1
|
Weinstock D. (Re)Minding the obvious. Hematol Oncol 2024; 42:e3182. [PMID: 37209030 DOI: 10.1002/hon.3182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
2
|
Wu H, Lu A, Yuan J, Yu Y, Lv C, Lu J. Mono-ADP-ribosylation, a MARylationmultifaced modification of protein, DNA and RNA: characterizations, functions and mechanisms. Cell Death Discov 2024; 10:226. [PMID: 38734665 PMCID: PMC11088682 DOI: 10.1038/s41420-024-01994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The functional alterations of proteins and nucleic acids mainly rely on their modifications. ADP-ribosylation is a NAD+-dependent modification of proteins and, in some cases, of nucleic acids. This modification is broadly categorized as Mono(ADP-ribosyl)ation (MARylation) or poly(ADP-ribosyl)ation (PARylation). MARylation catalyzed by mono(ADP-ribosyl) transferases (MARTs) is more common in cells and the number of MARTs is much larger than poly(ADP-ribosyl) transferases. Unlike PARylation is well-characterized, research on MARylation is at the starting stage. However, growing evidence demonstrate the cellular functions of MARylation, supporting its potential roles in human health and diseases. In this review, we outlined MARylation-associated proteins including MARTs, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. We summarized up-to-date findings about MARylation onto newly identified substrates including protein, DNA and RNA, and focused on the functions of these reactions in pathophysiological conditions as well as speculated the potential mechanisms. Furthermore, new strategies of MARylation detection and the current state of MARTs inhibitors were discussed. We also provided an outlook for future study, aiming to revealing the unknown biological properties of MARylation and its relevant mechanisms, and establish a novel therapeutic perspective in human diseases.
Collapse
Affiliation(s)
- Hao Wu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Anqi Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiuzhi Yuan
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Yu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chongning Lv
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Jincai Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
3
|
Shalwitz R, Day T, Ruehlmann AK, Julio L, Gordon S, Vandeuren A, Nelson M, Lyman M, Kelly K, Altvater A, Ondeck C, O'Brien S, Hamilton T, Hanson RL, Wayman K, Miller A, Shalwitz I, Batchelor E, McNutt P. Treatment of Sulfur Mustard Corneal Injury by Augmenting the DNA Damage Response (DDR): A Novel Approach. J Pharmacol Exp Ther 2024; 388:526-535. [PMID: 37977813 PMCID: PMC10801765 DOI: 10.1124/jpet.123.001686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023] Open
Abstract
Sulfur mustard (SM) is a highly reactive organic chemical has been used as a chemical warfare agent and terrorist threat since World War I. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. Exposure to higher doses can elicit persistent secondary keratopathies that cause reduced quality of life and impaired or lost vision. Despite a century of research, there are no specific treatments for acute or persistent ocular SM injuries. SM cytotoxicity emerges, in part, through DNA alkylation and double-strand breaks (DSBs). Because DSBs can naturally be repaired by DNA damage response pathways with low efficiency, we hypothesized that enhancing the homologous recombination pathway could pose a novel approach to mitigate SM injury. Here, we demonstrate that a dilithium salt of adenosine diphosphoribose (INV-102) increases protein levels of p53 and Sirtuin 6, upregulates transcription of BRCA1/2, enhances γH2AX focus formation, and promotes assembly of repair complexes at DSBs. Based on in vitro evidence showing INV-102 enhancement of DNA damage response through both p53-dependent and p53-independent pathways, we next tested INV-102 in a rabbit preclinical model of corneal injury. In vivo studies demonstrate a marked reduction in the incidence and severity of secondary keratopathies in INV-102-treated eyes compared with vehicle-treated eyes when treatment was started 24 hours after SM vapor exposure. These results suggest DNA repair mechanisms are a viable therapeutic target for SM injury and suggest topical treatment with INV-102 is a promising approach for SM as well as other conditions associated with DSBs. SIGNIFICANCE STATEMENT: Sulfur mustard gas corneal injury currently has no therapeutic treatment. This study aims to show the therapeutic potential of activating the body's natural DNA damage response to activate tissue repair.
Collapse
Affiliation(s)
- Robert Shalwitz
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Tovah Day
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Anna Kotsakis Ruehlmann
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Lindsay Julio
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Shellaina Gordon
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Adrianna Vandeuren
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Marian Nelson
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Megan Lyman
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Kyle Kelly
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Amber Altvater
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Celinia Ondeck
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Sean O'Brien
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Tracey Hamilton
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Ryan L Hanson
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Kayla Wayman
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Alexandrea Miller
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Isaiah Shalwitz
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Eric Batchelor
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Patrick McNutt
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| |
Collapse
|
4
|
Amé JC, Nguekeu-Zebase L, Harwood D, Yildirim Z, Roegel L, Boos A, Dantzer F. Purification of Recombinant Human PARP-3. Methods Mol Biol 2022; 2609:419-441. [PMID: 36515851 DOI: 10.1007/978-1-0716-2891-1_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The purification of poly(ADP-ribose) polymerase-3 (PARP-3) from overexpressing cells (Sf9 insect cells, Escherichia coli) has been updated to a fast and reproducible two-chromatographic-step protocol. After cell lysis, PARP-3 protein from the crude extract is affinity purified on a 3-aminobenzamide Sepharose™ chromatographic step. The last contaminants and the 3-methoxybenzamide used to elute PARP-3 from the previous affinity column are removed on the high-performance strong cation exchanger MonoQ™ matrix. This step allows also the concentration of the protein. The columns connected to an A° KTA™ purifier system allow the purification of the protein in three days with a high-yield recovery. As described in the protocol, more than 3 mg of pure and active human PARP-3 can be obtained from 1.5 L of E. coli culture.
