1
|
Bayat R, Salehi Z, Dalili S, Mashayekhi F. Influence of rs 1292037 Genetic Variant on miR-21 Gene Expression in Patients With Type 1 Diabetes Mellitus: A Case-Control Study. Health Sci Rep 2025; 8:e70480. [PMID: 40041782 PMCID: PMC11872810 DOI: 10.1002/hsr2.70480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/28/2024] [Accepted: 02/05/2025] [Indexed: 03/28/2025] Open
Abstract
Background and Aims Alterations in the expression pattern of miRNAs seem to be linked with autoimmune diseases such as type 1 diabetes mellitus (T1DM). Regarding the importance of assessing this potential link, we aimed to evaluate the relationship between miR-21 rs1292037 single-nucleotide polymorphism (SNP) and T1DM susceptibility. Furthermore, we investigated the miR-21 expression level in T1DM. Methods A total of 250 T1DM patients and 250 controls were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and miR-21 expression levels were assessed using real-time PCR. Moreover, the potential targets of miR-21 were investigated using different bioinformatics web servers. Results Our results showed that the T/C genotype and the C allele were more frequent in T1DM patients than in controls. Individuals carrying the T/C genotype in overdominant model were 2.74-fold at a higher risk of T1DM (OR = 2.74; 95%CI, 1.78-4.27; p < 0.0001). In addition, miR-21 expression was more than twofold higher in patients than in controls (p < 0.0001) and it was found to be significantly upregulated when carrying the T/C genotype. Regarding miR-21 predicted target genes, its overexpression may be associated with beta cell death, diabetic nephropathy, inflammatory responses, impaired insulin production or secretion, and T-cell cytotoxicity, which are important in the initiation and progression of T1DM. Conclusion Our results suggested that miR-21 rs1292037 may confer genetic susceptibility to T1DM. Therefore, it seems that this genetic link should be further investigated to enhance diagnostic and therapeutic strategies in these patients.
Collapse
Affiliation(s)
- Reza Bayat
- Department of Biology, University Campus2University of GuilanRashtIran
| | - Zivar Salehi
- Department of Biology, Faculty of SciencesUniversity of GuilanRashtIran
| | - Setila Dalili
- Pediatric Diseases Research CenterGuilan University of Medical SciencesRashtIran
| | - Farhad Mashayekhi
- Department of Biology, Faculty of SciencesUniversity of GuilanRashtIran
| |
Collapse
|
2
|
Yu Y, Li M, Zhao Y, Fan F, Wu W, Gao Y, Bai C. Immune cell-derived extracellular vesicular microRNAs induce pancreatic beta cell apoptosis. Heliyon 2022; 8:e11995. [PMID: 36561684 PMCID: PMC9763775 DOI: 10.1016/j.heliyon.2022.e11995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by an autoimmune response against pancreatic islet β cells. Increasing evidence indicates that specific microRNAs (miRNAs) from immune cells extracellular vesicles are involved in islet β cells apoptosis. Methods In this study, the microarray datasets GSE27997 and GSE137637 were downloaded from the Gene Expression Omnibus (GEO) database. miRNAs that promote islet β cells apoptosis in T1DM were searched in PubMed. We used the FunRich tool to determine the miRNA expression in extracellular vesicles derived from immune cells associated with islet β cell apoptosis, of which we selected candidate miRNAs based on fold change expression. Potential upstream transcription factors and downstream target genes of candidate miRNAs were predicted using TransmiR V2.0 and starBase database, respectively. Results Candidate miRNAs expressed in extracellular vesicles derived from T cells, pro-inflammatory macrophages, B cells, and dendritic cells were analyzed to identify the miRNAs involved in β cells apoptosis. Based on these candidate miRNAs, 25 downstream candidate genes, which positively regulate β cell functions, were predicted and screened; 17 transcription factors that positively regulate the candidate miRNAs were also identified. Conclusions Our study demonstrated that immune cell-derived extracellular vesicular miRNAs could promote islet β cell dysfunction and apoptosis. Based on these findings, we have constructed a transcription factor-miRNA-gene regulatory network, which provides a theoretical basis for clinical management of T1DM. This study provides novel insights into the mechanism underlying immune cell-derived extracellular vesicle-mediated islet β cell apoptosis.
Collapse
Affiliation(s)
- Yueyang Yu
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Mengyin Li
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272067, PR China
| | - Yuxuan Zhao
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Fangzhou Fan
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Wenxiang Wu
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yuhua Gao
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
- Corresponding author.
| | - Chunyu Bai
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
- Corresponding author.
