1
|
Zarandi PK, Ghiasi M, Heiat M. The role and function of lncRNA in ageing-associated liver diseases. RNA Biol 2025; 22:1-8. [PMID: 39697114 PMCID: PMC11660375 DOI: 10.1080/15476286.2024.2440678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/09/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Liver diseases are a significant global health issue, characterized by elevated levels of disorder and death. The substantial impact of ageing on liver diseases and their prognosis is evident. Multiple processes are involved in the ageing process, which ultimately leads to functional deterioration of this organ. The process of liver ageing not only renders the liver more susceptible to diseases but also compromises the integrity of other organs due to the liver's critical function in metabolism regulation. A growing body of research suggests that long non-coding RNAs (lncRNAs) play a significant role in the majority of pathophysiological pathways. They regulate gene expression through a variety of interactions with microRNAs (miRNAs), messenger RNAs (mRNAs), DNA, or proteins. LncRNAs exert a major influence on the progression of age-related liver diseases through the regulation of cell proliferation, necrosis, apoptosis, senescence, and metabolic reprogramming. A concise overview of the current understanding of lncRNAs and their potential impact on the development of age-related liver diseases will be provided in this mini-review.
Collapse
Affiliation(s)
- Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wlaschek M, Maity P, Koroma AK, Geiger H, Singh K, Scharffetter-Kochanek K. Imbalanced redox dynamics induce fibroblast senescence leading to impaired stem cell pools and skin aging. Free Radic Biol Med 2025; 233:292-301. [PMID: 40154755 DOI: 10.1016/j.freeradbiomed.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Skin function depends on a meticulously regulated dynamic interaction of distinct skin compartments such as the epidermis and dermis. Adaptive responses at the molecular and cellular level are essential for these interactions - and if dysregulated - drive skin aging and other pathologies. After defining the role of redox homeodynamics in physiology and aging pathology, we focus on the redox distress-dependent aging of dermal fibroblasts including their progenitors. We here discuss the prime role of senescent fibroblasts in the control of their own endogenous niche and stem cell niches for epidermal stem cells, hair follicle stem cells, adipocyte precursors and muscle stem cells. We here review that redox imbalance induced reduction in Insulin-like Growth Factor-1 drives skin aging by the depletion of stem cell pools. This IGF-1 reduction is mediated via the redox-sensitive transcription factor JunB and also by the redox-dependent changes in sphingolipid-metabolism, among others. In addition, we will discuss the changes in the extracellular matrix of the skin affecting cellular senescence and the skin integrity and function in aging. The aim is a deeper understanding of the two main redox-dependent hubs such as JunB-induced depletion of IGF-1, and the sphingolipid-mediated remodeling of the cell membrane with its impact on IGF-1, fibroblast heterogeneity, function, senescence and plasticity in skin aging.
Collapse
Affiliation(s)
- Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Albert Kallon Koroma
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Hartmut Geiger
- Aging Research Institute (arc), Ulm University, Ulm, Germany; Institute for Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany.
| |
Collapse
|
3
|
Sen I, Trzaskalski NA, Hsiao YT, Liu PP, Shimizu I, Derumeaux GA. Aging at the Crossroads of Organ Interactions: Implications for the Heart. Circ Res 2025; 136:1286-1305. [PMID: 40403108 DOI: 10.1161/circresaha.125.325637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/24/2025]
Abstract
Aging processes underlie common chronic cardiometabolic diseases such as heart failure and diabetes. Cross-organ/tissue interactions can accelerate aging through cellular senescence, tissue wasting, accelerated atherosclerosis, increased vascular stiffness, and reduction in blood flow, leading to organ remodeling and premature failure. This interorgan/tissue crosstalk can accelerate aging-related dysfunction through inflammation, senescence-associated secretome, and metabolic and mitochondrial changes resulting in increased oxidative stress, microvascular dysfunction, cellular reprogramming, and tissue fibrosis. This may also underscore the rising incidence and co-occurrence of multiorgan dysfunction in cardiometabolic aging in the population. Examples include interactions between the heart and the lungs, kidneys, liver, muscles, and brain, among others. However, this phenomenon can also present new translational opportunities for identifying diagnostic biomarkers to define early risks of multiorgan dysfunction, gain mechanistic insights, and help to design precision-directed therapeutic interventions. Indeed, this opens new opportunities for therapeutic development in targeting multiple organs simultaneously to disrupt the crosstalk-driven process of mutual disease acceleration. New therapeutic targets could provide synergistic benefits across multiple organ systems in the same at-risk patient. Ultimately, these approaches may together slow the aging process itself throughout the body. In the future, with patient-centered multisystem coordinated approaches, we can initiate a new paradigm of multiorgan early risk prediction and tailored intervention. With emerging tools including artificial intelligence-assisted risk profiling and novel preventive strategies (eg, RNA-based therapeutics), we may be able to mitigate multiorgan cardiometabolic dysfunction much earlier and, perhaps, even slow the aging process itself.
Collapse
Affiliation(s)
- Ilke Sen
- Department of Physiology, INSERM U955 (Institut national de la santé et de la recherche médicale, Unité 955), Assistance Publique-Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Fédération Hospitalo-Universitaire (FHU SENCODE), Ecole Universitaire de Recherche LIVE (EUR LIVE), Université Paris-Est Créteil, France (I. Sen, G.A.D.)
| | - Natasha A Trzaskalski
- University of Ottawa Heart Institute, Brain-Heart Interconnectome, University of Ottawa, Ontario, Canada (N.A.T., P.P.L.)
| | - Yung-Ting Hsiao
- Department of Cardiovascular Aging, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan (Y.-T.H., I. Shimizu)
| | - Peter P Liu
- University of Ottawa Heart Institute, Brain-Heart Interconnectome, University of Ottawa, Ontario, Canada (N.A.T., P.P.L.)
| | - Ippei Shimizu
- Department of Cardiovascular Aging, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan (Y.-T.H., I. Shimizu)
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (I. Shimizu)
| | - Geneviève A Derumeaux
- Department of Physiology, INSERM U955 (Institut national de la santé et de la recherche médicale, Unité 955), Assistance Publique-Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Fédération Hospitalo-Universitaire (FHU SENCODE), Ecole Universitaire de Recherche LIVE (EUR LIVE), Université Paris-Est Créteil, France (I. Sen, G.A.D.)
| |
Collapse
|
4
|
Stojanović SD, Thum T, Bauersachs J. Anti-senescence therapies: a new concept to address cardiovascular disease. Cardiovasc Res 2025; 121:730-747. [PMID: 40036821 PMCID: PMC12101330 DOI: 10.1093/cvr/cvaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Accumulation of senescent cells is an increasingly recognized factor in the development and progression of cardiovascular (CV) disease (CVD). Senescent cells of different types display a pro-inflammatory and matrix remodelling molecular programme, known as the 'senescence-associated secretory phenotype' (SASP), which has roots in (epi)genetic changes. Multiple therapeutic options (senolytics, anti-SASP senomorphics, and epigenetic reprogramming) that delete or ameliorate cellular senescence have recently emerged. Some drugs routinely used in the clinics also have anti-senescence effects. However, multiple challenges hinder the application of novel anti-senescence therapeutics in the clinical setting. Understanding the biology of cellular senescence, advantages and pitfalls of anti-senescence treatments, and patients who can profit from these interventions is necessary to introduce this novel therapeutic modality into the clinics. We provide a guide through the molecular machinery of senescent cells, systematize anti-senescence treatments, and propose a pathway towards senescence-adapted clinical trial design to aid future efforts.
Collapse
Affiliation(s)
- Stevan D Stojanović
- Department of Cardiology and Angiology, Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
- PRACTIS Clinician Scientist Program, Dean’s Office for Academic Career Development, Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
| |
Collapse
|
5
|
Wu J, Zhang L, Zhao Z, Liu Y, Li Z, Feng X, Zhang L, Yao X, Du J, Chen L, Zhou Z. Advancing T-cell immunotherapy for cellular senescence and disease: Mechanisms, challenges, and clinical prospects. Ageing Res Rev 2025; 109:102783. [PMID: 40412763 DOI: 10.1016/j.arr.2025.102783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/12/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Cellular senescence is a complex biological process with a dual role in tissue homeostasis and aging-related pathologies. Accumulation of senescent cells promotes chronic inflammation, tissue dysfunction, age-related diseases, and tumor suppression. Recent advancements in immunotherapy have positioned T cell-based approaches as precision tools for the targeted clearance of senescent cells, offering a novel avenue for anti-aging interventions. This review explores the molecular mechanisms underlying cellular senescence, focusing on its immunogenic features and interactions with T cells, including T-cell activation, antigen recognition, modulation of tumor microenvironment (TME), and immune evasion strategies. Innovations such as chimeric antigen receptor (CAR)-T cells, immune checkpoint therapies, and SASP-neutralizing approaches are highlighted as breakthrough strategies for enhancing senescent cell eradication. The integration of multi-omics and artificial intelligence is further catalyzing the development of personalized therapies to amplify immune surveillance and tissue rejuvenation. Clinically, T cell-based interventions hold promise for mitigating age-related pathologies and extending healthspan, yet challenges remain in optimizing target specificity, countering immunosuppressive niches, and overcoming immune senescence in aging populations. This review synthesizes current advances and challenges, highlighting the potential of T cell immunotherapy as a cornerstone of anti-aging medicine and emphasizing the need for interdisciplinary innovation to translate preclinical findings into transformative therapies for aging and age-related diseases.
Collapse
Affiliation(s)
- Jizhun Wu
- Department of Colorectal Surgery, The Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lu Zhang
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Zihan Zhao
- Department of Colorectal Surgery, The Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuping Liu
- Department of Colorectal Surgery, The Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhengxing Li
- Department of Colorectal Surgery, The Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaohang Feng
- Department of Colorectal Surgery, The Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhang
- Department of Colorectal Surgery, The Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiang Yao
- Department of Colorectal Surgery, The Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China.
| | - Zhuolong Zhou
- Department of Colorectal Surgery, The Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; Biomedical Sciences, College of Medicine and Veterinary Medicine, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Tu C, Qian C, Li S, Lin DY, Liu ZY, Ouyang WG, Kang XL, Chen F, Song S, Cai SQ. Targeting the chromatin remodeler BAZ2B mitigates hepatic senescence and MASH fibrosis. NATURE AGING 2025:10.1038/s43587-025-00862-w. [PMID: 40389730 DOI: 10.1038/s43587-025-00862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/01/2025] [Indexed: 05/21/2025]
Abstract
With increased age, the liver becomes more vulnerable to metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis. Deciphering the complex interplay between aging, the emergence of senescent cells in the liver and MASH fibrosis is critical for developing treatments. Here we report an epigenetic mechanism that links liver aging to MASH fibrosis. We find that upregulation of the chromatin remodeler BAZ2B in a subpopulation of hepatocytes (HEPs) is linked to MASH pathology in patients. Genetic ablation or hepatocyte-specific knockdown of Baz2b in mice attenuates HEP senescence and MASH fibrosis by preserving peroxisome proliferator-activated receptor α (PPARα)-mediated lipid metabolism, which was impaired in both naturally aged and MASH mouse livers. Mechanistically, Baz2b downregulates the expression of genes related to the PPARα signaling pathway by directly binding their promoter regions and reducing chromatin accessibility. Thus, our study unravels the BAZ2B-PPARα-lipid metabolism axis as a link from liver aging to MASH fibrosis, suggesting that BAZ2B is a potential therapeutic target for HEP senescence and fibrosis.
Collapse
Affiliation(s)
- Chuantao Tu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Cheng Qian
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shuyu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - De-Ying Lin
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Yang Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wan-Gan Ouyang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Lei Kang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Fangyuan Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shi-Qing Cai
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
7
|
Ryan P, Lee J. In vitro senescence and senolytic functional assays. Biomater Sci 2025. [PMID: 40375674 DOI: 10.1039/d4bm01684j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
A detailed understanding of aging biology and the development of anti-aging therapeutic strategies remain imperative yet inherently challenging due to the protracted nature of aging. Cellular senescence arises naturally through replicative exhaustion and is accelerated by clinical treatments or environmental stressors. The accumulation of senescent cells-defined by a loss of mitogenic potential, resistance to apoptosis, and acquisition of a pro-inflammatory secretory phenotype-has been implicated as a key driver of chronic disease, tissue degeneration, and organismal aging. Recent studies have highlighted the therapeutic promise of senolytic drugs, which selectively eliminate senescent cells. Compelling results from preclinical animal studies and ongoing clinical trials underscore this potential. However, the clinical translation of senolytics requires further pharmacological validation to refine selectivity, minimize toxicity, and determine optimal dosing. Equally important is the evaluation of senolytics' potential to restore tissue structure and function by reducing the senescent cell burden. In vitro tissue culture models offer a powerful platform to advance these efforts. This review summarizes the current landscape of in vitro systems used for inducing cellular senescence-referred to as "senescence assays"-and for screening senolytic drugs-referred to as "senolytic assays". We conclude by discussing key challenges to improving mechanistic insight, predictive accuracy, and clinical relevance in senolytic drug development, as well as emerging applications of senolytic therapies.
Collapse
Affiliation(s)
- Patrick Ryan
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
| | - Jungwoo Lee
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
8
|
Saleh T, Greenberg EF, Faber AC, Harada H, Gewirtz DA. A Critical Appraisal of the Utility of Targeting Therapy-Induced Senescence for Cancer Treatment. Cancer Res 2025; 85:1755-1768. [PMID: 40036150 DOI: 10.1158/0008-5472.can-24-2219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/03/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Cancer chemotherapy and radiotherapy are rarely successful in eliminating the entire tumor population, often leaving behind a subpopulation of senescent cells that can contribute to disease recurrence. These senescent tumor cells also secrete various chemokines and cytokines that may be tumor promoting and immunosuppressive. Recognition of the deleterious impact of therapy-induced senescence has led to the preclinical development of senolytic compounds that eliminate senescent cells, representing a potential strategy to enhance the efficacy of conventional and targeted anticancer therapy. However, it remains uncertain whether this strategy can or will be translated to the clinic. This review provides a summary of the recent preclinical literature supporting the use of senolytics as an adjunct for cancer treatment, discusses the limitations associated with their use in the current preclinical models, and provides perspectives on the clinical development of senolytics in cancer treatment regimens. Overall, preclinical studies support the potential of senolytics to enhance efficacy and prolong the antitumor activity of current standard-of-care cancer therapies that promote senescence. However, further work is needed to develop optimal senolytic agents with the appropriate combination of properties for clinical testing, specifically, activity in the context of therapy-induced senescence with acceptable tolerability.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | | | - Anthony C Faber
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia
- Department of Pediatrics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Hisashi Harada
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - David A Gewirtz
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
9
|
Liu G, Mao Q, Tian X, Zhang C, Zhang Y, He J, Kong Y. Association of biological aging and the prevalence of nonalcoholic fatty liver disease: a population-based study. BMC Gastroenterol 2025; 25:368. [PMID: 40360998 PMCID: PMC12070789 DOI: 10.1186/s12876-025-03955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
PURPOSE To examine the relationship between biological aging and the prevalence of NAFLD. METHOD We used the recommended sampling weights to account for the complex survey design of NHANES. The analysis, utilizing data from 2005 to 2016, aimed to investigate the impact of biological aging on NAFLD prevalence using various statistical methods. A restricted cubic spline (RCS) model was applied to explore the dose-response relationship, while logistic regression examined linear associations. The robustness of the association across different subgroups was also tested. RESULT The study included 2786 participants. We found significant associations between NAFLD and the following biological aging metrics: AL score (OR (95%CI) = 1.1932 (1.0597 ~ 1.3435), P = 0.0035), HD (OR (95%CI) = 1.2092 (1.0565 ~ 1.3839), P = 0.0058), and PA (OR (95%CI) = 1.7564 (1.1949 ~ 2.5818), P = 0.0042). All biological aging metrics were identified as independent predictors. PA was most associated with the prevalence of NAFLD. The associations persisted across most subgroups. CONCLUSION The prevalence of NAFLD was associated with biological aging, emphasizing the importance of addressing potential health risks related to aging.
Collapse
Affiliation(s)
- Gang Liu
- Department of Infection Control, International School of Medicine, The Fourth Affiliated Hospital of School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qingsong Mao
- Hepatobiliary Pancreatic Surgery, Banan Hospital Affiliated of Chongqing Medical University, Chongqing, China
| | - Xinling Tian
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chenwei Zhang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, The First Hospital of Shanxi Medical University, Taiyuan, China
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Yukai Zhang
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuzhe Kong
- Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
10
|
Elison W, Chang L, Xie Y, Miciano C, Yang Q, Mummey H, Lancione R, Corban S, Sakane S, Lucero J, Mamde S, Kim HY, Kim MJ, Melton R, Tucciarone L, Lie A, Loe T, Vashist T, Dang K, Elgamal R, Li D, Vu M, Farah EN, Seng C, Djulamsah J, Yang B, Buchanan J, Miller M, Tran M, Birrueta JO, Chi NC, Wang T, D’Antonio-Chronowska A, Wang A, Kisseleva T, Brenner D, Ren B, Gaulton KJ. Single cell multiomics reveals drivers of metabolic dysfunction-associated steatohepatitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.09.25327043. [PMID: 40385416 PMCID: PMC12083587 DOI: 10.1101/2025.05.09.25327043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has limited treatments, and cell type-specific regulatory networks driving MASLD represent therapeutic avenues. We assayed five transcriptomic and epigenomic modalities in 2.4M cells from 86 livers across MASLD stages. Integrating modalities increased annotation of the genome in liver cell types several-fold over previous catalogs. We identified cell type regulatory networks of MASLD progression, including distinct hepatocyte networks driving MASL and mild and severe fibrosis MASH. Our single cell atlas annotated 88% of MASH-associated loci, including a third affecting hepatocyte regulation which we linked to distal target genes. Finally, we characterized hepatocyte heterogeneity, including MASH-enriched populations with altered repression, localization, and signaling. Overall, our results provide high-resolution maps of liver cell types and revealed novel targets for anti-MASH therapy.
Collapse
Affiliation(s)
- Weston Elison
- Biomedical Sciences program, University of California San Deigo; La Jolla CA
| | - Lei Chang
- Department of Cellular and Molecular Medicine, University of California San Diego; La Jolla, CA
| | - Yang Xie
- Department of Cellular and Molecular Medicine, University of California San Diego; La Jolla, CA
| | - Charlene Miciano
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Deigo; La Jolla CA
| | - Qian Yang
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Deigo; La Jolla CA
| | - Hannah Mummey
- Bioinformatics and Systems Biology program, University of California San Diego; La Jolla CA
| | - Ryan Lancione
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Deigo; La Jolla CA
| | - Sierra Corban
- Department of Pediatrics, University of California San Diego; La Jolla CA
| | - Sadatsugu Sakane
- Department of Medicine, University of California San Diego; La Jolla CA USA
| | - Jacinta Lucero
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Deigo; La Jolla CA
| | - Sainath Mamde
- Department of Cellular and Molecular Medicine, University of California San Diego; La Jolla, CA
| | - Hyun Young Kim
- Department of Medicine, University of California San Diego; La Jolla CA USA
| | - Matthew J Kim
- Department of Pediatrics, University of California San Diego; La Jolla CA
| | - Rebecca Melton
- Biomedical Sciences program, University of California San Deigo; La Jolla CA
| | - Luca Tucciarone
- Department of Pediatrics, University of California San Diego; La Jolla CA
| | - Audrey Lie
- Department of Cellular and Molecular Medicine, University of California San Diego; La Jolla, CA
| | - Timothy Loe
- Department of Cellular and Molecular Medicine, University of California San Diego; La Jolla, CA
| | - Tanmayi Vashist
- Biomedical Sciences program, University of California San Deigo; La Jolla CA
| | - Kelsey Dang
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Deigo; La Jolla CA
| | - Ruth Elgamal
- Biomedical Sciences program, University of California San Deigo; La Jolla CA
| | - Daofeng Li
- Department of Genetics, Washington University in St. Louis; St. Louis MO USA
| | - Melissa Vu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, CA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Elie N Farah
- Department of Medicine, University of California San Diego; La Jolla CA USA
| | - Chad Seng
- Department of Genetics, Washington University in St. Louis; St. Louis MO USA
| | - Jovina Djulamsah
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Deigo; La Jolla CA
| | - Bing Yang
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Deigo; La Jolla CA
| | - Justin Buchanan
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Deigo; La Jolla CA
| | - Michael Miller
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Deigo; La Jolla CA
| | - Mai Tran
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Deigo; La Jolla CA
| | | | - Neil C Chi
- Department of Medicine, University of California San Diego; La Jolla CA USA
| | - Ting Wang
- Department of Genetics, Washington University in St. Louis; St. Louis MO USA
| | | | - Allen Wang
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Deigo; La Jolla CA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego; La Jolla CA USA
| | - David Brenner
- Department of Medicine, University of California San Diego; La Jolla CA USA
- Sanford Burnham Prebys Medical Discovery Institute; La Jolla CA USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego; La Jolla, CA
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Deigo; La Jolla CA
- Institute for Genomic Medicine, University of California; San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego; La Jolla, CA, USA
- New York Genome Center; New York, NY, USA
- Department of Genetics and Development, Systems Biology, Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center; New York, NY, USA
| | - Kyle J Gaulton
- Department of Pediatrics, University of California San Diego; La Jolla CA
- Institute for Genomic Medicine, University of California; San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Zhao Y, Wang Y, Chen L, Chen H, Tang Y, He Y, Yao P. Accelerated Biological Aging, Genetic Susceptibility, and Non-Alcoholic Fatty Liver Disease: Two Prospective Cohort Studies. Nutrients 2025; 17:1618. [PMID: 40431359 DOI: 10.3390/nu17101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Biological aging is considered a vital risk factor for age-related diseases, but its role in non-alcoholic fatty liver disease (NAFLD) remains uncertain. This study aimed to evaluate the associations of biological aging with NAFLD and the modified effect of genetic susceptibility. Methods: This study included 329,040 participants from the UK Biobank and 6783 participants from the Dongfeng-Tongji Cohort in China. We calculated the chronological age-adjusted biological age as a surrogate measure for biological aging. Accelerated aging was defined as biological age that exceeded chronological age. The association between biological aging and the risk of NAFLD was assessed in the two cohorts. Polygenic risk scores (PRSs) were used to determine genetic susceptibility for NAFLD in the UK Biobank and further analyze the interaction with biological aging. Results: In the UK Biobank, one year older in age-adjusted biological age increased prevalent NAFLD risk by 6%. The hazard ratios (HRs) and 95% confidence intervals (95% CIs) of NAFLD by accelerated aging were 1.35 (1.17, 1.56) and 1.69 (1.54, 1.85) compared to non-aging. In the Dongfeng-Tongji Cohort, biological aging was prospectively associated with NAFLD (accelerated aging: odds ratio (OR) (95% CI) = 1.18 (1.03, 1.36)). In the UK Biobank, high genetic risk was significantly associated with higher NAFLD risk compared to low genetic risk (HRs (95% CIs) = 1.65 (1.40, 1.95)). Analyses of joint effects showed that participants with high PRS and accelerated aging had the highest risk of NAFLD [2.66 (2.98, 3.57) and 2.06 (2.36, 3.96)]. However, biological aging was prospectively associated with NAFLD among participants regardless of genetic risk. There was no significant interaction between genetic risk and biological aging. Conclusions: Accelerated biological aging was associated with a higher risk of NAFLD independent of genetic susceptibility. Identifying populations with accelerated biological aging by the use of surrogate measures and timely intervention may be beneficial for the prevention of NAFLD.
Collapse
Affiliation(s)
- Ying Zhao
- School of Public Health, Kunming Medical University, Kunming 650500, China
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Chen
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Huimin Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
12
|
Pu N, Li S, Wu H, Zhao N, Wang K, Wei D, Wang J, Sha L, Zhao Y, Tao Y, Song Z. Beacon of Hope for Age-Related Retinopathy: Antioxidative Mechanisms and Pre-Clinical Trials of Quercetin Therapy. Antioxidants (Basel) 2025; 14:561. [PMID: 40427443 DOI: 10.3390/antiox14050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Age-related retinopathy is one of the leading causes of visual impairment and irreversible blindness, characterized by progressive neuronal and myelin loss. The damages caused by oxidation contributes to the hallmarks of aging and represents fundamental components in pathological pathways that are thought to drive multiple age-related retinopathies. Quercetin (Que), a natural polyphenol abundant in vegetables, herbs, and fruits, has been extensively studied for its long-term antioxidative effects mediated through diverse mechanisms. Additionally, Que and its derivatives exhibit a broad spectrum of pharmacological characteristics in the cellular responses of age-related retinopathy induced by oxidative stress, including anti-inflammatory, anti-neovascularization, regulatory, and neuroprotective effects in autophagy and apoptosis processes. This review mainly focuses on the antioxidative mechanisms and curative effects of Que treatment for various age-related retinopathies, such as retinitis pigmentosa, diabetic retinopathy, age-related macular degeneration, and glaucoma. Furthermore, we discuss emerging technologies and methods involving Que and its derivatives in the therapeutic strategies for age-related retinopathies, highlighting their promise for clinical translation.
Collapse
Affiliation(s)
- Ning Pu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Na Zhao
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Kexin Wang
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Jiale Wang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Lulu Sha
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Yameng Zhao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| |
Collapse
|
13
|
Jiang J, Gao Y, Wang J, Huang Y, Yang R, Zhang Y, Ma Y, Wen Y, Luo G, Zhang S, Cao Y, Yu M, Wang Q, Hu S, Wang K, Guo X, Gonzalez FJ, Liu Y, Liu H, Xie Q, Xie C. Hepatic sphingomyelin phosphodiesterase 3 promotes steatohepatitis by disrupting membrane sphingolipid metabolism. Cell Metab 2025; 37:1119-1136.e13. [PMID: 40015281 DOI: 10.1016/j.cmet.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/16/2024] [Accepted: 01/17/2025] [Indexed: 03/01/2025]
Abstract
Metabolic-dysfunction-associated steatohepatitis (MASH) remains a major health challenge. Herein, we identify sphingomyelin phosphodiesterase 3 (SMPD3) as a key driver of hepatic ceramide accumulation through increasing sphingomyelin hydrolysis at the cell membrane. Hepatocyte-specific Smpd3 gene disruption or pharmacological inhibition of SMPD3 alleviates MASH, whereas reintroducing SMPD3 reverses the resolution of MASH. Although healthy livers express low-level SMPD3, lipotoxicity-induced DNA damage suppresses sirtuin 1 (SIRT1), triggering an upregulation of SMPD3 during MASH. This disrupts membrane sphingomyelin-ceramide balance and promotes disease progression by enhancing caveolae-dependent lipid uptake and extracellular vesicle secretion from steatotic hepatocytes to exacerbate inflammation and fibrosis. Consequently, SMPD3 acts as a central hub integrating key MASH hallmarks. Notably, we discovered a bifunctional agent that simultaneously activates SIRT1 and inhibits SMPD3, which shows significant therapeutic potential in MASH treatment. These findings suggest that inhibition of hepatic SMPD3 restores membrane sphingolipid metabolism and holds great promise for developing novel MASH therapies.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yuqing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Lingang Laboratory, Shanghai 200444, China
| | - Yan Huang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Rong Yang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yongxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuandi Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingquan Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gongkai Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shurui Zhang
- Lingang Laboratory, Shanghai 200444, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yutang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Minjun Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinxue Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Shulei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kanglong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| |
Collapse
|
14
|
Chen C, Wang L. Aging and metabolic dysfunction-associated steatotic liver disease: a bidirectional relationship. Front Med 2025:10.1007/s11684-025-1133-7. [PMID: 40316793 DOI: 10.1007/s11684-025-1133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/09/2025] [Indexed: 05/04/2025]
Abstract
In recent years, aging and cellular senescence have triggered an increased interest in corresponding research fields. Evidence shows that the complex aging process is involved in the development of many chronic liver diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). In fact, aging has a tremendous effect on the liver, leading to a gradual decline in the metabolism, detoxification and immune functions of the liver, which in turn increases the risk of liver disease. These changes can be based on the aging of liver cells (hepatocytes, liver sinusoidal endothelial cells, hepatic stellate cells, and Kupffer cells). Similarly, patients with liver diseases exhibit increases in the aging phenotype and aging cells, often manifesting as faster physical functional decline, which is closely related to the promoting effect of liver disease on aging. This review summarizes the interplay between MASLD/MASH development and aging, aiming to reveal the complex relationships that exacerbate one another. Moreover, the corresponding schemes for delaying aging or treating diseases are discussed to provide a basis for the development of effective prevention and treatment strategies in the future.
Collapse
Affiliation(s)
- Chen Chen
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
15
|
Engelmann C. Peripheral fat mobilization and mitochondrial fat metabolism: Fueling the energy demands of liver regeneration. J Hepatol 2025; 82:942-944. [PMID: 40016070 DOI: 10.1016/j.jhep.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Affiliation(s)
- Cornelius Engelmann
- Charité - Universitaetsmedizin Berlin; Campus Virchow Klinikum; Department of Hepatology and Gastroenterology, Berlin, Germany; University College London, Institute of Liver and Digestive Health, Royal Free Campus, London, United Kingdom
| |
Collapse
|
16
|
Xu K, Hernández B, Arpawong TE, Camuzeaux S, Chekmeneva E, Crimmins EM, Elliott P, Fiorito G, Jiménez B, Kenny RA, McCrory C, McLoughlin S, Pinto R, Sands C, Vineis P, Lau CE, Robinson O. Assessing Metabolic Ageing via DNA Methylation Surrogate Markers: A Multicohort Study in Britain, Ireland and the USA. Aging Cell 2025; 24:e14484. [PMID: 39829316 PMCID: PMC12073893 DOI: 10.1111/acel.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025] Open
Abstract
Metabolomics and epigenomics have been used to develop 'ageing clocks' that assess biological age and identify 'accelerated ageing'. While metabolites are subject to short-term variation, DNA methylation (DNAm) may capture longer-term metabolic changes. We aimed to develop a hybrid DNAm-metabolic clock using DNAm as metabolite surrogates ('DNAm-metabolites') for age prediction. Within the UK Airwave cohort (n = 820), we developed DNAm metabolites by regressing 594 metabolites on DNAm and selected 177 DNAm metabolites and 193 metabolites to construct 'DNAm-metabolic' and 'metabolic' clocks. We evaluated clocks in their age prediction and association with noncommunicable disease risk factors. We additionally validated the DNAm-metabolic clock for the prediction of age and health outcomes in The Irish Longitudinal Study of Ageing (TILDA, n = 488) and the Health and Retirement Study (HRS, n = 4018). Around 70% of DNAm metabolites showed significant metabolite correlations (Pearson's r: > 0.30, p < 10-4) in the Airwave test set and overall stronger age associations than metabolites. The DNAm-metabolic clock was enriched for metabolic traits and was associated (p < 0.05) with male sex, heavy drinking, anxiety, depression and trauma. In TILDA and HRS, the DNAm-metabolic clock predicted age (r = 0.73 and 0.69), disability and gait speed (p < 0.05). In HRS, it additionally predicted time to death, diabetes, cardiovascular disease, frailty and grip strength. DNAm metabolite surrogates may facilitate metabolic studies using only DNAm data. Clocks built from DNAm metabolites provided a novel approach to assess metabolic ageing, potentially enabling early detection of metabolic-related diseases for personalised medicine.
Collapse
Affiliation(s)
- Kexin Xu
- MRC Centre for Environment and Health, Department of Epidemiology and BiostatisticsSchool of Public Health, Imperial College LondonLondonUK
- MRC WIMM Centre of Computational Biology, Radcliffe Department of Medicine, Medical Sciences DivisionUniversity of OxfordOxfordUK
| | - Belinda Hernández
- The Irish Longitudinal Study on Ageing (TILDA), Department of Medical GerontologySchool of Medicine, Trinity College DublinDublinIreland
| | - Thalida Em Arpawong
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Stephane Camuzeaux
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, Department of MetabolismDigestion and Reproduction, IRDB Building, Imperial College LondonLondonUK
| | - Elena Chekmeneva
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, Department of MetabolismDigestion and Reproduction, IRDB Building, Imperial College LondonLondonUK
| | - Eileen M. Crimmins
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Paul Elliott
- MRC Centre for Environment and Health, Department of Epidemiology and BiostatisticsSchool of Public Health, Imperial College LondonLondonUK
- NIHR Health Protection Research Unit in Chemical and Radiation Threats and HazardsLondonUK
- UK Dementia Research Institute at Imperial College LondonLondonUK
| | - Giovani Fiorito
- The Irish Longitudinal Study on Ageing (TILDA), Department of Medical GerontologySchool of Medicine, Trinity College DublinDublinIreland
- Clinical Bioinformatics UnitIRCCS Istituto Giannina GasliniGenoaItaly
| | - Beatriz Jiménez
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, Department of MetabolismDigestion and Reproduction, IRDB Building, Imperial College LondonLondonUK
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing (TILDA), Department of Medical GerontologySchool of Medicine, Trinity College DublinDublinIreland
| | - Cathal McCrory
- The Irish Longitudinal Study on Ageing (TILDA), Department of Medical GerontologySchool of Medicine, Trinity College DublinDublinIreland
| | - Sinead McLoughlin
- The Irish Longitudinal Study on Ageing (TILDA), Department of Medical GerontologySchool of Medicine, Trinity College DublinDublinIreland
| | - Rui Pinto
- MRC Centre for Environment and Health, Department of Epidemiology and BiostatisticsSchool of Public Health, Imperial College LondonLondonUK
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, Department of MetabolismDigestion and Reproduction, IRDB Building, Imperial College LondonLondonUK
- UK Dementia Research Institute at Imperial College LondonLondonUK
| | - Caroline Sands
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, Department of MetabolismDigestion and Reproduction, IRDB Building, Imperial College LondonLondonUK
| | - Paolo Vineis
- MRC Centre for Environment and Health, Department of Epidemiology and BiostatisticsSchool of Public Health, Imperial College LondonLondonUK
| | - Chung‐Ho E. Lau
- MRC Centre for Environment and Health, Department of Epidemiology and BiostatisticsSchool of Public Health, Imperial College LondonLondonUK
| | - Oliver Robinson
- MRC Centre for Environment and Health, Department of Epidemiology and BiostatisticsSchool of Public Health, Imperial College LondonLondonUK
- Ageing Epidemiology (AGE) Research UnitSchool of Public Health, Imperial College LondonLondonUK
| |
Collapse
|
17
|
Tak KY, Kim J, Park M, Kim W, Lee S, Park N, Kim MJ, Kang JB, Koh Y, Yang HY, Yum MK, Kim I, Yang YR, Jeong WI, Yang J, Lee C, Kim C, Park JE. Quasi-spatial single-cell transcriptome based on physical tissue properties defines early aging associated niche in liver. NATURE AGING 2025; 5:929-949. [PMID: 40325195 DOI: 10.1038/s43587-025-00857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/27/2025] [Indexed: 05/07/2025]
Abstract
Aging is associated with the accumulation of senescent cells, which are triggered by tissue injury response and often escape clearance by the immune system. The specific traits and diversity of these cells in aged tissues, along with their effects on the tissue microenvironment, remain largely unexplored. Despite the advances in single-cell and spatial omics technologies to understand complex tissue architecture, senescent cell populations are often neglected in general analysis pipelines due to their scarcity and the technical bias in current omics toolkits. Here we used the physical properties of tissue to enrich the age-associated fibrotic niche and subjected them to single-cell RNA sequencing and single-nuclei ATAC sequencing (ATAC-seq) analysis and named this method fibrotic niche enrichment sequencing (FiNi-seq). Fibrotic niche of the tissue was selectively enriched based on its resistance to enzymatic digestion, enabling quasi-spatial analysis. We profiled young and old livers of male mice using FiNi-seq, discovered Wif1- and Smoc1-producing mesenchymal cell populations showing senescent phenotypes, and investigated the early immune responses within this fibrotic niche. Finally, FiNi-ATAC-seq revealed age-associated epigenetic changes enriched in fibrotic niche cells. Thus, our quasi-spatial, single-cell profiling method allows the detailed analysis of initial aging microenvironments, providing potential therapeutic targets for aging prevention.
Collapse
Affiliation(s)
- Kwon Yong Tak
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Juyeon Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Myungsun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wooseok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seoyeong Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Narae Park
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Min Jeong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ju-Bin Kang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yongjun Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hae Young Yang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Min Kyu Yum
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Injune Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- BioMedical Research Center, KAIST, Daejeon, Republic of Korea
| | - Yong Ryoul Yang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheolju Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Chuna Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- BioMedical Research Center, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
18
|
Lavarti R, Alvarez-Diaz T, Marti K, Kar P, Raju RP. The context-dependent effect of cellular senescence: From embryogenesis and wound healing to aging. Ageing Res Rev 2025; 109:102760. [PMID: 40318767 DOI: 10.1016/j.arr.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Aging is characterized by a steady loss of physiological integrity, leading to impaired function and increased vulnerability to death. Cell senescence is a biological process that progresses with aging and is believed to be a key driver of age-related diseases. Senescence, a hallmark of aging, also demonstrates its beneficial physiological aspects as an anti-cancer, pro-regenerative, homeostatic, and developmental mechanism. A transitory response in which the senescent cells are quickly formed and cleared may promote tissue regeneration and organismal fitness. At the same time, senescence-related secretory phenotypes associated with extended senescence can have devastating effects. The fact that the interaction between senescent cells and their surroundings is very context-dependent may also help to explain this seemingly opposing pleiotropic function. Further, mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. This review summarizes the mechanism of cellular senescence and the significance of acute senescence. We concisely introduced the context-dependent role of senescent cells and SASP, aspects of mitochondrial biology altered in the senescent cells, and their impact on the senescent phenotype. Finally, we conclude with recent therapeutic advancements targeting cellular senescence, focusing on acute injuries and age-associated diseases. Collectively, these insights provide a future roadmap for the role of senescence in organismal fitness and life span extension.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tatiana Alvarez-Diaz
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kyarangelie Marti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Parmita Kar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
19
|
Choi PG, Kim HS, Park SH, Seo HD, Hahm JH, Huh YH, Jeon TI, Ahn J, Jung CH. Niclosamide extends health span and reduces frailty by ameliorating mTORC1 hyperactivation in aging models. J Adv Res 2025:S2090-1232(25)00271-1. [PMID: 40274225 DOI: 10.1016/j.jare.2025.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/03/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025] Open
Abstract
INTRODUCTION Frailty is characterized by an increased vulnerability to disease and physical debilitation due to a decline in the body's capacity to maintain homeostasis during aging. Therefore, effective management of frailty is crucial for promoting health. Although the role of niclosamide (NIC), an autophagy promoter, has been studied for the treatment of cancer, infectious diseases, and metabolic disorders, no research has focused on its effects on aging. OBJECTIVES In this study, we aimed to evaluate the effects of NIC on the aging process and assess its potential as a novel anti-aging therapeutic agent. METHODS We evaluated the effects of NIC on frailty, physical function, and metabolic function using Caenorhabditis elegans (C. elegans) and aging mouse models. NIC effectiveness was assessed using behavioral experiments, histological analysis, and molecular biological analysis. RESULTS We identified NIC as a compound that enhanced exercise capacity and metabolism, thereby alleviating frailty. Briefly, NIC extended the lifespan and improved frailty-related phenotypes in C. elegans, and effectively ameliorated frailty in aging mice, particularly in muscle aging. Additionally, NIC treatment suppressed the muscle atrophy-related ubiquitin-proteasome system induced by mammalian target of rapamycin complex 1 (mTORC1) hyperactivation, while enhancing autophagic flux, another aspect of proteostasis. Furthermore, mRNA-seq analysis revealed that NIC improved metabolism-related functions. CONCLUSION Collectively, these findings suggest that NIC is a promising novel candidate for the prevention of frailty.
Collapse
Affiliation(s)
- Pyeong Geun Choi
- Aging Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Republic of Korea
| | - Hee Soo Kim
- Aging Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Republic of Korea
| | - So-Hyun Park
- Aging Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Hyo-Deok Seo
- Aging Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Jeong-Hoon Hahm
- Aging Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Tail-Il Jeon
- Department of Animal Science, Chonnam National University, Gwangju, Republic of Korea
| | - Jiyun Ahn
- Aging Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Republic of Korea
| | - Chang Hwa Jung
- Aging Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Republic of Korea.
| |
Collapse
|
20
|
Ji XM, Dong XX, Li JP, Tai GJ, Qiu S, Wei W, Silumbwe CW, Damdinjav D, Otieno JN, Li XX, Xu M. Fisetin Clears Senescent Cells Through the Pi3k-Akt-Bcl-2/Bcl-xl Pathway to Alleviate Diabetic Aortic Aging. Phytother Res 2025. [PMID: 40259678 DOI: 10.1002/ptr.8507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 04/23/2025]
Abstract
Vascular aging is a major contributor to age-related cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2DM) induced early arterial aging and excessive senescent cells (SCs) burden in vessels. Inhibiting cellular senescence or eliminating SCs could effectively improve aging-related CVDs. Fisetin, a flavonoid extracted from cotinus coggygria scop, has shown potential in alleviating aging by clearing SCs. This study investigated the unexplored mechanisms and efficacy of fisetin in alleviating T2DM-related aortic aging. The T2DM mouse model was induced using a high-fat diet and low-dose streptozotocin injection. Chronic fisetin treatment's protective effects against aortic aging were assessed via senescence-associated beta-galactosidase (SA-β-Gal) staining, histopathology, and vasomotor function. RNA-sequencing and western blotting identified relevant signaling pathways and protein expression. Fisetin's effects on SCs and senescence-associated secretory phenotype (SASP) factors were evaluated through cell viability, apoptosis, and co-culture assays. Docking simulations suggested fisetin as a potential Phosphoinositide 3-kinase (Pi3k) inhibitor. In vivo, chronic fisetin treatment reduced aortic SCs burden, alleviating T2DM-related and natural aortic aging. In vitro, fisetin selectively induced apoptosis of senescent endothelial cells via regulating the Pi3k-Protein Kinase B (Akt)-B-cell lymphoma (Bcl)-2/Bcl-xl pathway and suppressed SASP and its detrimental effects. Furthermore, fisetin combined with metformin therapy showed superior anti-aging effects on T2DM-related aortic aging compared to metformin monotherapy. In conclusion, chronic fisetin treatment alleviates T2DM-related aortic aging via clearing the SCs burden and abrogating the SASP factors. Fisetin combined with metformin therapy might be a potential therapeutic strategy for T2DM-related CVDs.
Collapse
Affiliation(s)
- Xiao-Man Ji
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin-Xin Dong
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jia-Peng Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guang-Jie Tai
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shu Qiu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Wei
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ceaser Wankumbu Silumbwe
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Davaadagva Damdinjav
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Joseph Nicolao Otieno
- Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciencea, Dar es Salaam, Tanzania
| | - Xiao-Xue Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
Guan Y, Deng S, Zou X, Wei W, Li Z, Zhong J, Zhu Y, Zhang D, Ju Y, Sun QY, Zhang H. Nano-encapsulated senolytic cocktail attenuates germ cell senescence in female mice. Cell Mol Life Sci 2025; 82:164. [PMID: 40249520 PMCID: PMC12008094 DOI: 10.1007/s00018-025-05697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/09/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
Low-quality oocytes directly affect fertilization and embryonic development, contributing to infertility in women, while germ cell senescence leads to reduced germ cell numbers and decreased egg quality. Dasatinib and quercetin (D and Q), as senolytic drugs, have been extensively explored in different age-related diseases. However, their effects on in vitro cultured senescent oocytes and the molecular mechanisms underpinning ovarian aging remain elusive. Here, we report that a nano-encapsulated senolytic D + Q cocktail efficiently improves the quality of post-ovulatory aging oocyte in vitro and follicle quantity in ovaries in a cyclophosphamide (Cy)-induced premature ovarian failure (POF) mouse model. Cocktail supplementation to cultured oocytes potently reduces reactive oxygen species (ROS) levels, maintains spindle integrity, decreases fragmented oocyte frequencies, rescues mislocalized cortical granules (CGs) and mitochondrial membrane potential (MMP), and alleviates DNA damage and apoptosis. Importantly, the cocktail effectively ameliorates fertility deficits in the model. Transcriptome analysis shows cocktail administration to fertility-deficient mice not only up-regulates developmental gene expression but also reduces senescence-associated secretory phenotype (SASP) accumulation. Therefore, our nano-encapsulated D + Q cocktail is a promising reagent for assisted reproductive technology and improving reproductive outcomes in POF.
Collapse
Affiliation(s)
- Yiting Guan
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Shuyue Deng
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xiaopeng Zou
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Wenlu Wei
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Zechen Li
- Precision Clinical Laboratory, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Jiajing Zhong
- Department of Reproductive Health and Infertility, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Yanmei Zhu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Donghui Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 518025, People's Republic of China
| | - Hongyong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China.
| |
Collapse
|
22
|
Zhu F, Lin BR, Lin SH, Yu CH, Yang YM. Hepatic-specific vitamin D receptor downregulation alleviates aging-related metabolic dysfunction-associated steatotic liver disease. World J Gastroenterol 2025; 31:104117. [PMID: 40248374 PMCID: PMC12001193 DOI: 10.3748/wjg.v31.i14.104117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/21/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined by the abnormal lipid deposition in hepatocytes. The prevalence of MASLD is significantly increased in the elderly population, suggesting that aging may be related to the occurrence of MASLD. Emerging evidences suggest that vitamin D receptor (VDR) may be implicated in the progression of MASLD. Therefore, additional researches are warranted to elucidate whether VDR plays a role in aging-related MASLD. AIM To investigate the relationship between aging and MASLD and explore the role and related mechanisms of VDR in aging-related MASLD. METHODS Cellular senescence models were established, and the senescence phenotype of telomerase RNA component knockout mice was validated. These mice were then used as a senescence model for subsequent studies. Changes in VDR expression in the livers of aging mice were examined. VDR knockdown models, including cell knockdown models and hepatic-specific VDR knockout mice, were constructed, and MASLD was established in these models. Additionally, vitamin D (VD)-supplemented models, including senescent liver cell lines and senescent mice, were constructed. RESULTS The steatosis in senescent liver cells was more severe than in normal cells (P < 0.05). Moreover, hepatic steatosis was significantly more pronounced in senescence model mice compared to control group when the MASLD model was successfully induced (P < 0.05). Therefore, we concluded that aging aggravated hepatic steatosis. The hepatic expression of VDR increased after aging. VDR knockdown in senescent liver cells and senescent mice alleviated hepatic steatosis (P < 0.05). When senescent liver cells were stimulated with VD, cellular steatosis was aggravated (P < 0.05). However, VD supplementation had no effect on aging mice. CONCLUSION Aging can lead to increased hepatic steatosis, and the hepatic-specific knockdown of VDR alleviated aging-related MASLD. VDR could serve as a potential molecular target for aging-related MASLD.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Bing-Ru Lin
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Shi-Hua Lin
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Chao-Hui Yu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yun-Mei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
23
|
Nunes ADC, Pitcher LE, Exner HA, Grassi DJ, Burns B, Sanchez MBH, Tetta C, Camussi G, Robbins PD. Attenuation of Cellular Senescence and Improvement of Osteogenic Differentiation Capacity of Human Liver Stem Cells Using Specific Senomorphic and Senolytic Agents. Stem Cell Rev Rep 2025:10.1007/s12015-025-10876-x. [PMID: 40220121 DOI: 10.1007/s12015-025-10876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Expansion of adult stem cells in culture increases the percent of senescent cells, reduces their differentiation capacity and limits their clinical use. Here, we investigated whether treatment with certain senotherapeutic drugs would reduce the accumulation of senescent cells during expansion of human liver stem cells (HLSCs) while maintaining their differentiation capacity. Our results demonstrate that chronic treatment with the senomorphic XJB-5-131 or the senolytics cocktail D + Q reduced the number of senescent cells and significantly reduced the expression of senescence-associated genes and several inflammatory SASP factors in later passage HLSCs. Additionally, treatment with XJB-5-131 and D + Q improved the capacity of HLSCs to undergo osteogenic differentiation following extensive in vitro expansion. Overall, our data demonstrate that treatment with XJB-5-13 or D + Q results in a reduction in the percentage of replication-induced senescent HLSCs and likely other types of adult stem cells and improve the potential therapeutic use of later passage human stem cells.
Collapse
Affiliation(s)
- Allancer D C Nunes
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Louise E Pitcher
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Henry A Exner
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Brittan Burns
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Centre, University of Torino, Torino, Italy
- 2i3T Societ Per la Gestione Dell'incubatore di Imprese e per il Trasferimento Tecnologico Scarl, University of Torino, Torino, Italy
| | | | - Giovanni Camussi
- Molecular Biotechnology Centre, University of Torino, Torino, Italy
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Paul D Robbins
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
24
|
Yilmaz Y. Green Tea Mitigates the Hallmarks of Aging and Age-Related Multisystem Deterioration. Aging Dis 2025:AD.2025.0398. [PMID: 40249928 DOI: 10.14336/ad.2025.0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
Aging is characterized by progressive multisystem deterioration driven by molecular and cellular mechanisms encapsulated in the twelve hallmarks of aging. Green tea (GT), derived from Camellia sinensis, has garnered significant scientific interest due to its rich polyphenolic composition, particularly epigallocatechin-3-gallate, and its pleiotropic health benefits. In this narrative review, we explored the multifaceted mechanisms through which GT may mitigate the aging hallmarks. Evidence from in vitro, animal, and human studies has shown that GT polyphenols can enhance DNA repair pathways, preserve telomere length, modulate epigenetic aging markers, improve proteostasis and autophagic flux, regulate nutrient-sensing networks, and rejuvenate mitochondrial function. Additionally, GT exhibits anti-inflammatory properties and may restore a physiological gut microbiota composition. Beyond molecular and cellular effects, GT consumption in humans has been associated with improved cognitive function, cardiovascular health, muscle preservation, and metabolic regulation in aging populations. Collectively, these findings highlight GT's potential as a naturally occurring geroscience intervention capable of addressing the interconnected network of aging processes more comprehensively than single-target pharmaceuticals. Future research should focus on optimizing dosing regimens, exploring synergies with other anti-aging strategies, and investigating personalized responses to GT interventions.
Collapse
|
25
|
Lv Y, Sun M, He Y, Zhang X, Min Y, Liu L, Yu W. Effects of induced molting on lipid accumulation in liver of aged laying hens. Poult Sci 2025; 104:104941. [PMID: 40020412 PMCID: PMC11910710 DOI: 10.1016/j.psj.2025.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025] Open
Abstract
As the age of laying increases, the metabolic capacity of the liver decreases, leading to excessive lipid accumulation, which seriously affects the laying performance of laying hens. Induced molting (IM) can rejuvenate the reproductive system of older laying hens, allowing them to enter a new laying cycle. However, it remains unclear whether induced molting can enhance lipid accumulation in the liver of aged laying hens and what the underlying mechanism might be. In this study, fasting-induced molting was performed on 70-week-old Hy-line brown laying hens, and the resulting metabolic changes were analyzed using non-targeted metabolomics. Serum lipid levels, liver oxidative stress, and inflammation were measured using kits, while autophagy and lipid metabolism-related factors were assessed through immunofluorescence and western blotting. The results showed that IM could promote hepatic lipid deposition in aged laying hens, reduce hepatic steatosis and injury, lower the blood lipid level, improve hepatic antioxidant capacity and increase egg production rate. During the fasting period, the hepatic autophagic system was activated in laying hens and the level of hepatic autophagy increased. Additionally, AMPK phosphorylation levels increased, while the expression of fatty acid synthesis genes SREBP-1C, ACC, and FASN decreased (P < 0.01). The expression of PPARα, PGC 1α and CPT1A, which are associated with fatty acid oxidation, was upregulated (P < 0.01). In conclusion, IM enhanced lipid metabolism, increased liver autophagy, and improved liver function in aged laying hens.
Collapse
Affiliation(s)
- Yibo Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengqing Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yefei He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaohan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yahong Min
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Institute of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Lin Liu
- Guangdong Haida Group Co., Ltd. Research Institute, Guangzhou 510535, PR China
| | - Wenhui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Institute of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
26
|
Zhu Y, Wei D, Karin M, Gu L. The FBP1-TP53-NRF2 metabolic switch in metabolic dysfunction-associated steatohepatitis-hepatocellular carcinoma progression and senescence reversal. Clin Transl Med 2025; 15:e70293. [PMID: 40159462 PMCID: PMC11955276 DOI: 10.1002/ctm2.70293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025] Open
Affiliation(s)
- Yahui Zhu
- School of MedicineChongqing UniversityChongqingChina
| | - Donglin Wei
- School of MedicineChongqing UniversityChongqingChina
| | - Michael Karin
- Departments of Pharmacology and PathologyLaboratory of Gene Regulation and Signal TransductionSchool of Medicine, University of California San Diego (UCSD)La JollaCaliforniaUSA
| | - Li Gu
- Department of Laboratory MedicineWest China Hospital, Sichuan UniversityChengduChina
- Clinical Laboratory Medicine Research CenterWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
27
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2025; 26:297-313. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
28
|
Wang Z, Zhu H, Xiong W. Metabolism and metabolomics in senescence, aging, and age-related diseases: a multiscale perspective. Front Med 2025; 19:200-225. [PMID: 39821730 DOI: 10.1007/s11684-024-1116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025]
Abstract
The pursuit of healthy aging has long rendered aging and senescence captivating. Age-related ailments, such as cardiovascular diseases, diabetes, and neurodegenerative disorders, pose significant threats to individuals. Recent studies have shed light on the intricate mechanisms encompassing genetics, epigenetics, transcriptomics, and metabolomics in the processes of senescence and aging, as well as the establishment of age-related pathologies. Amidst these underlying mechanisms governing aging and related pathology metabolism assumes a pivotal role that holds promise for intervention and therapeutics. The advancements in metabolomics techniques and analysis methods have significantly propelled the study of senescence and aging, particularly with the aid of multiscale metabolomics which has facilitated the discovery of metabolic markers and therapeutic potentials. This review provides an overview of senescence and aging, emphasizing the crucial role metabolism plays in the aging process as well as age-related diseases.
Collapse
Affiliation(s)
- Ziyi Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hongying Zhu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- CAS Key Laboratory of Brain Function and Disease, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, 230026, China.
| | - Wei Xiong
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- CAS Key Laboratory of Brain Function and Disease, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, 230026, China.
| |
Collapse
|
29
|
Chandrasegaran S, Sluka JP, Shanley D. Modelling the spatiotemporal dynamics of senescent cells in wound healing, chronic wounds, and fibrosis. PLoS Comput Biol 2025; 21:e1012298. [PMID: 40233102 PMCID: PMC12052216 DOI: 10.1371/journal.pcbi.1012298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 05/05/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
Cellular senescence is known to drive age-related pathology through the senescence-associated secretory phenotype (SASP). However, it also plays important physiological roles such as cancer suppression, embryogenesis and wound healing. Wound healing is a tightly regulated process which when disrupted results in conditions such as fibrosis and chronic wounds. Senescent cells appear during the proliferation phase of the healing process where the SASP is involved in maintaining tissue homeostasis after damage. Interestingly, SASP composition and functionality was recently found to be temporally regulated, with distinct SASP profiles involved: a fibrogenic, followed by a fibrolytic SASP, which could have important implications for the role of senescent cells in wound healing. Given the number of factors at play a full understanding requires addressing the multiple levels of complexity, pertaining to the various cell behaviours, individually followed by investigating the interactions and influence each of these elements have on each other and the system as a whole. Here, a systems biology approach was adopted whereby a multi-scale model of wound healing that includes the dynamics of senescent cell behaviour and corresponding SASP composition within the wound microenvironment was developed. The model was built using the software CompuCell3D, which is based on a Cellular Potts modelling framework. We used an existing body of data on healthy wound healing to calibrate the model and validation was done on known disease conditions. The model clearly shows how differences in the spatiotemporal dynamics of different senescent cell phenotypes lead to several distinct repair outcomes. These differences in senescent cell dynamics can be attributed to variable SASP composition, duration of senescence and temporal induction of senescence relative to the healing stage. The range of outcomes demonstrated strongly highlight the dynamic and heterogenous role of senescent cells in wound healing, fibrosis and chronic wounds, and their fine-tuned control. Further specific data to increase model confidence could be used to explore senolytic treatments in wound disorders.
Collapse
Affiliation(s)
| | - James P. Sluka
- Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Daryl Shanley
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
30
|
Dworak H, Rozmaric T, Grillari J, Ogrodnik M. Cells of all trades - on the importance of spatial positioning of senescent cells in development, healing and aging. FEBS Lett 2025:10.1002/1873-3468.70037. [PMID: 40156464 PMCID: PMC7617592 DOI: 10.1002/1873-3468.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Biological processes are often spatially regulated, ensuring molecular and cellular events occur in their most strategically advantageous locations. Cellular senescence, marked by cell cycle arrest and hypersecretion, is recognized as an important part of physiological processes like development and healing, but it also contributes to aging and disease. However, the spatial distribution of senescent cells and its physiological and pathological impact remain unclear. Here we compile evidence on senescent cell localization in development, healing, and aging. We emphasize the significance of their spatial patterns and speculate on the effects of disrupted spatial positioning of senescence in relation to pathologies. To summarize the specific spatial functions of senescent cells, we propose to refer to them as 'barrier' and 'conductor' functions. The 'barrier' function of senescent cells, due to their altered morphology and apoptosis resistance, separates tissues and builds a border between two environments. The conductor function, with the secretion of signaling factors, influences the surrounding area and stimulates migration, differentiation, or proliferation, among other processes. Overall, this Review explores the spatial patterning of cellular senescence in biological processes, highlighting its dual roles as 'barrier' and 'conductor' functions, and examines the implications of senescent cell distribution in development, healing, aging, and disease.
Collapse
Affiliation(s)
- Helene Dworak
- Ludwig Boltzmann Institute for Traumatology. The Research Center in cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Tomaz Rozmaric
- Ludwig Boltzmann Institute for Traumatology. The Research Center in cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology. The Research Center in cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Muthgasse 18, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Institute for Traumatology. The Research Center in cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
31
|
Du K, Umbaugh DS, Wang L, Jun JH, Dutta RK, Oh SH, Ren N, Zhang Q, Ko DC, Ferreira A, Hill J, Gao G, Pullen SS, Jain V, Gregory S, Abdelmalek MF, Diehl AM. Targeting senescent hepatocytes for treatment of metabolic dysfunction-associated steatotic liver disease and multi-organ dysfunction. Nat Commun 2025; 16:3038. [PMID: 40155379 PMCID: PMC11953480 DOI: 10.1038/s41467-025-57616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/23/2025] [Indexed: 04/01/2025] Open
Abstract
Senescent hepatocytes accumulate in metabolic dysfunction-associated steatotic liver disease (MASLD) and are linked to worse clinical outcomes. However, their heterogeneity and lack of specific markers have made them difficult to target therapeutically. Here, we define a senescent hepatocyte gene signature (SHGS) using in vitro and in vivo models and show that it tracks with MASLD progression/regression across mouse models and large human cohorts. Single-nucleus RNA-sequencing and functional studies reveal that SHGS+ hepatocytes originate from p21+ cells, lose key liver functions and release factors that drive disease progression. One such factor, GDF15, increases in circulation alongside SHGS+ burden and disease progression. Through chemical screening, we identify senolytics that selectively eliminate SHGS+ hepatocytes and improve MASLD in male mice. Notably, SHGS enrichment also correlates with dysfunction in other organs. These findings establish SHGS+ hepatocytes as key drivers of MASLD and highlight a potential therapeutic strategy for targeting senescent cells in liver disease and beyond.
Collapse
Affiliation(s)
- Kuo Du
- Department of Medicine, Duke University, Durham, NC, USA.
| | | | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ji Hye Jun
- Department of Medicine, Duke University, Durham, NC, USA
| | - Rajesh K Dutta
- Department of Medicine, Duke University, Durham, NC, USA
| | - Seh Hoon Oh
- Department of Medicine, Duke University, Durham, NC, USA
| | - Niansheng Ren
- Department of Medicine, Duke University, Durham, NC, USA
| | - Qiaojuan Zhang
- Department of Neurology, Duke University, Durham, NC, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ana Ferreira
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Jon Hill
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Guannan Gao
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Steven S Pullen
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Simon Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
32
|
Rodrigo-Torres D, Kilpatrick AM, Ferreira-Gonzalez S, Aird RE, Atkinson SR, Gadd VL, Man TY, Tyson LD, Dhondalay GKR, Vergis N, Arteel GE, Thursz MR, Martinez-Gili L, Forbes SJ. Longitudinal paired liver biopsies and transcriptome profiling in alcohol-associated hepatitis reveal dynamic changes in cellular senescence. Gut 2025:gutjnl-2024-334094. [PMID: 40122595 DOI: 10.1136/gutjnl-2024-334094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND AND AIMS Alcohol-associated hepatitis (AH) is an acute form of alcohol-related liver disease (ALD) with high mortality rate. AH is histologically characterised by cellular processes, including steatosis, inflammation and cell death. Apoptosis is the most studied form of cell death in AH; however, the role of cellular senescence, another response to cellular injury, in AH is unknown. Here, we explore the mechanisms of ALD pathophysiology and describe the role of senescence in AH. METHODS We performed RNA sequencing and bioinformatics analysis of 0- and 28-day transjugular liver biopsies (n=65) from patients with AH participating in the IL-1 Signal Inhibition In Alcoholic Hepatitis (ISAIAH) clinical trial. Additional bioinformatics reanalysis of existing AH transcriptomic datasets was conducted to confirm our findings. We also performed multiomic analysis of an in vitro model of AH with ethanol-treated hepatocytes overexpressing ethanol-metabolising enzymes. RESULTS Our longitudinal analysis revealed that senescence and inflammation were reduced at transcriptomic level following AH resolution; the expression of hepatocyte markers was increased. We identified two senescence-associated protein complexes, cytochrome c oxidase and the proteasome, which may act as senescence-induction mechanisms. We confirmed that senescence markers and pathways were increasingly expressed in hepatocytes as ALD progressed towards AH; this was partially reversed following AH resolution. Our in vitro model revealed that ethanol directly induces senescence and was dependent on ethanol metabolism. CONCLUSIONS Our results suggest a possible pathogenic role for senescence in AH and indicate cellular senescence as a potential therapeutic target in early ALD to limit AH severity.
Collapse
Affiliation(s)
- Daniel Rodrigo-Torres
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Division of Digestive Diseases, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Sofia Ferreira-Gonzalez
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Rhona E Aird
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Stephen Rahul Atkinson
- Division of Digestive Diseases, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Victoria L Gadd
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Tak Yung Man
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Luke D Tyson
- Division of Digestive Diseases, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Gopal Krishna R Dhondalay
- Division of Digestive Diseases, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Nikhil Vergis
- Division of Digestive Diseases, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Gavin E Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark R Thursz
- Division of Digestive Diseases, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Laura Martinez-Gili
- Division of Digestive Diseases, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
33
|
Spiegel M. Fisetin as a Blueprint for Senotherapeutic Agents - Elucidating Geroprotective and Senolytic Properties with Molecular Modeling. Chemistry 2025; 31:e202403755. [PMID: 39688310 PMCID: PMC11914956 DOI: 10.1002/chem.202403755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
Targeting senescent cells and the factors that accelerate this pathological state has recently emerged as a novel field in medicinal chemistry. As attention shifts to synthetic substances, studies on natural agents are often overlooked. In this paper, we present a detailed computational modeling study that encompasses quantum mechanics and molecular dynamics to elucidate the senotherapeutic activity of fisetin, a natural flavonoid. The mitochondrial environment, serving as a proxy for senescence, received special attention. Throughout the study, fisetin's outstanding geroprotective properties-exhibiting significant potential against ⋅OOH, O2⋅-, and ⋅OH radicals, surpassing those of Trolox or ascorbate-were identified. Furthermore, fisetin demonstrated a high capacity to restore oxidatively damaged biomolecules to their pristine forms, thereby renewing the functionality of proteins and amino acids. The senolytic properties were examined in terms of Bcl-2 and Bcl-xL inhibition. The results indicated that fisetin not only binds effectively to these proteins but also, with appropriate modifications, may exhibit specific selectivity toward either target. This study highlights fisetin's remarkable activity in these areas and provides a molecular description of the underlying processes, paving the way for future research.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Organic Chemistry and Pharmaceutical TechnologyFaculty of PharmacyWroclaw Medical UniversityBorowska 211A50–556WroclawPoland
| |
Collapse
|
34
|
Li Q, Xiao N, Zhang H, Liang G, Lin Y, Qian Z, Yang X, Yang J, Fu Y, Zhang C, Liu A. Systemic aging and aging-related diseases. FASEB J 2025; 39:e70430. [PMID: 40022602 DOI: 10.1096/fj.202402479rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Aging is a biological process along with systemic and multiple organ dysfunction. It is more and more recognized that aging is a systemic disease instead of a single-organ functional disorder. Systemic aging plays a profound role in multiple diseases including neurodegenerative diseases, cardiovascular diseases, and malignant diseases. Aged organs communicate with other organs and accelerate aging. Skeletal muscle, heart, bone marrow, skin, and liver communicate with each other through organ-organ crosstalk. The crosstalk can be mediated by metabolites including lipids, glucose, short-chain fatty acids (SCFA), inflammatory cytokines, and exosomes. Metabolic disorders including hyperglycemia, hyperinsulinemia, and hypercholesterolemia caused by chronic diseases accelerate hallmarks of aging. Systemic aging leads to the destruction of systemic hemostasis, causes the release of inflammatory cytokines, senescence-associated secretory phenotype (SASP), and the imbalance of microbiota composition. Released inflammatory factors further aggregate senescence, which promotes the aging of multiple solid organs. Targeting senescence or delaying aging is emerging as a critical health strategy for solving age-related diseases, especially in the old population. In the current review, we will delineate the mechanisms of organ crosstalk in systemic aging and age-related diseases to provide therapeutic targets for delaying aging.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Nanyin Xiao
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Heng Zhang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zonghao Qian
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yanguang Fu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
35
|
Chen R, Petrazzini BO, Duffy Á, Rocheleau G, Jordan D, Bansal M, Do R. Trans-ancestral rare variant association study with machine learning-based phenotyping for metabolic dysfunction-associated steatotic liver disease. Genome Biol 2025; 26:50. [PMID: 40065360 PMCID: PMC11892324 DOI: 10.1186/s13059-025-03518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified common variants associated with metabolic dysfunction-associated steatotic liver disease (MASLD). However, rare coding variant studies have been limited by phenotyping challenges and small sample sizes. We test associations of rare and ultra-rare coding variants with proton density fat fraction (PDFF) and MASLD case-control status in 736,010 participants of diverse ancestries from the UK Biobank, All of Us, and BioMe and performed a trans-ancestral meta-analysis. We then developed models to accurately predict PDFF and MASLD status in the UK Biobank and tested associations with these predicted phenotypes to increase statistical power. RESULTS The trans-ancestral meta-analysis with PDFF and MASLD case-control status identifies two single variants and two gene-level associations in APOB, CDH5, MYCBP2, and XAB2. Association testing with predicted phenotypes, which replicates more known genetic variants from GWAS than true phenotypes, identifies 16 single variants and 11 gene-level associations implicating 23 additional genes. Two variants were polymorphic only among African ancestry participants and several associations showed significant heterogeneity in ancestry and sex-stratified analyses. In total, we identified 27 genes, of which 3 are monogenic causes of steatosis (APOB, G6PC1, PPARG), 4 were previously associated with MASLD (APOB, APOC3, INSR, PPARG), and 23 had supporting clinical, experimental, and/or genetic evidence. CONCLUSIONS Our results suggest that trans-ancestral association analyses can identify ancestry-specific rare and ultra-rare coding variants in MASLD pathogenesis. Furthermore, we demonstrate the utility of machine learning in genetic investigations of difficult-to-phenotype diseases in trans-ancestral biobanks.
Collapse
Affiliation(s)
- Robert Chen
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ben Omega Petrazzini
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Áine Duffy
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ghislain Rocheleau
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Jordan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meena Bansal
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
36
|
Xie Z, Lin M, Xing B, Wang H, Zhang H, Cai Z, Mei X, Zhu ZJ. Citrulline regulates macrophage metabolism and inflammation to counter aging in mice. SCIENCE ADVANCES 2025; 11:eads4957. [PMID: 40053596 PMCID: PMC11887811 DOI: 10.1126/sciadv.ads4957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
Metabolic dysregulation and altered metabolite concentrations are widely recognized as key characteristics of aging. Comprehensive exploration of endogenous metabolites that drive aging remains insufficient. Here, we conducted an untargeted metabolomics analysis of aging mice, revealing citrulline as a consistently down-regulated metabolite associated with aging. Systematic investigations demonstrated that citrulline exhibited antiaging effects by reducing cellular senescence, protecting against DNA damage, preventing cell cycle arrest, modulating macrophage metabolism, and mitigating inflammaging. Long-term citrulline supplementation in aged mice yielded beneficial effects and ameliorated age-associated phenotypes. We further elucidated that citrulline acts as an endogenous metabolite antagonist to inflammation, suppressing proinflammatory responses in macrophages. Mechanistically, citrulline served as a potential inhibitor of mammalian target of rapamycin (mTOR) activation in macrophage and regulated the mTOR-hypoxia-inducible factor 1α-glycolysis signaling pathway to counter inflammation and aging. These findings underscore the significance of citrulline deficiency as a driver of aging, highlighting citrulline supplementation as a promising therapeutic intervention to counteract aging-related changes.
Collapse
Affiliation(s)
- Zhangdan Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Moubin Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Beizi Xing
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongmiao Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haosong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zimu Cai
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, P. R. China
| | - Xinyu Mei
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Shanghai Key Laboratory of Aging Studies, Shanghai 201210, P. R. China
| |
Collapse
|
37
|
Miller KN, Li B, Pierce-Hoffman HR, Patel S, Lei X, Rajesh A, Teneche MG, Havas AP, Gandhi A, Macip CC, Lyu J, Victorelli SG, Woo SH, Lagnado AB, LaPorta MA, Liu T, Dasgupta N, Li S, Davis A, Korotkov A, Hultenius E, Gao Z, Altman Y, Porritt RA, Garcia G, Mogler C, Seluanov A, Gorbunova V, Kaech SM, Tian X, Dou Z, Chen C, Passos JF, Adams PD. p53 enhances DNA repair and suppresses cytoplasmic chromatin fragments and inflammation in senescent cells. Nat Commun 2025; 16:2229. [PMID: 40044657 PMCID: PMC11882782 DOI: 10.1038/s41467-025-57229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
Genomic instability and inflammation are distinct hallmarks of aging, but the connection between them is poorly understood. Here we report a mechanism directly linking genomic instability and inflammation in senescent cells through a mitochondria-regulated molecular circuit involving p53 and cytoplasmic chromatin fragments (CCF) that are enriched for DNA damage signaling marker γH2A.X. We show that p53 suppresses CCF accumulation and its downstream inflammatory phenotype. p53 activation suppresses CCF formation linked to enhanced DNA repair and genome integrity. Activation of p53 in aged mice by pharmacological inhibition of MDM2 reverses transcriptomic signatures of aging and age-associated accumulation of monocytes and macrophages in liver. Mitochondrial ablation in senescent cells suppresses CCF formation and activates p53 in an ATM-dependent manner, suggesting that mitochondria-dependent formation of γH2A.X + CCF dampens nuclear DNA damage signaling and p53 activity. These data provide evidence for a mitochondria-regulated p53 signaling circuit in senescent cells that controls DNA repair, genome integrity, and senescence- and age-associated inflammation, with relevance to therapeutic targeting of age-associated disease.
Collapse
Affiliation(s)
- Karl N Miller
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA.
| | - Brightany Li
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | | | - Shreeya Patel
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Xue Lei
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Adarsh Rajesh
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Marcos G Teneche
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Aaron P Havas
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Armin Gandhi
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Carolina Cano Macip
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Jun Lyu
- Laboratory of Biochemistry and Molecular Biology; National Cancer Institute; National Institutes of Health, Bethesda, MD, USA
| | - Stella G Victorelli
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Seung-Hwa Woo
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Anthony B Lagnado
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Michael A LaPorta
- NOMIS Center for Immunobiology and Microbial Pathogenesis; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tianhui Liu
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Nirmalya Dasgupta
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
- Center for Cancer Therapy; La Jolla Institute of Immunology, La Jolla, CA, USA
| | - Sha Li
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Andrew Davis
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Anatoly Korotkov
- Departments of Biology and Medicine; University of Rochester, Rochester, NY, USA
| | - Erik Hultenius
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Zichen Gao
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Yoav Altman
- Shared Resources; NCI-designated Cancer Center; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Rebecca A Porritt
- Shared Resources; NCI-designated Cancer Center; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Guillermina Garcia
- Shared Resources; NCI-designated Cancer Center; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Carolin Mogler
- Institute of Pathology; School of Medicine and Health; Technical University Munich (TUM), Munich, Germany
| | - Andrei Seluanov
- Departments of Biology and Medicine; University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine; University of Rochester, Rochester, NY, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xiao Tian
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Department of Medicine; Massachusetts General Research Institute, Boston, MA, USA
- Harvard Stem Cell Institute; Harvard University, Cambridge, MA, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology; National Cancer Institute; National Institutes of Health, Bethesda, MD, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Peter D Adams
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA.
| |
Collapse
|
38
|
Suda M, Tchkonia T, Kirkland JL, Minamino T. Targeting senescent cells for the treatment of age-associated diseases. J Biochem 2025; 177:177-187. [PMID: 39727337 DOI: 10.1093/jb/mvae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Cellular senescence, which entails cellular dysfunction and inflammatory factor release-the senescence-associated secretory phenotype (SASP)-is a key contributor to multiple disorders, diseases and the geriatric syndromes. Targeting senescent cells using senolytics has emerged as a promising therapeutic strategy for these conditions. Among senolytics, the combination of dasatinib and quercetin (D + Q) was the earliest and one of the most successful so far. D + Q delays, prevents, alleviates or treats multiple senescence-associated diseases and disorders with improvements in healthspan across various pre-clinical models. While early senolytic therapies have demonstrated promise, ongoing research is crucial to refine them and address such challenges as off-target effects. Recent advances in senolytics include new drugs and therapies that target senescent cells more effectively. The identification of senescence-associated antigens-cell surface molecules on senescent cells-pointed to another promising means for developing novel therapies and identifying biomarkers of senescent cell abundance.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo City, Tokyo 113-8431, Japan
- Division of Endocrinology, Diabetes, & Metabolism, Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, 8687 Melrose Ave, Pacific Design Center, West Hollywood, CA 90069, USA
| | - Tamar Tchkonia
- Division of Endocrinology, Diabetes, & Metabolism, Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, 8687 Melrose Ave, Pacific Design Center, West Hollywood, CA 90069, USA
| | - James L Kirkland
- Division of Endocrinology, Diabetes, & Metabolism, Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, 8687 Melrose Ave, Pacific Design Center, West Hollywood, CA 90069, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo City, Tokyo 113-8431, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
39
|
Wang TW, Nakanishi M. Immune surveillance of senescence: potential application to age-related diseases. Trends Cell Biol 2025; 35:248-257. [PMID: 39025762 DOI: 10.1016/j.tcb.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
Several lines of evidence suggest that the age-dependent accumulation of senescent cells leads to chronic tissue microinflammation, which in turn contributes to age-related pathologies. In general, senescent cells can be eliminated by the host's innate and adaptive immune surveillance system, including macrophages, NK cells, and T cells. Impaired immune surveillance leads to the accumulation of senescent cells and accelerates the aging process. Recently, senescent cells, like cancer cells, have been shown to express certain types of immune checkpoint proteins as well as non-classical immune-tolerant MHC variants, leading to immune escape from surveillance systems. Thus, immune checkpoint blockade (ICB) may be a promising strategy to enhance immune surveillance of senescence, leading to the amelioration of some age-related diseases and tissue dysfunction.
Collapse
Affiliation(s)
- Teh-Wei Wang
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
40
|
Yang Y, Jn-Simon N, He Y, Sun C, Zhang P, Hu W, Tian T, Zeng H, Basha S, Huerta AS, Sun LZ, Yin XM, Hromas R, Zheng G, Pi L, Zhou D. A BCL-xL/BCL-2 PROTAC effectively clears senescent cells in the liver and reduces MASH-driven hepatocellular carcinoma in mice. NATURE AGING 2025; 5:386-400. [PMID: 39890936 DOI: 10.1038/s43587-025-00811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/05/2024] [Indexed: 02/03/2025]
Abstract
Accumulation of senescent cells (SnCs) plays a causative role in many age-related diseases and has also been implicated in the pathogenesis and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Senolytics that can selectively kill SnCs have the potential to be developed as therapeutics for these diseases. Here we report the finding that 753b, a dual BCL-xL/BCL-2 proteolysis-targeting chimera (PROTAC), acts as a potent and liver-tropic senolytic. We found that treatment with 753b selectively reduced SnCs in the liver in aged mice and STAM mice in part due to its sequestration in the liver. Moreover, 753b treatment could effectively reduce the progression of MASLD and the development of hepatocellular carcinoma (HCC) in STAM mice even after the mice developed substantial metabolic dysfunction-associated steatohepatitis (MASH) and hepatic fibrosis. These findings suggest that BCL-xL/BCL-2 PROTACs have the potential to be developed as therapeutics for MASLD to reduce MASH-driven HCC.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Natacha Jn-Simon
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Yonghan He
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Chunbao Sun
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Wanyi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Tian Tian
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Huadong Zeng
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, University of Florida, Gainesville, FL, USA
| | | | - Araceli S Huerta
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lu-Zhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Xian-Ming Yin
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Liya Pi
- Department of Pathology, Tulane University, New Orleans, LA, USA.
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
41
|
Kalies K, Knöpp K, Koch S, Pilowski C, Wurmbrand L, Sedding D. Restoration of angiogenic capacity in senescent endothelial cells by a pharmacological reprogramming approach. PLoS One 2025; 20:e0319381. [PMID: 40019880 PMCID: PMC11870368 DOI: 10.1371/journal.pone.0319381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/31/2025] [Indexed: 03/03/2025] Open
Abstract
Senescent endothelial cells (EC) are key players in the pathophysiology of cardiovascular diseases and are characterized by a reduced angiogenic and regenerative potential. Therefore, targeting these cells has been suggested as an effective therapeutic strategy to reduce vascular disease burden and potentially improve health and lifespan of humans. Here, we aimed to establish a pharmacological, partial reprogramming strategy to improve replicative senescent endothelial cell function in the context of angiogenesis. We demonstrate that our treatment improves tube formation and sprouting capacity but also increases proliferation and migration capacity in vitro. Further, inflammation and DNA damage were reduced in the replicative senescent cells. These processes were initiated by a short and timely-restricted overexpression of the Yamanaka-factors induced by our pharmacological strategy. The advantage of these compounds is that they are FDA approved in their respective concentrations which could pave the way for use in a clinical setting.
Collapse
Affiliation(s)
- Katrin Kalies
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Kai Knöpp
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Susanne Koch
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Pilowski
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Leonie Wurmbrand
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniel Sedding
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
42
|
Zhu R, Xu C, Jiang S, Xia J, Wu B, Zhang S, Zhou J, Liu H, Li H, Lou J. