1
|
Kim AT, Park Y. Esculetin Inhibits Fat Accumulation Through Insulin/Insulin-like Growth Factor- and AMP-Activated Protein Kinase-Dependent Pathways in Caenorhabditis elegans. Nutrients 2025; 17:1565. [PMID: 40362874 PMCID: PMC12073564 DOI: 10.3390/nu17091565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Esculetin, 6,7-dihydroxycoumarin, is a bioactive compound found in various herbal plants, and is known to have health-beneficial properties including anti-obesity effects. However, there is a lack of in vivo studies to clearly determine esculetin's role in lipid metabolism. Objectives: In this study, we studied esculetin's effect on lipid accumulation using Caenorhabditis elegans and its underlying mechanisms. Methods:C. elegans were treated with esculetin (100 or 200 μM) for 48 h, and their triglyceride and protein levels were measured. Additionally, behavioral patterns such as pharyngeal pumping rate, body bending rate, body sizes, and locomotive activity were analyzed. Genetic dependencies were examined by utilizing mutant worms and testing relative gene expressions. Results:C. elegans treated with esculetin displayed significantly reduced fat accumulation compared to the controls without effects on the pharyngeal pumping rate, body bending rate, or locomotive activity. Esculetin's fat-lowering effect was dependent on DAF-2 (insulin/insulin-like growth factor-1 [IGF-1] receptor homolog), DAF-16 (Forkhead box protein O homolog), and AAK-2 (5'-adenosine monophosphate-activated protein kinase [AMPK] catalytic subunit α2) in the mutant experiments. Esculetin also significantly increased the relative expression of downstream targets of DAF-16 (hsp-16.2 and sod-3), AMPK-related genes (aak-1 and aak-2), a sirtuin gene, sir-2.1, and a lipolysis-related gene, atgl-1. Conclusions: These findings suggest that esculetin inhibited fat accumulation in C. elegans and this effect was dependent on the insulin/IGF-1 and 5'-adenosine monophosphate-activated protein kinase signaling pathways.
Collapse
Affiliation(s)
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
2
|
Saad LO, Cooke TF, Atabay KD, Reddien PW, Brown FD. Reduced adult stem cell fate specification led to eye reduction in cave planarians. Nat Commun 2025; 16:304. [PMID: 39746937 PMCID: PMC11696554 DOI: 10.1038/s41467-024-54478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025] Open
Abstract
Eye loss occurs convergently in numerous animal phyla as an adaptation to dark environments. We investigate the cave planarian Girardia multidiverticulata (Gm), a representative species of the Spiralian clade, to study mechanisms of eye loss. We found that Gm, which was previously described as an eyeless species, retains rudimentary and functional eyes. Eyes are maintained in homeostasis and regenerated in adult planarians by stem cells, called neoblasts, through their fate specification to eye progenitors. The reduced number of eye cells in cave planarians is associated with a decreased rate of stem cell fate specification to eye progenitors during homeostasis and regeneration. Conversely, the homeostatic formation of new cells from stem cell-derived progenitors for other tissues, including for neurons, pharynx, and epidermis, is comparable between cave and surface species. These findings reveal a mode of evolutionary trait loss, with change in rate of fate specification in adult stem cells leading to tissue size reduction.
Collapse
Affiliation(s)
- Luiza O Saad
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Thomas F Cooke
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kutay D Atabay
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Federico D Brown
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Pan P, Zhang P, Premachandran S, Peng R, Wang S, Fan Q, Sun Y, Calarco JA, Liu X. High-Resolution Imaging and Morphological Phenotyping of C. elegans through Stable Robotic Sample Rotation and Artificial Intelligence-Based 3-Dimensional Reconstruction. RESEARCH (WASHINGTON, D.C.) 2024; 7:0513. [PMID: 39479356 PMCID: PMC11522223 DOI: 10.34133/research.0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024]
Abstract
Accurate visualization and 3-dimensional (3D) morphological profiling of small model organisms can provide quantitative phenotypes benefiting genetic analysis and modeling of human diseases in tractable organisms. However, in the highly studied nematode Caenorhabditis elegans, accurate morphological phenotyping remains challenging because of notable decrease in image resolution of distant signal under high magnification and complexity in the 3D reconstruction of microscale samples with irregular shapes. Here, we develop a robust robotic system that enables the contactless, stable, and uniform rotation of C. elegans for multi-view fluorescent imaging and 3D morphological phenotyping via the precise reconstruction of 3D models. Contactless animal rotation accommodates a variety of body shapes and sizes found at different developmental stages and in mutant strains. Through controlled rotation, high-resolution fluorescent imaging of C. elegans structures is obtained by overcoming the limitations inherent in both widefield and confocal microscopy. Combining our robotic system with machine learning, we create, for the first time, precise 3D reconstructions of C. elegans at the embryonic and adult stages, enabling 3D morphological phenotyping of mutant strains in an accurate and comprehensive fashion. Intriguingly, our morphological phenotyping discovered a genetic interaction between 2 RNA binding proteins (UNC-75/CELF and MBL-1/MBNL), which are highly conserved between C. elegans and humans and implicated in neurological and muscular disorders. Our system can thus generate quantitative morphological readouts facilitating the investigation of genetic variations and disease mechanisms. More broadly, our method will also be amenable for 3D phenotypic analysis of other biological samples, like zebrafish and Drosophila larvae.
Collapse
Affiliation(s)
- Peng Pan
- Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Pengsong Zhang
- Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Sharanja Premachandran
- Department of Cell & Systems Biology,
University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Ran Peng
- College of Marine Engineering,
Dalian Maritime University, Dalian 116026, China
| | - Shaojia Wang
- Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Qigao Fan
- School of Internet of Things Engineering,
Jiangnan University, Wuxi 214122, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - John A. Calarco
- Department of Cell & Systems Biology,
University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
4
|
Liu J, Bonnard E, Scholz M. Adapting and optimizing GCaMP8f for use in Caenorhabditis elegans. Genetics 2024; 228:iyae125. [PMID: 39074213 PMCID: PMC11457936 DOI: 10.1093/genetics/iyae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Improved genetically encoded calcium indicators (GECIs) are essential for capturing intracellular dynamics of both muscle and neurons. A novel set of GECIs with ultrafast kinetics and high sensitivity was recently reported by Zhang et al. (2023). While these indicators, called jGCaMP8, were demonstrated to work in Drosophila and mice, data for Caenorhabditis elegans were not reported. Here, we present an optimized construct for C. elegans and use this to generate several strains expressing GCaMP8f (fast variant of the indicator). Utilizing the myo-2 promoter, we compare pharyngeal muscle activity measured with GCaMP7f and GCaMP8f and find that GCaMP8f is brighter upon binding to calcium, shows faster kinetics, and is not disruptive to the intrinsic contraction dynamics of the pharynx. Additionally, we validate its application for detecting neuronal activity in touch receptor neurons which reveals robust calcium transients even at small stimulus amplitudes. As such, we establish GCaMP8f as a potent tool for C. elegans research which is capable of extracting fast calcium dynamics at very low magnifications across multiple cell types.
Collapse
Affiliation(s)
- Jun Liu
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior-caesar, Bonn 53175, Germany
| | - Elsa Bonnard
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior-caesar, Bonn 53175, Germany
- International Max Planck Research School for Brain and Behavior, Bonn 53175, Germany
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior-caesar, Bonn 53175, Germany
| |
Collapse
|
5
|
Yang Z, Zhang Z, Long X, Shi X, Wang D, Peng D, Ye S, Ding Z. Clarifying the Functional Role of Serotonin in Meloidogyne graminicola Host Plant Parasitism by Immunolocalization and RNA Interference. PHYTOPATHOLOGY 2024; 114:1401-1410. [PMID: 38148161 DOI: 10.1094/phyto-08-23-0290-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Serotonin (5-hydroxytryptamine) is an essential neurotransmitter involved in regulating various behaviors in plant-parasitic nematodes, including locomotion, egg laying, feeding, and mating. However, the functional role of serotonin in root-knot nematode invasion of host plants and the molecular mechanisms underlying feeding behavior remain poorly understood. In this study, we tested the effects of exogenous serotonin and the pharmacological compounds fluoxetine and methiothepin on the feeding behaviors of Meloidogyne graminicola. Our results suggested that M. graminicola possesses an endogenous serotonin signaling pathway and that serotonin plays a crucial role in modulating feeding behaviors in M. graminicola second-stage juveniles. We also identified and cloned the serotonin synthesis enzyme tryptophan hydroxylase (Mg-tph-1) in M. graminicola and investigated the role of endogenous serotonin by generating RNA interference nematodes in Mg-tph-1. Silencing Mg-tph-1 substantially reduced nematode invasion, development, and reproduction. According to the immunostaining results, we speculated that these serotonin immunoreactive cells near the nerve ring in M. graminicola are likely homologous to Caenorhabditis elegans ADFs, NSMs, and RIH serotonergic neurons. Furthermore, we investigated the impact of phytoserotonin on nematode invasion and development in rice by overexpressing OsTDC-3 or supplementing rice plants with tryptamine and found that an increase in phytoserotonin increases nematode pathogenicity. Overall, our study provides insights into the essential role of serotonin in M. graminicola host plant parasitism and proposes that the serotonergic signaling pathway could be a potential target for controlling plant-parasitic nematodes.
Collapse
Affiliation(s)
- Zhuhong Yang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
- Hunan Provincial Engineering and Technology Research Center for Biopesticide and Formulation Processing, Changsha 410128, P.R. China
| | - Zixu Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Xiping Long
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Xuqi Shi
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Di Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Shan Ye
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
- Hunan Provincial Engineering and Technology Research Center for Biopesticide and Formulation Processing, Changsha 410128, P.R. China
| | - Zhong Ding
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
- Hunan Provincial Engineering and Technology Research Center for Biopesticide and Formulation Processing, Changsha 410128, P.R. China
| |
Collapse
|
6
|
He C, Lin X, Li P, Hou J, Yang M, Sun Z, Zhang S, Yang K, Lin D. Nematode Uptake Preference toward Different Nanoplastics through Avoidance Behavior Regulation. ACS NANO 2024; 18:11323-11334. [PMID: 38635335 DOI: 10.1021/acsnano.4c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Expounding bioaccumulation pathways of nanoplastics in organisms is a prerequisite for assessing their ecological risks in the context of global plastic pollution. Invertebrate uptake preference toward nanoplastics is a key initial step of nanoplastic food chain transport that controls their global biosafety, while the biological regulatory mechanism remains unclear. Here, we reveal a preferential uptake mechanism involving active avoidance of nanoplastics by Caenorhabditis elegans and demonstrate the relationship between the uptake preference and nanoplastic characteristics. Nanoplastics with 100 nm in size or positive surface charges induce stronger avoidance due to higher toxicity, causing lower accumulation in nematodes, compared to the 500 nm-sized or negatively charged nanoplastics, respectively. Further evidence showed that nematodes did not actively ingest any types of nanoplastics, while different nanoplastics induced defense responses in a toxicity-dependent manner and distinctly stimulated the avoidance behavior of nematodes (ranged from 15.8 to 68.7%). Transcriptomics and validations using mutants confirmed that the insulin/IGF signaling (IIS) pathway is essential for the selective avoidance of nanoplastics. Specifically, the activation of DAF-16 promoted the IIS pathway-mediated defense against nanoplastics and stimulated the avoidance behavior, increasing the survival chances of nematodes. Considering the genetical universality of this defense response among invertebrates, such an uptake preference toward certain nanoplastics could lead to cascaded risks in the ecosystem.
