1
|
Wu X, Bal M, Zhang Q, Bai ST, Scodeller I, Vermandel W, Yu J, Maes BUW, Sels BF. Spatial Scale Matters: Hydrolysis of Aryl Methyl Ethers over Zeolites. J Am Chem Soc 2025; 147:4915-4929. [PMID: 39874302 DOI: 10.1021/jacs.4c13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The local environment of the active site, such as the confinement of hydronium ions within zeolite pores, significantly influences catalytic turnover, similar to enzyme functionality. This study explores these effects in the hydrolysis of guaiacols─lignin-derived compounds─over zeolites in water. In addition to the interesting catechol products, this reaction is advantageous for study due to its bimolecular hydrolysis pathway, which involves a single energy barrier and no intermediates, simplifying kinetic studies and result interpretation. As in alcohol dehydration, hydronium ions show enhanced activity in ether hydrolysis due to undercoordination and increased electrophilicity when confined within zeolite pores, compared to bulk water. In addition, a volcano-shaped relationship between hydronium ion activity and Brønsted acid density was observed. However, unlike alcohol dehydration, this activity distribution cannot be attributed to variations in ionic strength within the pores, as the rate-determining step in the hydrolysis of guaiacols involves the attack of a neutral water molecule, unaffected by ionic strength. Instead, a detailed transition state analysis revealed a significant thermodynamic energy compensation effect, driven by the spatial organization of the transition state. This organization is influenced by the available reaction space, the interaction between the reacting species and the zeolite environment, leading to the volcano-shaped dependence. This phenomenon also explains the unusual reactivity order of the 4-R-guaiacol derivatives (R = H, Me, Et, Pr) with zeolite catalysis, extending beyond the traditional steric and electronic effects to provide a deeper understanding of reactant reactivity. The work concludes that the critical spatial parameters for fast ether hydrolysis─resulting in the highest hydronium activity─are determined by a combination of zeolite properties (topology and acid density) and reactant size.
Collapse
Affiliation(s)
- Xian Wu
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Mathias Bal
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry; International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Shao-Tao Bai
- Center for Carbon-Neutral Catalysis Engineering and Institute for Carbon-Neutral Technology, Shenzhen Polytechnic University, Shenzhen, 518055, P. R. China
| | - Ivan Scodeller
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Walter Vermandel
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry; International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Bert F Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| |
Collapse
|
2
|
Liu Y, Luo C, Wang S, Iglesia E, Liu H. Acid Catalysis Mediated by Aqueous Hydronium Ions Formed by Contacting Zeolite Crystals with Liquid Water. J Am Chem Soc 2024; 146:35185-35198. [PMID: 39663579 DOI: 10.1021/jacs.4c11705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Zeolites are crystalline microporous aluminosilicates widely used as solid acids in catalytic routes to clean and sustainable energy carriers and chemicals from biogenic and fossil feedstocks. This study addresses how zeolites act as weak polyprotic acids and dissociate to form extra-crystalline hydronium (H3O+) ions in liquid water. The extent of their dissociation depends on the energy required to form the conjugate framework anions, which becomes unfavorable as the extent of dissociation increases intracrystalline charge densities because repulsive interactions ultimately preclude the detachment of all protons as catalytically relevant H3O+(aq) ions. The extent of dissociation is accurately described using electrostatic repulsion formalisms that account for aqueous H3O+ concentrations for all zeolite concentrations, Al densities, and frameworks. Probed by hydrolysis of cellulose, the most abundant biogenic polymer, this study demonstrates that zeolites catalyze this reaction exclusively through the formation of the extra-crystalline H3O+ ions at rates strictly proportional to their concentrations in the aqueous phase, irrespective of their provenance from zeolites differing in framework structure or Al content, without the purported involvement of acid sites at extracrystalline surfaces or intervening formation of smaller cellulose oligomers. The results and mechanistic interpretations seamlessly and rigorously bridge the chemistry of solid and liquid acids in aqueous media, while resolving the enduring puzzle of solid acids that catalyze transformations of substrates that cannot enter the voids where acid sites reside.
Collapse
Affiliation(s)
- Yue Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chen Luo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuai Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Enrique Iglesia
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haichao Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Vito J, Shetty M. Challenges and Opportunities for Exploiting the Role of Zeolite Confinements for the Selective Hydrogenation of Acetylene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67010-67027. [PMID: 38079586 PMCID: PMC11647899 DOI: 10.1021/acsami.3c11935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/13/2024]
Abstract
Zeolites, with their ordered crystalline porous structure, provide a unique opportunity to confine metal catalysts, whether single atoms (e.g., transition metal ions (TMIs)) or metal clusters, when used as a catalyst support. The confined environment has been shown to provide rate and selectivity enhancement across a variety of reactions via both steric and electronic effects, such as size exclusion and transition state stabilization. In this review, we provide a survey of various zeolite confined catalysts used for the semihydrogenation of acetylene highlighting their performance, defined by ethylene selectivity at full acetylene conversion, in relationship to the synthesis technique employed. Synthesis methods that ensure confinement with the catalyst transition metal location in the extra-framework positions are reported to have the highest selectivity to ethylene. However, the underlying molecular factors responsible for selective catalysis within confinement remain elusive due to the difficulty in deconvoluting individual effects. Through the careful use of a combination of characterization and spectroscopic methods, insights into the relationship between the properties of zeolite confined catalysts and their performance have been explored in other works for a variety of reactions. More specifically, operando spectroscopy studies have revealed the dynamic behavior of zeolite confined catalysts under various conditions implying that the structure and properties observed ex situ do not always match those of the active catalyst under reaction conditions. Applying this type of analysis to acetylene semihydrogenation, a simple gas phase reaction, can help elucidate the structure-function relationship of zeolite confined catalysts allowing for more informed design choices and consequently their application to a wider variety of more complex reactions such as the liquid phase hydrogenation of alkynols where solvent effects must also be considered in addition to those of confinement.