Collapse
Affiliation(s)
- Jean-Christophe Amé
- Groupe Poly (ADP-ribosyl)ation et Intégrité du Génome, UMR7242 du CNRS É cole Supérieure de Biotechnologie de Strasbourg Parc d'innovation, Illkirch Cedex, France.
| | - Leonel Nguekeu-Zebase
- Groupe Poly (ADP-ribosyl)ation et Intégrité du Génome, UMR7242 du CNRS É cole Supérieure de Biotechnologie de Strasbourg Parc d'innovation, Illkirch Cedex, France
| | - Daisy Harwood
- Groupe Poly (ADP-ribosyl)ation et Intégrité du Génome, UMR7242 du CNRS É cole Supérieure de Biotechnologie de Strasbourg Parc d'innovation, Illkirch Cedex, France
| | - Zuleyha Yildirim
- Groupe Poly (ADP-ribosyl)ation et Intégrité du Génome, UMR7242 du CNRS É cole Supérieure de Biotechnologie de Strasbourg Parc d'innovation, Illkirch Cedex, France
| | - Lisa Roegel
- Groupe Poly (ADP-ribosyl)ation et Intégrité du Génome, UMR7242 du CNRS É cole Supérieure de Biotechnologie de Strasbourg Parc d'innovation, Illkirch Cedex, France
| | - Agathe Boos
- Groupe Poly (ADP-ribosyl)ation et Intégrité du Génome, UMR7242 du CNRS É cole Supérieure de Biotechnologie de Strasbourg Parc d'innovation, Illkirch Cedex, France
| | - Françoise Dantzer
- Groupe Poly (ADP-ribosyl)ation et Intégrité du Génome, UMR7242 du CNRS É cole Supérieure de Biotechnologie de Strasbourg Parc d'innovation, Illkirch Cedex, France
| |
Collapse
|
5
|
Zhao W, Pei Q, Zhu Y, Zhan D, Mao G, Wang M, Qiu Y, Zuo K, Pei H, Sun LQ, Wen M, Tan R. The Association of R-Loop Binding Proteins Subtypes with CIN Implicates Therapeutic Strategies in Colorectal Cancer. Cancers (Basel) 2022; 14:5607. [PMID: 36428700 PMCID: PMC9688457 DOI: 10.3390/cancers14225607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chromosomal instability (CIN) covers approximately 65 to 70% of colorectal cancer patients and plays an essential role in cancer progression. However, the molecular features and therapeutic strategies related to those patients are still controversial. R-loop binding proteins (RLBPs) exert significant roles in transcription and replication. Here, integrative colorectal cancer proteogenomic analysis identified two RLBPs subtypes correlated with distinct prognoses. Cluster I (CI), represented by high expression of RLBPs, was associated with the CIN phenotype. While Cluster II (CII) with the worst prognosis and low expression of RLBPs was composed of a high percentage of patients with mucinous adenocarcinoma or right-sided colon cancer. The molecular feature analysis revealed that the active RNA processing, ribosome synthesis, and aberrant DNA damage repair were shown in CI, a high inflammatory signaling pathway, and lymphocyte infiltration was enriched in CII. In addition, we revealed 42 tumor-associated RLBPs proteins. The CI with high expression of tumor-associated proteins was sensitive to drugs targeting genome integrity and EGFR in both cell and organoid models. Thus, our study unveils a significant molecular association of the CIN phenotype with RLBPs, and also provides a powerful resource for further functional exploration of RLBPs in cancer progression and therapeutic application.
Collapse
Affiliation(s)
- Wenchao Zhao
- General Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Pei
- General Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongwei Zhu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Guo Mao
- Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Meng Wang
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
| | - Yanfang Qiu
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
| | - Ke Zuo
- Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Haiping Pei
- General Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lun-Quan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ming Wen
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Rong Tan
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
6
|
PARP3 supervises G9a-mediated repression of adhesion and hypoxia-responsive genes in glioblastoma cells. Sci Rep 2022; 12:15534. [PMID: 36109561 PMCID: PMC9478127 DOI: 10.1038/s41598-022-19525-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIn breast cancer, Poly(ADP-ribose) polymerase 3 (PARP3) has been identified as a key driver of tumor aggressiveness exemplifying its selective inhibition as a promising surrogate for clinical activity onto difficult-to-treat cancers. Here we explored the role of PARP3 in the oncogenicity of glioblastoma, the most aggressive type of brain cancer. The absence of PARP3 did not alter cell proliferation nor the in vivo tumorigenic potential of glioblastoma cells. We identified a physical and functional interaction of PARP3 with the histone H3 lysine 9 methyltransferase G9a. We show that PARP3 helps to adjust G9a-dependent repression of the adhesion genes Nfasc and Parvb and the hypoxia-responsive genes Hif-2α, Runx3, Mlh1, Ndrg1, Ndrg2 and Ndrg4. Specifically for Nfasc, Parvb and Ndrg4, PARP3/G9a cooperate for an adjusted establishment of the repressive mark H3K9me2. While examining the functional consequence in cell response to hypoxia, we discovered that PARP3 acts to maintain the cytoskeletal microtubule stability. As a result, the absence of PARP3 markedly increases the sensitivity of glioblastoma cells to microtubule-destabilizing agents providing a new therapeutic avenue for PARP3 inhibition in brain cancer therapy.
Collapse
|
7
|
Clinical utility of PDX cohorts to reveal biomarkers of intrinsic resistance and clonal architecture changes underlying acquired resistance to cetuximab in HNSCC. Signal Transduct Target Ther 2022; 7:73. [PMID: 35260570 PMCID: PMC8904860 DOI: 10.1038/s41392-022-00908-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Cetuximab is a widely used drug for treating head and neck squamous cell carcinomas (HNSCCs); however, it provides restricted clinical benefits, and its response duration is limited by drug resistance. Here, we conducted randomized “Phase II-like clinical trials” of 49 HNSCC PDX models and reveal multiple informative biomarkers for intrinsic resistance to cetuximab (e.g., amplification of ANKH, up-regulation of PARP3). After validating these intrinsic resistance biomarkers in another HNSCC PDX cohort (61 PDX models), we generated acquired cetuximab resistance PDX models and analyzed them to uncover resistance mechanisms. Whole exome sequencing and transcriptome sequencing revealed diverse patterns of clonal selection in acquired resistant PDXs, including the emergence of subclones with strongly activated RAS/MAPK. Extending these insights, we show that a combination of a RAC1/RAC3 dual-target inhibitor and cetuximab could overcome acquired cetuximab resistance in vitro and in vivo. Beyond revealing intrinsic resistance biomarkers, our PDX-based study shows how clonal architecture changes underlying acquired resistance can be targeted to expand the therapeutic utility of this important drug to more HNSCC patients.