Collapse
Affiliation(s)
- Caijiao He
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xintong Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong China
| | - Pei Li
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Meirui Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ziyi Sun
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Shuang Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
7
|
Kirchweger B, Zwirchmayr J, Grienke U, Rollinger JM. The role of Caenorhabditis elegans in the discovery of natural products for healthy aging. Nat Prod Rep 2023; 40:1849-1873. [PMID: 37585263 DOI: 10.1039/d3np00021d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
8
|
Kuo SH, Hsu WL, Wu CY, Lai YC, Chen TC. Dolutegravir-induced growth and lifespan effects in Caenorhabditis elegans. BMC Pharmacol Toxicol 2023; 24:74. [PMID: 38062506 PMCID: PMC10702061 DOI: 10.1186/s40360-023-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Integrase strand transfer inhibitor (INSTIs)-based combination antiretroviral treatment in people living with HIV (PLWH) has been reportedly correlated with several adverse effects, such as weight gain, fetal defects or psychiatric disorders. METHODS To comprehensively understand the adverse effect of INSTIs, our study utilized Caenorhabditis Elegans (C. elegans) as a model to investigate how dolutegravir (DTG) affected its life cycle, growth, reproduction and lifespan. RESULTS Our results indicated that DTG enhanced body growth at the early stage of treatment, but no change was detected for long-term treatment. The treatment also influenced the reproductive system, decreased egg-hatching but had no effect on egg-laying. Besides, DTG resulted in lifespan reduction, which is dependent on increased levels of reactive oxidative species (ROS) accumulation. Treatment with N-acetyl-cysteine (NAC) in worms restrained intracellular ROS accumulation and improved DTG-induced lifespan reduction. CONCLUSIONS Our study demonstrates for the first time the effect of DTG treatment on life cycle. DTG-induced adverse effects are potentially associated with intracellular ROS accumulation. Quenching ROS accumulation might provide a novel strategy for dealing with the adverse effects of INSTIs.
Collapse
Affiliation(s)
- Shin-Huei Kuo
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Infection Control Office, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Rd, Cianjin District, Kaohsiung, 80145, Taiwan
| | - Wen-Li Hsu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Ying Wu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan
| | - Yu-Chang Lai
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tun-Chieh Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan.
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Infection Control Office, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Rd, Cianjin District, Kaohsiung, 80145, Taiwan.
- Center for Medical Education and Humanizing Health Professional Education, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
9
|
Lianguzova A, Arbuzova N, Laskova E, Gafarova E, Repkin E, Matach D, Enshina I, Miroliubov A. Tricks of the puppet masters: morphological adaptations to the interaction with nervous system underlying host manipulation by rhizocephalan barnacle Polyascus polygeneus. PeerJ 2023; 11:e16348. [PMID: 38025701 PMCID: PMC10655712 DOI: 10.7717/peerj.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Background Rhizocephalan interaction with their decapod hosts is a superb example of host manipulation. These parasites are able to alter the host's physiology and behavior. Host-parasite interaction is performed, presumably, via special modified rootlets invading the ventral ganglions. Methods In this study, we focus on the morphology and ultrastructure of these special rootlets in Polyascus polygeneus (Lützen & Takahashi, 1997), family Polyascidae, invading the neuropil of the host's nervous tissue. The ventral ganglionic mass of the infected crabs were fixed, and the observed sites of the host-parasite interplay were studied using transmission electron microscopy, immunolabeling and confocal microscopy. Results The goblet-shaped organs present in the basal families of parasitic barnacles were presumably lost in a common ancestor of Polyascidae and crown "Akentrogonida", but the observed invasive rootlets appear to perform similar functions, including the synthesis of various substances which are transferred to the host's nervous tissue. Invasive rootlets significantly differ from trophic ones in cell layer composition and cuticle thickness. Numerous multilamellar bodies are present in the rootlets indicating the intrinsic cell rearrangement. The invasive rootlets of P. polygeneus are enlaced by the thin projections of glial cells. Thus, glial cells can be both the first hosts' respondents to the nervous tissue damage and the mediator of the rhizocephalan interaction with the nervous cells. One of the potential molecules engaged in the relationships of P. polygeneus and its host is serotonin, a neurotransmitter which is found exclusively in the invasive rootlets but not in trophic ones. Serotonin participates in different biological pathways in metazoans including the regulation of aggression in crustaceans, which is reduced in infected crabs. We conclude that rootlets associated with the host's nervous tissue are crucial for the regulation of host-parasite interplay and for evolution of the Rhizocephala.
Collapse
Affiliation(s)
- Anastasia Lianguzova
- Department of Invertebrate Zoology, St. Petersburg State University, St Petersburg, Russian Federation
- Laboratory of Parasitic Worms and Protists, Zoological Institute of the Russian Academy of Science, St Petersburg, Russian Federation
| | - Natalia Arbuzova
- Department of Invertebrate Zoology, St. Petersburg State University, St Petersburg, Russian Federation
- Laboratory of Parasitic Worms and Protists, Zoological Institute of the Russian Academy of Science, St Petersburg, Russian Federation
| | - Ekaterina Laskova
- Department of Invertebrate Zoology, St. Petersburg State University, St Petersburg, Russian Federation
| | - Elizaveta Gafarova
- Department of Invertebrate Zoology, St. Petersburg State University, St Petersburg, Russian Federation
| | - Egor Repkin
- Department of Invertebrate Zoology, St. Petersburg State University, St Petersburg, Russian Federation
- Research Park, Center for Molecular and Cell Technologies, St. Petersburg State University, St Petersburg, Russian Federation
| | - Dzmitry Matach
- Department of Invertebrate Zoology, St. Petersburg State University, St Petersburg, Russian Federation
| | - Irina Enshina
- Department of Invertebrate Zoology, St. Petersburg State University, St Petersburg, Russian Federation
| | - Aleksei Miroliubov
- Laboratory of Parasitic Worms and Protists, Zoological Institute of the Russian Academy of Science, St Petersburg, Russian Federation
| |
Collapse
|
10
|
Madirolas G, Al-Asmar A, Gaouar L, Marie-Louise L, Garza-Enríquez A, Rodríguez-Rada V, Khona M, Dal Bello M, Ratzke C, Gore J, Pérez-Escudero A. Caenorhabditis elegans foraging patterns follow a simple rule of thumb. Commun Biol 2023; 6:841. [PMID: 37580527 PMCID: PMC10425387 DOI: 10.1038/s42003-023-05220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Rules of thumb are behavioral algorithms that approximate optimal behavior while lowering cognitive and sensory costs. One way to reduce these costs is by simplifying the representation of the environment: While the theoretically optimal behavior may depend on many environmental variables, a rule of thumb may use a smaller set of variables that performs reasonably well. Experimental proof of this simplification requires an exhaustive mapping of all relevant combinations of several environmental parameters, which we performed for Caenorhabditis elegans foraging by covering systematically combinations of food density (across 4 orders of magnitude) and food type (across 12 bacterial strains). We found that worms' response is dominated by a single environmental variable: food density measured as number of bacteria per unit surface. They disregard other factors such as biomass content or bacterial strain. We also measured experimentally the impact on fitness of each type of food, determining that the rule is near-optimal and therefore constitutes a rule of thumb that leverages the most informative environmental variable. These results set the stage for further investigations into the underlying genetic and neural mechanisms governing this simplification process, and into its role in the evolution of decision-making strategies.
Collapse
Affiliation(s)
- Gabriel Madirolas
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Alid Al-Asmar
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Lydia Gaouar
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Leslie Marie-Louise
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Andrea Garza-Enríquez
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Valentina Rodríguez-Rada
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Mikail Khona
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Martina Dal Bello
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christoph Ratzke
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen, Calwerstrasse 7/1, 72076, Tübingen, Germany
| | - Jeff Gore
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alfonso Pérez-Escudero
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France.
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Zhou Y, Rothe M, Schunck WH, Ruess L, Menzel R. Serotonin-induced stereospecific formation and bioactivity of the eicosanoid 17,18-epoxyeicosatetraenoic acid in the regulation of pharyngeal pumping of C. elegans. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159304. [PMID: 36914111 DOI: 10.1016/j.bbalip.2023.159304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/15/2023]
Abstract
17,18-Epoxyeicosatetraenoic acid (17,18-EEQ), the most abundant eicosanoid generated by cytochrome P450 (CYP) enzymes in C. elegans, is a potential signaling molecule in the regulation of pharyngeal pumping activity of this nematode. As a chiral molecule, 17,18-EEQ can exist in two stereoisomers, the 17(R),18(S)- and 17(S),18(R)-EEQ enantiomers. Here we tested the hypothesis that 17,18-EEQ may function as a second messenger of the feeding-promoting neurotransmitter serotonin and stimulates pharyngeal pumping and food uptake in a stereospecific manner. Serotonin treatment of wildtype worms induced a more than twofold increase of free 17,18-EEQ levels. As revealed by chiral lipidomics analysis, this increase was almost exclusively due to an enhanced release of the (R,S)-enantiomer of 17,18-EEQ. In contrast to the wildtype strain, serotonin failed to induce 17,18-EEQ formation as well as to accelerate pharyngeal pumping in mutant strains defective in the serotonin SER-7 receptor. However, the pharyngeal activity of the ser-7 mutant remained fully responsive to exogenous 17,18-EEQ administration. Short term incubations of well-fed and starved wildtype nematodes showed that both racemic 17,18-EEQ and 17(R),18(S)-EEQ were able to increase pharyngeal pumping frequency and the uptake of fluorescence-labeled microspheres, while 17(S),18(R)-EEQ and also 17,18-dihydroxyeicosatetraenoic acid (17,18-DHEQ, the hydrolysis product of 17,18-EEQ) were ineffective. Taken together, these results show that serotonin induces 17,18-EEQ formation in C. elegans via the SER-7 receptor and that both the formation of this epoxyeicosanoid and its subsequent stimulatory effect on pharyngeal activity proceed with high stereospecificity confined to the (R,S)-enantiomer.
Collapse
Affiliation(s)
- Yiwen Zhou
- Humboldt-Universität zu Berlin, Institue of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Rothe
- Lipidomix GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Wolf-Hagen Schunck
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Liliane Ruess
- Humboldt-Universität zu Berlin, Institue of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Ralph Menzel
- Humboldt-Universität zu Berlin, Institue of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany.
| |
Collapse
|
12
|
Legionella pneumophila and Free-Living Nematodes: Environmental Co-Occurrence and Trophic Link. Microorganisms 2023; 11:microorganisms11030738. [PMID: 36985310 PMCID: PMC10056204 DOI: 10.3390/microorganisms11030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Free-living nematodes harbor and disseminate various soil-borne bacterial pathogens. Whether they function as vectors or environmental reservoirs for the aquatic L. pneumophila, the causative agent of Legionnaires’ disease, is unknown. A survey screening of biofilms of natural (swimming lakes) and technical (cooling towers) water habitats in Germany revealed that nematodes can act as potential reservoirs, vectors or grazers of L. pneumophila in cooling towers. Consequently, the nematode species Plectus similis and L. pneumophila were isolated from the same cooling tower biofilm and taken into a monoxenic culture. Using pharyngeal pumping assays, potential feeding relationships between P. similis and different L. pneumophila strains and mutants were examined and compared with Plectus sp., a species isolated from a L. pneumophila-positive thermal source biofilm. The assays showed that bacterial suspensions and supernatants of the L. pneumophila cooling tower isolate KV02 decreased pumping rate and feeding activity in nematodes. However, assays investigating the hypothesized negative impact of Legionella’s major secretory protein ProA on pumping rate revealed opposite effects on nematodes, which points to a species-specific response to ProA. To extend the food chain by a further trophic level, Acanthamoebae castellanii infected with L. pneumphila KV02 were offered to nematodes. The pumping rates of P. similis increased when fed with L. pneumophila-infected A. castellanii, while Plectus sp. pumping rates were similar when fed either infected or non-infected A. castellanii. This study revealed that cooling towers are the main water bodies where L. pneumophila and free-living nematodes coexist and is the first step in elucidating the trophic links between coexisting taxa from that habitat. Investigating the Legionella–nematode–amoebae interactions underlined the importance of amoebae as reservoirs and transmission vehicles of the pathogen for nematode predators.