Collapse
Affiliation(s)
- Jenna Vito
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| | - Manish Shetty
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| |
Collapse
|
4
|
Resende KA, Zhao R, Liu Y, Baráth E, Lercher JA. Impact of Sn Lewis Acid Sites on the Dehydration of Cyclohexanol. ACS Catal 2024; 14:11741-11748. [PMID: 39114088 PMCID: PMC11301620 DOI: 10.1021/acscatal.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
The impact of Sn on the concentration and strength of acid sites in Al containing zeolites with MFI topology and their catalytic activity for the dehydration of cyclohexanol in the aqueous phase has been investigated. The materials maintain constant Al concentrations and consequently Bro̷nsted acid site (BAS) concentrations, while exhibiting an increasing concentration of Sn Lewis acid sites (LAS). The presence of water alters LAS(Sn), leading to weak BAS(Sn) that increases the concentration of water in the zeolite micropore, while leaving the rate of dehydration of cyclohexanol unchanged. The TOF increases with the concentration of BAS(Al) in close contact with framework LAS(Sn), referred to as BAS(Pair). The increase in the Arrhenius pre-exponential factor, without affecting the activation barrier (E a), leads to the hypothesis that the proximity of both sites allows for a later transition state induced by the polarization of the C-O bond, leading in turn to a higher transition entropy.
Collapse
Affiliation(s)
- Karen A Resende
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Ruixue Zhao
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Eszter Baráth
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
5
|
Kim S, Chen F, Camaioni DM, Derewinski MA, Gutiérrez OY, Liu Y, Lercher JA. Confined Ionic Environments Tailoring the Reactivity of Molecules in the Micropores of BEA-Type Zeolite. J Am Chem Soc 2024; 146:17847-17853. [PMID: 38888888 PMCID: PMC11228971 DOI: 10.1021/jacs.4c03405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
In the presence of water, hydronium ions formed within the micropores of zeolite H-BEA significantly influence the surrounding environment and the reactivity of organic substrates. The positive charge of these ions, coupled with the zeolite's negatively charged framework, results in an ionic environment that causes a strongly nonideal solvation behavior of cyclohexanol. This leads to a significantly higher excess chemical potential in the initial state and stabilizes at the same time the charged transition state in the dehydration of cyclohexanol. As a result, the free-energy barrier of the reaction is lowered, leading to a marked increase in the reaction rates. Nonetheless, there is a limit to the reaction rate enhancement by the hydronium ion concentration. Experiments conducted with low concentrations of reactants show that beyond an optimal concentration, the required spatial rearrangement between hydronium ions and cyclohexanols inhibits further increases in the reaction rate, leading to a peak in the intrinsic activity of hydronium ions. The quantification of excess chemical potential in both initial and transition states for zeolites H-BEA, along with findings from HMFI, provides a basis to generalize and predict rates for hydronium-ion-catalyzed dehydration reactions in Brønsted zeolites.
Collapse
Affiliation(s)
- Sungmin Kim
- Institute for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Feng Chen
- Institute for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Donald M Camaioni
- Institute for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Miroslaw A Derewinski
- Institute for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Oliver Y Gutiérrez
- Institute for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yue Liu
- Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Johannes A Lercher
- Institute for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4, Garching 85748, Germany
| |
Collapse
|
6
|
Li S, Chen H. Solvent effect in H-BEA catalyzed cyclohexanol dehydration reaction. J Chem Phys 2024; 160:231101. [PMID: 38884394 DOI: 10.1063/5.0211554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
The solvent effect on H-BEA catalyzed cyclohexanol dehydration was investigated in water, dioxane, and cyclohexanol. The dynamic evolution of the Brønsted acid site of zeolite and its interaction with reactant molecules in different solvents were explored with ab initio molecular dynamics simulations, providing reliable configuration sampling to obtain configurations at equilibrium. Solvent profoundly changes the adsorption as well as the dehydration reaction of cyclohexanol in H-BEA, where the reaction is determined to follow the E2 mechanism in water and dioxane but the E1 mechanism in cyclohexanol untill saturation uptake. Near saturation uptake, all three solvents significantly reduce the cyclohexanol dehydration rates in H-BEA. Cyclohexanol loading also dramatically affects the kinetics of the dehydration reaction, displaying an overall decreasing trend with a local minimum present at intermediate loading of 6 molecules per unit cell, which is a result of the entropic effect associated with greater freedom of motion of the transition state. Rigorous quantification of enthalpy and entropy contributions to cyclohexanol adsorption and activation shed light on the solvent effect of zeolite-catalyzed alcohol dehydration.