Collapse
|
8
|
Linke R, Limmer M, Juranek SA, Heine A, Paeschke K. The Relevance of G-Quadruplexes for DNA Repair. Int J Mol Sci 2021; 22:12599. [PMID: 34830478 PMCID: PMC8620898 DOI: 10.3390/ijms222212599] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/28/2023] Open
Abstract
DNA molecules can adopt a variety of alternative structures. Among these structures are G-quadruplex DNA structures (G4s), which support cellular function by affecting transcription, translation, and telomere maintenance. These structures can also induce genome instability by stalling replication, increasing DNA damage, and recombination events. G-quadruplex-driven genome instability is connected to tumorigenesis and other genetic disorders. In recent years, the connection between genome stability, DNA repair and G4 formation was further underlined by the identification of multiple DNA repair proteins and ligands which bind and stabilize said G4 structures to block specific DNA repair pathways. The relevance of G4s for different DNA repair pathways is complex and depends on the repair pathway itself. G4 structures can induce DNA damage and block efficient DNA repair, but they can also support the activity and function of certain repair pathways. In this review, we highlight the roles and consequences of G4 DNA structures for DNA repair initiation, processing, and the efficiency of various DNA repair pathways.
Collapse
Affiliation(s)
- Rebecca Linke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaela Limmer
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Stefan A. Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| |
Collapse
|
9
|
Marilovtseva EV, Studitsky VM. Guanine Quadruplexes in Cell Nucleus Metabolism. Mol Biol 2021. [DOI: 10.1134/s0026893321040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Zell J, Duskova K, Chouh L, Bossaert M, Chéron N, Granzhan A, Britton S, Monchaud D. Dual targeting of higher-order DNA structures by azacryptands induces DNA junction-mediated DNA damage in cancer cells. Nucleic Acids Res 2021; 49:10275-10288. [PMID: 34551430 PMCID: PMC8501980 DOI: 10.1093/nar/gkab796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
DNA is intrinsically dynamic and folds transiently into alternative higher-order structures such as G-quadruplexes (G4s) and three-way DNA junctions (TWJs). G4s and TWJs can be stabilised by small molecules (ligands) that have high chemotherapeutic potential, either as standalone DNA damaging agents or combined in synthetic lethality strategies. While previous approaches have claimed to use ligands that specifically target either G4s or TWJs, we report here on a new approach in which ligands targeting both TWJs and G4s in vitro demonstrate cellular effects distinct from that of G4 ligands, and attributable to TWJ targeting. The DNA binding modes of these new, dual TWJ-/G4-ligands were studied by a panel of in vitro methods and theoretical simulations, and their cellular properties by extensive cell-based assays. We show here that cytotoxic activity of TWJ-/G4-ligands is mitigated by the DNA damage response (DDR) and DNA topoisomerase 2 (TOP2), making them different from typical G4-ligands, and implying a pivotal role of TWJs in cells. We designed and used a clickable ligand, TrisNP-α, to provide unique insights into the TWJ landscape in cells and its modulation upon co-treatments. This wealth of data was exploited to design an efficient synthetic lethality strategy combining dual ligands with clinically relevant DDR inhibitors.
Collapse
Affiliation(s)
- Joanna Zell
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Katerina Duskova
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Leïla Chouh
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France
- Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - Madeleine Bossaert
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR 5089, Université de Toulouse, UPS, Équipe labellisée la Ligue Contre le Cancer, 31077 Toulouse, France
| | - Nicolas Chéron
- Pasteur, Département de chimie, École Normale Supérieure (ENS), CNRS UMR8640, PSL Research University, Sorbonne Université, 75005 Paris, France
| | - Anton Granzhan
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France
- Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR 5089, Université de Toulouse, UPS, Équipe labellisée la Ligue Contre le Cancer, 31077 Toulouse, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| |
Collapse
|
11
|
Ramsden DA, Nussenzweig A. Mechanisms driving chromosomal translocations: lost in time and space. Oncogene 2021; 40:4263-4270. [PMID: 34103687 PMCID: PMC8238880 DOI: 10.1038/s41388-021-01856-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023]
Abstract
Translocations arise when an end of one chromosome break is mistakenly joined to an end from a different chromosome break. Since translocations can lead to developmental disease and cancer, it is important to understand the mechanisms leading to these chromosome rearrangements. We review how characteristics of the sources and the cellular responses to chromosome breaks contribute to the accumulation of multiple chromosome breaks at the same moment in time. We also discuss the important role for chromosome break location; how translocation potential is impacted by the location of chromosome breaks both within chromatin and within the nucleus, as well as the effect of altered mobility of chromosome breaks. A common theme in work addressing both temporal and spatial contributions to translocation is that there is no shortage of examples of factors that promote translocation in one context, but have no impact or the opposite impact in another. Accordingly, a clear message for future work on translocation mechanism is that unlike normal DNA metabolic pathways, it isn't easily modeled as a simple, linear pathway that is uniformly followed regardless of differing cellular contexts.
Collapse
Affiliation(s)
- Dale A. Ramsden
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Correspondence:
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Institutes of Health, Bethesda, United States
| |
Collapse
|
12
|
Weixler L, Schäringer K, Momoh J, Lüscher B, Feijs KLH, Žaja R. ADP-ribosylation of RNA and DNA: from in vitro characterization to in vivo function. Nucleic Acids Res 2021; 49:3634-3650. [PMID: 33693930 PMCID: PMC8053099 DOI: 10.1093/nar/gkab136] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The functionality of DNA, RNA and proteins is altered dynamically in response to physiological and pathological cues, partly achieved by their modification. While the modification of proteins with ADP-ribose has been well studied, nucleic acids were only recently identified as substrates for ADP-ribosylation by mammalian enzymes. RNA and DNA can be ADP-ribosylated by specific ADP-ribosyltransferases such as PARP1-3, PARP10 and tRNA 2'-phosphotransferase (TRPT1). Evidence suggests that these enzymes display different preferences towards different oligonucleotides. These reactions are reversed by ADP-ribosylhydrolases of the macrodomain and ARH families, such as MACROD1, TARG1, PARG, ARH1 and ARH3. Most findings derive from in vitro experiments using recombinant components, leaving the relevance of this modification in cells unclear. In this Survey and Summary, we provide an overview of the enzymes that ADP-ribosylate nucleic acids, the reversing hydrolases, and the substrates' requirements. Drawing on data available for other organisms, such as pierisin1 from cabbage butterflies and the bacterial toxin-antitoxin system DarT-DarG, we discuss possible functions for nucleic acid ADP-ribosylation in mammals. Hypothesized roles for nucleic acid ADP-ribosylation include functions in DNA damage repair, in antiviral immunity or as non-conventional RNA cap. Lastly, we assess various methods potentially suitable for future studies of nucleic acid ADP-ribosylation.