Collapse
|
13
|
The Assembly of Bacteria Living in Natural Environments Shapes Neuronal Integrity and Behavioral Outputs in Caenorhabditis elegans. mBio 2023; 14:e0340222. [PMID: 36883821 PMCID: PMC10127743 DOI: 10.1128/mbio.03402-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Bacterivore nematodes are the most abundant animals in the biosphere, largely contributing to global biogeochemistry. Thus, the effects of environmental microbes on the nematodes' life-history traits are likely to contribute to the general health of the biosphere. Caenorhabditis elegans is an excellent model to study the behavioral and physiological outputs of microbial diets. However, the effects of complex natural bacterial assemblies have only recently been reported, as most studies have been carried out with monoxenic cultures of laboratory-reared bacteria. Here, we quantified the physiological, phenotypic, and behavioral traits of C. elegans feeding on two bacteria that were coisolated with wild nematodes from a soil sample. These bacteria were identified as a putative novel species of Stenotrophomonas named Stenotrophomonas sp. strain Iso1 and a strain of Bacillus pumilus designated Iso2. The distinctive behaviors and developmental patterns observed in animals fed with individual isolates changed when bacteria were mixed. We studied in more depth the degeneration rate of the touch circuit of C. elegans and show that B. pumilus alone is protective, while the mix with Stenotrophomonas sp. is degenerative. The analysis of the metabolite contents of each isolate and their combination identified NAD+ as being potentially neuroprotective. In vivo supplementation shows that NAD+ restores neuroprotection to the mixes and also to individual nonprotective bacteria. Our results highlight the distinctive physiological effects of bacteria resembling native diets in a multicomponent scenario rather than using single isolates on nematodes. IMPORTANCE Do behavioral choices depend on animals' microbiota? To answer this question, we studied how different bacterial assemblies impact the life-history traits of the bacterivore nematode C. elegans using isolated bacteria found in association with wild nematodes in Chilean soil. We identified the first isolate, Iso1, as a novel species of Stenotrophomonas and isolate Iso2 as Bacillus pumilus. We find that worm traits such as food choice, pharyngeal pumping, and neuroprotection, among others, are dependent on the biota composition. For example, the neurodegeneration of the touch circuit needed to sense and escape from predators in the wild decreases when nematodes are fed on B. pumilus, while its coculture with Stenotrophomonas sp. eliminates neuroprotection. Using metabolomics analysis, we identify metabolites such as NAD+, present in B. pumilus yet lost in the mix, as being neuroprotective and validated their protective effects using in vivo experiments.
Collapse
|
14
|
Rosikon KD, Bone MC, Lawal HO. Regulation and modulation of biogenic amine neurotransmission in Drosophila and Caenorhabditis elegans. Front Physiol 2023; 14:970405. [PMID: 36875033 PMCID: PMC9978017 DOI: 10.3389/fphys.2023.970405] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Neurotransmitters are crucial for the relay of signals between neurons and their target. Monoamine neurotransmitters dopamine (DA), serotonin (5-HT), and histamine are found in both invertebrates and mammals and are known to control key physiological aspects in health and disease. Others, such as octopamine (OA) and tyramine (TA), are abundant in invertebrates. TA is expressed in both Caenorhabditis elegans and Drosophila melanogaster and plays important roles in the regulation of essential life functions in each organism. OA and TA are thought to act as the mammalian homologs of epinephrine and norepinephrine respectively, and when triggered, they act in response to the various stressors in the fight-or-flight response. 5-HT regulates a wide range of behaviors in C. elegans including egg-laying, male mating, locomotion, and pharyngeal pumping. 5-HT acts predominantly through its receptors, of which various classes have been described in both flies and worms. The adult brain of Drosophila is composed of approximately 80 serotonergic neurons, which are involved in modulation of circadian rhythm, feeding, aggression, and long-term memory formation. DA is a major monoamine neurotransmitter that mediates a variety of critical organismal functions and is essential for synaptic transmission in invertebrates as it is in mammals, in which it is also a precursor for the synthesis of adrenaline and noradrenaline. In C. elegans and Drosophila as in mammals, DA receptors play critical roles and are generally grouped into two classes, D1-like and D2-like based on their predicted coupling to downstream G proteins. Drosophila uses histamine as a neurotransmitter in photoreceptors as well as a small number of neurons in the CNS. C. elegans does not use histamine as a neurotransmitter. Here, we review the comprehensive set of known amine neurotransmitters found in invertebrates, and discuss their biological and modulatory functions using the vast literature on both Drosophila and C. elegans. We also suggest the potential interactions between aminergic neurotransmitters systems in the modulation of neurophysiological activity and behavior.
Collapse
Affiliation(s)
- Katarzyna D Rosikon
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Megan C Bone
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Hakeem O Lawal
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| |
Collapse
|
15
|
Wang Y, Guo K, Wang Q, Zhong G, Zhang W, Jiang Y, Mao X, Li X, Huang Z. Caenorhabditis elegans as an emerging model in food and nutrition research: importance of standardizing base diet. Crit Rev Food Sci Nutr 2022; 64:3167-3185. [PMID: 36200941 DOI: 10.1080/10408398.2022.2130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a model organism that has helped revolutionize life sciences, Caenorhabditis elegans has been increasingly used in nutrition research. Here we explore the tradeoffs between pros and cons of its use as a dietary model based primarily on literature review from the past decade. We first provide an overview of its experimental strengths as an animal model, focusing on lifespan and healthspan, behavioral and physiological phenotypes, and conservation of key nutritional pathways. We then summarize recent advances of its use in nutritional studies, e.g. food preference and feeding behavior, sugar status and metabolic reprogramming, lifetime and transgenerational nutrition tracking, and diet-microbiota-host interactions, highlighting cutting-edge technologies originated from or developed in C. elegans. We further review current challenges of using C. elegans as a nutritional model, followed by in-depth discussions on potential solutions. In particular, growth scales and throughputs, food uptake mode, and axenic culture of C. elegans are appraised in the context of food research. We also provide perspectives for future development of chemically defined nematode food ("NemaFood") for C. elegans, which is now widely accepted as a versatile and affordable in vivo model and has begun to show transformative potential to pioneer nutrition science.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Kaixin Guo
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Guohuan Zhong
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiyi Jiang
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xinliang Mao
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xiaomin Li
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
16
|
Bonnard E, Liu J, Zjacic N, Alvarez L, Scholz M. Automatically tracking feeding behavior in populations of foraging C. elegans. eLife 2022; 11:e77252. [PMID: 36083280 PMCID: PMC9462848 DOI: 10.7554/elife.77252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Caenorhabditis elegans feeds on bacteria and other small microorganisms which it ingests using its pharynx, a neuromuscular pump. Currently, measuring feeding behavior requires tracking a single animal, indirectly estimating food intake from population-level metrics, or using restrained animals. To enable large throughput feeding measurements of unrestrained, crawling worms on agarose plates at a single worm resolution, we developed an imaging protocol and a complementary image analysis tool called PharaGlow. We image up to 50 unrestrained crawling worms simultaneously and extract locomotion and feeding behaviors. We demonstrate the tool's robustness and high-throughput capabilities by measuring feeding in different use-case scenarios, such as through development, with genetic and chemical perturbations that result in faster and slower pumping, and in the presence or absence of food. Finally, we demonstrate that our tool is capable of long-term imaging by showing behavioral dynamics of mating animals and worms with different genetic backgrounds. The low-resolution fluorescence microscopes required are readily available in C. elegans laboratories, and in combination with our python-based analysis workflow makes this methodology easily accessible. PharaGlow therefore enables the observation and analysis of the temporal dynamics of feeding and locomotory behaviors with high-throughput and precision in a user-friendly system.
Collapse
Affiliation(s)
- Elsa Bonnard
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesarBonnGermany
| | - Jun Liu
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesarBonnGermany
| | - Nicolina Zjacic
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesarBonnGermany
- Institute of Medical Genetics, University of ZurichZurichSwitzerland
| | - Luis Alvarez
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesarBonnGermany
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesarBonnGermany
| |
Collapse
|
17
|
Pandey P, Kaur G, Babu K. Crosstalk between neurons and glia through G-protein coupled receptors: Insights from Caenorhabditis elegans. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:119-144. [PMID: 36357074 DOI: 10.1016/bs.pmbts.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The past decades have witnessed a dogmatic shift from glia as supporting cells in the nervous system to their active roles in neurocentric functions. Neurons and glia communicate and show bidirectional responses through tripartite synapses. Studies across species indicate that neurotransmitters released by neurons are perceived by glial receptors, which allow for gliotransmitter release. These gliotransmitters can result in activation of neurons via neuronal GPCR receptors. However, studies of these molecular interactions are in their infancy. Caenorhabditis elegans has a conserved neuron-glia architectural repertoire with molecular and functional resemblance to mammals. Further, glia in C. elegans can be manipulated through ablation and mutations allowing for deciphering of glial dependent processes in vivo at single glial resolutions. Here, we will review recent findings from vertebrate and invertebrate organisms with a focus on how C. elegans can be used to advance our understanding of neuron-glia interactions through GPCRs.
Collapse
Affiliation(s)
- Pratima Pandey
- Indian Institute of Science Education and Research, Mohali, Punjab, India.
| | - Gazaldeep Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Kavita Babu
- Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
18
|
Miller HA, Huang S, Dean ES, Schaller ML, Tuckowski AM, Munneke AS, Beydoun S, Pletcher SD, Leiser SF. Serotonin and dopamine modulate aging in response to food odor and availability. Nat Commun 2022; 13:3271. [PMID: 35672307 PMCID: PMC9174215 DOI: 10.1038/s41467-022-30869-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
An organism's ability to perceive and respond to changes in its environment is crucial for its health and survival. Here we reveal how the most well-studied longevity intervention, dietary restriction, acts in-part through a cell non-autonomous signaling pathway that is inhibited by the presence of attractive smells. Using an intestinal reporter for a key gene induced by dietary restriction but suppressed by attractive smells, we identify three compounds that block food odor effects in C. elegans, thereby increasing longevity as dietary restriction mimetics. These compounds clearly implicate serotonin and dopamine in limiting lifespan in response to food odor. We further identify a chemosensory neuron that likely perceives food odor, an enteric neuron that signals through the serotonin receptor 5-HT1A/SER-4, and a dopaminergic neuron that signals through the dopamine receptor DRD2/DOP-3. Aspects of this pathway are conserved in D. melanogaster. Thus, blocking food odor signaling through antagonism of serotonin or dopamine receptors is a plausible approach to mimic the benefits of dietary restriction.
Collapse
Affiliation(s)
- Hillary A Miller
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shijiao Huang
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elizabeth S Dean
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Megan L Schaller
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Angela M Tuckowski
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allyson S Munneke
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Safa Beydoun
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott D Pletcher
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott F Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
19
|
Kirchweger B, Klein-Junior LC, Pretsch D, Chen Y, Cretton S, Gasper AL, Heyden YV, Christen P, Kirchmair J, Henriques AT, Rollinger JM. Azepine-Indole Alkaloids From Psychotria nemorosa Modulate 5-HT 2A Receptors and Prevent in vivo Protein Toxicity in Transgenic Caenorhabditis elegans. Front Neurosci 2022; 16:826289. [PMID: 35360162 PMCID: PMC8963987 DOI: 10.3389/fnins.2022.826289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
Nemorosine A (1) and fargesine (2), the main azepine-indole alkaloids of Psychotria nemorosa, were explored for their pharmacological profile on neurodegenerative disorders (NDs) applying a combined in silico-in vitro-in vivo approach. By using 1 and 2 as queries for similarity-based searches of the ChEMBL database, structurally related compounds were identified to modulate the 5-HT2A receptor; in vitro experiments confirmed an agonistic effect for 1 and 2 (24 and 36% at 10 μM, respectively), which might be linked to cognition-enhancing properties. This and the previously reported target profile of 1 and 2, which also includes BuChE and MAO-A inhibition, prompted the evaluation of these compounds in several Caenorhabditis elegans models linked to 5-HT modulation and proteotoxicity. On C. elegans transgenic strain CL4659, which expresses amyloid beta (Aβ) in muscle cells leading to a phenotypic paralysis, 1 and 2 reduced Aβ proteotoxicity by reducing the percentage of paralyzed worms to 51%. Treatment of the NL5901 strain, in which α-synuclein is yellow fluorescent protein (YFP)-tagged, with 1 and 2 (10 μM) significantly reduced the α-synuclein expression. Both alkaloids were further able to significantly extend the time of metallothionein induction, which is associated with reduced neurodegeneration of aged brain tissue. These results add to the multitarget profiles of 1 and 2 and corroborate their potential in the treatment of NDs.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Luiz C. Klein-Junior
- School of Health Sciences, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Dagmar Pretsch
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Ya Chen
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Sylvian Cretton
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - André L. Gasper
- Herbarium Dr. Roberto Miguel Klein, Department of Natural Sciences, Universidade Regional de Blumenau (FURB), Blumenau, Brazil
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modeling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Philippe Christen
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Johannes Kirchmair
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Amélia T. Henriques
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Judith M. Rollinger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Hughes K, Shah A, Bai X, Adams J, Bauer R, Jackson J, Harris E, Ficca A, Freebairn P, Mohammed S, Fernández EM, Bainbridge C, Brocco M, Stein W, Vidal-Gadea AG. Distinct mechanoreceptor pezo-1 isoforms modulate food intake in the nematode Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkab429. [PMID: 35100363 PMCID: PMC9210275 DOI: 10.1093/g3journal/jkab429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022]
Abstract
Two PIEZO mechanosensitive cation channels, PIEZO1 and PIEZO2, have been identified in mammals, where they are involved in numerous sensory processes. While structurally similar, PIEZO channels are expressed in distinct tissues and exhibit unique properties. How different PIEZOs transduce force, how their transduction mechanism varies, and how their unique properties match the functional needs of the tissues they are expressed in remain all-important unanswered questions. The nematode Caenorhabditis elegans has a single PIEZO ortholog (pezo-1) predicted to have 12 isoforms. These isoforms share many transmembrane domains but differ in those that distinguish PIEZO1 and PIEZO2 in mammals. We used transcriptional and translational reporters to show that putative promoter sequences immediately upstream of the start codon of long pezo-1 isoforms predominantly drive green fluorescent protein (GFP) expression in mesodermally derived tissues (such as muscle and glands). In contrast, sequences upstream of shorter pezo-1 isoforms resulted in GFP expression primarily in neurons. Putative promoters upstream of different isoforms drove GFP expression in different cells of the same organs of the digestive system. The observed unique pattern of complementary expression suggests that different isoforms could possess distinct functions within these organs. We used mutant analysis to show that pharyngeal muscles and glands require long pezo-1 isoforms to respond appropriately to the presence of food. The number of pezo-1 isoforms in C. elegans, their putative differential pattern of expression, and roles in experimentally tractable processes make this an attractive system to investigate the molecular basis for functional differences between members of the PIEZO family of mechanoreceptors.
Collapse
Affiliation(s)
- Kiley Hughes
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Ashka Shah
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Xiaofei Bai
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Adams
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Rosemary Bauer
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Janelle Jackson
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Emily Harris
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Alyson Ficca
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Ploy Freebairn
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Shawn Mohammed
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Eliana M Fernández
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Buenos Aires 1650, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires 1650, Argentina
| | - Chance Bainbridge
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Marcela Brocco
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Buenos Aires 1650, Argentina
| | - Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | | |
Collapse
|
21
|
Zjacic N, Scholz M. The role of food odor in invertebrate foraging. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12793. [PMID: 34978135 PMCID: PMC9744530 DOI: 10.1111/gbb.12793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
Foraging for food is an integral part of animal survival. In small insects and invertebrates, multisensory information and optimized locomotion strategies are used to effectively forage in patchy and complex environments. Here, the importance of olfactory cues for effective invertebrate foraging is discussed in detail. We review how odors are used by foragers to move toward a likely food source and the recent models that describe this sensory-driven behavior. We argue that smell serves a second function by priming an organism for the efficient exploitation of food. By appraising food odors, invertebrates can establish preferences and better adapt to their ecological niches, thereby promoting survival. The smell of food pre-prepares the gastrointestinal system and primes feeding motor programs for more effective ingestion as well. Optimizing resource utilization affects longevity and reproduction as a result, leading to drastic changes in survival. We propose that models of foraging behavior should include odor priming, and illustrate this with a simple toy model based on the marginal value theorem. Lastly, we discuss the novel techniques and assays in invertebrate research that could investigate the interactions between odor sensing and food intake. Overall, the sense of smell is indispensable for efficient foraging and influences not only locomotion, but also organismal physiology, which should be reflected in behavioral modeling.
Collapse
Affiliation(s)
- Nicolina Zjacic
- Max Planck Research Group Neural Information FlowCenter of Advanced European Studies and Research (Caesar)BonnGermany
| | - Monika Scholz
- Max Planck Research Group Neural Information FlowCenter of Advanced European Studies and Research (Caesar)BonnGermany
| |
Collapse
|
22
|
Millet JRM, Romero LO, Lee J, Bell B, Vásquez V. C. elegans PEZO-1 is a mechanosensitive ion channel involved in food sensation. J Gen Physiol 2022; 154:212890. [PMID: 34854875 PMCID: PMC8647359 DOI: 10.1085/jgp.202112960] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/28/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
PIEZO channels are force sensors essential for physiological processes, including baroreception and proprioception. The Caenorhabditis elegans genome encodes an orthologue gene of the Piezo family, pezo-1, which is expressed in several tissues, including the pharynx. This myogenic pump is an essential component of the C. elegans alimentary canal, whose contraction and relaxation are modulated by mechanical stimulation elicited by food content. Whether pezo-1 encodes a mechanosensitive ion channel and contributes to pharyngeal function remains unknown. Here, we leverage genome editing, genetics, microfluidics, and electropharyngeogram recording to establish that pezo-1 is expressed in the pharynx, including in a proprioceptive-like neuron, and regulates pharyngeal function. Knockout (KO) and gain-of-function (GOF) mutants reveal that pezo-1 is involved in fine-tuning pharyngeal pumping frequency, as well as sensing osmolarity and food mechanical properties. Using pressure-clamp experiments in primary C. elegans embryo cultures, we determine that pezo-1 KO cells do not display mechanosensitive currents, whereas cells expressing wild-type or GOF PEZO-1 exhibit mechanosensitivity. Moreover, infecting the Spodoptera frugiperda cell line with a baculovirus containing the G-isoform of pezo-1 (among the longest isoforms) demonstrates that pezo-1 encodes a mechanosensitive channel. Our findings reveal that pezo-1 is a mechanosensitive ion channel that regulates food sensation in worms.
Collapse
Affiliation(s)
- Jonathan R M Millet
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Luis O Romero
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN
| | - Jungsoo Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Briar Bell
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN.,Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN
| | - Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
23
|
Wellenberg A, Brinkmann V, Bornhorst J, Ventura N, Honnen S, Fritz G. Cisplatin-induced neurotoxicity involves the disruption of serotonergic neurotransmission. Pharmacol Res 2021; 174:105921. [PMID: 34601079 DOI: 10.1016/j.phrs.2021.105921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022]
Abstract
Neurotoxicity is a frequent side effect of cisplatin (CisPt)-based anticancer therapy whose pathophysiology is largely vague. Here, we exploited C. elegans as a 3R-compliant in vivo model to elucidate molecular mechanisms contributing to CisPt-induced neuronal dysfunction. To this end, we monitored the impact of CisPt on various sensory functions as well as pharyngeal neurotransmission by recording electropharyngeograms (EPGs). CisPt neither affected food and odor sensation nor mechano-sensation, which involve dopaminergic and glutaminergic neurotransmission. However, CisPt reduced serotonin-regulated pharyngeal pumping activity independent of changes in the morphology of related neurons. CisPt-mediated alterations in EPGs were fully rescued by addition of serotonin (5-HT) (≤ 2 mM). Moreover, the CisPt-induced pharyngeal injury was prevented by co-incubation with the clinically approved serotonin re-uptake inhibitory drug duloxetine. A protective effect of 5-HT was also observed with respect to CisPt-mediated impairment of another 5-HT-dependent process, the egg laying activity. Importantly, CisPt-induced apoptosis in the gonad and learning disability were not influenced by 5-HT. Using different C. elegans mutants we found that CisPt-mediated (neuro)toxicity is independent of serotonin biosynthesis and re-uptake and likely involves serotonin-receptor subtype 7 (SER-7)-related functions. In conclusion, by measuring EPGs as a surrogate parameter of neuronal dysfunction, we provide first evidence that CisPt-induced neurotoxicity in C. elegans involves 5-HT-dependent neurotransmission and SER-7-mediated signaling mechanisms and can be prevented by the clinically approved antidepressant duloxetine. The data highlight the particular suitability of C. elegans as a 3R-conform in vivo model in molecular (neuro)toxicology and, moreover, for the pre-clinical identification of neuroprotective candidate drugs.
Collapse
Affiliation(s)
- Anna Wellenberg
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Vanessa Brinkmann
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Julia Bornhorst
- Faculty of Mathematics and Natural Sciences, Food Chemistry, University of Wuppertal, D-42119 Wuppertal, Germany
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University and Leibniz Research Institute for Environmental Medicine (IUF), D-40225 Düsseldorf, Germany
| | - Sebastian Honnen
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, D-40225 Düsseldorf, Germany.
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich Heine University, D-40225 Düsseldorf, Germany.
| |
Collapse
|
24
|
Saberski E, Bock AK, Goodridge R, Agarwal V, Lorimer T, Rifkin SA, Sugihara G. Networks of Causal Linkage Between Eigenmodes Characterize Behavioral Dynamics of Caenorhabditis elegans. PLoS Comput Biol 2021; 17:e1009329. [PMID: 34506477 PMCID: PMC8494368 DOI: 10.1371/journal.pcbi.1009329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/06/2021] [Accepted: 08/07/2021] [Indexed: 11/18/2022] Open
Abstract
Behavioral phenotyping of model organisms has played an important role in unravelling the complexities of animal behavior. Techniques for classifying behavior often rely on easily identified changes in posture and motion. However, such approaches are likely to miss complex behaviors that cannot be readily distinguished by eye (e.g., behaviors produced by high dimensional dynamics). To explore this issue, we focus on the model organism Caenorhabditis elegans, where behaviors have been extensively recorded and classified. Using a dynamical systems lens, we identify high dimensional, nonlinear causal relationships between four basic shapes that describe worm motion (eigenmodes, also called "eigenworms"). We find relationships between all pairs of eigenmodes, but the timescales of the interactions vary between pairs and across individuals. Using these varying timescales, we create "interaction profiles" to represent an individual's behavioral dynamics. As desired, these profiles are able to distinguish well-known behavioral states: i.e., the profiles for foraging individuals are distinct from those of individuals exhibiting an escape response. More importantly, we find that interaction profiles can distinguish high dimensional behaviors among divergent mutant strains that were previously classified as phenotypically similar. Specifically, we find it is able to detect phenotypic behavioral differences not previously identified in strains related to dysfunction of hermaphrodite-specific neurons.
Collapse
Affiliation(s)
- Erik Saberski
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Antonia K. Bock
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Rachel Goodridge
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Vitul Agarwal
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Tom Lorimer
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Scott A. Rifkin
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - George Sugihara
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Chen TC, Chao HR, Wu CY, Lai YR, Chen CH, Yoshioka T, Hsu WL, Tsai MH. Effect of 9,12-Octadecadiynoic Acid on Neurobehavioral Development in Caenorhabditis elegans. Int J Mol Sci 2021; 22:ijms22168917. [PMID: 34445623 PMCID: PMC8396327 DOI: 10.3390/ijms22168917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Human breast milk lipids have major beneficial effects: they promote infant early brain development, growth and health. To identify the relationship between human breast milk lipids and infant neurodevelopment, multivariate analyses that combined lipidomics and psychological Bayley-III scales evaluation were utilized. We identified that 9,12-octadecadiynoic acid has a significantly positive correlation with infant adaptive behavioral development, which is a crucial neurodevelopment to manage risk from environmental stress. To further clarify the biological function of 9,12-octadecadiynoic acid in regulating neurodevelopment, Caenorhabditis elegans (C. elegans) was used as a model to investigate the effect of 9,12-octadecadiynoic acid on neurobehavioral development. Supplementation with 9,12-octadecadiynoic acid from the L1 to L4 stage in larvae affected locomotive behaviors and foraging ability that were not socially interactive, implying that 9,12-octadecadiynoic acid is involved in regulating the serotonergic neuronal ability. We found that supplementary 0.1 μM 9,12-octadecadiynoic acid accelerated the locomotive ability and foraging ability via increasing the expression of serotonin transporter mod-1. Antioxidant defense genes, sod-1, sod-3 and cyp-35A2 are involved in 9,12-octadecadiynoic acid-induced motor neuronal activity. Nevertheless, supplementary 9,12-octadecadiynoic acid at concentrations above 1 μM significantly attenuated locomotive behaviors, foraging ability, serotonin synthesis, serotonin-related gene expressions and stress-related gene expression, resulting in the decreased longevity of worms in the experiment. In conclusion, our study demonstrates the biological function of 9,12-octadecadiynoic acid in governing adaptive behavioral development.
Collapse
Affiliation(s)
- Tun-Chieh Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Rd, Cianjin District, Kaohsiung 80145, Taiwan;
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan;
- Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan
- Institute of Food Safety Management, College of Agriculture, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan
| | - Ching-Ying Wu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Rd, Cianjin District, Kaohsiung 80145, Taiwan;
- Department of Cosmetic Science, Chang Gung University of Science and Technology, No 261, Wenhua 1st Rd, Taoyuan 33303, Taiwan
| | - Yun-Ru Lai
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (Y.-R.L.); (T.Y.)
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA;
- New York Heart Research Foundation, 200 Old Country Road, Mineola, NY 11501, USA
- Institute for Biomedical Sciences, Shinshu University, 3-1-1 Asahi Matsumoto, Nagano 390-8621, Japan
| | - Tohru Yoshioka
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (Y.-R.L.); (T.Y.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Wen-Li Hsu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Rd, Cianjin District, Kaohsiung 80145, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (Y.-R.L.); (T.Y.)
- Correspondence: (W.-L.H.); (M.-H.T.)
| | - Ming-Hsien Tsai
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (Y.-R.L.); (T.Y.)
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan
- Correspondence: (W.-L.H.); (M.-H.T.)
| |
Collapse
|
26
|
The transcription factor LAG-1/CSL plays a Notch-independent role in controlling terminal differentiation, fate maintenance, and plasticity of serotonergic chemosensory neurons. PLoS Biol 2021; 19:e3001334. [PMID: 34232959 PMCID: PMC8289040 DOI: 10.1371/journal.pbio.3001334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/19/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
During development, signal-regulated transcription factors (TFs) act as basal repressors and upon signalling through morphogens or cell-to-cell signalling shift to activators, mediating precise and transient responses. Conversely, at the final steps of neuron specification, terminal selector TFs directly initiate and maintain neuron-type specific gene expression through enduring functions as activators. C. elegans contains 3 types of serotonin synthesising neurons that share the expression of the serotonin biosynthesis pathway genes but not of other effector genes. Here, we find an unconventional role for LAG-1, the signal-regulated TF mediator of the Notch pathway, as terminal selector for the ADF serotonergic chemosensory neuron, but not for other serotonergic neuron types. Regulatory regions of ADF effector genes contain functional LAG-1 binding sites that mediate activation but not basal repression. lag-1 mutants show broad defects in ADF effector genes activation, and LAG-1 is required to maintain ADF cell fate and functions throughout life. Unexpectedly, contrary to reported basal repression state for LAG-1 prior to Notch receptor activation, gene expression activation in the ADF neuron by LAG-1 does not require Notch signalling, demonstrating a default activator state for LAG-1 independent of Notch. We hypothesise that the enduring activity of terminal selectors on target genes required uncoupling LAG-1 activating role from receiving the transient Notch signalling.
Collapse
|
27
|
Fueser H, Rauchschwalbe MT, Höss S, Traunspurger W. Food bacteria and synthetic microparticles of similar size influence pharyngeal pumping of Caenorhabditis elegans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105827. [PMID: 33882407 DOI: 10.1016/j.aquatox.2021.105827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Toxicity tests using the model organism Caenorhabditis elegans have shown that exposure to small microplastics such as polystyrene (PS) beads lead to high body burdens and dietary restrictions that in turn inhibit reproduction. Pharyngeal pumping is the key mechanism of C. elegans for governing the uptake of food and other particles and can be easily monitored by determining the pumping rates. In this study, pharyngeal pumping of C. elegans was examined in response to increasing quantities of food bacteria (E. coli: 106-1010 cells ml-1) and synthetic particles (107-109 beads ml-1) of similar size (1 µm). While the average pumping rate of C. elegans exposed to E. coli depended on the density of the bacterial cells, this was not the case for the synthetic beads. At 107 items ml-1, bacterial cells and synthetic beads triggered a basic stimulation of the pumping rate, independent of the nutritional value of the particle. At quantities >107 items ml-1, however, the nutritional value was essential to maximize the pumping rate, as it was upregulated only by E. coli cells, which can be chemosensorially recognized by C. elegans. Given the unselective uptake of all particles in the size range of bacteria, restricting the pumping rates for particles with low nutritional value to a basic rate, prevents the nematodes from wasting energy by high-frequency pumping, but still allows a food-quality screening at low food levels.
Collapse
Affiliation(s)
- Hendrik Fueser
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany.
| | | | - Sebastian Höss
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany; Ecossa, Giselastr. 6, 82319 Starnberg, Germany
| | - Walter Traunspurger
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
28
|
Campeiro JD, Nani JV, Monte GG, Almeida PGC, Mori MA, Hayashi MAF. Regulation of monoamine levels by typical and atypical antipsychotics in Caenorhabditis elegans mutant for nuclear distribution element genes. Neurochem Int 2021; 147:105047. [PMID: 33872680 DOI: 10.1016/j.neuint.2021.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
Mammalian nuclear distribution genes encode proteins with essential roles in neuronal migration and brain formation during embryogenesis. The implication of human nuclear distribution genes, namely nudC and NDE1 (Nuclear Distribution Element 1)/NDEL1 (Nuclear Distribution Element-Like 1), in psychiatric disorders including schizophrenia and bipolar disorder, has been recently described. The partial loss of NDEL1 expression results in neuronal migration defects, while ndel1 null knockout (KO) leads to early embryonic lethality in mice. On the other hand, loss-of-function of the orthologs of nuclear distribution element genes (nud) in Caenorhabditis elegans renders viable worms and influences behavioral endophenotypes associated with dopaminergic and serotoninergic pathways. In the present work, we evaluated the role of nud genes in monoamine levels at baseline and after the treatment with typical or atypical antipsychotics. Dopamine, serotonin and octopamine levels were significantly lower in homozygous loss-of-function mutant worms KO for nud genes compared with wild-type (WT) C. elegans at baseline. While treatment with antipsychotics determined significant differences in monoamine levels in WT, the nud KO mutant worms appear to respond differently to the treatment. According to the best of our knowledge, we are the first to report the influence of nud genes in the monoamine levels changes in response to antipsychotic drugs, ultimately placing the nuclear distribution genes family at the cornerstone of pathways involved in the modulation of monoamines in response to different classes of antipsychotic drugs.
Collapse
Affiliation(s)
- Joana D'Arc Campeiro
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil
| | - João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Brazil
| | - Gabriela G Monte
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil
| | - Priscila G C Almeida
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Brazil.
| |
Collapse
|
29
|
Lavorato M, Mathew ND, Shah N, Nakamaru-Ogiso E, Falk MJ. Comparative Analysis of Experimental Methods to Quantify Animal Activity in Caenorhabditis elegans Models of Mitochondrial Disease. J Vis Exp 2021:10.3791/62244. [PMID: 33871460 PMCID: PMC8572545 DOI: 10.3791/62244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Caenorhabditis elegans is widely recognized for its central utility as a translational animal model to efficiently interrogate mechanisms and therapies of diverse human diseases. Worms are particularly well-suited for high-throughput genetic and drug screens to gain deeper insight into therapeutic targets and therapies by exploiting their fast development cycle, large brood size, short lifespan, microscopic transparency, low maintenance costs, robust suite of genomic tools, mutant repositories, and experimental methodologies to interrogate both in vivo and ex vivo physiology. Worm locomotor activity represents a particularly relevant phenotype that is frequently impaired in mitochondrial disease, which is highly heterogeneous in causes and manifestations but collectively shares an impaired capacity to produce cellular energy. While a suite of different methodologies may be used to interrogate worm behavior, these vary greatly in experimental costs, complexity, and utility for genomic or drug high-throughput screens. Here, the relative throughput, advantages, and limitations of 16 different activity analysis methodologies were compared that quantify nematode locomotion, thrashing, pharyngeal pumping, and/or chemotaxis in single worms or worm populations of C. elegans at different stages, ages, and experimental durations. Detailed protocols were demonstrated for two semi-automated methods to quantify nematode locomotor activity that represent novel applications of available software tools, namely, ZebraLab (a medium-throughput approach) and WormScan (a high-throughput approach). Data from applying these methods demonstrated similar degrees of reduced animal activity occurred at the L4 larval stage, and progressed in day 1 adults, in mitochondrial complex I disease (gas-1(fc21)) mutant worms relative to wild-type (N2 Bristol) C. elegans. This data validates the utility for these novel applications of using the ZebraLab or WormScan software tools to quantify worm locomotor activity efficiently and objectively, with variable capacity to support high-throughput drug screening on worm behavior in preclinical animal models of mitochondrial disease.
