1
|
Ceccarelli F, Londei F, Arena G, Genovesio A, Ferrucci L. Home-Cage Training for Non-Human Primates: An Opportunity to Reduce Stress and Study Natural Behavior in Neurophysiology Experiments. Animals (Basel) 2025; 15:1340. [PMID: 40362154 PMCID: PMC12071079 DOI: 10.3390/ani15091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Research involving non-human primates remains a cornerstone in fields such as biomedical research and systems neuroscience. However, the daily routines of laboratory work can induce stress in these animals, potentially compromising their well-being and the reliability of experimental outcomes. To address this, many laboratories have adopted home-cage training protocols to mitigate stress caused by routine procedures such as transport and restraint-a factor that can impact both macaque physiology and experimental validity. This review explores the primary methods and experimental setups employed in home-cage training, highlighting their potential not only to address ethical concerns surrounding animal welfare but also to reduce training time and risks for the researchers. Furthermore, by combining home-cage training with wireless recordings, it becomes possible to expand research opportunities in behavioral neurophysiology with non-human primates. This approach enables the study of various cognitive processes in more naturalistic settings, thereby increasing the ecological validity of scientific findings through innovative experimental designs that thoroughly investigate the complexity of the animals' natural behavior.
Collapse
Affiliation(s)
- Francesco Ceccarelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.L.); (G.A.)
| | - Fabrizio Londei
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.L.); (G.A.)
| | - Giulia Arena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.L.); (G.A.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Via Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
- Behavioral Neuroscience PhD Program, Sapienza University, 00185 Rome, Italy
| | - Aldo Genovesio
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.L.); (G.A.)
| |
Collapse
|
2
|
Koch NA, Corrigan BW, Feyerabend M, Gulli RA, Jimenez-Sosa MS, Abbass M, Sunstrum JK, Matovic S, Roussy M, Luna R, Mestern SA, Mahmoudian B, Vijayraghavan S, Igarashi H, Pradeepan KS, Assis WJ, Pruszynski JA, Tripathy S, Staiger JF, Gonzalez-Burgos G, Neef A, Treue S, Everling S, Inoue W, Khadra A, Martinez-Trujillo JC. Spike frequency adaptation in primate lateral prefrontal cortex neurons results from interplay between intrinsic properties and circuit dynamics. Cell Rep 2025; 44:115159. [PMID: 39772396 DOI: 10.1016/j.celrep.2024.115159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cortical neurons in brain slices display intrinsic spike frequency adaptation (I-SFA) to constant current inputs, while extracellular recordings show extrinsic SFA (E-SFA) during sustained visual stimulation. Inferring how I-SFA contributes to E-SFA during behavior is challenging due to the isolated nature of slice recordings. To address this, we recorded macaque lateral prefrontal cortex (LPFC) neurons in vivo during a visually guided saccade task and in vitro in brain slices. Broad-spiking (BS) putative pyramidal cells and narrow-spiking (NS) putative inhibitory interneurons exhibit both E-SFA and I-SFA. Developing a data-driven hybrid circuit model comprising NS model neurons receiving BS input reveals that NS model neurons exhibit longer SFA than observed in vivo; however, adding feedforward inhibition corrects this in a manner dependent on I-SFA. Identification of this circuit motif shaping E-SFA in LPFC highlights the roles of both intrinsic and network mechanisms in neural activity underlying behavior.
Collapse
Affiliation(s)
- Nils A Koch
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Benjamin W Corrigan
- Department of Biology, York University, Toronto, ON, Canada; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael Feyerabend
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Roberto A Gulli
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | | | - Mohamad Abbass
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Julia K Sunstrum
- Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada; Neuroscience Graduate Program, Western University, London, ON, Canada
| | - Sara Matovic
- Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Megan Roussy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Rogelio Luna
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Samuel A Mestern
- Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Borna Mahmoudian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Susheel Vijayraghavan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Hiroyuki Igarashi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kartik S Pradeepan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - William J Assis
- Western Institute for Neuroscience, Western University, London, ON, Canada
| | - J Andrew Pruszynski
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Shreejoy Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Jochen F Staiger
- Department of Neuroanatomy, University Medical Center, Georg-August-University, Göttingen, Germany
| | | | - Andreas Neef
- Campus Institute for Dynamics of Biological Networks, Göttingen, Germany; Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz ScienceCampus, Primate Cognition, Göttingen, Germany
| | - Stefan Everling
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Wataru Inoue
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Anmar Khadra
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Physiology, McGill University, Montreal, QC, Canada.
| | - Julio C Martinez-Trujillo
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| |
Collapse
|
3
|
Abbass M, Corrigan B, Johnston R, Gulli R, Sachs A, Lau JC, Martinez-Trujillo J. Prefrontal cortex neuronal ensembles dynamically encode task features during associative memory and virtual navigation. Cell Rep 2025; 44:115124. [PMID: 39772389 DOI: 10.1016/j.celrep.2024.115124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/11/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Neuronal populations expand their information-encoding capacity using mixed selective neurons. This is particularly prominent in association areas such as the lateral prefrontal cortex (LPFC), which integrate information from multiple sensory systems. However, during conditions that approximate natural behaviors, it is unclear how LPFC neuronal ensembles process space- and time-varying information about task features. Here, we show that, during a virtual reality task with naturalistic elements that requires associative memory, individual neurons and neuronal ensembles in the primate LPFC dynamically mix unconstrained features of the task, such as eye movements, with task-related visual features. Neurons in dorsal regions show more selectivity for space and eye movements, while ventral regions show more selectivity for visual features, representing them in a separate subspace. In summary, LPFC neurons exhibit dynamic and mixed selectivity for unconstrained and constrained task elements, and neural ensembles can separate task features in different subspaces.
Collapse
Affiliation(s)
- Mohamad Abbass
- Western Institute for Neuroscience, Western University, London, ON, Canada; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Benjamin Corrigan
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Renée Johnston
- Ottawa Hospital Research Institute, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Roberto Gulli
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Adam Sachs
- Ottawa Hospital Research Institute, Ottawa, ON, Canada; Division of Neurosurgery, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jonathan C Lau
- Western Institute for Neuroscience, Western University, London, ON, Canada; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Julio Martinez-Trujillo
- Western Institute for Neuroscience, Western University, London, ON, Canada; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
4
|
Sapountzis P, Antoniadou A, Gregoriou GG. Diverse neuronal activity patterns contribute to the control of distraction in the prefrontal and parietal cortex. PLoS Biol 2025; 23:e3003008. [PMID: 39869632 PMCID: PMC11801722 DOI: 10.1371/journal.pbio.3003008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/06/2025] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Goal-directed behavior requires the effective suppression of distractions to focus on the task at hand. Although experimental evidence suggests that brain areas in the prefrontal and parietal lobe contribute to the selection of task-relevant and the suppression of task-irrelevant stimuli, how conspicuous distractors are encoded and effectively ignored remains poorly understood. We recorded neuronal responses from 2 regions in the prefrontal and parietal cortex of macaques, the frontal eye field (FEF) and the lateral intraparietal (LIP) area, during a visual search task, in the presence and absence of a salient distractor. We found that in both areas, salient distractors are encoded by both response enhancement and suppression by distinct neuronal populations. In FEF, a larger proportion of units displayed suppression of responses to the salient distractor compared to LIP, with suppression effects in FEF being correlated with search time. Moreover, in FEF but not in LIP, the suppression for the salient distractor compared to non-salient distractors that shared the target color could not be accounted for by an enhancement of target features. These results reveal a distinct contribution of FEF in the suppression of salient distractors. Critically, we found that in both areas, the population level representations of the target and singleton locations were not orthogonal, suggesting a mechanism of interference from salient stimuli.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Alexandra Antoniadou
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgia G. Gregoriou
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
5
|
Johnston R, Boulay C, Miller K, Sachs A. Mapping cognitive activity from electrocorticography field potentials in humans performing NBack task. Biomed Phys Eng Express 2024; 10:065029. [PMID: 39260393 DOI: 10.1088/2057-1976/ad795e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Objective. Advancements in data science and assistive technologies have made invasive brain-computer interfaces (iBCIs) increasingly viable for enhancing the quality of life in physically disabled individuals. Intracortical microelectrode implants are a common choice for such a communication system due to their fine temporal and spatial resolution. The small size of these implants makes the implantation plan critical for the successful exfiltration of information, particularly when targeting representations of task goals that lack robust anatomical correlates.Approach. Working memory processes including encoding, retrieval, and maintenance are observed in many areas of the brain. Using human electrocorticography (ECoG) recordings during a working memory experiment, we provide proof that it is possible to localize cognitive activity associated with the task and to identify key locations involved with executive memory functions.Results.From the analysis, we could propose an optimal iBCI implant location with the desired features. The general approach is not limited to working memory but could also be used to map other goal-encoding factors such as movement intentions, decision-making, and visual-spatial attention.Significance. Deciphering the intended action of a BCI user is a complex challenge that involves the extraction and integration of cognitive factors such as movement planning, working memory, visual-spatial attention, and the decision state. Examining field potentials from ECoG electrodes while participants engaged in tailored cognitive tasks can pinpoint location with valuable information related to anticipated actions. This manuscript demonstrates the feasibility of identifying electrodes involved in cognitive activity related to working memory during user engagement in the NBack task. Devoting time in meticulous preparation to identify the optimal brain regions for BCI implant locations will increase the likelihood of rich signal outcomes, thereby improving the overall BCI user experience.