Collapse
Affiliation(s)
- Lisa Weixler
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | - Katja Schäringer
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | - Jeffrey Momoh
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | - Karla L H Feijs
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | - Roko Žaja
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| |
Collapse
|
13
|
Zell J, Rota Sperti F, Britton S, Monchaud D. DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chem Biol 2021; 2:47-76. [PMID: 35340894 PMCID: PMC8885165 DOI: 10.1039/d0cb00151a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022] Open
Abstract
Damaging DNA is a current and efficient strategy to fight against cancer cell proliferation. Numerous mechanisms exist to counteract DNA damage, collectively referred to as the DNA damage response (DDR) and which are commonly dysregulated in cancer cells. Precise knowledge of these mechanisms is necessary to optimise chemotherapeutic DNA targeting. New research on DDR has uncovered a series of promising therapeutic targets, proteins and nucleic acids, with application notably via an approach referred to as combination therapy or combinatorial synthetic lethality. In this review, we summarise the cornerstone discoveries which gave way to the DNA being considered as an anticancer target, and the manipulation of DDR pathways as a valuable anticancer strategy. We describe in detail the DDR signalling and repair pathways activated in response to DNA damage. We then summarise the current understanding of non-B DNA folds, such as G-quadruplexes and DNA junctions, when they are formed and why they can offer a more specific therapeutic target compared to that of canonical B-DNA. Finally, we merge these subjects to depict the new and highly promising chemotherapeutic strategy which combines enhanced-specificity DNA damaging and DDR targeting agents. This review thus highlights how chemical biology has given rise to significant scientific advances thanks to resolutely multidisciplinary research efforts combining molecular and cell biology, chemistry and biophysics. We aim to provide the non-specialist reader a gateway into this exciting field and the specialist reader with a new perspective on the latest results achieved and strategies devised.
Collapse
Affiliation(s)
- Joanna Zell
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS Toulouse France
- Équipe Labellisée la Ligue Contre le Cancer 2018 Toulouse France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| |
Collapse
|
14
|
Parp3 promotes astrocytic differentiation through a tight regulation of Nox4-induced ROS and mTorc2 activation. Cell Death Dis 2020; 11:954. [PMID: 33159039 PMCID: PMC7648797 DOI: 10.1038/s41419-020-03167-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Parp3 is a member of the Poly(ADP-ribose) polymerase (Parp) family that has been characterized for its functions in strand break repair, chromosomal rearrangements, mitotic segregation and tumor aggressiveness. Yet its physiological implications remain unknown. Here we report a central function of Parp3 in the regulation of redox homeostasis in continuous neurogenesis in mice. We show that the absence of Parp3 provokes Nox4-induced oxidative stress and defective mTorc2 activation leading to inefficient differentiation of post-natal neural stem/progenitor cells to astrocytes. The accumulation of ROS contributes to the decreased activity of mTorc2 as a result of an oxidation-induced and Fbxw7-mediated ubiquitination and degradation of Rictor. In vivo, mTorc2 signaling is compromised in the striatum of naïve post-natal Parp3-deficient mice and 6 h after acute hypoxia-ischemia. These findings reveal a physiological function of Parp3 in the tight regulation of striatal oxidative stress and mTorc2 during astrocytic differentiation and in the acute phase of hypoxia-ischemia.
Collapse
|
15
|
Polymerase δ promotes chromosomal rearrangements and imprecise double-strand break repair. Proc Natl Acad Sci U S A 2020; 117:27566-27577. [PMID: 33077594 DOI: 10.1073/pnas.2014176117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent studies have implicated DNA polymerases θ (Pol θ) and β (Pol β) as mediators of alternative nonhomologous end-joining (Alt-NHEJ) events, including chromosomal translocations. Here we identify subunits of the replicative DNA polymerase δ (Pol δ) as promoters of Alt-NHEJ that results in more extensive intrachromosomal mutations at a single double-strand break (DSB) and more frequent translocations between two DSBs. Depletion of the Pol δ accessory subunit POLD2 destabilizes the complex, resulting in degradation of both POLD1 and POLD3 in human cells. POLD2 depletion markedly reduces the frequency of translocations with sequence modifications but does not affect the frequency of translocations with exact joins. Using separation-of-function mutants, we show that both the DNA synthesis and exonuclease activities of the POLD1 subunit contribute to translocations. As described in yeast and unlike Pol θ, Pol δ also promotes homology-directed repair. Codepletion of POLD2 with 53BP1 nearly eliminates translocations. POLD1 and POLD2 each colocalize with phosphorylated H2AX at ionizing radiation-induced DSBs but not with 53BP1. Codepletion of POLD2 with either ligase 3 (LIG3) or ligase 4 (LIG4) does not further reduce translocation frequency compared to POLD2 depletion alone. Together, these data support a model in which Pol δ promotes Alt-NHEJ in human cells at DSBs, including translocations.