Collapse
Affiliation(s)
- Manuela Lavorato
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia
| | - Neal D Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia
| | - Nina Shah
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine;
| |
Collapse
|
30
|
Rauchschwalbe MT, Fueser H, Traunspurger W, Höss S. Bacterial consumption by nematodes is disturbed by the presence of polystyrene beads: The roles of food dilution and pharyngeal pumping. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116471. [PMID: 33460876 DOI: 10.1016/j.envpol.2021.116471] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs; <5 mm) released into freshwaters from anthropogenic sources accumulate in sediments, where they may pose an environmental threat to benthic organisms, such as nematodes. Several studies have examined the effects of nano- and microplastics on the nematode Caenorhabditis elegans, whereas reduced food availability was suggested as a possible explanation for the observed inhibitory effects. Therefore, this study should clarify whether micro-beads of different sizes (1.0 and 6.0 μm in diameter) and materials (polystyrene PS, silica) are able to interfere with the feeding of C. elegans on its bacterial diet (Escherichia coli), and, by this, lowering its consumption rate within 7 h of exposure. Moreover, it was examined whether an inhibited bacterial consumption was caused by a reduction of the nematode's pumping rate, as a primary indicator of food ingestion. Bacterial consumption by C. elegans was significantly decreased in the presence of 1.0- and 6.0-μm PS beads (49-67% lower bacterial consumption compared to control), whereas in the presence of 1.0-μm silica beads feeding was not impeded. Interestingly, the pumping rate was significantly lower in the presence of non-ingestible 6.0-μm PS beads with 161 ± 16 pumps min-1, while it was largely unchanged for nematodes exposed to ingestible 1.0-μm PS beads with 205 ± 12 pumps min-1, compared to control conditions with 210 ± 18 pumps min-1, respectively. As reduced bacterial consumption leads to generally lower energy reserves in C. elegans, these results allow to link observed inhibitory effects of MPs on the nematodes to a lower food availability. Such indirect, food-web related, effects of MPs should raise concern of ecological consequences in natural habitats, where temporal food deficiencies can occur. Consequently, disturbances in food availability and feeding efficiency should be regarded as important parameters in environmental risk assessments focusing on MPs.
Collapse
Affiliation(s)
| | - Hendrik Fueser
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany
| | - Walter Traunspurger
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany
| | - Sebastian Höss
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany; Ecossa, Giselastr.6, 82319, Starnberg, Germany
| |
Collapse
|
31
|
Van Damme S, De Fruyt N, Watteyne J, Kenis S, Peymen K, Schoofs L, Beets I. Neuromodulatory pathways in learning and memory: Lessons from invertebrates. J Neuroendocrinol 2021; 33:e12911. [PMID: 33350018 DOI: 10.1111/jne.12911] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
In an ever-changing environment, animals have to continuously adapt their behaviour. The ability to learn from experience is crucial for animals to increase their chances of survival. It is therefore not surprising that learning and memory evolved early in evolution and are mediated by conserved molecular mechanisms. A broad range of neuromodulators, in particular monoamines and neuropeptides, have been found to influence learning and memory, although our knowledge on their modulatory functions in learning circuits remains fragmentary. Many neuromodulatory systems are evolutionarily ancient and well-conserved between vertebrates and invertebrates. Here, we highlight general principles and mechanistic insights concerning the actions of monoamines and neuropeptides in learning circuits that have emerged from invertebrate studies. Diverse neuromodulators have been shown to influence learning and memory in invertebrates, which can have divergent or convergent actions at different spatiotemporal scales. In addition, neuromodulators can regulate learning dependent on internal and external states, such as food and social context. The strong conservation of neuromodulatory systems, the extensive toolkit and the compact learning circuits in invertebrate models make these powerful systems to further deepen our understanding of neuromodulatory pathways involved in learning and memory.
Collapse
Affiliation(s)
- Sara Van Damme
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jan Watteyne
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Katleen Peymen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Fueser H, Mueller MT, Traunspurger W. Rapid ingestion and egestion of spherical microplastics by bacteria-feeding nematodes. CHEMOSPHERE 2020; 261:128162. [PMID: 33113662 DOI: 10.1016/j.chemosphere.2020.128162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Microplastics, anthropogenically released into freshwaters, settle in sediments, where they are directly ingested by benthic organisms. However, to the best of our knowledge, fine-scale studies of microplastic ingestion and egestion by nematodes, one of the most abundant meiofaunal taxa, are lacking. We therefore conducted a time series of the ingestion and egestion by adult Caenorhabditis elegans and Pristionchus pacificus of 0.5- and 1.0-μm fluorescent polystyrene (PS) beads along with bacteria. The nematodes were exposed to 107 beads ml-1 in aqueous medium for 5 min-24 h and pumping rates of C. elegans were determined. In the egestion study, PS bead egestion was monitored in nematodes with high microplastic body burdens for 5 min-24 h in microplastic-free medium. Ingested beads were detected already within 5 min and up to 203 ± 15 PS beads (1.0 μm; C. elegans) were found after 30 min. Overall, significantly more 1.0-μm than 0.5-μm PS beads were taken up. The distinct feeding behaviors of the two species influenced their PS bead body burdens. Ingested PS beads were almost completely egested within the first 20-40 min in the presence of sufficient food. In C. elegans, 1.0-μm beads were egested less rapidly than 0.5-μm PS beads. Given the rapid ingestion and egestion of the beads, our study demonstrates that the actual amount of ingested and egested microplastics by nematodes in the environment may be several times higher than the microplastic body burdens may imply. However, spherical PS beads did not bioconcentrate in nematodes.
Collapse
Affiliation(s)
- Hendrik Fueser
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany.
| | | | - Walter Traunspurger
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany
| |
Collapse
|
33
|
Abstract
In the last decade, microfluidic methods have proven to be powerful tools for Caenorhabditis elegans research, offering advanced manipulation of worms and precise control of experimental conditions. The advantages of microfluidic chips include their capability of immobilization, automated sorting, and longitudinal measurement, and more. In this review, we focus on control components that are widely used in the design of microfluidic devices, and discuss their functions and working principles that enable advanced manipulation on a chip. Understanding these components will ease the onboarding of researchers inexperienced with microfluidics and help them bring the power of microfluidics to new applications.
Collapse
Affiliation(s)
- Erel Levine
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Kyung Suk Lee
- Department of Physics Education, Kongju National University, Gongju, South Korea
| |
Collapse
|
34
|
Rahman M, Edwards H, Birze N, Gabrilska R, Rumbaugh KP, Blawzdziewicz J, Szewczyk NJ, Driscoll M, Vanapalli SA. NemaLife chip: a micropillar-based microfluidic culture device optimized for aging studies in crawling C. elegans. Sci Rep 2020; 10:16190. [PMID: 33004810 PMCID: PMC7530743 DOI: 10.1038/s41598-020-73002-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/10/2020] [Indexed: 01/23/2023] Open
Abstract
In this study, we report a microfluidic device for the whole-life culture of the nematode Caenorhabditis elegans that allows the scoring of animal survival and health measures. This device referred to as the NemaLife chip features: (1) an optimized micropillar arena in which animals can crawl, (2) sieve channels that separate progeny and prevent the loss of adults from the arena during culture maintenance, and (3) ports that allow rapid accessibility for feeding the adult-only population and introducing reagents as needed. The pillar arena geometry was optimized to accommodate the growing body size during culture and emulate the body gait and locomotion of animals reared on agar. Likewise, feeding protocols were optimized to recapitulate longevity outcomes typical of standard plate growth. Key benefits of the NemaLife Chip include eliminating the need to perform repeated manual transfers of adults during survival assays, negating the need for progeny-blocking chemical interventions, and avoiding the swim-induced stress across lifespan in animals reared in liquid. We also show that the culture of animals in pillar-less microfluidic chambers reduces lifespan and introduces physiological stress by increasing the occurrence of age-related vulval integrity disorder. We validated our pillar-based device with longevity analyses of classical aging mutants (daf-2, age-1, eat-2, and daf-16) and animals subjected to RNAi knockdown of age-related genes (age-1 and daf-16). We also showed that healthspan measures such as pharyngeal pumping and tap-induced stimulated reversals can be scored across the lifespan in the NemaLife chip. Overall, the capacity to generate reliable lifespan and physiological data underscores the potential of the NemaLife chip to accelerate healthspan and lifespan investigations in C. elegans.
Collapse
Affiliation(s)
- Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Hunter Edwards
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nikolajs Birze
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Rebecca Gabrilska
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, 79409, USA
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, 79409, USA
| | - Jerzy Blawzdziewicz
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79430, USA
| | - Nathaniel J Szewczyk
- Ohio Musculoskeletal and Neurological Institute and Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
35
|
Farias-Pereira R, Savarese J, Yue Y, Lee SH, Park Y. Fat-lowering effects of isorhamnetin are via NHR-49-dependent pathway in Caenorhabditis elegans. Curr Res Food Sci 2020; 2:70-76. [PMID: 32914113 PMCID: PMC7473354 DOI: 10.1016/j.crfs.2019.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Isorhamnetin (3-O-methylquercetin), a flavonol found in dill weed, sea buckthorn berries, kale and onions, has been suggested to have anti-obesity effects, but there is limited evidence of its mechanisms of action on lipid metabolism. The goal of this study was to investigate the effects of isorhamnetin on lipid metabolism using Caenorhabditis elegans as an animal model. Isorhamnetin reduced fat accumulation without affecting food intake or energy expenditure in C. elegans. The isorhamnetin's fat-lowering effects were dependent on nhr-49, a homolog of the human peroxisome proliferator-activated receptor alpha (PPARα). Isorhamnetin upregulated an enoyl-CoA hydratase (ech-1.1, involved in fatty acid β-oxidation) and adipose triglyceride lipase (atgl-1, involved in lipolysis) via NHR-49-dependent pathway at transcriptional levels. Isorhamnetin also upregulated the C. elegans AMP-activated protein kinase (AMPK) subunits homologs (aak-1 and aak-2), involved in energy homeostasis. These results suggest that isorhamnetin reduces body fat by increasing fat oxidation in part via NHR-49/PPARα-dependent pathway. Isorhamnetin reduced fat accumulation in Caenorhabditis elegans. Food intake and energy expenditure were not changed by isorhamnetin. Isorhamnetin's fat-lowering effects were dependent on nhr-49/PPARα. Isorhamnetin upregulated transcriptionally AAK/AMPK, which may activate NHR-49. Isorhamnetin increased fat breakdown by upregulating ech-1.1/HADHA and atgl-1/ATGL.
Collapse
Affiliation(s)
| | - Jessica Savarese
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
36
|
|
37
|
Cermak N, Yu SK, Clark R, Huang YC, Baskoylu SN, Flavell SW. Whole-organism behavioral profiling reveals a role for dopamine in state-dependent motor program coupling in C. elegans. eLife 2020; 9:e57093. [PMID: 32510332 PMCID: PMC7347390 DOI: 10.7554/elife.57093] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/07/2020] [Indexed: 11/13/2022] Open
Abstract
Animal behaviors are commonly organized into long-lasting states that coordinately impact the generation of diverse motor outputs such as feeding, locomotion, and grooming. However, the neural mechanisms that coordinate these distinct motor programs remain poorly understood. Here, we examine how the distinct motor programs of the nematode C. elegans are coupled together across behavioral states. We describe a new imaging platform that permits automated, simultaneous quantification of each of the main C. elegans motor programs over hours or days. Analysis of these whole-organism behavioral profiles shows that the motor programs coordinately change as animals switch behavioral states. Utilizing genetics, optogenetics, and calcium imaging, we identify a new role for dopamine in coupling locomotion and egg-laying together across states. These results provide new insights into how the diverse motor programs throughout an organism are coordinated and suggest that neuromodulators like dopamine can couple motor circuits together in a state-dependent manner.
