to be fully revealed, as more knowledge is needed regarding the complex regulatory network that coordinates alternative splicing and how its dysfunction leads to disease.
Collapse
Affiliation(s)
- L M Gallego-Paez
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M C Bordone
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A C Leote
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N Saraiva-Agostinho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M Ascensão-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N L Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|