| |
Collapse
|
3
|
Sonthalia M, Roy BS, Chandrawanshi D, Ganesh GV, Jayasuriya R, Mohandas S, Rajagopal S, Ramkumar KM. Histone deacetylase inhibitors as antidiabetic agents: Advances and opportunities. Eur J Pharmacol 2022; 935:175328. [DOI: 10.1016/j.ejphar.2022.175328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022]
|
4
|
Wang W, Wang H, Liu Y, Yang L. Identification of miRNA-mRNA-TF regulatory networks in peripheral blood mononuclear cells of type 1 diabetes. BMC Endocr Disord 2022; 22:119. [PMID: 35534828 PMCID: PMC9087960 DOI: 10.1186/s12902-022-01038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a T lymphocyte-mediated and B lymphocyte-assisted autoimmune disease. We aimed to identify abnormally expressed genes in peripheral blood mononuclear cells (PBMCs) of T1D and explore their possible molecular regulatory network. METHODS Expression datasets were downloaded from the Gene Expression Omnibus (GEO) database. Then, the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRNAs) were identified, and functional enrichment and immune cell infiltration analysis were performed. The starBase, miRTarBase, TarBase, JASPAR, ENCODE, and TRRUST databases constructed the miRNA-mRNA-TF regulatory network. The ROC curves were plotted to evaluate the sensitivity and specificity of miRNAs and mRNAs. RESULT A total of 216 DEGs directly or indirectly related to type I diabetes mellitus, natural killer cell-mediated cytotoxicity, Th1, and Th2 cell differentiation, and the IL-17 and TNF signaling pathways were obtained. The miRNA-mRNA-TF network indicates that miR-320a and SOX5 are the only miRNAs and TFs that both target ADM and RRAGD. The ROC curves showed that ADM (0.9375), RRAGD (0.8958), and hsa-mir-320a (0.9417) had high accuracy in T1D diagnosis. CONCLUSION The constructed regulatory networks, including miR-320a/ADM/SOX5 and miR-320a/RRAGD/SOX5, may provide new insight into the mechanisms of development and progression in T1D.
Collapse
Affiliation(s)
- Wanqiu Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Huan Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yuhong Liu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liu Yang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
5
|
Stem Cell-Derived Islets for Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23095099. [PMID: 35563490 PMCID: PMC9105352 DOI: 10.3390/ijms23095099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Since the discovery of insulin a century ago, insulin injection has been a primary treatment for both type 1 (T1D) and type 2 diabetes (T2D). T2D is a complicated disea se that is triggered by the dysfunction of insulin-producing β cells and insulin resistance in peripheral tissues. Insulin injection partially compensates for the role of endogenous insulin which promotes glucose uptake, lipid synthesis and organ growth. However, lacking the continuous, rapid, and accurate glucose regulation by endogenous functional β cells, the current insulin injection therapy is unable to treat the root causes of the disease. Thus, new technologies such as human pluripotent stem cell (hPSC)-derived islets are needed for both identifying the key molecular and genetic causes of T2D and for achieving a long-term treatment. This perspective review will provide insight into the efficacy of hPSC-derived human islets for treating and understanding T2D. We discuss the evidence that β cells should be the primary target for T2D treatment, the use of stem cells for the modeling of T2D and the potential use of hPSC-derived islet transplantation for treating T2D.
Collapse
|
6
|
Jahandideh F, Bourque SL, Wu J. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chem X 2022; 13:100222. [PMID: 35498998 PMCID: PMC9039931 DOI: 10.1016/j.fochx.2022.100222] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with antidiabetic properties. Notable examples include AGFAGDDAPR, a black tea-derived peptide, VRIRLLQRFNKRS, a β-conglycinin-derived peptide, and milk-derived peptide VPP, which have shown antidiabetic effects in diabetic rodent models through variety of pathways including improving beta-cells function, suppression of alpha-cells proliferation, inhibiting food intake, increasing portal cholecystokinin concentration, enhancing insulin signaling and glucose uptake, and ameliorating adipose tissue inflammation. Despite the immense research on glucoregulatory properties of bioactive peptides, incorporation of these bioactive peptides in functional foods or nutraceuticals is widely limited due to the existence of several challenges in the field of peptide research and commercialization. Ongoing research in this field, however, is fundamental to pave the road for this purpose.
Collapse
Key Words
- AMPK, AMP-activated protein kinase
- Akt, Protein kinase B
- Bioactive peptides
- C/EBP-α, CCAAT/ enhancer binding protein alpha
- CCK, Cholecystokinin
- CCK-1R, CCK type 1 receptor
- DPP-IV, Dipeptidyl peptidase IV
- Diabetes mellitus
- ERK1/2, Extracellular signal regulated kinase 1/2
- GIP, Glucose-dependent insulinotropic polypeptide
- GLP-1, Glucagon-like peptide 1
- GLUT, Glucose transporter
- Glucose homeostasis
- IRS-1, Insulin receptor substrate-1
- Insulin resistance
- MAPK, Mitogen activated protein kinase
- PI3K, Phosphatidylinositol 3-kinase
- PPARγ, Peroxisome proliferator associated receptor gamma
- Reproductive dysfunction
- TZD, Thiazolidinedione
- cGMP, cyclic guanosine-monophosphate
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
7
|
Arabloei Sani M, Yaghmaei P, Hajebrahimi Z, Hayati Roodbari N. Therapeutic Effect of P-Cymene on Lipid Profile, Liver Enzyme, and Akt/Mtor Pathway in Streptozotocin-Induced Diabetes Mellitus in Wistar Rats. J Obes 2022; 2022:1015669. [PMID: 35528246 PMCID: PMC9072059 DOI: 10.1155/2022/1015669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/28/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetes is a serious public health problem in low- and middle-income countries. There is a strong link between hyperglycemia, oxidative stress, inflammation, and the development of diabetes mellitus. PI3K/Akt/mTOR is the main signaling pathway of insulin for controlling lipid and glucose metabolism. P-cymene is an aromatic monoterpene with a widespread range of therapeutic properties including antioxidant and anti-inflammatory activity. In the present study, the antidiabetic effects of p-cymene were investigated. Diabetes was induced using streptozotocin in male Wistar rats. The effects of p-cymene and metformin were studied on levels of glucose (Glu), lipid profile, liver enzymes, oxidative stress, and the expression of Akt, phospho-Akt, and mTOR (mammalian target of rapamycin) proteins, using biochemical, histological, and immunohistochemical analysis. Data have shown that p-cymene can improve serum levels of Glu, total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein (LDL), very-low-density lipoprotein (VLDL), alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), and the expression of mTOR, Akt, and phospho-Akt protein in diabetic animals. These results suggest that p-cymene has hypoglycemia, hypolipidemia, and antioxidant properties. It can regulate Akt/mTOR pathway and reduce hepatic and pancreas injury. It can be suggested for diabetes management alone or simultaneously with metformin.
Collapse
Affiliation(s)
- Maryam Arabloei Sani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Hajebrahimi
- A & S Research Institute, Ministry of Science Research and Technology, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Azarova IE, Klyosova EY, Polonikov AV. [Polymorphic variants of glutathione reductase - new genetic markers of predisposition to type 2 diabetes mellitus]. TERAPEVT ARKH 2021; 93:1164-1170. [PMID: 36286817 DOI: 10.26442/00403660.2021.10.201101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022]
Abstract
AIM To study the associations of three common single nucleotide variants of the gene encoding antioxidant system enzyme, glutathione reductase GSR with a predisposition to type 2 diabetes (T2D). MATERIALS AND METHODS The observational mono-center transverse controlled study involved 1032 type 2 diabetics (640 women, 392 men; mean age 61.14.8 years) and 1056 healthy volunteers (676 women, 380 men; mean age 60.96.2 years). Eating habits were evaluated retrospectively according to questionnaire data. A 10 ml blood sample was drawn from all participants in the study for genetic and biochemical tests. Genotyping was done with the use of the iPLEX technology on MassArray System. RESULTS We first identified the relationship of the polymorphisms rs2551715, rs2911678, rs3757918 of the GSR gene with a reduced risk of developing T2D in the Russian population. At the same time, the protective effects of the variants of the glutathione reductase gene manifested only in individuals with normal body weight provided they consumed fresh vegetables and fruits, whereas in those with insufficient consumption of plant foods, as well as in all overweight and obese patients, the protective effect of GSR was not observed. In patients with T2D, the plasma levels of hydrogen peroxide and the glutathione dimer were sharply increased compared with the controls. We also found that the rs2551715 polymorphism was associated with a lower concentration of hydrogen peroxide in the blood plasma of patients with T2D, while SNP rs2911678 was associated with a decrease in the concentration of the oxidized form of glutathione. Bioinformatical analysis confirmed the positive effect of alternative alleles on GSR expression and revealed the closest protein partners of the enzyme and their joint participation in the metabolism of acetyl-CoA, the catabolism of hydrogen peroxide and the control of cellular redox homeostasis. CONCLUSION Polymorphic variants of the GSR gene rs2551715, rs2911678, rs3757918 are associated with a predisposition to T2D, but their relationship with the disease is modulated by the consumption of fresh vegetables and fruits and depends on body mass index.
Collapse
|
9
|
Henquin JC. Glucose-induced insulin secretion in isolated human islets: Does it truly reflect β-cell function in vivo? Mol Metab 2021; 48:101212. [PMID: 33737253 PMCID: PMC8065218 DOI: 10.1016/j.molmet.2021.101212] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetes always involves variable degrees of β-cell demise and malfunction leading to insufficient insulin secretion. Besides clinical investigations, many research projects used rodent islets to study various facets of β-cell pathophysiology. Their important contributions laid the foundations of steadily increasing numbers of experimental studies resorting to isolated human islets. SCOPE OF REVIEW This review, based on an analysis of data published over 60 years of clinical investigations and results of more recent studies in isolated islets, addresses a question of translational nature. Does the information obtained in vitro with human islets fit with our knowledge of insulin secretion in man? The aims are not to discuss specificities of pathways controlling secretion but to compare qualitative and quantitative features of glucose-induced insulin secretion in isolated human islets and in living human subjects. MAJOR CONCLUSIONS Much of the information gathered in vitro can reliably be translated to the in vivo situation. There is a fairly good, though not complete, qualitative and quantitative coherence between insulin secretion rates measured in vivo and in vitro during stimulation with physiological glucose concentrations, but the concordance fades out under extreme conditions. Perplexing discrepancies also exist between insulin secretion in subjects with Type 2 diabetes and their islets studied in vitro, in particular concerning the kinetics. Future projects should ascertain that the experimental conditions are close to physiological and do not alter the function of normal and diabetic islets.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
10
|
Gignoux-Wolfsohn SA, Pinsky ML, Kerwin K, Herzog C, Hall M, Bennett AB, Fefferman NH, Maslo B. Genomic signatures of selection in bats surviving white-nose syndrome. Mol Ecol 2021; 30:5643-5657. [PMID: 33476441 DOI: 10.1111/mec.15813] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Rapid evolution of advantageous traits following abrupt environmental change can help populations recover from demographic decline. However, for many introduced diseases affecting longer-lived, slower reproducing hosts, mortality is likely to outpace the acquisition of adaptive de novo mutations. Adaptive alleles must therefore be selected from standing genetic variation, a process that leaves few detectable genomic signatures. Here, we present whole genome evidence for selection in bat populations that are recovering from white-nose syndrome (WNS). We collected samples both during and after a WNS-induced mass mortality event in two little brown bat populations that are beginning to show signs of recovery and found signatures of soft sweeps from standing genetic variation at multiple loci throughout the genome. We identified one locus putatively under selection in a gene associated with the immune system. Multiple loci putatively under selection were located within genes previously linked to host response to WNS as well as to changes in metabolism during hibernation. Results from two additional populations suggested that loci under selection may differ somewhat among populations. Through these findings, we suggest that WNS-induced selection may contribute to genetic resistance in this slowly reproducing species threatened with extinction.
Collapse
Affiliation(s)
- Sarah A Gignoux-Wolfsohn
- Department of Ecology, Evolution, and Natural Resources, Rutgers The State University of New Jersey, New Brunswick, NJ, USA
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers The State University of New Jersey, New Brunswick, NJ, USA
| | - Kathleen Kerwin
- Department of Ecology, Evolution, and Natural Resources, Rutgers The State University of New Jersey, New Brunswick, NJ, USA
| | - Carl Herzog
- New York State Department of Environmental Conservation, Albany, NY, USA
| | - MacKenzie Hall
- Endangered and Nongame Species Program, New Jersey Department of Environmental Protection, Trenton, NJ, USA
| | | | - Nina H Fefferman
- Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.,National Institute for Mathematical and Biological Synthesis, University of Tennessee, Tennessee, TN, USA
| | - Brooke Maslo
- Department of Ecology, Evolution, and Natural Resources, Rutgers The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
11
|
Gurzov EN, Ke PC, Ahlgren U, Garcia Ribeiro RS, Gotthardt M. Novel Strategies to Protect and Visualize Pancreatic β Cells in Diabetes. Trends Endocrinol Metab 2020; 31:905-917. [PMID: 33160815 DOI: 10.1016/j.tem.2020.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
A common feature in the pathophysiology of different types of diabetes is the reduction of β cell mass and/or impairment of β cell function. Diagnosis and treatment of type 1 and type 2 diabetes is currently hampered by a lack of reliable techniques to restore β cell survival, to improve insulin secretion, and to quantify β cell mass in patients. Current new approaches may allow us to precisely and specifically visualize β cells in vivo and provide viable therapeutic strategies to preserve, recover, and regenerate β cells. In this review, we discuss recent protective approaches for β cells and the advantages and limitations of current imaging probes in the field.
Collapse
Affiliation(s)
- Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium.
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, Xuhui District, Shanghai 200032, China; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå S-90187, Sweden
| | - Rita S Garcia Ribeiro
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
12
|
Knock-down Sox5 suppresses porcine adipogenesis through BMP R-Smads signal pathway. Biochem Biophys Res Commun 2020; 527:574-580. [PMID: 32423805 DOI: 10.1016/j.bbrc.2020.04.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022]
|
13
|
Liu Y, Jiang B, Cao Y, Chen W, Yin L, Xu Y, Qiu Z. High expression levels and localization of Sox5 in dilated cardiomyopathy. Mol Med Rep 2020; 22:948-956. [PMID: 32468049 PMCID: PMC7339405 DOI: 10.3892/mmr.2020.11180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/15/2020] [Indexed: 01/06/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a disease that can lead to heart expansion and severe heart failure, but the specific pathogenesis remains unclear. Sox5 is a member of the Sox family with a key role in cardiac function. However, the role of Sox5 in DCM remains unclear. In the present study, wild-type mice were intraperitoneally injected with doxorubicin (Dox) to induce DCM, and heart specimens from human patients with DCM were used to investigate the preliminary role of Sox5 in DCM. The present study demonstrated that, compared with control human hearts, the hearts of patients with DCM exhibited high expression levels of Sox5 and activation of the wnt/β-catenin pathway. This result was consistent with Dox-induced DCM in mice. Furthermore, in Dox-treated mice, apoptosis was activated during the development of DCM. Inflammation and collagen deposition also increased in DCM mice. The results of the present study indicate that Sox5 may be associated with the development of DCM. Sox5 may be a novel potential factor that regulates DCM.
Collapse
Affiliation(s)
- Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Ben Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yide Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Li Yin
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
14
|
Hu R, Walker E, Huang C, Xu Y, Weng C, Erickson GE, Coldren A, Yang X, Brissova M, Kaverina I, Balamurugan AN, Wright CVE, Li Y, Stein R, Gu G. Myt Transcription Factors Prevent Stress-Response Gene Overactivation to Enable Postnatal Pancreatic β Cell Proliferation, Function, and Survival. Dev Cell 2020; 53:390-405.e10. [PMID: 32359405 PMCID: PMC7278035 DOI: 10.1016/j.devcel.2020.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Although cellular stress response is important for maintaining function and survival, overactivation of late-stage stress effectors cause dysfunction and death. We show that the myelin transcription factors (TFs) Myt1 (Nzf2), Myt2 (Myt1l, Nztf1, and Png-1), and Myt3 (St18 and Nzf3) prevent such overactivation in islet β cells. Thus, we found that co-inactivating the Myt TFs in mouse pancreatic progenitors compromised postnatal β cell function, proliferation, and survival, preceded by upregulation of late-stage stress-response genes activating transcription factors (e.g., Atf4) and heat-shock proteins (Hsps). Myt1 binds putative enhancers of Atf4 and Hsps, whose overexpression largely recapitulated the Myt-mutant phenotypes. Moreover, Myt(MYT)-TF levels were upregulated in mouse and human β cells during metabolic stress-induced compensation but downregulated in dysfunctional type 2 diabetic (T2D) human β cells. Lastly, MYT knockdown caused stress-gene overactivation and death in human EndoC-βH1 cells. These findings suggest that Myt TFs are essential restrictors of stress-response overactivity.