Collapse
Affiliation(s)
- Nathan Cermak
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Stephanie K Yu
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Rebekah Clark
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yung-Chi Huang
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Saba N Baskoylu
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Steven W Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
38
|
Xiao X, Tan C, Sun X, Zhao Y, Zhang J, Zhu Y, Bai J, Dong Y, Zhou X. Fermented barley β-glucan regulates fat deposition in Caenorhabditis elegans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3408-3417. [PMID: 32166779 DOI: 10.1002/jsfa.10375] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Barley contains a relatively high concentration of the mixed-linkage (1 → 3) (1 → 4) β-glucan, which has been reported to be a functional food with prebiotic potential. In the current study we compared the properties of two neutral barley β-glucans, obtained from raw barley: raw barley β-glucan (RBG) and Lactobacillus plantarum dy-1-fermented barley (FBG). RESULTS Molecular characteristics revealed that the molecular weight of barley β-glucan decreased from 1.13 × 105 D to 6.35 × 104 D after fermentation. Fermentation also improved the water / oil holding capacity, solubility, and swelling capacity of barley β-glucan. Both RBG and FBG significantly improved the locomotive behavior of nematodes, thereby increasing their energy consumption and reducing fat deposition - the effect was more significant with FBG. These effects could potentially depend on nhr-49, TGF-daf-7 mediated pathways and so on, in which nhr-49 factor is particularly required. CONCLUSION These results suggested that fermentation may enhance in vitro physiological activities of barley β-glucan, thereby altering the effects on the lipid metabolism in vivo. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cui Tan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xinjuan Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xinghua Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
39
|
Cruz-Corchado J, Ooi FK, Das S, Prahlad V. Global Transcriptome Changes That Accompany Alterations in Serotonin Levels in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2020; 10:1225-1246. [PMID: 31996358 PMCID: PMC7144078 DOI: 10.1534/g3.120.401088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/25/2020] [Indexed: 11/18/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT), is a phylogenetically ancient molecule best characterized as a neurotransmitter that modulates multiple aspects of mood and social cognition. The roles that 5-HT plays in normal and abnormal behavior are not fully understood but have been posited to be due to its common function as a 'defense signal'. However, 5-HT levels also systemically impact cell physiology, modulating cell division, migration, apoptosis, mitochondrial biogenesis, cellular metabolism and differentiation. Whether these diverse cellular effects of 5-HT also share a common basis is unclear. C. elegans provides an ideal system to interrogate the systemic effects of 5-HT, since lacking a blood-brain barrier, 5-HT synthesized and released by neurons permeates the organism to modulate neuronal as well as non-neuronal cells throughout the body. Here we used RNA-Seq to characterize the systemic changes in gene expression that occur in C. elegans upon altering 5-HT levels, and compared the transcriptomes to published datasets. We find that an acute increase in 5-HT is accompanied by a global decrease in gene expression levels, upregulation of genes involved in stress pathways, changes that significantly correlate with the published transcriptomes of animals that have activated defense and immune responses, and an increase in levels of phosphorylated eukaryotic initiation factor, eIF2α. In 5-HT deficient animals lacking tryptophan hydroxylase (tph-1(mg280)II) there is a net increase in gene expression, with an overrepresentation of genes related to development and chromatin. Surprisingly, the transcriptomes of animals with acute increases in 5-HT levels, and 5-HT deficiency do not overlap with transcriptomes of mutants with whom they share striking physiological resemblance. These studies are the first to catalog systemic transcriptome changes that occur upon alterations in 5-HT levels. They further show that in C. elegans changes in gene expression upon altering 5-HT levels, and changes in physiology, are not directly correlated.
Collapse
Affiliation(s)
- Johnny Cruz-Corchado
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Srijit Das
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| |
Collapse
|
40
|
Bacqué-Cazenave J, Bharatiya R, Barrière G, Delbecque JP, Bouguiyoud N, Di Giovanni G, Cattaert D, De Deurwaerdère P. Serotonin in Animal Cognition and Behavior. Int J Mol Sci 2020; 21:ijms21051649. [PMID: 32121267 PMCID: PMC7084567 DOI: 10.3390/ijms21051649] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is acknowledged as a major neuromodulator of nervous systems in both invertebrates and vertebrates. It has been proposed for several decades that it impacts animal cognition and behavior. In spite of a completely distinct organization of the 5-HT systems across the animal kingdom, several lines of evidence suggest that the influences of 5-HT on behavior and cognition are evolutionary conserved. In this review, we have selected some behaviors classically evoked when addressing the roles of 5-HT on nervous system functions. In particular, we focus on the motor activity, arousal, sleep and circadian rhythm, feeding, social interactions and aggressiveness, anxiety, mood, learning and memory, or impulsive/compulsive dimension and behavioral flexibility. The roles of 5-HT, illustrated in both invertebrates and vertebrates, show that it is more able to potentiate or mitigate the neuronal responses necessary for the fine-tuning of most behaviors, rather than to trigger or halt a specific behavior. 5-HT is, therefore, the prototypical neuromodulator fundamentally involved in the adaptation of all organisms across the animal kingdom.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Rahul Bharatiya
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy
| | - Grégory Barrière
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Jean-Paul Delbecque
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Nouhaila Bouguiyoud
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- School of Biosciences, Neuroscience Division, Cardiff University, Cardiff CF24 4HQ, UK
| | - Daniel Cattaert
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Correspondence: (D.C.); (P.D.D.)
| | - Philippe De Deurwaerdère
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Correspondence: (D.C.); (P.D.D.)
| |
Collapse
|
41
|
Da Silva JD, Oliveira S, Pereira-Sousa J, Teixeira-Castro A, Costa MD, Maciel P. Loss of egli-1, the Caenorhabditis elegans Orthologue of a Downstream Target of SMN, Leads to Abnormalities in Sensorimotor Integration. Mol Neurobiol 2019; 57:1553-1569. [PMID: 31797327 DOI: 10.1007/s12035-019-01833-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/12/2019] [Indexed: 11/28/2022]
Abstract
The connectome of Caenorhabditis elegans has been extensively studied and fully mapped, allowing researchers to more confidently conclude on the impact of any change in neuronal circuits based on behavioral data. One of the more complex sensorimotor circuits in nematodes is the one that regulates the integration of feeding status with the subsequent behavioral responses that allow animals to adapt to environmental conditions. Here, we have characterized a Caenorhabditis elegans knockout model of the egli-1 gene (previously known as tag-175). This is an orthologue of the stasimon/tmem41b gene, a downstream target of SMN, the depleted protein in spinal muscular atrophy (SMA), which partially recapitulates the SMA phenotype in fly and zebrafish models when mutated. Surprisingly, egli-1 mutants reveal no deficits in motor function. Instead, they show functional impairment of a specific neuronal circuit, leading to defects in the integration of sensorial information related to food abundance, with consequences at the level of locomotion adaptation, egg laying, and the response to aversive chemical stimuli. This work has demonstrated for the first time the relevance of egli-1 in the nervous system, as well as revealed a function for this gene, which had remained elusive so far.
Collapse
Affiliation(s)
- Jorge Diogo Da Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stéphanie Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marta Daniela Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
42
|
Reciprocal modulation of 5-HT and octopamine regulates pumping via feedforward and feedback circuits in C. elegans. Proc Natl Acad Sci U S A 2019; 116:7107-7112. [PMID: 30872487 PMCID: PMC6452730 DOI: 10.1073/pnas.1819261116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Physiological regulation and behavior depend less on neurons than on neuronal circuits. Neurosignal integration is the basis of neurocircuit function. The modalities of neuroinformation integration are evolutionarily conserved in animals and humans. Here, we identified two modalities of neurosignal integration in two different circuits by which serotonergic ADFs regulate pharyngeal pumping in Caenorhabditis elegans: disinhibition in a feedforward circuit consisting of ADF, RIC, and SIA neurons and disexcitation, a modality of neurosignal integration suggested by this study, in a feedback circuit consisting of ADF, RIC, AWB, and ADF neurons. Feeding is vital for animal survival and is tightly regulated by the endocrine and nervous systems. To study the mechanisms of humoral regulation of feeding behavior, we investigated serotonin (5-HT) and octopamine (OA) signaling in Caenorhabditis elegans, which uses pharyngeal pumping to ingest bacteria into the gut. We reveal that a cross-modulation mechanism between 5-HT and OA, which convey feeding and fasting signals, respectively, mainly functions in regulating the pumping and secretion of both neuromodulators via ADF/RIC/SIA feedforward neurocircuit (consisting of ADF, RIC, and SIA neurons) and ADF/RIC/AWB/ADF feedback neurocircuit (consisting of ADF, RIC, AWB, and ADF neurons) under conditions of food supply and food deprivation, respectively. Food supply stimulates food-sensing ADFs to release more 5-HT, which augments pumping via inhibiting OA secretion by RIC interneurons and, thus, alleviates pumping suppression by OA-activated SIA interneurons/motoneurons. In contrast, nutrient deprivation stimulates RICs to secrete OA, which suppresses pumping via activating SIAs and maintains basal pumping and 5-HT production activity through excitation of ADFs relayed by AWB sensory neurons. Notably, the feedforward and feedback circuits employ distinct modalities of neurosignal integration, namely, disinhibition and disexcitation, respectively.
Collapse
|
43
|
Calahorro F, Keefe F, Dillon J, Holden-Dye L, O'Connor V. Neuroligin tuning of pharyngeal pumping reveals extrapharyngeal modulation of feeding in Caenorhabditis elegans. ACTA ACUST UNITED AC 2019; 222:jeb.189423. [PMID: 30559302 DOI: 10.1242/jeb.189423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/07/2018] [Indexed: 01/16/2023]
Abstract
The integration of distinct sensory modalities is essential for behavioural decision making. In C aenorhabditis elegans, this process is coordinated by neural circuits that integrate sensory cues from the environment to generate an appropriate behaviour at the appropriate output muscles. Food is a multimodal cue that impacts the microcircuits to modulate feeding and foraging drivers at the level of the pharyngeal and body wall muscle, respectively. When food triggers an upregulation in pharyngeal pumping, it allows the effective ingestion of food. Here, we show that a C elegans mutant in the single gene orthologous to human neuroligins, nlg-1, is defective in food-induced pumping. This was not due to an inability to sense food, as nlg-1 mutants were not defective in chemotaxis towards bacteria. In addition, we found that neuroligin is widely expressed in the nervous system, including AIY, ADE, ALA, URX and HSN neurons. Interestingly, despite the deficit in pharyngeal pumping, neuroligin was not expressed within the pharyngeal neuromuscular network, which suggests an extrapharyngeal regulation of this circuit. We resolved electrophysiologically the neuroligin contribution to the pharyngeal circuit by mimicking food-dependent pumping and found that the nlg-1 phenotype is similar to mutants impaired in GABAergic and/or glutamatergic signalling. We suggest that neuroligin organizes extrapharyngeal circuits that regulate the pharynx. These observations based on the molecular and cellular determinants of feeding are consistent with the emerging role of neuroligin in discretely impacting functional circuits underpinning complex behaviours.
Collapse
Affiliation(s)
- Fernando Calahorro
- Biological Sciences, Building 85, University of Southampton, Southampton SO17 1BJ, UK
| | - Francesca Keefe
- Biological Sciences, Building 85, University of Southampton, Southampton SO17 1BJ, UK
| | - James Dillon
- Biological Sciences, Building 85, University of Southampton, Southampton SO17 1BJ, UK
| | - Lindy Holden-Dye
- Biological Sciences, Building 85, University of Southampton, Southampton SO17 1BJ, UK
| | - Vincent O'Connor
- Biological Sciences, Building 85, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
44
|
Weeks JC, Robinson KJ, Lockery SR, Roberts WM. Anthelmintic drug actions in resistant and susceptible C. elegans revealed by electrophysiological recordings in a multichannel microfluidic device. Int J Parasitol Drugs Drug Resist 2018; 8:607-628. [PMID: 30503202 PMCID: PMC6287544 DOI: 10.1016/j.ijpddr.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022]
Abstract
Many anthelmintic drugs used to treat parasitic nematode infections target proteins that regulate electrical activity of neurons and muscles: ion channels (ICs) and neurotransmitter receptors (NTRs). Perturbation of IC/NTR function disrupts worm behavior and can lead to paralysis, starvation, immune attack and expulsion. Limitations of current anthelmintics include a limited spectrum of activity across species and the threat of drug resistance, highlighting the need for new drugs for human and veterinary medicine. Although ICs/NTRs are valuable anthelmintic targets, electrophysiological recordings are not commonly included in drug development pipelines. We designed a medium-throughput platform for recording electropharyngeograms (EPGs)-the electrical signals emitted by muscles and neurons of the pharynx during pharyngeal pumping (feeding)-in Caenorhabditis elegans and parasitic nematodes. The current study in C. elegans expands previous work in several ways. Detecting anthelmintic bioactivity in drugs, compounds or natural products requires robust, sustained pharyngeal pumping under baseline conditions. We generated concentration-response curves for stimulating pumping by perfusing 8-channel microfluidic devices (chips) with the neuromodulator serotonin, or with E. coli bacteria (C. elegans' food in the laboratory). Worm orientation in the chip (head-first vs. tail-first) affected the response to E. coli but not to serotonin. Using a panel of anthelmintics-ivermectin, levamisole and piperazine-targeting different ICs/NTRs, we determined the effects of concentration and treatment duration on EPG activity, and successfully distinguished control (N2) and drug-resistant worms (avr-14; avr-15; glc-1, unc-38 and unc-49). EPG recordings detected anthelmintic activity of drugs that target ICs/NTRs located in the pharynx as well as at extra-pharyngeal sites. A bus-8 mutant with enhanced permeability was more sensitive than controls to drug treatment. These results provide a useful framework for investigators who would like to more easily incorporate electrophysiology as a routine component of their anthelmintic research workflow.
Collapse
Affiliation(s)
- Janis C Weeks
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR, 97403-1254, USA.
| | - Kristin J Robinson
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR, 97403-1254, USA.
| | - Shawn R Lockery
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR, 97403-1254, USA.
| | - William M Roberts
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR, 97403-1254, USA.
| |
Collapse
|
45
|
Affiliation(s)
- Gongchen Sun
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
46
|
Yu Z, Yin D, Hou M, Zhang J. Effects of food availability on the trade-off between growth and antioxidant responses in Caenorhabditis elegans exposed to sulfonamide antibiotics. CHEMOSPHERE 2018; 211:278-285. [PMID: 30077107 DOI: 10.1016/j.chemosphere.2018.07.173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/06/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
Adverse effects of sulfonamide antibiotics (SAs) include growth inhibition and antioxidant activation which showed trade-off effects. Yet, the influence of food availability on such effects have not been thoroughly investigated. Caenorhabditis elegans were exposed to four SAs at high and low food availabilities which were represented by the optical densities of bacteria at 600 nm. The nematode feeding, growth and antioxidants including superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) were determined. Results showed that the control nematodes at low food availability had less growth and greater antioxidant responses than the nematodes at high food availability. In SA exposure, the nematode growth in the presence of food (at both high and low food availability) was less than that in its absence, supporting the role of food as an exposure pathway. The nematode growth at low food availability showed significantly greater inhibition than at high food availability (p < 0.05). The nematode antioxidants showed stimulations, and CAT had the greatest stimulation. Moreover, the stimulation on CAT at low food availability were significantly higher than those at high food availability (p < 0.05). That is to say, SA exposure at low food availability further biased the trade-off effects towards more energy investment in antioxidant with less in growth. Further studies on the expression levels of CAT encoding genes demonstrated that cells in intestines were the main antioxidant response sites, which further supported the contributions of food to the observed toxicities.
Collapse
Affiliation(s)
- Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang, 314051, PR China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Meifang Hou
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| |
Collapse
|
47
|
Smith MK, Bose U, Mita M, Hall MR, Elizur A, Motti CA, Cummins SF. Differences in Small Molecule Neurotransmitter Profiles From the Crown-of-Thorns Seastar Radial Nerve Revealed Between Sexes and Following Food-Deprivation. Front Endocrinol (Lausanne) 2018; 9:551. [PMID: 30374327 PMCID: PMC6196772 DOI: 10.3389/fendo.2018.00551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/30/2018] [Indexed: 01/14/2023] Open
Abstract
Neurotransmitters serve as chemical mediators of cell communication, and are known to have important roles in regulating numerous physiological and metabolic events in eumetazoans. The Crown-of-Thorns Seastar (COTS) is an asteroid echinoderm that has been the focus of numerous ecological studies due to its negative impact on coral reefs when in large numbers. Research devoted to its neural signaling, from basic anatomy to the key small neurotransmitters, would expand our current understanding of neural-driven biological processes, such as growth and reproduction, and offers a new approach to exploring the propensity for COTS population explosions and subsequent collapse. In this study we investigated the metabolomic profiles of small molecule neurotransmitters in the COTS radial nerve cord. Multivariate analysis shows differential abundance of small molecule neurotransmitters in male and female COTS, and in food-deprived individuals with significant differences between sexes in gamma-aminobutyric acid (GABA), histamine and serotonin, and significant differences in histamine and serotonin between satiation states. Annotation established that the majority of biosynthesis enzyme genes are present in the COTS genome. The spatial distribution of GABA, histamine and serotonin in the radial nerve cord was subsequently confirmed by immunolocalization; serotonin is most prominent within the ectoneural regions, including unique neural bulbs, while GABA and histamine localize primarily within neuropil fibers. Glutamic acid, which was also found in high relative abundance and is a precursor of GABA, is known as a spawning inhibitor in seastars, and as such was tested for inhibition of ovulation ex-vivo which resulted in complete inhibition of oocyte maturation and ovulation induced by 1-Methyladenine. These findings not only advance our knowledge of echinoderm neural signaling processes but also identify potential targets for developing novel approaches for COTS biocontrol.
Collapse
Affiliation(s)
- Meaghan K. Smith
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, DC, Australia
| | - Utpal Bose
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, DC, Australia
| | - Masatoshi Mita
- Center for Advanced Biomedical Sciences, TWIns Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Michael R. Hall
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, QLD, Australia
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, DC, Australia
| | - Cherie A. Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, QLD, Australia
| | - Scott F. Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, DC, Australia
| |
Collapse
|
48
|
Kamili F, Lu H. Recent Advances and Trends in Microfluidic Platforms for C. elegans Biological Assays. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:245-264. [PMID: 29894230 DOI: 10.1146/annurev-anchem-061417-125604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microfluidics has proven to be a key tool in quantitative biological research. The C. elegans research community in particular has developed a variety of microfluidic platforms to investigate sensory systems, development, aging, and physiology of the nematode. Critical for the growth of this field, however, has been the implementation of concurrent advanced microscopy, hardware, and software technologies that enable the discovery of novel biology. In this review, we highlight recent innovations in microfluidic platforms used for assaying C. elegans and discuss the novel technological approaches and analytic strategies required for these systems. We conclude that platforms that provide analytical frameworks for assaying specific biological mechanisms and those that take full advantage of integrated technologies to extract high-value quantitative information from worm assays are most likely to move the field forward.
Collapse
Affiliation(s)
- Farhan Kamili
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Hang Lu
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| |
Collapse
|
49
|
Lee KS, Levine E. A Microfluidic Platform for Longitudinal Imaging in Caenorhabditis elegans. J Vis Exp 2018. [PMID: 29782012 DOI: 10.3791/57348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the last decade, microfluidic techniques have been applied to study small animals, including the nematode Caenorhabditis elegans, and have proved useful as a convenient live imaging platform providing capabilities for precise control of experimental conditions in real time. In this article, we demonstrate live imaging of individual worms employing WormSpa, a previously-published custom microfluidic device. In the device, multiple worms are individually confined to separate chambers, allowing multiplexed longitudinal surveillance of various biological processes. To illustrate the capability, we performed proof-of-principle experiments in which worms were infected in the device with pathogenic bacteria, and the dynamics of expression of immune response genes and egg laying were monitored continuously in individual animals. The simple design and operation of this device make it suitable for users with no previous experience with microfluidic-based experiments. We propose that this approach will be useful for many researchers interested in longitudinal observations of biological processes under well-defined conditions.
Collapse
Affiliation(s)
- Kyung Suk Lee
- Department of Physics Education, Kongju National University; Department of Physics, Harvard University
| | - Erel Levine
- Department of Physics, Harvard University; FAS Center for Systems Biology, Harvard University;
| |
Collapse
|
50
|
Rodríguez-Palero MJ, López-Díaz A, Marsac R, Gomes JE, Olmedo M, Artal-Sanz M. An automated method for the analysis of food intake behaviour in Caenorhabditis elegans. Sci Rep 2018; 8:3633. [PMID: 29483540 PMCID: PMC5832146 DOI: 10.1038/s41598-018-21964-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/09/2018] [Indexed: 11/24/2022] Open
Abstract
The study of mechanisms that govern feeding behaviour and its related disorders is a matter of global health interest. The roundworm Caenorhabditis elegans is becoming a model organism of choice to study these conserved pathways. C. elegans feeding depends on the contraction of the pharynx (pumping). Thanks to the worm transparency, pumping can be directly observed under a stereoscope. Therefore, C. elegans feeding has been historically investigated by counting pharyngeal pumping or by other indirect approaches. However, those methods are short-term, time-consuming and unsuitable for independent measurements of sizable numbers of individuals. Although some particular devices and long-term methods have been lately reported, they fail in the automated, scalable and/or continuous aspects. Here we present an automated bioluminescence-based method for the analysis and continuous monitoring of worm feeding in a multi-well format. We validate the method using genetic, environmental and pharmacological modulators of pharyngeal pumping. This flexible methodology allows studying food intake at specific time-points or during longer periods of time, in single worms or in populations at any developmental stage. Additionally, changes in feeding rates in response to differential metabolic status or external environmental cues can be monitored in real time, allowing accurate kinetic measurements.
Collapse
Affiliation(s)
- Mª Jesús Rodríguez-Palero
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Departament of Molecular Biology and Biochemical Engineering, Carretera de Utrera, km 1, 41013, Seville, Spain
| | - Ana López-Díaz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Departament of Molecular Biology and Biochemical Engineering, Carretera de Utrera, km 1, 41013, Seville, Spain
| | - Roxane Marsac
- Institut de Biochimie et Génétique Cellulaires - C.N.R.S. UMR 5095 and Université de Bordeaux, 1, rue Camille Saint-Saëns, 33077, Bordeaux Cedex, France
| | - José-Eduardo Gomes
- Institut de Biochimie et Génétique Cellulaires - C.N.R.S. UMR 5095 and Université de Bordeaux, 1, rue Camille Saint-Saëns, 33077, Bordeaux Cedex, France
| | - María Olmedo
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Departament of Molecular Biology and Biochemical Engineering, Carretera de Utrera, km 1, 41013, Seville, Spain.
- Department of Genetics, University of Seville, Avenida Reina Mercedes s/n, 41012, Seville, Spain.
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Departament of Molecular Biology and Biochemical Engineering, Carretera de Utrera, km 1, 41013, Seville, Spain.
| |
Collapse
|