Collapse
Affiliation(s)
- Sha Li
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515021, China
| | - Huimin Chen
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515021, China
| |
Collapse
|
7
|
Liu Q, van Bokhoven JA. Water structures on acidic zeolites and their roles in catalysis. Chem Soc Rev 2024; 53:3065-3095. [PMID: 38369933 DOI: 10.1039/d3cs00404j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The local reaction environment of catalytic active sites can be manipulated to modify the kinetics and thermodynamic properties of heterogeneous catalysis. Because of the unique physical-chemical nature of water, heterogeneously catalyzed reactions involving specific interactions between water molecules and active sites on catalysts exhibit distinct outcomes that are different from those performed in the absence of water. Zeolitic materials are being applied with the presence of water for heterogeneous catalytic reactions in the chemical industry and our transition to sustainable energy. Mechanistic investigation and in-depth understanding about the behaviors and the roles of water are essentially required for zeolite chemistry and catalysis. In this review, we focus on the discussions of the nature and structures of water adsorbed/stabilized on Brønsted and Lewis acidic zeolites based on experimental observations as well as theoretical calculation results. The unveiled functions of water structures in determining the catalytic efficacy of zeolite-catalyzed reactions have been overviewed and the strategies frequently developed for enhancing the stabilization of zeolite catalysts are highlighted. Recent advancement will contribute to the development of innovative catalytic reactions and the rationalization of catalytic performances in terms of activity, selectivity and stability with the presence of water vapor or in condensed aqueous phase.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
8
|
Van Speybroeck V, Bocus M, Cnudde P, Vanduyfhuys L. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations. ACS Catal 2023; 13:11455-11493. [PMID: 37671178 PMCID: PMC10476167 DOI: 10.1021/acscatal.3c01945] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Indexed: 09/07/2023]
Abstract
Within this Perspective, we critically reflect on the role of first-principles molecular dynamics (MD) simulations in unraveling the catalytic function within zeolites under operating conditions. First-principles MD simulations refer to methods where the dynamics of the nuclei is followed in time by integrating the Newtonian equations of motion on a potential energy surface that is determined by solving the quantum-mechanical many-body problem for the electrons. Catalytic solids used in industrial applications show an intriguing high degree of complexity, with phenomena taking place at a broad range of length and time scales. Additionally, the state and function of a catalyst critically depend on the operating conditions, such as temperature, moisture, presence of water, etc. Herein we show by means of a series of exemplary cases how first-principles MD simulations are instrumental to unravel the catalyst complexity at the molecular scale. Examples show how the nature of reactive species at higher catalytic temperatures may drastically change compared to species at lower temperatures and how the nature of active sites may dynamically change upon exposure to water. To simulate rare events, first-principles MD simulations need to be used in combination with enhanced sampling techniques to efficiently sample low-probability regions of phase space. Using these techniques, it is shown how competitive pathways at operating conditions can be discovered and how broad transition state regions can be explored. Interestingly, such simulations can also be used to study hindered diffusion under operating conditions. The cases shown clearly illustrate how first-principles MD simulations reveal insights into the catalytic function at operating conditions, which could not be discovered using static or local approaches where only a few points are considered on the potential energy surface (PES). Despite these advantages, some major hurdles still exist to fully integrate first-principles MD methods in a standard computational catalytic workflow or to use the output of MD simulations as input for multiple length/time scale methods that aim to bridge to the reactor scale. First of all, methods are needed that allow us to evaluate the interatomic forces with quantum-mechanical accuracy, albeit at a much lower computational cost compared to currently used density functional theory (DFT) methods. The use of DFT limits the currently attainable length/time scales to hundreds of picoseconds and a few nanometers, which are much smaller than realistic catalyst particle dimensions and time scales encountered in the catalysis process. One solution could be to construct machine learning potentials (MLPs), where a numerical potential is derived from underlying quantum-mechanical data, which could be used in subsequent MD simulations. As such, much longer length and time scales could be reached; however, quite some research is still necessary to construct MLPs for the complex systems encountered in industrially used catalysts. Second, most currently used enhanced sampling techniques in catalysis make use of collective variables (CVs), which are mostly determined based on chemical intuition. To explore complex reactive networks with MD simulations, methods are needed that allow the automatic discovery of CVs or methods that do not rely on a priori definition of CVs. Recently, various data-driven methods have been proposed, which could be explored for complex catalytic systems. Lastly, first-principles MD methods are currently mostly used to investigate local reactive events. We hope that with the rise of data-driven methods and more efficient methods to describe the PES, first-principles MD methods will in the future also be able to describe longer length/time scale processes in catalysis. This might lead to a consistent dynamic description of all steps-diffusion, adsorption, and reaction-as they take place at the catalyst particle level.
Collapse
Affiliation(s)
| | - Massimo Bocus
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Pieter Cnudde
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| |
Collapse
|
9
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|
10
|
Wei YW, Yang G, Xu XX, Liu YY, Li BJ, Wang YZ, Zhao YX. Ultrafine Pt nanoparticles anchored on core-shell structured zeolite-carbon for efficient catalysis of hydrogen generation. RSC Adv 2023; 13:7673-7681. [PMID: 36908540 PMCID: PMC9993129 DOI: 10.1039/d3ra00358b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 03/10/2023] Open
Abstract
Ammonia borane (AB) is a potential hydrogen storage material with high-efficiency hydrolytic dehydrogenation under a suitable catalyst. Noble metal catalysts have drawn a lot of attention. In this study, a carbon-coated zeolite was obtained by calcination at high temperatures using glucose as a carbon source. Pt nanoparticles were fixed on a core-shell composite support by a simple chemical reduction method. A series of catalysts were prepared with different synthesis parameters. The results show that PSC-2 has excellent catalytic performance for hydrolytic dehydrogenation of AB in alkaline solution at room temperature, and the turnover frequency (TOF) is 593 min-1. The excellent catalytic performance is attributed to the carbon layer on the zeolite surface which inhibits the aggregation or deformation of metals in the catalytic reaction. The metal-support interaction activates the water and accelerates the rate-limiting step of hydrolysis. The activation energy (E a = 44 kJ mol-1) was calculated based on the reaction temperature. In addition, the kinetics of AB hydrolysis was studied, and the effects of catalyst concentration, AB concentration and NaOH concentration on AB hydrolysis rate were further investigated. The high-efficiency catalyst prepared in this work provides a new strategy for the development of chemical hydrogen production in the field of catalysis.
Collapse
Affiliation(s)
- Yue-Wei Wei
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University Taiyuan 030006 China
- Tobacco College of Henan Agricultural University Zhengzhou 450002 China
| | - Guang Yang
- Tobacco College of Henan Agricultural University Zhengzhou 450002 China
| | - Xi-Xi Xu
- Tobacco College of Henan Agricultural University Zhengzhou 450002 China
| | - Yan-Yan Liu
- College of Science, Henan Agricultural University Zhengzhou 450002 China
| | - Bao-Jun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Yong-Zhao Wang
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University Taiyuan 030006 China
| | - Yong-Xiang Zhao
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University Taiyuan 030006 China
| |
Collapse
|
11
|
Liu Q, Pfriem N, Cheng G, Baráth E, Liu Y, Lercher JA. Maximum Impact of Ionic Strength on Acid-Catalyzed Reaction Rates Induced by a Zeolite Microporous Environment. Angew Chem Int Ed Engl 2023; 62:e202208693. [PMID: 36317985 PMCID: PMC10107796 DOI: 10.1002/anie.202208693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/14/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
The intracrystalline ionic environment in microporous zeolite can remarkably modify the excess chemical potential of adsorbed reactants and transition states, thereby influencing the catalytic turnover rates. However, a limit of the rate enhancement for aqueous-phase dehydration of alcohols appears to exist for zeolites with high ionic strength. The origin of such limitation has been hypothesized to be caused by the spatial constraints in the pores via, e.g., size exclusion effects. It is demonstrated here that the increase in turnover rate as well as the formation of a maximum and the rate drop are intrinsic consequences of the increasingly dense ionic environment in zeolite. The molecularly sized confines of zeolite create a unique ionic environment that monotonically favors the formation of alcohol-hydronium ion complexes in the micropores. The zeolite microporous environment determines the kinetics of catalytic steps and tailors the impact of ionic strength on catalytic rates.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Niklas Pfriem
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Guanhua Cheng
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Eszter Baráth
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Yue Liu
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University200062ShanghaiP. R. China
| | - Johannes A. Lercher
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA 99352USA
| |
Collapse
|
12
|
Potts DS, Jeyaraj VS, Kwon O, Ghosh R, Mironenko AV, Flaherty DW. Effect of Interactions between Alkyl Chains and Solvent Structures on Lewis Acid Catalyzed Epoxidations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David S. Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Vijaya Sundar Jeyaraj
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ohsung Kwon
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Richa Ghosh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Alexander V. Mironenko
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Chen W, Yi X, Liu Z, Tang X, Zheng A. Carbocation chemistry confined in zeolites: spectroscopic and theoretical characterizations. Chem Soc Rev 2022; 51:4337-4385. [PMID: 35536126 DOI: 10.1039/d1cs00966d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acid-catalyzed reactions inside zeolites are one type of broadly applied industrial reactions, where carbocations are the most common intermediates of these reaction processes, including methanol to olefins, alkene/aromatic alkylation, and hydrocarbon cracking/isomerization. The fundamental research on these acid-catalyzed reactions is focused on the stability, evolution, and lifetime of carbocations under the zeolite confinement effect, which greatly affects the efficiency, selectivity and deactivation of zeolite catalysts. Therefore, a profound understanding of the carbocations confined in zeolites is not only beneficial to explain the reaction mechanism but also drive the design of new zeolite catalysts with ideal acidity and cages/channels. In this review, we provide both an in-depth understanding of the stabilization of carbocations by the pore confinement effect and summary of the advanced characterization methods to capture carbocations in zeolites, including UV-vis spectroscopy, solid-state NMR, fluorescence microscopy, IR spectroscopy and Raman spectroscopy. Also, we clarify the relationship between the activity and stability of carbocations in zeolite-catalyzed reactions, and further highlight the role of carbocations in various hydrocarbon conversion reactions inside zeolites with diverse frameworks and varying acidic properties.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Pfriem N, Liu Y, Zahn F, Shi H, Haller GL, Lercher JA. Impact of the Local Concentration of Hydronium Ions at Tungstate Surfaces for Acid-Catalyzed Alcohol Dehydration. J Am Chem Soc 2021; 143:20133-20143. [PMID: 34813324 DOI: 10.1021/jacs.1c07203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tungstate domains supported on ZrO2, Al2O3, TiO2, and activated carbon drastically influence the hydronium-ion-catalyzed aqueous-phase dehydration of alcohols. For all catalysts, the rate of cyclohexanol dehydration normalized to the concentration of Brønsted acid sites (turnover frequencies, TOFs) was lower for monotungstates than for polytungstates and larger crystallites of WO3. TOFs were constant when reaching or exceeding the monolayer coverage of tungstate, irrespective of the specific nature of surface structures that continuously evolve with the surface W loading. However, the TOFs with polytungstates and large WO3 crystallites depend strongly on the underlying support (e.g., WOx/C catalysts are 10-50-fold more active than WOx/Al2O3 catalysts). The electrical double layer (EDL) surrounding the negatively charged WOx domains contains hydrated hydronium ions, whose local concentrations change with the support. This varying concentration of interfacial hydronium ions ("local ionic strength") impacts the excess chemical potential of the reacting alcohols and induces the marked differences in the TOFs. Primary H/D kinetic isotope effects (∼3), together with the substantially positive entropy of activation (111-195 J mol-1 K-1), indicate that C-H(D) bond cleavage is involved in the kinetically relevant step of an E1-type mechanistic sequence, regardless of the support identity. The remarkable support dependence of the catalytic activity observed here for the aqueous-phase dehydration of cycloalkanols likely applies to a broad set of hydronium-ion-catalyzed organic reactions sensitive to ionic strength.