Collapse
Affiliation(s)
- Ruiying Hu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chen Huang
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanwen Xu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chen Weng
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gillian E Erickson
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anastasia Coldren
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 27232, USA
| | - Xiaodun Yang
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Marcela Brissova
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 27232, USA
| | - Irina Kaverina
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Appakalai N Balamurugan
- Department of Surgery, Clinical Islet Transplantation Laboratory, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| | - Christopher V E Wright
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yan Li
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Guoqiang Gu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
Zhang FF, Liu YH, Wang DW, Liu TS, Yang Y, Guo JM, Pan Y, Zhang YF, Du H, Li L, Jin L. Obesity-induced reduced expression of the lncRNA ROIT impairs insulin transcription by downregulation of Nkx6.1 methylation. Diabetologia 2020; 63:811-824. [PMID: 32008054 DOI: 10.1007/s00125-020-05090-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Although obesity is a predisposing factor for pancreatic beta cell dysfunction, the mechanisms underlying its negative effect on insulin-secreting cells is still poorly understood. The aim of this study was to identify islet long non-coding RNAs (lncRNAs) involved in obesity-mediated beta cell dysfunction. METHODS RNA sequencing was performed to analyse the islets of high-fat diet (HFD)-fed mice and those of normal chow-fed mice (NCD). The function in beta cells of the selected lncRNA 1810019D21Rik (referred to in this paper as ROIT [regulator of insulin transcription]) was assessed after its overexpression or knockdown in MIN6 cells and primary islet cells, as well as in siRNA-treated mice. Then, RNA pull-down, RNA immunoprecipitation, coimmunoprecipitation and bisulphite sequencing were performed to investigate the mechanism of ROIT regulation of islet function. RESULTS ROIT was dramatically downregulated in the islets of the obese mice, as well as in the sera of obese donors with type 2 diabetes, and was suppressed by HNF1B. Overexpression of ROIT in MIN6 cells and islets led to improved glucose homeostasis and insulin transcription. Investigation of the mechanism involved showed that ROIT bound to DNA methyltransferase 3a and caused its degradation through the ubiquitin proteasome pathway, which blocked the methylation of the Nkx6.1 promoter. CONCLUSIONS/INTERPRETATION These findings functionally suggest a novel link between obesity and beta cell dysfunction via ROIT. Elucidating a precise mechanism for the effect of obesity on lncRNA expression will broaden our understanding of the pathophysiological development of diabetes and facilitate the design of better tools for diabetes prevention and treatment. DATA AVAILABILITY The raw RNA sequencing data are available from the NCBI Gene Expression Omnibus (GEO series accession number GSE139991).
Collapse
Affiliation(s)
- Fang Fang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yu Hong Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Dan Wei Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Ting Sheng Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Jia Min Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yan Feng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Hong Du
- Department of Endocrinology, Nanjing Jinling Hospital, 305 Zhongshan East Road, Nanjing, People's Republic of China
| | - Ling Li
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Hall E, Jönsson J, Ofori JK, Volkov P, Perfilyev A, Dekker Nitert M, Eliasson L, Ling C, Bacos K. Glucolipotoxicity Alters Insulin Secretion via Epigenetic Changes in Human Islets. Diabetes 2019; 68:1965-1974. [PMID: 31420409 DOI: 10.2337/db18-0900] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 07/24/2019] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes (T2D) is characterized by insufficient insulin secretion and elevated glucose levels, often in combination with high levels of circulating fatty acids. Long-term exposure to high levels of glucose or fatty acids impair insulin secretion in pancreatic islets, which could partly be due to epigenetic alterations. We studied the effects of high concentrations of glucose and palmitate combined for 48 h (glucolipotoxicity) on the transcriptome, the epigenome, and cell function in human islets. Glucolipotoxicity impaired insulin secretion, increased apoptosis, and significantly (false discovery rate <5%) altered the expression of 1,855 genes, including 35 genes previously implicated in T2D by genome-wide association studies (e.g., TCF7L2 and CDKN2B). Additionally, metabolic pathways were enriched for downregulated genes. Of the differentially expressed genes, 1,469 also exhibited altered DNA methylation (e.g., CDK1, FICD, TPX2, and TYMS). A luciferase assay showed that increased methylation of CDK1 directly reduces its transcription in pancreatic β-cells, supporting the idea that DNA methylation underlies altered expression after glucolipotoxicity. Follow-up experiments in clonal β-cells showed that knockdown of FICD and TPX2 alters insulin secretion. Together, our novel data demonstrate that glucolipotoxicity changes the epigenome in human islets, thereby altering gene expression and possibly exacerbating the secretory defect in T2D.