Collapse
Affiliation(s)
- Renée Johnston
- Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, Canada
| | - Chadwick Boulay
- Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, Canada
| | - Kai Miller
- Department of Neurologic Surgery, Mayo Clinic, 200 First St. Rochester, MN, 55902, United States of America
| | - Adam Sachs
- Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, Canada
- Division of Neurosurgery, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
6
|
Mendoza-Halliday D, Xu H, Azevedo FAC, Desimone R. Dissociable neuronal substrates of visual feature attention and working memory. Neuron 2024; 112:850-863.e6. [PMID: 38228138 PMCID: PMC10939754 DOI: 10.1016/j.neuron.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Attention and working memory (WM) are distinct cognitive functions, yet given their close interactions, it is often assumed that they share the same neuronal mechanisms. We show that in macaques performing a WM-guided feature attention task, the activity of most neurons in areas middle temporal (MT), medial superior temporal (MST), lateral intraparietal (LIP), and posterior lateral prefrontal cortex (LPFC-p) displays attentional modulation or WM coding and not both. One area thought to play a role in both functions is LPFC-p. To test this, we optogenetically inactivated LPFC-p bilaterally during different task periods. Attention period inactivation reduced attentional modulation in LPFC-p, MST, and LIP neurons and impaired task performance. In contrast, WM period inactivation did not affect attentional modulation or performance and minimally affected WM coding. Our results suggest that feature attention and WM have dissociable neuronal substrates and that LPFC-p plays a critical role in feature attention, but not in WM.
Collapse
Affiliation(s)
- Diego Mendoza-Halliday
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Haoran Xu
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Frederico A C Azevedo
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Desimone
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Viswanathan P, Stein AM, Nieder A. Sequential neuronal processing of number values, abstract decision, and action in the primate prefrontal cortex. PLoS Biol 2024; 22:e3002520. [PMID: 38364194 PMCID: PMC10871863 DOI: 10.1371/journal.pbio.3002520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Decision-making requires processing of sensory information, comparing the gathered evidence to make a judgment, and performing the action to communicate it. How neuronal representations transform during this cascade of representations remains a matter of debate. Here, we studied the succession of neuronal representations in the primate prefrontal cortex (PFC). We trained monkeys to judge whether a pair of sequentially presented displays had the same number of items. We used a combination of single neuron and population-level analyses and discovered a sequential transformation of represented information with trial progression. While numerical values were initially represented with high precision and in conjunction with detailed information such as order, the decision was encoded in a low-dimensional subspace of neural activity. This decision encoding was invariant to both retrospective numerical values and prospective motor plans, representing only the binary judgment of "same number" versus "different number," thus facilitating the generalization of decisions to novel number pairs. We conclude that this transformation of neuronal codes within the prefrontal cortex supports cognitive flexibility and generalizability of decisions to new conditions.
Collapse
Affiliation(s)
- Pooja Viswanathan
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Anna M. Stein
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
8
|
Ceccarelli F, Ferrucci L, Londei F, Ramawat S, Brunamonti E, Genovesio A. Static and dynamic coding in distinct cell types during associative learning in the prefrontal cortex. Nat Commun 2023; 14:8325. [PMID: 38097560 PMCID: PMC10721651 DOI: 10.1038/s41467-023-43712-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
The prefrontal cortex maintains information in memory through static or dynamic population codes depending on task demands, but whether the population coding schemes used are learning-dependent and differ between cell types is currently unknown. We investigate the population coding properties and temporal stability of neurons recorded from male macaques in two mapping tasks during and after stimulus-response associative learning, and then we use a Strategy task with the same stimuli and responses as control. We identify a heterogeneous population coding for stimuli, responses, and novel associations: static for putative pyramidal cells and dynamic for putative interneurons that show the strongest selectivity for all the variables. The population coding of learned associations shows overall the highest stability driven by cell types, with interneurons changing from dynamic to static coding after successful learning. The results support that prefrontal microcircuitry expresses mixed population coding governed by cell types and changes its stability during associative learning.
Collapse
Affiliation(s)
- Francesco Ceccarelli
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy
| | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy
| | - Fabrizio Londei
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy
- PhD program in Behavioral Neuroscience, Sapienza University, Rome, Italy
| | - Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy.
| |
Collapse
|
9
|
Constantinidis C, Ahmed AA, Wallis JD, Batista AP. Common Mechanisms of Learning in Motor and Cognitive Systems. J Neurosci 2023; 43:7523-7529. [PMID: 37940591 PMCID: PMC10634576 DOI: 10.1523/jneurosci.1505-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 11/10/2023] Open
Abstract
Rapid progress in our understanding of the brain's learning mechanisms has been accomplished over the past decade, particularly with conceptual advances, including representing behavior as a dynamical system, large-scale neural population recordings, and new methods of analysis of neuronal populations. However, motor and cognitive systems have been traditionally studied with different methods and paradigms. Recently, some common principles, evident in both behavior and neural activity, that underlie these different types of learning have become to emerge. Here we review results from motor and cognitive learning, relying on different techniques and studying different systems to understand the mechanisms of learning. Movement is intertwined with cognitive operations, and its dynamics reflect cognitive variables. Training, in either motor or cognitive tasks, involves recruitment of previously unresponsive neurons and reorganization of neural activity in a low dimensional manifold. Mapping of new variables in neural activity can be very rapid, instantiating flexible learning of new tasks. Communication between areas is just as critical a part of learning as are patterns of activity within an area emerging with learning. Common principles across systems provide a map for future research.
Collapse
Affiliation(s)
| | - Alaa A Ahmed
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder Colorado 80309
| | - Joni D Wallis
- Department of Psychology, University of California Berkeley, Berkeley, California 94720
| | - Aaron P Batista
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
10
|
Zhao Y, Zhong Y, Chen W, Chang S, Cao Q, Wang Y, Yang L. Ocular and neural genes jointly regulate the visuospatial working memory in ADHD children. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:14. [PMID: 37658396 PMCID: PMC10472596 DOI: 10.1186/s12993-023-00216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE Working memory (WM) deficits have frequently been linked to attention deficit hyperactivity disorder (ADHD). Despite previous studies suggested its high heritability, its genetic basis, especially in ADHD, remains unclear. The current study aimed to comprehensively explore the genetic basis of visual-spatial working memory (VSWM) in ADHD using wide-ranging genetic analyses. METHODS The current study recruited a cohort consisted of 802 ADHD individuals, all met DSM-IV ADHD diagnostic criteria. VSWM was assessed by Rey-Osterrieth complex figure test (RCFT), which is a widely used psychological test include four memory indexes: detail delayed (DD), structure delayed (SD), structure immediate (SI), detail immediate (DI). Genetic analyses were conducted at the single nucleotide polymorphism (SNP), gene, pathway, polygenic and protein network levels. Polygenic Risk Scores (PRS) were based on summary statistics of various psychiatric disorders, including ADHD, autism spectrum disorder (ASD), major depressive disorder (MDD), schizophrenia (SCZ), obsessive compulsive disorders (OCD), and substance use disorder (SUD). RESULTS Analyses at the single-marker level did not yield significant results (5E-08). However, the potential signals with P values less than E-05 and their mapped genes suggested the regulation of VSWM involved both ocular and neural system related genes, moreover, ADHD-related genes were also involved. The gene-based analysis found RAB11FIP1, whose encoded protein modulates several neurodevelopment processes and visual system, as significantly associated with DD scores (P = 1.96E-06, Padj = 0.036). Candidate pathway enrichment analyses (N = 53) found that forebrain neuron fate commitment significantly enriched in DD (P = 4.78E-04, Padj = 0.025), and dopamine transport enriched in SD (P = 5.90E-04, Padj = 0.031). We also observed a significant negative relationship between DD scores and ADHD PRS scores (P = 0.0025, Empirical P = 0.048). CONCLUSIONS Our results emphasized the joint contribution of ocular and neural genes in regulating VSWM. The study reveals a shared genetic basis between ADHD and VSWM, with GWAS indicating the involvement of ADHD-related genes in VSWM. Additionally, the PRS analysis identifies a significant relationship between ADHD-PRS and DD scores. Overall, our findings shed light on the genetic basis of VSWM deficits in ADHD, and may have important implications for future research and clinical practice.
Collapse
Affiliation(s)
- Yilu Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Yuanxin Zhong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Wei Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Qingjiu Cao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Yufeng Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China.
| |
Collapse
|
11
|
Comeaux P, Clark K, Noudoost B. A recruitment through coherence theory of working memory. Prog Neurobiol 2023; 228:102491. [PMID: 37393039 PMCID: PMC10530428 DOI: 10.1016/j.pneurobio.2023.102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The interactions between prefrontal cortex and other areas during working memory have been studied for decades. Here we outline a conceptual framework describing interactions between these areas during working memory, and review evidence for key elements of this model. We specifically suggest that a top-down signal sent from prefrontal to sensory areas drives oscillations in these areas. Spike timing within sensory areas becomes locked to these working-memory-driven oscillations, and the phase of spiking conveys information about the representation available within these areas. Downstream areas receiving these phase-locked spikes from sensory areas can recover this information via a combination of coherent oscillations and gating of input efficacy based on the phase of their local oscillations. Although the conceptual framework is based on prefrontal interactions with sensory areas during working memory, we also discuss the broader implications of this framework for flexible communication between brain areas in general.