Collapse
|
16
|
Vítor AC, Huertas P, Legube G, de Almeida SF. Studying DNA Double-Strand Break Repair: An Ever-Growing Toolbox. Front Mol Biosci 2020; 7:24. [PMID: 32154266 PMCID: PMC7047327 DOI: 10.3389/fmolb.2020.00024] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/04/2020] [Indexed: 12/29/2022] Open
Abstract
To ward off against the catastrophic consequences of persistent DNA double-strand breaks (DSBs), eukaryotic cells have developed a set of complex signaling networks that detect these DNA lesions, orchestrate cell cycle checkpoints and ultimately lead to their repair. Collectively, these signaling networks comprise the DNA damage response (DDR). The current knowledge of the molecular determinants and mechanistic details of the DDR owes greatly to the continuous development of ground-breaking experimental tools that couple the controlled induction of DSBs at distinct genomic positions with assays and reporters to investigate DNA repair pathways, their impact on other DNA-templated processes and the specific contribution of the chromatin environment. In this review, we present these tools, discuss their pros and cons and illustrate their contribution to our current understanding of the DDR.
Collapse
Affiliation(s)
- Alexandra C Vítor
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Pablo Huertas
- Department of Genetics, University of Seville, Seville, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Sérgio F de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Sutcu HH, Matta E, Ishchenko AA. Role of PARP-catalyzed ADP-ribosylation in the Crosstalk Between DNA Strand Breaks and Epigenetic Regulation. J Mol Biol 2019:S0022-2836(19)30719-3. [PMID: 31866292 DOI: 10.1016/j.jmb.2019.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Covalent linkage of ADP-ribose units to proteins catalyzed by poly(ADP-ribose) polymerases (PARPs) plays important signaling functions in a plethora of cellular processes including DNA damage response, chromatin organization, and gene transcription. Poly- and mono-ADP-ribosylation of target macromolecules are often responsible both for the initiation and for coordination of these processes in mammalian cells. Currently, the number of cellular targets for ADP-ribosylation is rapidly expanding, and the molecular mechanisms underlying the broad substrate specificity of PARPs present enormous interest. In this review, the roles of PARP-mediated modifications of protein and nucleic acids, the readers of ADP-ribosylated structures, and the origin and function of programmed DNA strand breaks in PARP activation, transcription regulation, and DNA demethylation are discussed.
Collapse
Affiliation(s)
- Haser H Sutcu
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Elie Matta
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France.
| |
Collapse
|
18
|
Hoch NC, Polo LM. ADP-ribosylation: from molecular mechanisms to human disease. Genet Mol Biol 2019; 43:e20190075. [PMID: 31930280 PMCID: PMC7198025 DOI: 10.1590/1678-4685-gmb-2019-0075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/04/2019] [Indexed: 12/23/2022] Open
Abstract
Post-translational modification of proteins by ADP-ribosylation, catalysed by
poly (ADP-ribose) polymerases (PARPs) using NAD+ as a substrate,
plays central roles in DNA damage signalling and repair, modulates a range of
cellular signalling cascades and initiates programmed cell death by parthanatos.
Here, we present mechanistic aspects of ADP-ribose modification, PARP activation
and the cellular functions of ADP-ribose signalling, and discuss how this
knowledge is uncovering therapeutic avenues for the treatment of increasingly
prevalent human diseases such as cancer, ischaemic damage and
neurodegeneration.
Collapse
Affiliation(s)
- Nicolas C Hoch
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luis M Polo
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK.,Institute of Histology and Embryology of Mendoza - CONICET, Mendoza, Argentina
| |
Collapse
|
19
|
Bacolla A, Ye Z, Ahmed Z, Tainer JA. Cancer mutational burden is shaped by G4 DNA, replication stress and mitochondrial dysfunction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:47-61. [PMID: 30880007 PMCID: PMC6745008 DOI: 10.1016/j.pbiomolbio.2019.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/01/2023]
Abstract
A hallmark of cancer is genomic instability, which can enable cancer cells to evade therapeutic strategies. Here we employed a computational approach to uncover mechanisms underlying cancer mutational burden by focusing upon relationships between 1) translocation breakpoints and the thousands of G4 DNA-forming sequences within retrotransposons impacting transcription and exemplifying probable non-B DNA structures and 2) transcriptome profiling and cancer mutations. We determined the location and number of G4 DNA-forming sequences in the Genome Reference Consortium Human Build 38 and found a total of 358,605 covering ∼13.4 million bases. By analyzing >97,000 unique translocation breakpoints from the Catalogue Of Somatic Mutations In Cancer (COSMIC), we found that breakpoints are overrepresented at G4 DNA-forming sequences within hominid-specific SVA retrotransposons, and generally occur in tumors with mutations in tumor suppressor genes, such as TP53. Furthermore, correlation analyses between mRNA levels and exome mutational loads from The Cancer Genome Atlas (TCGA) encompassing >450,000 gene-mutation regressions revealed strong positive and negative associations, which depended upon tissue of origin. The strongest positive correlations originated from genes not listed as cancer genes in COSMIC; yet, these show strong predictive power for survival in most tumor types by Kaplan-Meier estimation. Thus, correlation analyses of DNA structure and gene expression with mutation loads complement and extend more traditional approaches to elucidate processes shaping genomic instability in cancer. The combined results point to G4 DNA, activation of cell cycle/DNA repair pathways, and mitochondrial dysfunction as three major factors driving the accumulation of somatic mutations in cancer cells.
Collapse
Affiliation(s)
- Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA.
| | - Zu Ye
- Departments of Cancer Biology and of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA.
| | - Zamal Ahmed
- Departments of Cancer Biology and of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA.
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Non-canonical DNA/RNA structures during Transcription-Coupled Double-Strand Break Repair: Roadblocks or Bona fide repair intermediates? DNA Repair (Amst) 2019; 81:102661. [PMID: 31331819 DOI: 10.1016/j.dnarep.2019.102661] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although long overlooked, it is now well understood that DNA does not systematically assemble into a canonical double helix, known as B-DNA, throughout the entire genome but can also accommodate other structures including DNA hairpins, G-quadruplexes and RNA:DNA hybrids. Notably, these non-canonical DNA structures form preferentially at transcriptionally active loci. Acting as replication roadblocks and being targeted by multiple machineries, these structures weaken the genome and render it prone to damage, including DNA double-strand breaks (DSB). In addition, secondary structures also further accumulate upon DSB formation. Here we discuss the potential functions of pre-existing or de novo formed nucleic acid structures, as bona fide repair intermediates or repair roadblocks, especially during Transcription-Coupled DNA Double-Strand Break repair (TC-DSBR), and provide an update on the specialized protein complexes displaying the ability to remove these structures to safeguard genome integrity.