Collapse
Affiliation(s)
- Niklas Pfriem
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Garching 85747, Germany
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Garching 85747, Germany
| | - Florian Zahn
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Garching 85747, Germany
| | - Hui Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Gary L Haller
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Garching 85747, Germany.,Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8682, United States
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Garching 85747, Germany.,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
15
|
Potts DS, Bregante DT, Adams JS, Torres C, Flaherty DW. Influence of solvent structure and hydrogen bonding on catalysis at solid-liquid interfaces. Chem Soc Rev 2021; 50:12308-12337. [PMID: 34569580 DOI: 10.1039/d1cs00539a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Solvent molecules interact with reactive species and alter the rates and selectivities of catalytic reactions by orders of magnitude. Specifically, solvent molecules can modify the free energies of liquid phase and surface species via solvation, participating directly as a reactant or co-catalyst, or competitively binding to active sites. These effects carry consequences for reactions relevant for the conversion of renewable or recyclable feedstocks, the development of distributed chemical manufacturing, and the utilization of renewable energy to drive chemical reactions. First, we describe the quantitative impact of these effects on steady-state catalytic turnover rates through a rate expression derived for a generic catalytic reaction (A → B), which illustrates the functional dependence of rates on each category of solvent interaction. Second, we connect these concepts to recent investigations of the effects of solvents on catalysis to show how interactions between solvent and reactant molecules at solid-liquid interfaces influence catalytic reactions. This discussion demonstrates that the design of effective liquid phase catalytic processes benefits from a clear understanding of these intermolecular interactions and their implications for rates and selectivities.
Collapse
Affiliation(s)
- David S Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Daniel T Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jason S Adams
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Chris Torres
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
16
|
Milaković L, Hintermeier PH, Liu Y, Baráth E, Lercher JA. Influence of Intracrystalline Ionic Strength in MFI Zeolites on Aqueous Phase Dehydration of Methylcyclohexanols. Angew Chem Int Ed Engl 2021; 60:24806-24810. [PMID: 34384139 PMCID: PMC9290721 DOI: 10.1002/anie.202107947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The impact of the concentration of hydrated hydronium ions and in turn of the local ionic strength in MFI zeolites has been investigated for the aqueous phase dehydration of 4‐methylcyclohexanol (E1 mechanism) and cis‐2‐methylcyclohexanol (E2 mechanism). The E2 pathway with the latter alcohol led to a 2.5‐fold higher activity. The catalytic activity normalized to the hydronium ions (turnover frequency, TOF) passed through a pronounced maximum, which is attributed to the increasing excess chemical potential of the alcohols in the pores, increasing in parallel with the ionic strength and the additional work caused by repulsive interactions and charge separation induced by the bulky alcohols. While the maximum in rate observed is invariant with the mechanism or substitution, the reaction pathway is influencing the activation parameters differently.
Collapse
Affiliation(s)
- Lara Milaković
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraβe 4, 85748, Garching, Germany
| | - Peter H Hintermeier
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraβe 4, 85748, Garching, Germany.,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraβe 4, 85748, Garching, Germany
| | - Eszter Baráth
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraβe 4, 85748, Garching, Germany
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraβe 4, 85748, Garching, Germany.,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| |
Collapse
|
17
|
Milaković L, Hintermeier PH, Liu Y, Baráth E, Lercher JA. Influence of Intracrystalline Ionic Strength in MFI Zeolites on Aqueous Phase Dehydration of Methylcyclohexanols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lara Milaković
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraβe 4 85748 Garching Germany
| | - Peter H. Hintermeier
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraβe 4 85748 Garching Germany
- Institute for Integrated Catalysis Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraβe 4 85748 Garching Germany
| | - Eszter Baráth
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraβe 4 85748 Garching Germany
| | - Johannes A. Lercher
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraβe 4 85748 Garching Germany
- Institute for Integrated Catalysis Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
| |
Collapse
|
18
|
Resasco DE, Crossley SP, Wang B, White JL. Interaction of water with zeolites: a review. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1948301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Daniel E. Resasco
- University of Oklahoma, School of Chemical, Biological, and Materials Engineering, Norman, OK, USA
| | - Steven P. Crossley
- University of Oklahoma, School of Chemical, Biological, and Materials Engineering, Norman, OK, USA
| | - Bin Wang
- University of Oklahoma, School of Chemical, Biological, and Materials Engineering, Norman, OK, USA
| | - Jeffery L. White
- Oklahoma State University, School of Chemical Engineering, Stillwater, OK, USA
| |
Collapse
|
19
|
Catalytic Hydration of Aromatic Alkynes to Ketones over H-MFI Zeolites. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Abstract