Collapse
Affiliation(s)
- Phillip Comeaux
- Dept. of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Salt Lake City, UT 84112, USA; Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Kelsey Clark
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Behrad Noudoost
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
12
|
Rahmati M, Curtis CE, Sreenivasan KK. Mnemonic representations in human lateral geniculate nucleus. Front Behav Neurosci 2023; 17:1094226. [PMID: 37234404 PMCID: PMC10206025 DOI: 10.3389/fnbeh.2023.1094226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
There is a growing appreciation for the role of the thalamus in high-level cognition. Motivated by findings that internal cognitive state drives activity in feedback layers of primary visual cortex (V1) that target the lateral geniculate nucleus (LGN), we investigated the role of LGN in working memory (WM). Specifically, we leveraged model-based neuroimaging approaches to test the hypothesis that human LGN encodes information about spatial locations temporarily encoded in WM. First, we localized and derived a detailed topographic organization in LGN that accords well with previous findings in humans and non-human primates. Next, we used models constructed on the spatial preferences of LGN populations in order to reconstruct spatial locations stored in WM as subjects performed modified memory-guided saccade tasks. We found that population LGN activity faithfully encoded the spatial locations held in memory in all subjects. Importantly, our tasks and models allowed us to dissociate the locations of retinal stimulation and the motor metrics of memory-guided saccades from the maintained spatial locations, thus confirming that human LGN represents true WM information. These findings add LGN to the growing list of subcortical regions involved in WM, and suggest a key pathway by which memories may influence incoming processing at the earliest levels of the visual hierarchy.
Collapse
Affiliation(s)
- Masih Rahmati
- Department of Psychology, New York University, New York, NY, United States
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Clayton E. Curtis
- Department of Psychology, New York University, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| | - Kartik K. Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Johnston R, Abbass M, Corrigan B, Gulli R, Martinez-Trujillo J, Sachs A. Decoding spatial locations from primate lateral prefrontal cortex neural activity during virtual navigation. J Neural Eng 2023; 20. [PMID: 36693278 DOI: 10.1088/1741-2552/acb5c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
Objective. Decoding the intended trajectories from brain signals using a brain-computer interface system could be used to improve the mobility of patients with disabilities.Approach. Neuronal activity associated with spatial locations was examined while macaques performed a navigation task within a virtual environment.Main results.Here, we provide proof of principle that multi-unit spiking activity recorded from the lateral prefrontal cortex (LPFC) of non-human primates can be used to predict the location of a subject in a virtual maze during a navigation task. The spatial positions within the maze that require a choice or are associated with relevant task events can be better predicted than the locations where no relevant events occur. Importantly, within a task epoch of a single trial, multiple locations along the maze can be independently identified using a support vector machine model.Significance. Considering that the LPFC of macaques and humans share similar properties, our results suggest that this area could be a valuable implant location for an intracortical brain-computer interface system used for spatial navigation in patients with disabilities.
Collapse
Affiliation(s)
- Renée Johnston
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mohamad Abbass
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada.,Western Institute for Neuroscience, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Benjamin Corrigan
- Western Institute for Neuroscience, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Roberto Gulli
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States of America.,Center for Theoretical Neuroscience, Columbia University, New York, NY, United States of America
| | - Julio Martinez-Trujillo
- Western Institute for Neuroscience, Western University, London, ON, Canada.,Department of Physiology, Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Adam Sachs
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Division of Neurosurgery, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
14
|
Roussy M, Corrigan B, Luna R, Gulli RA, Sachs AJ, Palaniyappan L, Martinez-Trujillo JC. Stable Working Memory and Perceptual Representations in Macaque Lateral Prefrontal Cortex during Naturalistic Vision. J Neurosci 2022; 42:8328-8342. [PMID: 36195438 PMCID: PMC9653275 DOI: 10.1523/jneurosci.0597-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/19/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Primates use perceptual and mnemonic visuospatial representations to perform everyday functions. Neurons in the lateral prefrontal cortex (LPFC) have been shown to encode both of these representations during tasks where eye movements are strictly controlled and visual stimuli are reduced in complexity. This raises the question of whether perceptual and mnemonic representations encoded by LPFC neurons remain robust during naturalistic vision-in the presence of a rich visual scenery and during eye movements. Here we investigate this issue by training macaque monkeys to perform working memory and perception tasks in a visually complex virtual environment that requires navigation using a joystick and allows for free visual exploration of the scene. We recorded the activity of 3950 neurons in the LPFC (areas 8a and 9/46) of two male rhesus macaques using multielectrode arrays, and measured eye movements using video tracking. We found that navigation trajectories to target locations and eye movement behavior differed between the perception and working memory tasks, suggesting that animals used different behavioral strategies. Single neurons were tuned to target location during cue encoding and working memory delay, and neural ensemble activity was predictive of the behavior of the animals. Neural decoding of the target location was stable throughout the working memory delay epoch. However, neural representations of similar target locations differed between the working memory and perception tasks. These findings indicate that during naturalistic vision, LPFC neurons maintain robust and distinct neural codes for mnemonic and perceptual visuospatial representations.SIGNIFICANCE STATEMENT We show that lateral prefrontal cortex neurons encode working memory and perceptual representations during a naturalistic task set in a virtual environment. We show that despite eye movement and complex visual input, neurons maintain robust working memory representations of space, which are distinct from neuronal representations for perception. We further provide novel insight into the use of virtual environments to construct behavioral tasks for electrophysiological experiments.
Collapse
Affiliation(s)
- Megan Roussy
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Benjamin Corrigan
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada
| | - Rogelio Luna
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada
| | - Roberto A Gulli
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027
| | - Adam J Sachs
- The Ottawa Hospital, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada
| | - Lena Palaniyappan
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Centre for Youth Mental Health, Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Julio C Martinez-Trujillo
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada
| |
Collapse
|
15
|
Singh B, Wang Z, Qi XL, Constantinidis C. Plasticity after cognitive training reflected in prefrontal local field potentials. iScience 2022; 25:104929. [PMID: 36065179 PMCID: PMC9440296 DOI: 10.1016/j.isci.2022.104929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
Learning to perform a new cognitive task induces plasticity of the prefrontal cortex generally involving activation of more neurons and increases in firing rate; however, its effects on single neurons are diverse and complex. We sought to understand how training affects global measures of neural activity by recording and analyzing local field potentials (LFPs) in monkeys before and after they learned to perform working memory tasks. LFP power after training was characterized by a reduction in power in 20-40 Hz during the stimulus presentations and delay periods of the task. Both evoked power, synchronized to task events, and induced power exhibited this decrease after training. The effect was consistent across tasks requiring memory of spatial location and stimulus shape. Error trials were characterized by a lack of LFP power ramping around the fixation onset. Our results reveal signatures of cortical plasticity in LFPs associated with learning to perform cognitive tasks.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Zhengyang Wang
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235, USA
| | - Xue-Lian Qi
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
16
|
Distractibility and impulsivity neural states are distinct from selective attention and modulate the implementation of spatial attention. Nat Commun 2022; 13:4796. [PMID: 35970856 PMCID: PMC9378734 DOI: 10.1038/s41467-022-32385-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
In the context of visual attention, it has been classically assumed that missing the response to a target or erroneously selecting a distractor occurs as a consequence of the (miss)allocation of attention in space. In the present paper, we challenge this view and provide evidence that, in addition to encoding spatial attention, prefrontal neurons also encode a distractibility-to-impulsivity state. Using supervised dimensionality reduction techniques in prefrontal neuronal recordings in monkeys, we identify two partially overlapping neuronal subpopulations associated either with the focus of attention or overt behaviour. The degree of overlap accounts for the behavioral gain associated with the good allocation of attention. We further describe the neural variability accounting for distractibility-to-impulsivity behaviour by a two dimensional state associated with optimality in task and responsiveness. Overall, we thus show that behavioral performance arises from the integration of task-specific neuronal processes and pre-existing neuronal states describing task-independent behavioral states. Failing to detect relevant information has been assumed to be a consequence of misallocation of attention. Here, the authors present findings showing that optimal behavioral performance results from the absence of interference between internal neural states and attention control.
Collapse
|
17
|
Abstract
Voluntary attention selects behaviorally relevant signals for further processing while filtering out distracter signals. Neural correlates of voluntary visual attention have been reported across multiple areas of the primate visual processing streams, with the earliest and strongest effects isolated in the prefrontal cortex. In this article, I review evidence supporting the hypothesis that signals guiding the allocation of voluntary attention emerge in areas of the prefrontal cortex and reach upstream areas to modulate the processing of incoming visual information according to its behavioral relevance. Areas located anterior and dorsal to the arcuate sulcus and the frontal eye fields produce signals that guide the allocation of spatial attention. Areas located anterior and ventral to the arcuate sulcus produce signals for feature-based attention. Prefrontal microcircuits are particularly suited to supporting voluntary attention because of their ability to generate attentional template signals and implement signal gating and their extensive connectivity with the rest of the brain. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julio Martinez-Trujillo
- Department of Physiology, Pharmacology and Psychiatry, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada;
| |
Collapse
|
18
|
Liu Q, Ulloa A, Horwitz B. The Spatiotemporal Neural Dynamics of Intersensory Attention Capture of Salient Stimuli: A Large-Scale Auditory-Visual Modeling Study. Front Comput Neurosci 2022; 16:876652. [PMID: 35645750 PMCID: PMC9133449 DOI: 10.3389/fncom.2022.876652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The spatiotemporal dynamics of the neural mechanisms underlying endogenous (top-down) and exogenous (bottom-up) attention, and how attention is controlled or allocated in intersensory perception are not fully understood. We investigated these issues using a biologically realistic large-scale neural network model of visual-auditory object processing of short-term memory. We modeled and incorporated into our visual-auditory object-processing model the temporally changing neuronal mechanisms for the control of endogenous and exogenous attention. The model successfully performed various bimodal working memory tasks, and produced simulated behavioral and neural results that are consistent with experimental findings. Simulated fMRI data were generated that constitute predictions that human experiments could test. Furthermore, in our visual-auditory bimodality simulations, we found that increased working memory load in one modality would reduce the distraction from the other modality, and a possible network mediating this effect is proposed based on our model.