Collapse
|
21
|
Rodriguez-Vargas JM, Nguekeu-Zebaze L, Dantzer F. PARP3 comes to light as a prime target in cancer therapy. Cell Cycle 2019; 18:1295-1301. [PMID: 31095444 DOI: 10.1080/15384101.2019.1617454] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Poly(ADP-ribose) polymerase 3 (PARP3) is the third member of the PARP family that catalyze a post-translational modification of proteins to promote, control or adjust numerous cellular events including genome integrity, transcription, differentiation, cell metabolism or cell death. In the late years, PARP3 has been specified for its primary functions in programmed and stress-induced double-strand break repair, chromosomal rearrangements, transcriptional regulation in the zebrafish and mitotic segregation. Still, deciphering the therapeutic value of its inhibition awaits additional investigations. In this review, we discuss the newest advancements on the specific functions of PARP3 in cancer aggressiveness exemplifying the relevance of its selective inhibition for cancer therapy.
Collapse
Affiliation(s)
- José Manuel Rodriguez-Vargas
- a Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242 , Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg , Illkirch , France
| | - Léonel Nguekeu-Zebaze
- a Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242 , Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg , Illkirch , France
| | - Françoise Dantzer
- a Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242 , Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg , Illkirch , France
| |
Collapse
|
22
|
Aberrations in DNA repair pathways in cancer and therapeutic significances. Semin Cancer Biol 2019; 58:29-46. [PMID: 30922960 DOI: 10.1016/j.semcancer.2019.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 01/16/2023]
Abstract
Cancer cells show various types of mutations and aberrant expression in genes involved in DNA repair responses. These alterations induce genome instability and promote carcinogenesis steps and cancer progression processes. These defects in DNA repair have also been considered as suitable targets for cancer therapies. A most effective target so far clinically demonstrated is "homologous recombination repair defect", such as BRCA1/2 mutations, shown to cause synthetic lethality with inhibitors of poly(ADP-ribose) polymerase (PARP), which in turn is involved in DNA repair as well as multiple physiological processes. Different approaches targeting genomic instability, including immune therapy targeting mismatch-repair deficiency, have also recently been demonstrated to be promising strategies. In these DNA repair targeting-strategies, common issues could be how to optimize treatment and suppress/conquer the development of drug resistance. In this article, we review the extending framework of DNA repair response pathways and the potential impact of exploiting those defects on cancer treatments, including chemotherapy, radiation therapy and immune therapy.
Collapse
|
23
|
Multiple Roles for Mono- and Poly(ADP-Ribose) in Regulating Stress Responses. Trends Genet 2018; 35:159-172. [PMID: 30595401 DOI: 10.1016/j.tig.2018.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023]
Abstract
Although stress-induced synthesis of mono(ADP-ribose) (mADPr) and poly(ADP-ribose) (pADPr) conjugates by pADPr polymerase (PARP) enzymes has been studied extensively, the removal and degradation of pADPr, as well as the fate of ADPr metabolites, have received less attention. The observations that stress-induced pADPr undergoes rapid turnover, and that deficiencies in ADPr degradation phenocopy loss of pADPr synthesis, suggest that ADPr degradation is fundamentally important to the cellular stress response. Recent work has identified several distinct families of pADPr hydrolases that can degrade pADPr to release pADPr or mADPr into the cytoplasm. Further, many stress-response proteins contain ADPr-binding domains that can interact with these metabolites. We discuss how pADPr metabolites generated during pADPr degradation can function as signaling intermediates in processes such as inflammation, apoptosis, and DNA damage responses. These studies highlight that the full cycle of ADPr metabolism, including both synthesis and degradation, is necessary for responses to genotoxic stress.
Collapse
|
24
|
Beck C, Rodriguez-Vargas JM, Boehler C, Robert I, Heyer V, Hanini N, Gauthier LR, Tissier A, Schreiber V, Elofsson M, Reina San Martin B, Dantzer F. PARP3, a new therapeutic target to alter Rictor/mTORC2 signaling and tumor progression in BRCA1-associated cancers. Cell Death Differ 2018; 26:1615-1630. [PMID: 30442946 DOI: 10.1038/s41418-018-0233-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/07/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
PARP3 has been shown to be a key driver of TGFβ-induced epithelial-to-mesenchymal transition (EMT) and stemness in breast cancer cells, emerging as an attractive therapeutic target. Nevertheless, the therapeutic value of PARP3 inhibition has not yet been assessed. Here we investigated the impact of the absence of PARP3 or its inhibition on the tumorigenicity of BRCA1-proficient versus BRCA1-deficient breast cancer cell lines, focusing on the triple-negative breast cancer subtype (TNBC). We show that PARP3 knockdown exacerbates centrosome amplification and genome instability and reduces survival of BRCA1-deficient TNBC cells. Furthermore, we engineered PARP3-/- BRCA1-deficient or BRCA1-proficient TNBC cell lines using the CRISPR/nCas9D10A gene editing technology and demonstrate that the absence of PARP3 selectively suppresses the growth, survival and in vivo tumorigenicity of BRCA1-deficient TNBC cells, mechanistically via effects associated with an altered Rictor/mTORC2 signaling complex resulting from enhanced ubiquitination of Rictor. Accordingly, PARP3 interacts with and ADP-ribosylates GSK3β, a positive regulator of Rictor ubiquitination and degradation. Importantly, these phenotypes were rescued by re-expression of a wild-type PARP3 but not by a catalytic mutant, demonstrating the importance of PARP3's catalytic activity. Accordingly, reduced survival and compromised Rictor/mTORC2 signaling were also observed using a cell-permeable PARP3-specific inhibitor. We conclude that PARP3 and BRCA1 are synthetic lethal and that targeting PARP3's catalytic activity is a promising therapeutic strategy for BRCA1-associated cancers via the Rictor/mTORC2 signaling pathway.