ConspectusZeolites, accompanied by their initial discovery as natural mines and the subsequent large-scale commercial production, have played indispensable roles in various fields such as petroleum refining and the chemical industry. Understanding the characteristics of zeolites, in contrast to their counterparts with similar chemical compositions and the origin thereof, is always a hot and challenging topic. Zeolites are known as intrinsic confined systems with ordered channels on the molecular scale, and structural confinement has been proposed to explain the unique chemical behaviors of zeolites. Generally, the channels of zeolites can regulate the diffusion of molecules, leading to a visible difference in molecular transportation and the ultimate shape-selective catalysis. On the other hand, the local electric field within the zeolite channels or cages can act on the guest molecules and change their energy levels. Confinement can be simply interpreted from both spatial and electronic issues; however, the nature of zeolite confinement is ambiguous and needs to be clarified.In this Account, we make a concise summary and analysis of the topics of confinement in a zeolite and zeolite catalysis from two specific views of spatial constraint and a local electric field to answer two basic questions of why zeolites and what else can we do with zeolites. First, it is shown how to construct functional sites including Brønsted acid sites, Lewis acid sites, extraframework cation sites, and entrapped metal or oxide aggregates in zeolites via confinement and how to understand the specific role of confinement in their reactivity. Second, the multiple impacts of confinement in zeolite-catalyzed reactions are discussed, which rationally lead to several unique processes, namely, Brønsted acid catalysis confined in zeolites, Lewis acid catalysis confined in zeolites, catalysis by zeolite-confined coordinatively unsaturated cation sites, and a cascade reaction within the confined space of zeolites. Overall, confinement effects do exist in zeolite systems and have already played extremely important roles in adsorption and catalysis. Although confinement might exist in many systems, the confinement by zeolites is more straightforward thanks to their well-ordered and rigid structure, deriving unique chemical behaviors within the confined space of zeolites. A zeolite is a fantastic scaffold for constructing isolated sites spatially and electrostatically confined in its matrix. Furthermore, zeolites containing well-defined transition-metal sites can be treated as inorganometallic complexes (i.e., a zeolite framework as the ligand of transition-metal ions) and can catalyze reactions resembling organometallic complexes or even metalloenzymes. The local electric field within the confined space of zeolites is strong enough to induce or assist the activation of small molecules, following the working fashion of frustrated Lewis pairs. The tactful utilization of structural confinement, both spatially and electronically, becomes the key to robust zeolites for adsorption and catalysis.
Collapse
Affiliation(s)
- Yuchao Chai
- School of Materials Science and Engineering, Nankai University, 38# Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Weili Dai
- School of Materials Science and Engineering, Nankai University, 38# Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Guangjun Wu
- School of Materials Science and Engineering, Nankai University, 38# Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Naijia Guan
- School of Materials Science and Engineering, Nankai University, 38# Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Landong Li
- School of Materials Science and Engineering, Nankai University, 38# Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
- Frontiers Science Center for New Organic Matter & Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, 94# Weijin Road, Nankai District, Tianjin 300071, P. R. China
| |
Collapse
|
21
|
Pfriem N, Hintermeier PH, Eckstein S, Kim S, Liu Q, Shi H, Milakovic L, Liu Y, Haller GL, Baráth E, Liu Y, Lercher JA. Role of the ionic environment in enhancing the activity of reacting molecules in zeolite pores. Science 2021; 372:952-957. [PMID: 33958482 DOI: 10.1126/science.abh3418] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 11/02/2022]
Abstract
Tailoring the molecular environment around catalytically active sites allows for the enhancement of catalytic reactivity through a hitherto unexplored pathway. In zeolites, the presence of water creates an ionic environment via the formation of hydrated hydronium ions and the negatively charged framework aluminum tetrahedra. The high density of cation-anion pairs determined by the aluminum concentration of a zeolite induces a high local ionic strength that increases the excess chemical potential of sorbed and uncharged organic reactants. Charged transition states (carbocations for example) are stabilized, which reduces the energy barrier and leads to higher reaction rates. Using the intramolecular dehydration of cyclohexanol on H-MFI zeolites in water, we quantitatively show an enhancement of the reaction rate by the presence of high ionic strength as well as show potential limitations of this strategy.
Collapse
Affiliation(s)
- Niklas Pfriem
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Peter H Hintermeier
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Sebastian Eckstein
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Sungmin Kim
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Qiang Liu
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany.,Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Hui Shi
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany.,School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225009 Yangzhou, Jiangsu, China
| | - Lara Milakovic
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Yuanshuai Liu
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao, China
| | - Gary L Haller
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Eszter Baráth
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany. .,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| |
Collapse
|
22
|
Grifoni E, Piccini G, Lercher JA, Glezakou VA, Rousseau R, Parrinello M. Confinement effects and acid strength in zeolites. Nat Commun 2021; 12:2630. [PMID: 33976197 PMCID: PMC8113345 DOI: 10.1038/s41467-021-22936-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
Chemical reactivity and sorption in zeolites are coupled to confinement and-to a lesser extent-to the acid strength of Brønsted acid sites (BAS). In presence of water the zeolite Brønsted acid sites eventually convert into hydronium ions. The gradual transition from zeolite Brønsted acid sites to hydronium ions in zeolites of varying pore size is examined by ab initio molecular dynamics combined with enhanced sampling based on Well-Tempered Metadynamics and a recently developed set of collective variables. While at low water content (1-2 water/BAS) the acidic protons prefer to be shared between zeolites and water, higher water contents (n > 2) invariably lead to solvation of the protons within a localized water cluster adjacent to the BAS. At low water loadings the standard free energy of the formed complexes is dominated by enthalpy and is associated with the acid strength of the BAS and the space around the site. Conversely, the entropy increases linearly with the concentration of waters in the pores, favors proton solvation and is independent of the pore size/shape.
Collapse
Affiliation(s)
- Emanuele Grifoni
- grid.5801.c0000 0001 2156 2780Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, Via Giuseppe Buffi 13, Lugano, Ticino Switzerland ,grid.29078.340000 0001 2203 2861Institute of Computational Science, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, Lugano, Ticino Switzerland ,grid.6093.cPresent Address: Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, Italy
| | - GiovanniMaria Piccini
- grid.5801.c0000 0001 2156 2780Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, Via Giuseppe Buffi 13, Lugano, Ticino Switzerland ,grid.29078.340000 0001 2203 2861Institute of Computational Science, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, Lugano, Ticino Switzerland ,grid.451303.00000 0001 2218 3491Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA USA
| | - Johannes A. Lercher
- grid.451303.00000 0001 2218 3491Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA USA ,grid.6936.a0000000123222966Department Chemie and Catalysis Research Center, TU München, Lichtenbergstr. 4, Garching, Germany
| | - Vassiliki-Alexandra Glezakou
- grid.451303.00000 0001 2218 3491Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA USA
| | - Roger Rousseau
- grid.451303.00000 0001 2218 3491Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA USA
| | - Michele Parrinello
- grid.5801.c0000 0001 2156 2780Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, Via Giuseppe Buffi 13, Lugano, Ticino Switzerland ,grid.29078.340000 0001 2203 2861Institute of Computational Science, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, Lugano, Ticino Switzerland ,grid.25786.3e0000 0004 1764 2907Italian Institute of Technology, Via Morego 30, Genova, Italy
| |
Collapse
|
23
|
Bates JS, Gounder R. Kinetic effects of molecular clustering and solvation by extended networks in zeolite acid catalysis. Chem Sci 2021; 12:4699-4708. [PMID: 34168752 PMCID: PMC8179612 DOI: 10.1039/d1sc00151e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/17/2021] [Indexed: 01/06/2023] Open
Abstract
Reactions catalyzed within porous inorganic and organic materials and at electrochemical interfaces commonly occur at high coverage and in condensed media, causing turnover rates to depend strongly on interfacial structure and composition, collectively referred to as "solvent effects". Transition state theory treatments define how solvation phenomena enter kinetic rate expressions, and identify two distinct types of solvent effects that originate from molecular clustering and from the solvation of such clusters by extended solvent networks. We review examples from the recent literature that investigate reactions within microporous zeolite catalysts to illustrate these concepts, and provide a critical appraisal of open questions in the field where future research can aid in developing new chemistry and catalyst design principles.
Collapse
Affiliation(s)
- Jason S Bates
- Charles D. Davidson School of Chemical Engineering, Purdue University 480 Stadium Mall Drive West Lafayette IN 47907 USA
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University 480 Stadium Mall Drive West Lafayette IN 47907 USA
| |
Collapse
|
24
|
Prodinger S, Beato P, Svelle S. From Catalytic Test Reaction to Modern Chemical Descriptors in Zeolite Catalysis Research. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202000193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sebastian Prodinger
- University of Oslo Department of Chemistry Center for Materials Science and Nanotechnology (SMN), 1033 Blindern 0315 Oslo Norway
| | - Pablo Beato
- Haldor Topsøe A/S Haldor Topsøes Allé 1 2800 Kongens Lyngby Denmark
| | - Stian Svelle
- University of Oslo Department of Chemistry Center for Materials Science and Nanotechnology (SMN), 1033 Blindern 0315 Oslo Norway
| |
Collapse
|
25
|
Chen F, Shetty M, Wang M, Shi H, Liu Y, Camaioni DM, Gutiérrez OY, Lercher JA. Differences in Mechanism and Rate of Zeolite-Catalyzed Cyclohexanol Dehydration in Apolar and Aqueous Phase. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feng Chen
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Manish Shetty
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Meng Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Hui Shi
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Yuanshuai Liu
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Donald M. Camaioni
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Oliver Y. Gutiérrez
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Johannes A. Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| |
Collapse
|
26
|
Shetty M, Wang H, Chen F, Jaegers N, Liu Y, Camaioni DM, Gutiérrez OY, Lercher JA. Directing the Rate-Enhancement for Hydronium Ion Catalyzed Dehydration via Organization of Alkanols in Nanoscopic Confinements. Angew Chem Int Ed Engl 2021; 60:2304-2311. [PMID: 33009700 PMCID: PMC7898603 DOI: 10.1002/anie.202009835] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 11/10/2022]
Abstract
Alkanol dehydration rates catalyzed by hydronium ions are enhanced by the dimensions of steric confinements of zeolite pores as well as by intraporous intermolecular interactions with other alkanols. The higher rates with zeolite MFI having pores smaller than those of zeolite BEA for dehydration of secondary alkanols, 3-heptanol and 2-methyl-3-hexanol, is caused by the lower activation enthalpy in the tighter confinements of MFI that offsets a less positive activation entropy. The higher activity in BEA than in MFI for dehydration of a tertiary alkanol, 2-methyl-2-hexanol, is primarily attributed to the reduction of the activation enthalpy by stabilizing intraporous interactions of the Cβ -H transition state with surrounding alcohol molecules. Overall, we show that the positive impact of zeolite confinements results from the stabilization of transition state provided by the confinement and intermolecular interaction of alkanols with the transition state, which is impacted by both the size of confinements and the structure of alkanols in the E1 pathway of dehydration.
Collapse
Affiliation(s)
- Manish Shetty
- Institute of Integrated CatalysisPacific Northwest National Laboratory (PNNL)P.O. Box 999RichlandWA99352USA
| | - Huamin Wang
- Institute of Integrated CatalysisPacific Northwest National Laboratory (PNNL)P.O. Box 999RichlandWA99352USA
| | - Feng Chen
- Institute of Integrated CatalysisPacific Northwest National Laboratory (PNNL)P.O. Box 999RichlandWA99352USA
| | - Nicholas Jaegers
- Institute of Integrated CatalysisPacific Northwest National Laboratory (PNNL)P.O. Box 999RichlandWA99352USA
| | - Yue Liu
- Department of Chemistry and Catalysis Research CenterTechnical University MünchenLichtenbergstrasse 485747MünchenGermany
| | - Donald M. Camaioni
- Institute of Integrated CatalysisPacific Northwest National Laboratory (PNNL)P.O. Box 999RichlandWA99352USA
| | - Oliver Y. Gutiérrez
- Institute of Integrated CatalysisPacific Northwest National Laboratory (PNNL)P.O. Box 999RichlandWA99352USA
| | - Johannes A. Lercher
- Institute of Integrated CatalysisPacific Northwest National Laboratory (PNNL)P.O. Box 999RichlandWA99352USA
- Department of Chemistry and Catalysis Research CenterTechnical University MünchenLichtenbergstrasse 485747MünchenGermany
| |
Collapse
|
27
|
Shetty M, Wang H, Chen F, Jaegers N, Liu Y, Camaioni DM, Gutiérrez OY, Lercher JA. Directing the Rate‐Enhancement for Hydronium Ion Catalyzed Dehydration via Organization of Alkanols in Nanoscopic Confinements. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Manish Shetty
- Institute of Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - Huamin Wang
- Institute of Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - Feng Chen
- Institute of Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - Nicholas Jaegers
- Institute of Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center Technical University München Lichtenbergstrasse 4 85747 München Germany
| | - Donald M. Camaioni
- Institute of Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - Oliver Y. Gutiérrez
- Institute of Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
| | - Johannes A. Lercher
- Institute of Integrated Catalysis Pacific Northwest National Laboratory (PNNL) P.O. Box 999 Richland WA 99352 USA
- Department of Chemistry and Catalysis Research Center Technical University München Lichtenbergstrasse 4 85747 München Germany
| |
Collapse
|
28
|
Zhang W, Cheng G, Haller GL, Liu Y, Lercher JA. Rate Enhancement of Acid-Catalyzed Alcohol Dehydration by Supramolecular Organic Capsules. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Zhang
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Guanhua Cheng
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Gary L. Haller
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Johannes A. Lercher
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
29
|
Milakovic L, Hintermeier PH, Liu Q, Shi H, Liu Y, Baráth E, Lercher JA. Towards understanding and predicting the hydronium ion catalyzed dehydration of cyclic-primary, secondary and tertiary alcohols. J Catal 2020. [DOI: 10.1016/j.jcat.2020.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Harris JW, Bates JS, Bukowski BC, Greeley J, Gounder R. Opportunities in Catalysis over Metal-Zeotypes Enabled by Descriptions of Active Centers Beyond Their Binding Site. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02102] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- James W. Harris
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, Alabama 35487, United States
| | - Jason S. Bates
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Brandon C. Bukowski
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jeffrey Greeley
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
31
|
Affiliation(s)
- Gengnan Li
- Center for Interfacial Reaction Engineering and School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Bin Wang
- Center for Interfacial Reaction Engineering and School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Daniel E. Resasco
- Center for Interfacial Reaction Engineering and School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
32
|
Eckstein S, Hintermeier PH, Zhao R, Baráth E, Shi H, Liu Y, Lercher JA. Influence of Hydronium Ions in Zeolites on Sorption. Angew Chem Int Ed Engl 2019; 58:3450-3455. [DOI: 10.1002/anie.201812184] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/30/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Sebastian Eckstein
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Peter H. Hintermeier
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Ruixue Zhao
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Eszter Baráth
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Hui Shi
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Johannes A. Lercher
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| |
Collapse
|
33
|
Eckstein S, Hintermeier PH, Zhao R, Baráth E, Shi H, Liu Y, Lercher JA. Influence of Hydronium Ions in Zeolites on Sorption. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sebastian Eckstein
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Peter H. Hintermeier
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Ruixue Zhao
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Eszter Baráth
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Hui Shi
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Johannes A. Lercher
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| |
Collapse
|
34
|
Li G, Pidko EA. The Nature and Catalytic Function of Cation Sites in Zeolites: a Computational Perspective. ChemCatChem 2018. [DOI: 10.1002/cctc.201801493] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Guanna Li
- Department Chemical EngineeringDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
| | - Evgeny A. Pidko
- Department Chemical EngineeringDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
- ITMO University Lomonosova str. 9 St. Petersburg 191002 Russia
| |
Collapse
|
35
|
|
36
|
Hintermeier PH, Eckstein S, Mei D, Olarte MV, Camaioni DM, Baráth E, Lercher JA. Hydronium-Ion-Catalyzed Elimination Pathways of Substituted Cyclohexanols in Zeolite H-ZSM5. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01582] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter H. Hintermeier
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching D-85747, Germany
| | - Sebastian Eckstein
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching D-85747, Germany
| | - Donghai Mei
- Institute
for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Mariefel V. Olarte
- Institute
for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Donald M. Camaioni
- Institute
for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Eszter Baráth
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching D-85747, Germany
| | - Johannes A. Lercher
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching D-85747, Germany
- Institute
for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| |
Collapse
|