Collapse
Affiliation(s)
- Qin Liu
- Brain Imaging and Modeling Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Department of Physics, University of Maryland, College Park, College Park, MD, United States
| | - Antonio Ulloa
- Brain Imaging and Modeling Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Center for Information Technology, National Institutes of Health, Bethesda, MD, United States
| | - Barry Horwitz
- Brain Imaging and Modeling Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Barry Horwitz,
| |
Collapse
|
19
|
Corrigan BW, Gulli RA, Doucet G, Roussy M, Luna R, Pradeepan KS, Sachs AJ, Martinez-Trujillo JC. Distinct neural codes in primate hippocampus and lateral prefrontal cortex during associative learning in virtual environments. Neuron 2022; 110:2155-2169.e4. [PMID: 35561675 DOI: 10.1016/j.neuron.2022.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/24/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
The hippocampus (HPC) and the lateral prefrontal cortex (LPFC) are two cortical areas of the primate brain deemed essential to cognition. Here, we hypothesized that the codes mediating neuronal communication in the HPC and LPFC microcircuits have distinctively evolved to serve plasticity and memory function at different spatiotemporal scales. We used a virtual reality task in which animals selected one of the two targets in the arms of the maze, according to a learned context-color rule. Our results show that during associative learning, HPC principal cells concentrate spikes in bursts, enabling temporal summation and fast synaptic plasticity in small populations of neurons and ultimately facilitating rapid encoding of associative memories. On the other hand, layer II/III LPFC pyramidal cells fire spikes more sparsely distributed over time. The latter would facilitate broadcasting of signals loaded in short-term memory across neuronal populations without necessarily triggering fast synaptic plasticity.
Collapse
Affiliation(s)
- Benjamin W Corrigan
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada; Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Roberto A Gulli
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | | | - Megan Roussy
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada; Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Rogelio Luna
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Kartik S Pradeepan
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada; Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Adam J Sachs
- The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Julio C Martinez-Trujillo
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada; Brain and Mind Institute, University of Western Ontario, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
20
|
Mejías JF, Wang XJ. Mechanisms of distributed working memory in a large-scale network of macaque neocortex. eLife 2022; 11:e72136. [PMID: 35200137 PMCID: PMC8871396 DOI: 10.7554/elife.72136] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Neural activity underlying working memory is not a local phenomenon but distributed across multiple brain regions. To elucidate the circuit mechanism of such distributed activity, we developed an anatomically constrained computational model of large-scale macaque cortex. We found that mnemonic internal states may emerge from inter-areal reverberation, even in a regime where none of the isolated areas is capable of generating self-sustained activity. The mnemonic activity pattern along the cortical hierarchy indicates a transition in space, separating areas engaged in working memory and those which do not. A host of spatially distinct attractor states is found, potentially subserving various internal processes. The model yields testable predictions, including the idea of counterstream inhibitory bias, the role of prefrontal areas in controlling distributed attractors, and the resilience of distributed activity to lesions or inactivation. This work provides a theoretical framework for identifying large-scale brain mechanisms and computational principles of distributed cognitive processes.
Collapse
Affiliation(s)
- Jorge F Mejías
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Xiao-Jing Wang
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
21
|
Dijkstra N, Kok P, Fleming SM. Perceptual reality monitoring: Neural mechanisms dissociating imagination from reality. Neurosci Biobehav Rev 2022; 135:104557. [PMID: 35122782 DOI: 10.1016/j.neubiorev.2022.104557] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 01/21/2023]
Abstract
There is increasing evidence that imagination relies on similar neural mechanisms as externally triggered perception. This overlap presents a challenge for perceptual reality monitoring: deciding what is real and what is imagined. Here, we explore how perceptual reality monitoring might be implemented in the brain. We first describe sensory and cognitive factors that could dissociate imagery and perception and conclude that no single factor unambiguously signals whether an experience is internally or externally generated. We suggest that reality monitoring is implemented by higher-level cortical circuits that evaluate first-order sensory and cognitive factors to determine the source of sensory signals. According to this interpretation, perceptual reality monitoring shares core computations with metacognition. This multi-level architecture might explain several types of source confusion as well as dissociations between simply knowing whether something is real and actually experiencing it as real. We discuss avenues for future research to further our understanding of perceptual reality monitoring, an endeavour that has important implications for our understanding of clinical symptoms as well as general cognitive function.
Collapse
Affiliation(s)
- Nadine Dijkstra
- Wellcome Centre for Human Neuroimaging, University College London, United Kingdom.
| | - Peter Kok
- Wellcome Centre for Human Neuroimaging, University College London, United Kingdom
| | - Stephen M Fleming
- Wellcome Centre for Human Neuroimaging, University College London, United Kingdom; Max Planck UCL Centre for Computational Psychiatry and Aging Research, University College London, United Kingdom; Department of Experimental Psychology, University College London, United Kingdom
| |
Collapse
|
22
|
Yin X, Chen L, Ma M, Zhang H, Gao M, Wu X, Li Y. Altered Brain Structure and Spontaneous Functional Activity in Children With Concomitant Strabismus. Front Hum Neurosci 2021; 15:777762. [PMID: 34867247 PMCID: PMC8634149 DOI: 10.3389/fnhum.2021.777762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Strabismus occurs in about 2% of children and may result in amblyopia or lazy eyes and loss of depth perception. However, whether/how long-term strabismus shapes the brain structure and functions in children with concomitant strabismus (CS) is still unclear. In this study, a total of 26 patients with CS and 28 age-, sex-, and education-matched healthy controls (HCs) underwent structural and resting-state functional magnetic resonance imaging examination. The cortical thickness and amplitude of low-frequency fluctuation (ALFF) were calculated to assess the structural and functional plasticity in children with CS. Compared with HCs group, patients with CS showed increased cortical thickness in the precentral gyrus and angular gyrus while decreased cortical thickness in the left intraparietal sulcus, parieto-occipital sulcus, superior and middle temporal gyrus, right ventral premotor cortex, anterior insula, orbitofrontal cortex, and paracentral lobule. Meanwhile, CS patients exhibited increased ALFF in the prefrontal cortex and superior temporal gyrus, and decreased ALFF in the caudate and hippocampus. These results show that children with CS have abnormal structure and function in brain regions subserving eye movement, controls, and high-order cognitive functions. Our findings revealed the structural and functional abnormalities induced by CS and may provide new insight into the underlying neural mechanisms for CS.
Collapse
Affiliation(s)
- Xiaohui Yin
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lingjun Chen
- Department of Radiology, Gaoling District Hospital, Xi'an, China
| | - Mingyue Ma
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong Zhang
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming Gao
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoping Wu
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongqiang Li
- Department of CT and MRI, Weinan Hospital of Traditional Chinese Medicine, Weinan, China
| |
Collapse
|
23
|
Roussy M, Mendoza-Halliday D, Martinez-Trujillo JC. Neural Substrates of Visual Perception and Working Memory: Two Sides of the Same Coin or Two Different Coins? Front Neural Circuits 2021; 15:764177. [PMID: 34899197 PMCID: PMC8662382 DOI: 10.3389/fncir.2021.764177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Visual perception occurs when a set of physical signals emanating from the environment enter the visual system and the brain interprets such signals as a percept. Visual working memory occurs when the brain produces and maintains a mental representation of a percept while the physical signals corresponding to that percept are not available. Early studies in humans and non-human primates demonstrated that lesions of the prefrontal cortex impair performance during visual working memory tasks but not during perceptual tasks. These studies attributed a fundamental role in working memory and a lesser role in visual perception to the prefrontal cortex. Indeed, single cell recording studies have found that neurons in the lateral prefrontal cortex of macaques encode working memory representations via persistent firing, validating the results of lesion studies. However, other studies have reported that neurons in some areas of the parietal and temporal lobe-classically associated with visual perception-similarly encode working memory representations via persistent firing. This prompted a line of enquiry about the role of the prefrontal and other associative cortices in working memory and perception. Here, we review evidence from single neuron studies in macaque monkeys examining working memory representations across different areas of the visual hierarchy and link them to studies examining the role of the same areas in visual perception. We conclude that neurons in early visual areas of both ventral (V1-V2-V4) and dorsal (V1-V3-MT) visual pathways of macaques mainly encode perceptual signals. On the other hand, areas downstream from V4 and MT contain subpopulations of neurons that encode both perceptual and/or working memory signals. Differences in cortical architecture (neuronal types, layer composition, and synaptic density and distribution) may be linked to the differential encoding of perceptual and working memory signals between early visual areas and higher association areas.