Collapse
Affiliation(s)
- Carole Beck
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412, Illkirch, France
| | - José Manuel Rodriguez-Vargas
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412, Illkirch, France
| | - Christian Boehler
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412, Illkirch, France
| | - Isabelle Robert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Najat Hanini
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412, Illkirch, France
| | - Laurent R Gauthier
- Laboratoire de radiopathologie, CEA-DRF/INSERM U967, Institut de biologie François Jacob, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), 18 route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Agnès Tissier
- EMT and Cancer Cell Plasticity, Centre de Recherche en Cancérologie, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, F-69008, France
| | - Valérie Schreiber
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412, Illkirch, France
| | | | - Bernardo Reina San Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412, Illkirch, France.
| |
Collapse
|
25
|
Asamitsu S, Bando T, Sugiyama H. Ligand Design to Acquire Specificity to Intended G-Quadruplex Structures. Chemistry 2018; 25:417-430. [PMID: 30051593 DOI: 10.1002/chem.201802691] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/14/2018] [Indexed: 12/17/2022]
Abstract
A G-quadruplex is a nucleic acid secondary structure that is adopted by guanine-rich sequences, and is considered to be relevant in various pharmacological and biological contexts. G-Quadruplexes have also attracted great attention in the field of DNA nanotechnology because of their extremely high thermal stability and the availability of many defined structures. To date, a large repertory of DNA/RNA G-quadruplex-interactive ligands has been developed by numerous laboratories. Several relevant reviews have also been published that have helped researchers to grasp the full scope of G-quadruplex research from its outset to the present. This review focuses on the G-quadruplex ligands that allow targeting of specific G-quadruplexes. Moreover, unique ligands, successful methodologies, and future perspectives in relation to specific G-quadruplex recognition are also addressed.
Collapse
Affiliation(s)
- Sefan Asamitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
26
|
Abstract
Chromosomal rearrangements, including translocations, are early and essential events in the formation of many tumors. Previous studies that defined the genetic requirements for rearrangement formation have identified differences between murine and human cells, most notably in the role of classic and alternative nonhomologous end-joining (NHEJ) factors. We reported that poly(ADP)ribose polymerase 3 (PARP3) promotes chromosomal rearrangements induced by endonucleases in multiple human cell types. We show here that in contrast to classic (c-NHEJ) factors, Parp3 also promotes rearrangements in murine cells, including translocations in murine embryonic stem cells (mESCs), class-switch recombination in primary B cells, and inversions in tail fibroblasts that generate Eml4-Alk fusions. In mESCs, Parp3-deficient cells had shorter deletion lengths at translocation junctions. This was corroborated using next-generation sequencing of Eml4-Alk junctions in tail fibroblasts and is consistent with a role for Parp3 in promoting the processing of DNA double-strand breaks. We confirmed a previous report that Parp1 also promotes rearrangement formation. In contrast with Parp3, rearrangement junctions in the absence of Parp1 had longer deletion lengths, suggesting that Parp1 may suppress double-strand break processing. Together, these data indicate that Parp3 and Parp1 promote rearrangements with distinct phenotypes.
Collapse
|
27
|
Ji M, Wang L, Xue N, Lai F, Zhang S, Jin J, Chen X. The Development of a Biotinylated NAD +-Applied Human Poly(ADP-Ribose) Polymerase 3 (PARP3) Enzymatic Assay. SLAS DISCOVERY 2018; 23:545-553. [PMID: 29676938 DOI: 10.1177/2472555218767843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Poly(ADP-ribose) polymerase 3 (PARP3) is an important member of the PARP family and shares high structural similarities with both PARP1 and PARP2. The biological roles of PARP3 are currently under investigation; however, several key reports indicate the integral roles of PARP3 in DNA damage repair, and thus it has been investigated as a novel target in oncology. It is clear that the identification of selective PARP3 inhibitors would further advance the understanding of the biological roles of PARP3. Herein, we describe a modified PARP3 screening assay using biotinylated NAD+ as the specialized substrate. This method relies on the activity of PARP3 to transfer the biotinylated NAD+ onto a histone protein to form ADP-ribosylated histone. The biotin label on this histone protein is then detected and quantifies the intrinsic enzymatic activity of PARP3. We optimized the assay with respect to the histone, NAD+/biotinylated NAD+ mixture, DNA, and PARP3. Our developed screening system was then validated with a reported selective PARP3 inhibitor, ME0328, as well as utilizing five other clinically available PARP1/2 inhibitors. We demonstrated that our assay system was sensitive, efficient, and economical, and we reason that it could be useful for the development of highly selective PARP3 inhibitors in the future.
Collapse
Affiliation(s)
- Ming Ji
- 1 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,2 Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyuan Wang
- 1 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,2 Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nina Xue
- 1 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangfang Lai
- 1 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sen Zhang
- 1 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jin
- 1 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoguang Chen
- 1 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,2 Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
Marchetti C, Zyner KG, Ohnmacht SA, Robson M, Haider SM, Morton JP, Marsico G, Vo T, Laughlin-Toth S, Ahmed AA, Di Vita G, Pazitna I, Gunaratnam M, Besser RJ, Andrade ACG, Diocou S, Pike JA, Tannahill D, Pedley RB, Evans TRJ, Wilson WD, Balasubramanian S, Neidle S. Targeting Multiple Effector Pathways in Pancreatic Ductal Adenocarcinoma with a G-Quadruplex-Binding Small Molecule. J Med Chem 2018; 61:2500-2517. [PMID: 29356532 PMCID: PMC5867665 DOI: 10.1021/acs.jmedchem.7b01781] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Human pancreatic ductal adenocarcinoma (PDAC) involves the dysregulation of multiple signaling pathways. A novel approach to the treatment of PDAC is described, involving the targeting of cancer genes in PDAC pathways having over-representation of G-quadruplexes, using the trisubstituted naphthalene diimide quadruplex-binding compound 2,7-bis(3-morpholinopropyl)-4-((2-(pyrrolidin-1-yl)ethyl)amino)benzo[ lmn][3,8]phenanthroline-1,3,6,8(2 H,7 H)-tetraone (CM03). This compound has been designed by computer modeling, is a potent inhibitor of cell growth in PDAC cell lines, and has anticancer activity in PDAC models, with a superior profile compared to gemcitabine, a commonly used therapy. Whole-transcriptome RNA-seq methodology has been used to analyze the effects of this quadruplex-binding small molecule on global gene expression. This has revealed the down-regulation of a large number of genes, rich in putative quadruplex elements and involved in essential pathways of PDAC survival, metastasis, and drug resistance. The changes produced by CM03 represent a global response to the complexity of human PDAC and may be applicable to other currently hard-to-treat cancers.