Collapse
Affiliation(s)
- Elin Hall
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Josefine Jönsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Jones K Ofori
- Islet Cell Exocytosis Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Marloes Dekker Nitert
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
17
|
Lenz A, Lenz G, Ku HT, Ferreri K, Kandeel F. Islets from human donors with higher but not lower hemoglobin A1c levels respond to gastrin treatment in vitro. PLoS One 2019; 14:e0221456. [PMID: 31430329 PMCID: PMC6701795 DOI: 10.1371/journal.pone.0221456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Gastrin is a peptide hormone, which in combination with other factors such as TGFα, EGF or GLP-1, is capable of increasing beta cell mass and lowering blood glucose levels in adult diabetic mice. In humans, administration of a bolus of gastrin alone induces insulin secretion suggesting that gastrin may target islet cells. However, whether gastrin alone is sufficient to exert an effect on isolated human islets has been controversial and the mechanism remained poorly understood. Therefore, in this study we started to examine the effects of gastrin alone on cultured adult human islets. Treatment of isolated human islets with gastrin I for 48 h resulted in increased expression of insulin, glucagon and somatostatin transcripts. These increases were significantly correlated with the levels of donor hemoglobin A1c (HbA1c) but not BMI or age. In addition, gastrin treatment resulted in increased expression of PDX1, NKX6.1, NKX2.2, MNX1 and HHEX in islets from donors with HbA1c greater than 42 mmol/mol. The addition of YM022, an antagonist of the gastrin receptor cholecystokinin B receptor (CCKBR), together with gastrin eliminated these effects, verifying that the effects of gastrin are mediated through CCKBR.CCKBR is expressed in somatostatin-expressing delta cells in islets from all donors. However, in the islets from donors with higher HbA1c (greater than 42 mmol/mol [6.0%]), cells triple-positive for CCKBR, somatostatin and insulin were detected, suggesting a de-differentiation or trans-differentiation of endocrine cells. Our results demonstrate a direct effect of gastrin on human islets from prediabetic or diabetic individuals that is mediated through CCKBR+ cells. Further, our data imply that gastrin may be a potential treatment for diabetic patients.
Collapse
Affiliation(s)
- Ayelet Lenz
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States of America
- * E-mail:
| | - Gal Lenz
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Kevin Ferreri
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| |
Collapse
|
18
|
Chen L, Cheng X, Tu W, Qi Z, Li H, Liu F, Yang Y, Zhang Z, Wang Z. Apatinib inhibits glycolysis by suppressing the VEGFR2/AKT1/SOX5/GLUT4 signaling pathway in ovarian cancer cells. Cell Oncol (Dordr) 2019; 42:679-690. [PMID: 31325096 DOI: 10.1007/s13402-019-00455-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Apatinib is a tyrosine kinase inhibitor that targets vascular endothelial growth factor receptor-2 (VEGFR2), and has shown encouraging therapeutic effects in various malignant tumors. As yet, however, the role of apatinib in ovarian cancer has remained unknown. Here, we sought to elucidate the role of apatinib in the in vitro and in vivo viability and proliferation of ovarian cancer cells, as well as in glucose metabolism in these cells. METHODS The effects of apatinib on ovarian cancer cell viability and proliferation were assessed using Cell Counting Kit-8 (CCK-8) and colony formation assays, respectively. The expression of VEGFR2/AKT1/SOX5/GLUT4 pathway proteins was assessed using Western blotting, and glucose uptake and lactate production assays were used to detect glycolysis in ovarian cancer cells. SOX5 was exogenously over-expressed and silenced in ovarian cancer cells using expression vector and shRNA-based methods, respectively. RNA expression analyses were performed using RNA-seq and gene-chip-based methods. GLUT4 promoter activity was assessed using a dual-luciferase reporter assay. The expression of p-VEGFR2 (Tyr1175), p-AKT1 (Ser473), p-GSK3β (Ser9), SOX5 and GLUT4 in xenograft tissues was assessed using immunohistochemistry (IHC). RESULTS We found that apatinib inhibited the in vitro and in vivo viability and proliferation in Hey and OVCA433 ovarian cancer cells in a dose-dependent and time-dependent manner. We also found that apatinib effectively suppressed glucose uptake and lactate production by blocking the expression of GLUT4 in these cells. In addition, we found that SOX5 predominantly rescued the inhibitory effect of apatinib on GLUT4 expression by activating its promoter. Finally, we found that apatinib regulated the expression of SOX5 by suppressing the VEGFR2/AKT1/GSK3β signaling pathway. CONCLUSIONS From our results, we conclude that apatinib suppresses the in vitro and in vivo viability and proliferation of ovarian cancer cells, as well as glycolysis by inhibiting the VEGFR2/AKT1/GSK3β/SOX5/GLUT4 signaling pathway. Apatinib may serve as a promising drug for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Gynecological Oncology and Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Xi Cheng
- Department of Gynecological Oncology and Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Zihao Qi
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Haoran Li
- Department of Gynecological Oncology and Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Fei Liu
- Department of Gynecological Oncology and Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Yufei Yang
- Department of Gynecological Oncology and Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Zhe Zhang
- Department of Gynecological Oncology and Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China.
| | - Ziliang Wang
- Department of Gynecological Oncology and Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.
- Department of Obstetrics and Gynecology, Xihua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
19
|
Zheng Z, Zheng F. A complex auxiliary: IL-17/Th17 signaling during type 1 diabetes progression. Mol Immunol 2018; 105:16-31. [PMID: 30472513 DOI: 10.1016/j.molimm.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/03/2018] [Accepted: 11/09/2018] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease centered around the loss of the beta cells of the islets of Langerhans, and consequent inability of the islets to produce the insulin necessary to maintain glycemic control. While most therapeutic approaches have been centered on insulin replacement, newer approaches to target the underlying immune response have become an area of focus. However, the immune landscape in T1D is extremely complex, and the roles played by individual cytokines during disease progression are incompletely understood, making the development of immunotherapies very difficult. In this review, we discuss the complex auxiliary role played by IL-17, both around the islet and in peripheral tissues such as the gut and kidney, which might influence T1D progression. Through our re-analysis of the key factors involved IL-17 signaling in recently published single-cell sequencing and sorted-cell bulk sequencing datasets, we find supporting evidence for the general existence of the signaling apparatus in islet endocrine cells. We also explore the emerging evidence of IL-17 serving as an influential factor in diabetic complications that affect distal tissues. While anti-IL-17 therapies are emerging as an option for psoriasis and other autoimmune disorders, we highlight here a number of questions that would need to be addressed before their potential applicability to treating T1D can be fully evaluated.
Collapse
Affiliation(s)
- Zihan Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning Province, PR China; Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning Province, PR China.
| |
Collapse
|
20
|
Franks PW, Timpson NJ. Genotype-Based Recall Studies in Complex Cardiometabolic Traits. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e001947. [PMID: 30354344 PMCID: PMC6813040 DOI: 10.1161/circgen.118.001947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In genotype-based recall (GBR) studies, people (or their biological samples) who carry genotypes of special interest for a given hypothesis test are recalled from a larger cohort (or biobank) for more detailed investigations. There are several GBR study designs that offer a range of powerful options to elucidate (1) genotype-phenotype associations (by increasing the efficiency of genetic association studies, thereby allowing bespoke phenotyping in relatively small cohorts), (2) the effects of environmental exposures (within the Mendelian randomization framework), and (3) gene-treatment interactions (within the setting of GBR interventional trials). In this review, we overview the literature on GBR studies as applied to cardiometabolic health outcomes. We also review the GBR approaches used to date and outline new methods and study designs that might enhance the utility of GBR-focused studies. Specifically, we highlight how GBR methods have the potential to augment randomized controlled trials, providing an alternative application for the now increasingly accepted Mendelian randomization methods usually applied to large-scale population-based data sets. Further to this, we consider how functional and basic science approaches alongside GBR designs offer intellectually intriguing and potentially powerful ways to explore the implications of alterations to specific (and potentially druggable) biological pathways.
Collapse
Affiliation(s)
- Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, SE-21741, Malmö, Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, Avon Longitudinal Study of Parents and Children, Population Health Science, Bristol Medical School, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| |
Collapse
|
21
|
Oza MJ, Kulkarni YA. Formononetin Treatment in Type 2 Diabetic Rats Reduces Insulin Resistance and Hyperglycemia. Front Pharmacol 2018; 9:739. [PMID: 30072892 PMCID: PMC6058024 DOI: 10.3389/fphar.2018.00739] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetic mellitus is a multifactorial metabolic disorder affecting huge population around the world. This indicates that there is an urgent unmet need of cost effective, new treatment strategies for type 2 diabetes mellitus with no or less side effects. Phenolic compounds including isoflavones are known for their beneficial effect in metabolic disorders. The present work was intended to find out efficacy of formononetin, an isoflavone treatment in experimental model of type 2 diabetes. Type 2 diabetes mellitus was induced by feeding high fat diet for 2 weeks prior to streptozotocin administration in Sprague Dawley rats. Diabetic animals were treated with formononetin for 28 days at three dose level, i.e., 10, 20, and 40 mg/kg body weight orally. The effect of formononetin treatment on various parameters such as plasma glucose, glucose tolerance, insulin, HOMA-IR, lipid profile, hepatic glycogen content, glycohaemoglobin and SIRT1 expression in pancreatic tissue was measured. Histopathological changes in pancreatic tissue were also studied. Results of the study demonstrate that formononetin treatment reduces blood glucose level significantly (p < 0.001) at all the three dose level. It also improved glucose tolerance, insulin sensitivity and lipid profile along with reduction in glycohaemoglobin content in blood. Formononetin treatment also improved hepatic glycogen level profoundly in diabetic rats. Determination of SIRT1 expression in pancreatic tissue by immunohistochemical analysis showed that formononetin treatment increases the expression of SIRT1 in pancreatic tissue. Histopathological study showed that treatment with formononetin protects pancreatic beta cells from necro-degeneration and atrophic effect. It can be concluded that formononetin treatment reduces insulin resistance and attenuate hyperglycemia in type 2 diabetes which may be due to increasing expression of SIRT1 in pancreatic tissues.
Collapse
Affiliation(s)
- Manisha J. Oza
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Mumbai, India
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Yogesh A. Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Mumbai, India
| |
Collapse
|
22
|
Ma Y, Fei X. SIRT5 regulates pancreatic β-cell proliferation and insulin secretion in type 2 diabetes. Exp Ther Med 2018; 16:1417-1425. [PMID: 30116390 DOI: 10.3892/etm.2018.6301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/27/2017] [Indexed: 12/14/2022] Open
Abstract
Impaired insulin secretion and insulin resistance are the primary characteristics of type 2 diabetes (T2D). However, the mechanisms underlying insulin secretion failure have yet to be elucidated. The present study demonstrated that sirtuin 5 (SIRT5) is upregulated in patients with T2D and in pancreatic β-cell lines. It was also revealed that elevated SIRT5 expression is positively associated with age and blood glucose levels, and negatively associated with pancreatic and duodenal homeobox 1 (PDX1) expression. Colony formation and Cell Counting Kit-8 assays demonstrated that SIRT5 suppressed the proliferation of pancreatic β-cells in vitro. In addition, downregulation of SIRT5 promoted the secretion of insulin. Additionally, SIRT5 ectopic expression downregulated the expression of PDX1 and the inhibition of SIRT5 upregulated PDX1 expression. Chromatin immunoprecipitation assay analysis demonstrated that SIRT5 may regulate the transcription of PDX1 via H4K16 deacetylation. In conclusion, the results of the present study indicate that SIRT5 may serve an important role in the pathogenesis of T2D, and may present a novel therapeutic target for the treatment of patients with T2D.
Collapse
Affiliation(s)
- Yongmei Ma
- Department of Endocrinology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xiaoqiang Fei
- Department of Endocrinology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
23
|
Xu L, Zheng L, Wang Z, Li C, Li S, Xia X, Zhang P, Li L, Zhang L. TNF-α-Induced SOX5 Upregulation Is Involved in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Through KLF4 Signal Pathway. Mol Cells 2018; 41:575-581. [PMID: 29890823 PMCID: PMC6030245 DOI: 10.14348/molcells.2018.2359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/11/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a common systemic skeletal disease characterized by reduced bone mass and microarchitecture deterioration. Although differentially expressed SOX5 has been found in bone marrow from ovariectomized mice, its role in osteogenic differentiation in human mesenchymal stem cells (hMSCs) from bone marrow in PMOP remains unknown. In this study, we investigated the biological function of SOX5 and explore its molecular mechanism in hMSCs from patients with PMOP. Our findings showed that the mRNA and protein expression levels of SOX5 were upregulated in hMSCs isolated from bone marrow samples of PMOP patients. We also found that SOX5 overexpression decreased the alkaline phosphatase (ALP) activity and the gene expression of osteoblast markers including Collagen I, Runx2 and Osterix, which were increased by SOX5 knockdown using RNA interference. Furthermore, TNF-α notably upregulated the SOX5 mRNA expression level, and SOX5 knockdown reversed the effect of TNF-α on osteogenic differentiation of hMSCs. In addition, SOX5 overexpression increased Kruppel-like factor 4 (KLF4) gene expression, which was decreased by SOX5 silencing. KLF4 knockdown abrogated the suppressive effect of SOX5 overexpression on osteogenic differentiation of hMSCs. Taken together, our results indicated that TNF-α-induced SOX5 upregulation inhibited osteogenic differentiation of hMSCs through KLF4 signal pathway, suggesting that SOX5 might be a novel therapeutic target for PMOP treatment.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Lili Zheng
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Zhifang Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Chong Li
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Shan Li
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Xuedi Xia
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Pengyan Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Li Li
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Lixia Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| |
Collapse
|
24
|
Bensellam M, Jonas JC, Laybutt DR. Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions. J Endocrinol 2018; 236:R109-R143. [PMID: 29203573 DOI: 10.1530/joe-17-0516] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Like all the cells of an organism, pancreatic β-cells originate from embryonic stem cells through a complex cellular process termed differentiation. Differentiation involves the coordinated and tightly controlled activation/repression of specific effectors and gene clusters in a time-dependent fashion thereby giving rise to particular morphological and functional cellular features. Interestingly, cellular differentiation is not a unidirectional process. Indeed, growing evidence suggests that under certain conditions, mature β-cells can lose, to various degrees, their differentiated phenotype and cellular identity and regress to a less differentiated or a precursor-like state. This concept is termed dedifferentiation and has been proposed, besides cell death, as a contributing factor to the loss of functional β-cell mass in diabetes. β-cell dedifferentiation involves: (1) the downregulation of β-cell-enriched genes, including key transcription factors, insulin, glucose metabolism genes, protein processing and secretory pathway genes; (2) the concomitant upregulation of genes suppressed or expressed at very low levels in normal β-cells, the β-cell forbidden genes; and (3) the likely upregulation of progenitor cell genes. These alterations lead to phenotypic reconfiguration of β-cells and ultimately defective insulin secretion. While the major role of glucotoxicity in β-cell dedifferentiation is well established, the precise mechanisms involved are still under investigation. This review highlights the identified molecular mechanisms implicated in β-cell dedifferentiation including oxidative stress, endoplasmic reticulum (ER) stress, inflammation and hypoxia. It discusses the role of Foxo1, Myc and inhibitor of differentiation proteins and underscores the emerging role of non-coding RNAs. Finally, it proposes a novel hypothesis of β-cell dedifferentiation as a potential adaptive mechanism to escape cell death under stress conditions.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - D Ross Laybutt
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- St Vincent's Clinical SchoolUNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
|