Collapse
Affiliation(s)
- Megan Roussy
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Julio C. Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|
24
|
Abstract
In several papers published in Biological Cybernetics in the 1980s and 1990s, Kawato and colleagues proposed computational models explaining how internal models are acquired in the cerebellum. These models were later supported by neurophysiological experiments using monkeys and neuroimaging experiments involving humans. These early studies influenced neuroscience from basic, sensory-motor control to higher cognitive functions. One of the most perplexing enigmas related to internal models is to understand the neural mechanisms that enable animals to learn large-dimensional problems with so few trials. Consciousness and metacognition-the ability to monitor one's own thoughts, may be part of the solution to this enigma. Based on literature reviews of the past 20 years, here we propose a computational neuroscience model of metacognition. The model comprises a modular hierarchical reinforcement-learning architecture of parallel and layered, generative-inverse model pairs. In the prefrontal cortex, a distributed executive network called the "cognitive reality monitoring network" (CRMN) orchestrates conscious involvement of generative-inverse model pairs in perception and action. Based on mismatches between computations by generative and inverse models, as well as reward prediction errors, CRMN computes a "responsibility signal" that gates selection and learning of pairs in perception, action, and reinforcement learning. A high responsibility signal is given to the pairs that best capture the external world, that are competent in movements (small mismatch), and that are capable of reinforcement learning (small reward-prediction error). CRMN selects pairs with higher responsibility signals as objects of metacognition, and consciousness is determined by the entropy of responsibility signals across all pairs. This model could lead to new-generation AI, which exhibits metacognition, consciousness, dimension reduction, selection of modules and corresponding representations, and learning from small samples. It may also lead to the development of a new scientific paradigm that enables the causal study of consciousness by combining CRMN and decoded neurofeedback.
Collapse
Affiliation(s)
- Mitsuo Kawato
- ATR Brain Information Communication Research Group, Computational Neuroscience Laboratory, Hikaridai, Kyoto, 619-0288 Japan
| | - Aurelio Cortese
- ATR Brain Information Communication Research Group, Computational Neuroscience Laboratory, Hikaridai, Kyoto, 619-0288 Japan
| |
Collapse
|
25
|
Abstract
Working memory (WM) is the ability to maintain and manipulate information in the conscious mind over a timescale of seconds. This ability is thought to be maintained through the persistent discharges of neurons in a network of brain areas centered on the prefrontal cortex, as evidenced by neurophysiological recordings in nonhuman primates, though both the localization and the neural basis of WM has been a matter of debate in recent years. Neural correlates of WM are evident in species other than primates, including rodents and corvids. A specialized network of excitatory and inhibitory neurons, aided by neuromodulatory influences of dopamine, is critical for the maintenance of neuronal activity. Limitations in WM capacity and duration, as well as its enhancement during development, can be attributed to properties of neural activity and circuits. Changes in these factors can be observed through training-induced improvements and in pathological impairments. WM thus provides a prototypical cognitive function whose properties can be tied to the spiking activity of brain neurons. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Russell J Jaffe
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christos Constantinidis
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
26
|
Bedini M, Baldauf D. Structure, function and connectivity fingerprints of the frontal eye field versus the inferior frontal junction: A comprehensive comparison. Eur J Neurosci 2021; 54:5462-5506. [PMID: 34273134 PMCID: PMC9291791 DOI: 10.1111/ejn.15393] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/16/2021] [Accepted: 07/02/2021] [Indexed: 02/01/2023]
Abstract
The human prefrontal cortex contains two prominent areas, the frontal eye field and the inferior frontal junction, that are crucially involved in the orchestrating functions of attention, working memory and cognitive control. Motivated by comparative evidence in non-human primates, we review the human neuroimaging literature, suggesting that the functions of these regions can be clearly dissociated. We found remarkable differences in how these regions relate to sensory domains and visual topography, top-down and bottom-up spatial attention, spatial versus non-spatial (i.e., feature- and object-based) attention and working memory and, finally, the multiple-demand system. Functional magnetic resonance imaging (fMRI) studies using multivariate pattern analysis reveal the selectivity of the frontal eye field and inferior frontal junction to spatial and non-spatial information, respectively. The analysis of functional and effective connectivity provides evidence of the modulation of the activity in downstream visual areas from the frontal eye field and inferior frontal junction and sheds light on their reciprocal influences. We therefore suggest that future studies should aim at disentangling more explicitly the role of these regions in the control of spatial and non-spatial selection. We propose that the analysis of the structural and functional connectivity (i.e., the connectivity fingerprints) of the frontal eye field and inferior frontal junction may be used to further characterize their involvement in a spatial ('where') and a non-spatial ('what') network, respectively, highlighting segregated brain networks that allow biasing visual selection and working memory performance to support goal-driven behaviour.
Collapse
Affiliation(s)
- Marco Bedini
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Daniel Baldauf
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| |
Collapse
|
27
|
Amengual JL, Ben Hamed S. Revisiting Persistent Neuronal Activity During Covert Spatial Attention. Front Neural Circuits 2021; 15:679796. [PMID: 34276314 PMCID: PMC8278237 DOI: 10.3389/fncir.2021.679796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Persistent activity has been observed in the prefrontal cortex (PFC), in particular during the delay periods of visual attention tasks. Classical approaches based on the average activity over multiple trials have revealed that such an activity encodes the information about the attentional instruction provided in such tasks. However, single-trial approaches have shown that activity in this area is rather sparse than persistent and highly heterogeneous not only within the trials but also between the different trials. Thus, this observation raised the question of how persistent the actually persistent attention-related prefrontal activity is and how it contributes to spatial attention. In this paper, we review recent evidence of precisely deconstructing the persistence of the neural activity in the PFC in the context of attention orienting. The inclusion of machine-learning methods for decoding the information reveals that attention orienting is a highly dynamic process, possessing intrinsic oscillatory dynamics working at multiple timescales spanning from milliseconds to minutes. Dimensionality reduction methods further show that this persistent activity dynamically incorporates multiple sources of information. This novel framework reflects a high complexity in the neural representation of the attention-related information in the PFC, and how its computational organization predicts behavior.
Collapse
Affiliation(s)
- Julian L Amengual
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel, Bron, France
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel, Bron, France
| |
Collapse
|
28
|
Identifying the neural dynamics of category decisions with computational model-based functional magnetic resonance imaging. Psychon Bull Rev 2021; 28:1638-1647. [PMID: 33963487 DOI: 10.3758/s13423-021-01939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 11/08/2022]
Abstract
Successful categorization requires a careful coordination of attention, representation, and decision making. Comprehensive theories that span levels of analysis are key to understanding the computational and neural dynamics of categorization. Here, we build on recent work linking neural representations of category learning to computational models to investigate how category decision making is driven by neural signals across the brain. We uniquely combine functional magnetic resonance imaging with drift diffusion and exemplar-based categorization models to show that trial-by-trial fluctuations in neural activation from regions of occipital, cingulate, and lateral prefrontal cortices are linked to category decisions. Notably, only lateral prefrontal cortex activation was associated with exemplar-based model predictions of trial-by-trial category evidence. We propose that these brain regions underlie distinct functions that contribute to successful category learning.
Collapse
|
29
|
Johnston R, Doucet G, Boulay C, Miller K, Martinez-Trujillo J, Sachs A. Decoding Saccade Intention From Primate Prefrontal Cortical Local Field Potentials Using Spectral, Spatial, and Temporal Dimensionality Reduction. Int J Neural Syst 2021; 31:2150023. [PMID: 33931006 DOI: 10.1142/s0129065721500234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most invasive Brain Computer Interfaces (iBCIs) use spike and Local Field Potentials (LFPs) from the motor or parietal cortices to decode movement intentions. It has been debated whether harvesting signals from other brain areas that encode global cognitive variables, such as the allocation of attention and eye movement goals in a variety of spatial reference frames, may improve the outcome of iBCIs. Here, we explore the ability of LFP signals, sampled from the lateral prefrontal cortex (LPFC) of macaque monkeys, to encode eye-movement intention during the pre-movement fixation period of a delayed saccade task. We use spectral dimensionality reduction to examine the spatiotemporal properties of the extracted non-rhythmic broadband activity and explore its usefulness in decoding saccade goals. The dynamics of the broadband signal in low spatial dimensions across the pre-movement fixation period uncovered saccade target separation; its discriminative potential was confirmed using support vector machine classifications. These findings reveal that broadband LFP from the LPFC can be used to decode intended saccade target location during pre-movement periods. We further provide a general workflow that can be implemented in iBCIs and it is relatively robust to the loss of spikes in individual electrodes.
Collapse
Affiliation(s)
- Renée Johnston
- Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, K1Y 4E9, Canada
| | - Guillaume Doucet
- Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, K1Y 4E9, Canada
| | - Chadwick Boulay
- Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, K1Y 4E9, Canada
| | - Kai Miller
- Department of Neurologic Surgery, Mayo Clinic, 200 First St., Rochester, MN 55902, United States
| | - Julio Martinez-Trujillo
- Robarts Research Institute, Western University, 1151 Richmond Street N., London, ON, N6A 5B7, Canada
| | - Adam Sachs
- Division of Neurosurgery, Ottawa Hospital Research Institute, 725 Parkdale Ave., Ottawa, ON, K1Y 4E9, Canada
| |
Collapse
|
30
|
Gamal M, Mounier E, Eldawlatly S. On the Extraction of High-Level Visual Features from Lateral Geniculate Nucleus Activity: A Rat Study. Brain Inform 2021. [DOI: 10.1007/978-3-030-86993-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
31
|
Ketamine disrupts naturalistic coding of working memory in primate lateral prefrontal cortex networks. Mol Psychiatry 2021; 26:6688-6703. [PMID: 33981008 PMCID: PMC8760073 DOI: 10.1038/s41380-021-01082-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 01/23/2023]
Abstract
Ketamine is a dissociative anesthetic drug, which has more recently emerged as a rapid-acting antidepressant. When acutely administered at subanesthetic doses, ketamine causes cognitive deficits like those observed in patients with schizophrenia, including impaired working memory. Although these effects have been linked to ketamine's action as an N-methyl-D-aspartate receptor antagonist, it is unclear how synaptic alterations translate into changes in brain microcircuit function that ultimately influence cognition. Here, we administered ketamine to rhesus monkeys during a spatial working memory task set in a naturalistic virtual environment. Ketamine induced transient working memory deficits while sparing perceptual and motor skills. Working memory deficits were accompanied by decreased responses of fast spiking inhibitory interneurons and increased responses of broad spiking excitatory neurons in the lateral prefrontal cortex. This translated into a decrease in neuronal tuning and information encoded by neuronal populations about remembered locations. Our results demonstrate that ketamine differentially affects neuronal types in the neocortex; thus, it perturbs the excitation inhibition balance within prefrontal microcircuits and ultimately leads to selective working memory deficits.
Collapse
|
32
|
Stavroulaki V, Giakoumaki SG, Sidiropoulou K. Working memory training effects across the lifespan: Evidence from human and experimental animal studies. Mech Ageing Dev 2020; 194:111415. [PMID: 33338498 DOI: 10.1016/j.mad.2020.111415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Working memory refers to a cognitive function that provides temporary storage and manipulation of the information necessary for complex cognitive tasks. Due to its central role in general cognition, several studies have investigated the possibility that training on working memory tasks could improve not only working memory function but also increase other cognitive abilities or modulate other behaviors. This possibility is still highly controversial, with prior studies providing contradictory findings. The lack of systematic approaches and methodological shortcomings complicates this debate even more. This review highlights the impact of working memory training at different ages on humans. Finally, it demonstrates several findings about the neural substrate of training in both humans and experimental animals, including non-human primates and rodents.
Collapse
Affiliation(s)
| | - Stella G Giakoumaki
- Laboratory of Neuropsychology, Department of Psychology, Gallos University Campus, University of Crete, Rethymno, 74100, Crete, Greece; University of Crete Research Center for the Humanities, The Social and Educational Sciences, University of Crete, Rethymno, 74100, Crete, Greece
| | - Kyriaki Sidiropoulou
- Dept of Biology, University of Crete, Greece; Institute of Molecular Biology and Biotechnology - Foundation for Research and Technology Hellas, Greece.
| |
Collapse
|
33
|
Favila SE, Lee H, Kuhl BA. Transforming the Concept of Memory Reactivation. Trends Neurosci 2020; 43:939-950. [PMID: 33041061 PMCID: PMC7688497 DOI: 10.1016/j.tins.2020.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/18/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022]
Abstract
Reactivation refers to the phenomenon wherein patterns of neural activity expressed during perceptual experience are re-expressed at a later time, a putative neural marker of memory. Reactivation of perceptual content has been observed across many cortical areas and correlates with objective and subjective expressions of memory in humans. However, because reactivation emphasizes similarities between perceptual and memory-based representations, it obscures differences in how perceptual events and memories are represented. Here, we highlight recent evidence of systematic differences in how (and where) perceptual events and memories are represented in the brain. We argue that neural representations of memories are best thought of as spatially transformed versions of perceptual representations. We consider why spatial transformations occur and identify critical questions for future research.
Collapse
Affiliation(s)
- Serra E Favila
- Department of Psychology, Columbia University, New York, NY 10027, USA
| | - Hongmi Lee
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brice A Kuhl
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
34
|
Dynamic coordination of the perirhinal cortical neurons supports coherent representations between task epochs. Commun Biol 2020; 3:406. [PMID: 32733065 PMCID: PMC7393175 DOI: 10.1038/s42003-020-01129-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/08/2020] [Indexed: 01/10/2023] Open
Abstract
Cortical neurons show distinct firing patterns across multiple task epochs characterized by different computations. Recent studies suggest that such distinct patterns underlie dynamic population code achieving computational flexibility, whereas neurons in some cortical areas often show coherent firing patterns across epochs. To understand how coherent single-neuron code contributes to dynamic population code, we analyzed neural responses in the rat perirhinal cortex (PRC) during cue and reward epochs of a two-alternative forced-choice task. We found that the PRC neurons often encoded the opposite choice directions between those epochs. By using principal component analysis as a population-level analysis, we identified neural subspaces associated with each epoch, which reflected coordination across the neurons. The cue and reward epochs shared neural dimensions where the choice directions were consistently discriminated. Interestingly, those dimensions were supported by dynamically changing contributions of the individual neurons. These results demonstrated heterogeneity of coherent single-neuron representations in their contributions to population code.
Collapse
|
35
|
Desflurane Anesthesia Alters Cortical Layer-specific Hierarchical Interactions in Rat Cerebral Cortex. Anesthesiology 2020; 132:1080-1090. [PMID: 32101967 DOI: 10.1097/aln.0000000000003179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neurocognitive investigations suggest that conscious sensory perception depends on recurrent neuronal interactions among sensory, parietal, and frontal cortical regions, which are suppressed by general anesthetics. The purpose of this work was to investigate if local interactions in sensory cortex are also altered by anesthetics. The authors hypothesized that desflurane would reduce recurrent neuronal interactions in cortical layer-specific manner consistent with the anatomical disposition of feedforward and feedback pathways. METHODS Single-unit neuronal activity was measured in freely moving adult male rats (268 units; 10 animals) using microelectrode arrays chronically implanted in primary and secondary visual cortex. Layer-specific directional interactions were estimated by mutual information and transfer entropy of multineuron spike patterns within and between cortical layers three and five. The effect of incrementally increasing and decreasing steady-state concentrations of desflurane (0 to 8% to 0%) was tested for statistically significant quadratic trend across the successive anesthetic states. RESULTS Desflurane produced robust, state-dependent reduction (P = 0.001) of neuronal interactions between primary and secondary visual areas and between layers three and five, as indicated by mutual information (37 and 41% decrease at 8% desflurane from wakeful baseline at [mean ± SD] 0.52 ± 0.51 and 0.53 ± 0.51 a.u., respectively) and transfer entropy (77 and 78% decrease at 8% desflurane from wakeful baseline at 1.86 ± 1.56 a.u. and 1.87 ± 1.67 a.u., respectively). In addition, a preferential suppression of feedback between secondary and primary visual cortex was suggested by the reduction of directional index of transfer entropy overall (P = 0.001; 89% decrease at 8% desflurane from 0.11 ± 0.18 a.u. at baseline) and specifically, in layer five (P = 0.001; 108% decrease at 8% desflurane from 0.12 ± 0.19 a.u. at baseline). CONCLUSIONS Desflurane anesthesia reduces neuronal interactions in visual cortex with a preferential effect on feedback. The findings suggest that neuronal disconnection occurs locally, among hierarchical sensory regions, which may contribute to global functional disconnection underlying anesthetic-induced unconsciousness.
Collapse
|
36
|
Lanzilotto M, Ferroni CG, Livi A, Gerbella M, Maranesi M, Borra E, Passarelli L, Gamberini M, Fogassi L, Bonini L, Orban GA. Anterior Intraparietal Area: A Hub in the Observed Manipulative Action Network. Cereb Cortex 2020; 29:1816-1833. [PMID: 30766996 PMCID: PMC6418391 DOI: 10.1093/cercor/bhz011] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/07/2019] [Accepted: 01/18/2019] [Indexed: 11/13/2022] Open
Abstract
Current knowledge regarding the processing of observed manipulative actions (OMAs) (e.g., grasping, dragging, or dropping) is limited to grasping and underlying neural circuitry remains controversial. Here, we addressed these issues by combining chronic neuronal recordings along the anteroposterior extent of monkeys’ anterior intraparietal (AIP) area with tracer injections into the recorded sites. We found robust neural selectivity for 7 distinct OMAs, particularly in the posterior part of AIP (pAIP), where it was associated with motor coding of grip type and own-hand visual feedback. This cluster of functional properties appears to be specifically grounded in stronger direct connections of pAIP with the temporal regions of the ventral visual stream and the prefrontal cortex, as connections with skeletomotor related areas and regions of the dorsal visual stream exhibited opposite or no rostrocaudal gradients. Temporal and prefrontal areas may provide visual and contextual information relevant for manipulative action processing. These results revise existing models of the action observation network, suggesting that pAIP constitutes a parietal hub for routing information about OMA identity to the other nodes of the network.
Collapse
Affiliation(s)
- Marco Lanzilotto
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | | | - Alessandro Livi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Monica Maranesi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Elena Borra
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Lauretta Passarelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, Bologna, Italy
| | - Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, Bologna, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Guy A Orban
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| |
Collapse
|
37
|
Li S, Zhou X, Constantinidis C, Qi XL. Plasticity of Persistent Activity and Its Constraints. Front Neural Circuits 2020; 14:15. [PMID: 32528254 PMCID: PMC7247814 DOI: 10.3389/fncir.2020.00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/26/2020] [Indexed: 11/13/2022] Open
Abstract
Stimulus information is maintained in working memory by action potentials that persist after the stimulus is no longer physically present. The prefrontal cortex is a critical brain area that maintains such persistent activity due to an intrinsic network with unique synaptic connectivity, NMDA receptors, and interneuron types. Persistent activity can be highly plastic depending on task demands but it also appears in naïve subjects, not trained or required to perform a task at all. Here, we review what aspects of persistent activity remain constant and what factors can modify it, focusing primarily on neurophysiological results from non-human primate studies. Changes in persistent activity are constrained by anatomical location, with more ventral and more anterior prefrontal areas exhibiting the greatest capacity for plasticity, as opposed to posterior and dorsal areas, which change relatively little with training. Learning to perform a cognitive task for the first time, further practicing the task, and switching between learned tasks can modify persistent activity. The ability of the prefrontal cortex to generate persistent activity also depends on age, with changes noted between adolescence, adulthood, and old age. Mean firing rates, variability and correlation of persistent discharges, but also time-varying firing rate dynamics are altered by these factors. Plastic changes in the strength of intrinsic network connections can be revealed by the analysis of synchronous spiking between neurons. These results are essential for understanding how the prefrontal cortex mediates working memory and intelligent behavior.