Collapse
Affiliation(s)
- Chiara Marchetti
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Katherine G. Zyner
- Cancer
Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Stephan A. Ohnmacht
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Mathew Robson
- Cancer
Research UK Cancer Centre, UCL Cancer Institute, University College London, London WC1E 6BT, U.K.
| | - Shozeb M. Haider
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Jennifer P. Morton
- Cancer
Research UK, Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD U.K.
- Institute
of Cancer Sciences. University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Giovanni Marsico
- Cancer
Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Tam Vo
- Department
of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Sarah Laughlin-Toth
- Department
of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Ahmed A. Ahmed
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Gloria Di Vita
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Ingrida Pazitna
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Mekala Gunaratnam
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Rachael J. Besser
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Ana C. G. Andrade
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Seckou Diocou
- UCL
Cancer Institute, University College London, London WC1E 6BT, U.K.
| | - Jeremy A. Pike
- Cancer
Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
| | - David Tannahill
- Cancer
Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
| | - R. Barbara Pedley
- UCL
Cancer Institute, University College London, London WC1E 6BT, U.K.
| | - T. R. Jeffry Evans
- Cancer
Research UK, Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD U.K.
- Institute
of Cancer Sciences. University of Glasgow, Glasgow G12 8QQ, U.K.
| | - W. David Wilson
- Department
of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Shankar Balasubramanian
- Cancer
Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- The
School of Clinical Medicine, University
of Cambridge, Cambridge CB2 0SP, U.K.
| | - Stephen Neidle
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| |
Collapse
|
29
|
Lesueur P, Chevalier F, El-Habr EA, Junier MP, Chneiweiss H, Castera L, Müller E, Stefan D, Saintigny Y. Radiosensitization Effect of Talazoparib, a Parp Inhibitor, on Glioblastoma Stem Cells Exposed to Low and High Linear Energy Transfer Radiation. Sci Rep 2018; 8:3664. [PMID: 29483558 PMCID: PMC5826933 DOI: 10.1038/s41598-018-22022-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/15/2018] [Indexed: 11/09/2022] Open
Abstract
Despite continuous improvements in treatment of glioblastoma, tumor recurrence and therapy resistance still occur in a high proportion of patients. One underlying reason for this radioresistance might be the presence of glioblastoma cancer stem cells (GSCs), which feature high DNA repair capability. PARP protein plays an important cellular role by detecting the presence of damaged DNA and then activating signaling pathways that promote appropriate cellular responses. Thus, PARP inhibitors (PARPi) have recently emerged as potential radiosensitizing agents. In this study, we investigated the preclinical efficacy of talazoparib, a new PARPi, in association with low and high linear energy transfer (LET) irradiation in two GSC cell lines. Reduction of GSC fraction, impact on cell proliferation, and cell cycle arrest were evaluated for each condition. All combinations were compared with a reference schedule: photonic irradiation combined with temozolomide. The use of PARPi combined with photon beam and even more carbon beam irradiation drastically reduced the GSC frequency of GBM cell lines in vitro. Furthermore, talazoparib combined with irradiation induced a marked and prolonged G2/M block, and decreased proliferation. These results show that talazoparib is a new candidate that effects radiosensitization in radioresistant GSCs, and its combination with high LET irradiation, is promising.
Collapse
Affiliation(s)
- Paul Lesueur
- LARIA, iRCM, François Jacob Institute, DRF-CEA, Caen, France.
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, Caen, France.
- Radiotherapy Department, Centre François Baclesse, Caen, France.
| | - François Chevalier
- LARIA, iRCM, François Jacob Institute, DRF-CEA, Caen, France
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, Caen, France
| | - Elias A El-Habr
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Seine-IBPS, Sorbonne Universities, 75005, Paris, France
| | - Marie-Pierre Junier
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Seine-IBPS, Sorbonne Universities, 75005, Paris, France
| | - Hervé Chneiweiss
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Seine-IBPS, Sorbonne Universities, 75005, Paris, France
| | - Laurent Castera
- Plateforme de sequencage haut debit, Centre François Baclesse, Caen, France
| | - Etienne Müller
- Plateforme de sequencage haut debit, Centre François Baclesse, Caen, France
| | - Dinu Stefan
- Radiotherapy Department, Centre François Baclesse, Caen, France
| | - Yannick Saintigny
- LARIA, iRCM, François Jacob Institute, DRF-CEA, Caen, France
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, Caen, France
| |
Collapse
|
30
|
Brunet E, Jasin M. Induction of Chromosomal Translocations with CRISPR-Cas9 and Other Nucleases: Understanding the Repair Mechanisms That Give Rise to Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:15-25. [PMID: 29956288 DOI: 10.1007/978-981-13-0593-1_2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Chromosomal translocations are associated with several tumor types, including hematopoietic malignancies, sarcomas, and solid tumors of epithelial origin, due to their activation of a proto-oncogene or generation of a novel fusion protein with oncogenic potential. In many cases, the availability of suitable human models has been lacking because of the difficulty in recapitulating precise expression of the fusion protein or other reasons. Further, understanding how translocations form mechanistically has been a goal, as it may suggest ways to prevent their occurrence. Chromosomal translocations arise when DNA ends from double-strand breaks (DSBs) on two heterologous chromosomes are improperly joined. This review provides a summary of DSB repair mechanisms and their contribution to translocation formation, the various programmable nuclease platforms that have been used to generate translocations, and the successes that have been achieved in this area.
Collapse
Affiliation(s)
- Erika Brunet
- Genome Dynamics in the Immune System Laboratory, Institut Imagine, INSERM UMR 1163, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|