Collapse
Affiliation(s)
- Sihai Li
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xin Zhou
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Computer Science, Stanford University, Stanford, CA, United States
| | - Christos Constantinidis
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xue-Lian Qi
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
38
|
Torres-Gomez S, Blonde JD, Mendoza-Halliday D, Kuebler E, Everest M, Wang XJ, Inoue W, Poulter MO, Martinez-Trujillo J. Changes in the Proportion of Inhibitory Interneuron Types from Sensory to Executive Areas of the Primate Neocortex: Implications for the Origins of Working Memory Representations. Cereb Cortex 2020; 30:4544-4562. [PMID: 32227119 DOI: 10.1093/cercor/bhaa056] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neuronal spiking activity encoding working memory (WM) is robust in primate association cortices but weak or absent in early sensory cortices. This may be linked to changes in the proportion of neuronal types across areas that influence circuits' ability to generate recurrent excitation. We recorded neuronal activity from areas middle temporal (MT), medial superior temporal (MST), and the lateral prefrontal cortex (LPFC) of monkeys performing a WM task and classified neurons as narrow (NS) and broad spiking (BS). The ratio NS/BS decreased from MT > MST > LPFC. We analyzed the Allen Institute database of ex vivo mice/human intracellular recordings to interpret our data. Our analysis suggests that NS neurons correspond to parvalbumin (PV) or somatostatin (SST) interneurons while BS neurons are pyramidal (P) cells or vasoactive intestinal peptide (VIP) interneurons. We labeled neurons in monkey tissue sections of MT/MST and LPFC and found that the proportion of PV in cortical layers 2/3 decreased, while the proportion of CR cells increased from MT/MST to LPFC. Assuming that primate CR/CB/PV cells perform similar computations as mice VIP/SST/PV cells, our results suggest that changes in the proportion of CR and PV neurons in layers 2/3 cells may favor the emergence of activity encoding WM in association areas.
Collapse
Affiliation(s)
- Santiago Torres-Gomez
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Jackson D Blonde
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric Kuebler
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Michelle Everest
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Xiao Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Wataru Inoue
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Michael O Poulter
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Julio Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada.,Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5B7, Canada
| |
Collapse
|
39
|
Oh BI, Kim YJ, Kang MS. Ensemble representations reveal distinct neural coding of visual working memory. Nat Commun 2019; 10:5665. [PMID: 31827080 PMCID: PMC6906315 DOI: 10.1038/s41467-019-13592-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 11/12/2019] [Indexed: 11/25/2022] Open
Abstract
We characterized the population-level neural coding of ensemble representations in visual working memory from human electroencephalography. Ensemble representations provide a unique opportunity to investigate structured representations of working memory because the visual system encodes high-order summary statistics as well as noisy sensory inputs in a hierarchical manner. Here, we consistently observe stable coding of simple features as well as the ensemble mean in frontocentral electrodes, which even correlated with behavioral indices of the ensemble across individuals. In occipitoparietal electrodes, however, we find that remembered features are dynamically coded over time, whereas neural coding of the ensemble mean is absent in the old/new judgment task. In contrast, both dynamic and stable coding are found in the continuous estimation task. Our findings suggest that the prefrontal cortex holds behaviorally relevant abstract representations while visual representations in posterior and visual areas are modulated by the task demands.
Collapse
Affiliation(s)
- Byung-Il Oh
- Department of Psychology, Sungkyunkwan University, 25-2 Sungkyunkwan-ro, Jongno-gu, Seoul, 03063, South Korea
| | - Yee-Joon Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, South Korea
| | - Min-Suk Kang
- Department of Psychology, Sungkyunkwan University, 25-2 Sungkyunkwan-ro, Jongno-gu, Seoul, 03063, South Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), 2066 Seobu-ro, Jangan-gu, Suwon, 16149, South Korea.
| |
Collapse
|
40
|
Parthasarathy A, Tang C, Herikstad R, Cheong LF, Yen SC, Libedinsky C. Time-invariant working memory representations in the presence of code-morphing in the lateral prefrontal cortex. Nat Commun 2019; 10:4995. [PMID: 31676790 PMCID: PMC6825148 DOI: 10.1038/s41467-019-12841-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/27/2019] [Indexed: 11/09/2022] Open
Abstract
Maintenance of working memory is thought to involve the activity of prefrontal neuronal populations with strong recurrent connections. However, it was recently shown that distractors evoke a morphing of the prefrontal population code, even when memories are maintained throughout the delay. How can a morphing code maintain time-invariant memory information? We hypothesized that dynamic prefrontal activity contains time-invariant memory information within a subspace of neural activity. Using an optimization algorithm, we found a low-dimensional subspace that contains time-invariant memory information. This information was reduced in trials where the animals made errors in the task, and was also found in periods of the trial not used to find the subspace. A bump attractor model replicated these properties, and provided predictions that were confirmed in the neural data. Our results suggest that the high-dimensional responses of prefrontal cortex contain subspaces where different types of information can be simultaneously encoded with minimal interference.
Collapse
Affiliation(s)
| | - Cheng Tang
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Roger Herikstad
- The N.1 Institute for Health, National University of Singapore (NUS), Singapore, Singapore
| | - Loong Fah Cheong
- Department of Electrical and Computer Engineering, NUS, Singapore, Singapore
| | - Shih-Cheng Yen
- The N.1 Institute for Health, National University of Singapore (NUS), Singapore, Singapore.
- Innovation and Design Programme, Faculty of Engineering, NUS, Singapore, Singapore.
| | - Camilo Libedinsky
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
- The N.1 Institute for Health, National University of Singapore (NUS), Singapore, Singapore.
- Department of Psychology, NUS, Singapore, Singapore.
| |
Collapse
|
41
|
Fang MWH, Liu T. The profile of attentional modulation to visual features. J Vis 2019; 19:13. [PMID: 31747691 PMCID: PMC6871543 DOI: 10.1167/19.13.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/26/2019] [Indexed: 11/28/2022] Open
Abstract
Although it is well established that feature-based attention (FBA) can enhance an attended feature, how it modulates unattended features remains less clear. Previous studies have generally supported either a graded profile as predicted by the feature-similarity gain model or a nonmonotonic profile predicted by the surround suppression model. To reconcile these different views, we systematically measured the attentional profile in three basic feature dimensions-orientation, motion direction, and spatial frequency. In three experiments, we instructed participants to detect a coherent feature signal against noise under attentional or neutral condition. Our results support a nonmonotonic hybrid model of attentional modulation consisting of feature-similarity gain and surround suppression for orientation and motion direction. For spatial frequency, we also found a similar nonmonotonic profile for higher frequencies than the attended frequency, but a lack of attentional modulation for lower frequencies than the attended frequency. The current findings can reconcile the discrepancies in the literature and suggest the hybrid model as a new framework for attentional modulation in feature space. In addition, a computational model incorporating known properties of spatial frequency channels and attentional modulations at the neural level reproduced the asymmetric attentional modulation, thus revealing a connection between surround suppression and the basic neural architecture of an early visual system.
Collapse
Affiliation(s)
- Ming W H Fang
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Taosheng Liu
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
42
|
Abstract
A vast and diverse literature describes the relationship between working memory and attention. That literature encompasses tests of the interactions between the two functions, comparisons of the processes underlying them, and theoretical formulations of the cognitive constructs. In a recent review, Oberauer (2019) reins in this varied work to create a roadmap for future research. Here, I delineate several additional considerations to guide the evaluation and development of research into working memory and attention. Namely, working memory is a complex construct that can entail many processes and take on several meanings. Research and theory about working memory-and its relation to attention-must consider what particular demands are being tapped, what type of information is being operated on, and what goal is ultimately at stake.
Collapse
Affiliation(s)
- Anastasia Kiyonaga
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, US
| |
Collapse
|
43
|
Oberauer K. Working Memory and Attention - A Conceptual Analysis and Review. J Cogn 2019; 2:36. [PMID: 31517246 PMCID: PMC6688548 DOI: 10.5334/joc.58] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/14/2019] [Indexed: 12/23/2022] Open
Abstract
There is broad agreement that working memory is closely related to attention. This article delineates several theoretical options for conceptualizing this link, and evaluates their viability in light of their theoretical implications and the empirical support they received. A first divide exists between the concept of attention as a limited resource, and the concept of attention as selective information processing. Theories conceptualizing attention as a resource assume that this resource is responsible for the limited capacity of working memory. Three versions of this idea have been proposed: Attention as a resource for storage and processing, a shared resource for perceptual attention and memory maintenance, and a resource for the control of attention. The first of these three is empirically well supported, but the other two are not. By contrast, when attention is understood as a selection mechanism, it is usually not invoked to explain the capacity limit of working memory - rather, researchers ask how different forms of attention interact with working memory, in two areas. The first pertains to attentional selection of the contents of working memory, controlled by mechanisms of filtering out irrelevant stimuli, and removing no-longer relevant representations from working memory. Within working memory contents, a single item is often selected into the focus of attention for processing. The second area pertains to the role of working memory in cognitive control. Working memory contributes to controlling perceptual attention - by holding templates for targets of perceptual selection - and controlling action - by holding task sets to implement our current goals.
Collapse
|
44
|
|
45
|
Libedinsky CD, Fernandez PF. Graded Memory: A Cognitive Category to Replace Spatial Sustained Attention and Working Memory
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:121-125. [PMID: 30923479 PMCID: PMC6430177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this opinion article we challenge the commonly-held notion that visuospatial working memory and visuospatial sustained selective attention are two ontologically different cognitive categories. We start by discussing the general idea of cognitive categories, and then review some of the key behavioral and neural evidence both in favor of and against the separability of these processes. We then discuss a theoretical framework that could be useful for understanding the neural implementations of cognitive categories. We conclude that the evidence is insufficient to support the assumption that spatial working memory and spatial sustained attention are independent categories, and that further experimentation is necessary to determine the ontological independence of the two processes.
Collapse
Affiliation(s)
- Camilo D. Libedinsky
- Department of Psychology, NUS, Singapore, Singapore,Singapore Institute for Neurotechnology, NUS, Singapore, Singapore,Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore,To whom all correspondence should be addressed: Camilo D. Libedinsky, National University of Singapore, Faculty of Arts and Social Sciences, Block AS4, #03-39, 9 Arts Link, Singapore 117570; Tel: +65 9271 1190 (HP),
| | | |
Collapse
|
46
|
Duong L, Leavitt M, Pieper F, Sachs A, Martinez-Trujillo J. A Normalization Circuit Underlying Coding of Spatial Attention in Primate Lateral Prefrontal Cortex. eNeuro 2019; 6:ENEURO.0301-18.2019. [PMID: 31001577 PMCID: PMC6469883 DOI: 10.1523/eneuro.0301-18.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 11/26/2022] Open
Abstract
Lateral prefrontal cortex (LPFC) neurons signal the allocation of voluntary attention; however, the neural computations underlying this function remain unknown. To investigate this, we recorded from neuronal ensembles in the LPFC of two Macaca fascicularis performing a visuospatial attention task. LPFC neural responses to a single stimulus were normalized when additional stimuli/distracters appeared across the visual field and were well-characterized by an averaging computation. Deploying attention toward an individual stimulus surrounded by distracters shifted neural activity from an averaging regime toward a regime similar to that when the attended stimulus was presented in isolation (winner-take-all; WTA). However, attentional modulation is both qualitatively and quantitatively dependent on a neuron's visuospatial tuning. Our results show that during attentive vision, LPFC neuronal ensemble activity can be robustly read out by downstream areas to generate motor commands, and/or fed back into sensory areas to filter out distracter signals in favor of target signals.
Collapse
Affiliation(s)
- Lyndon Duong
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 3K7, Canada
- Robarts Research Institute, London, Ontario N6A 5B7, Canada
| | - Matthew Leavitt
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 3K7, Canada
- Robarts Research Institute, London, Ontario N6A 5B7, Canada
- Department of Physiology, McGill University, Quebec H3A 0G4, Canada Montreal
| | - Florian Pieper
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 52 20246, Germany
| | - Adam Sachs
- The Ottawa Hospital, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada
| | - Julio Martinez-Trujillo
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 3K7, Canada
- Robarts Research Institute, London, Ontario N6A 5B7, Canada
| |
Collapse
|
47
|
Intrinsic neuronal dynamics predict distinct functional roles during working memory. Nat Commun 2018; 9:3499. [PMID: 30158572 PMCID: PMC6115413 DOI: 10.1038/s41467-018-05961-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/31/2018] [Indexed: 11/08/2022] Open
Abstract
Working memory (WM) is characterized by the ability to maintain stable representations over time; however, neural activity associated with WM maintenance can be highly dynamic. We explore whether complex population coding dynamics during WM relate to the intrinsic temporal properties of single neurons in lateral prefrontal cortex (lPFC), the frontal eye fields (FEF), and lateral intraparietal cortex (LIP) of two monkeys (Macaca mulatta). We find that cells with short timescales carry memory information relatively early during memory encoding in lPFC; whereas long-timescale cells play a greater role later during processing, dominating coding in the delay period. We also observe a link between functional connectivity at rest and the intrinsic timescale in FEF and LIP. Our results indicate that individual differences in the temporal processing capacity predict complex neuronal dynamics during WM, ranging from rapid dynamic encoding of stimuli to slower, but stable, maintenance of mnemonic information. Prefrontal neurons exhibit both transient and persistent firing in working memory tasks. Here the authors report that the intrinsic timescale of neuronal firing outside the task is predictive of the temporal dynamics of coding during working memory in three frontoparietal brain areas.
Collapse
|
48
|
Cavanagh SE, Towers JP, Wallis JD, Hunt LT, Kennerley SW. Reconciling persistent and dynamic hypotheses of working memory coding in prefrontal cortex. Nat Commun 2018; 9:3498. [PMID: 30158519 PMCID: PMC6115433 DOI: 10.1038/s41467-018-05873-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/31/2018] [Indexed: 01/17/2023] Open
Abstract
Competing accounts propose that working memory (WM) is subserved either by persistent activity in single neurons or by dynamic (time-varying) activity across a neural population. Here, we compare these hypotheses across four regions of prefrontal cortex (PFC) in an oculomotor-delayed-response task, where an intervening cue indicated the reward available for a correct saccade. WM representations were strongest in ventrolateral PFC neurons with higher intrinsic temporal stability (time-constant). At the population-level, although a stable mnemonic state was reached during the delay, this tuning geometry was reversed relative to cue-period selectivity, and was disrupted by the reward cue. Single-neuron analysis revealed many neurons switched to coding reward, rather than maintaining task-relevant spatial selectivity until saccade. These results imply WM is fulfilled by dynamic, population-level activity within high time-constant neurons. Rather than persistent activity supporting stable mnemonic representations that bridge subsequent salient stimuli, PFC neurons may stabilise a dynamic population-level process supporting WM.
Collapse
Affiliation(s)
- Sean E Cavanagh
- Sobell Department of Motor Neuroscience, University College London, London WC1N 3BG, UK.
| | - John P Towers
- Sobell Department of Motor Neuroscience, University College London, London WC1N 3BG, UK
| | - Joni D Wallis
- Department of Psychology, University of California at Berkeley, Berkeley, CA 94720, United States.,Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720, United States
| | - Laurence T Hunt
- Sobell Department of Motor Neuroscience, University College London, London WC1N 3BG, UK.,Max Planck-UCL Centre for Computational Psychiatry and Aging, University College London, London WC1B 5EH, UK.,Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX37JX, UK
| | - Steven W Kennerley
- Sobell Department of Motor Neuroscience, University College London, London WC1N 3BG, UK. .,Department of Psychology, University of California at Berkeley, Berkeley, CA 94720, United States. .,Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720, United States.
| |
Collapse
|
49
|
González-García C, Flounders MW, Chang R, Baria AT, He BJ. Content-specific activity in frontoparietal and default-mode networks during prior-guided visual perception. eLife 2018; 7:36068. [PMID: 30063006 PMCID: PMC6067880 DOI: 10.7554/elife.36068] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022] Open
Abstract
How prior knowledge shapes perceptual processing across the human brain, particularly in the frontoparietal (FPN) and default-mode (DMN) networks, remains unknown. Using ultra-high-field (7T) functional magnetic resonance imaging (fMRI), we elucidated the effects that the acquisition of prior knowledge has on perceptual processing across the brain. We observed that prior knowledge significantly impacted neural representations in the FPN and DMN, rendering responses to individual visual images more distinct from each other, and more similar to the image-specific prior. In addition, neural representations were structured in a hierarchy that remained stable across perceptual conditions, with early visual areas and DMN anchored at the two extremes. Two large-scale cortical gradients occur along this hierarchy: first, dimensionality of the neural representational space increased along the hierarchy; second, prior’s impact on neural representations was greater in higher-order areas. These results reveal extensive and graded influences of prior knowledge on perceptual processing across the brain.
Collapse
Affiliation(s)
- Carlos González-García
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States.,Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Matthew W Flounders
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States.,Neuroscience Institute, New York University Langone Medical Center, New York, United States
| | - Raymond Chang
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Alexis T Baria
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Biyu J He
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States.,Neuroscience Institute, New York University Langone Medical Center, New York, United States.,Departments of Neurology, New York University Langone Medical Center, New York, United States.,Departments of Neuroscience and Physiology, New York University Langone Medical Center, New York, United States.,Departments of Radiology, New York University Langone Medical Center, New York, United States
| |
Collapse
|
50
|
Abstract
Metacognition is the capacity to evaluate the success of one's own cognitive processes in various domains; for example, memory and perception. It remains controversial whether metacognition relies on a domain-general resource that is applied to different tasks or if self-evaluative processes are domain specific. Here, we investigated this issue directly by examining the neural substrates engaged when metacognitive judgments were made by human participants of both sexes during perceptual and memory tasks matched for stimulus and performance characteristics. By comparing patterns of fMRI activity while subjects evaluated their performance, we revealed both domain-specific and domain-general metacognitive representations. Multivoxel activity patterns in anterior prefrontal cortex predicted levels of confidence in a domain-specific fashion, whereas domain-general signals predicting confidence and accuracy were found in a widespread network in the frontal and posterior midline. The demonstration of domain-specific metacognitive representations suggests the presence of a content-rich mechanism available to introspection and cognitive control. SIGNIFICANCE STATEMENT We used human neuroimaging to investigate processes supporting memory and perceptual metacognition. It remains controversial whether metacognition relies on a global resource that is applied to different tasks or if self-evaluative processes are specific to particular tasks. Using multivariate decoding methods, we provide evidence that perceptual- and memory-specific metacognitive representations coexist with generic confidence signals. Our findings reconcile previously conflicting results on the domain specificity/generality of metacognition and lay the groundwork for a mechanistic understanding of metacognitive judgments.
Collapse
|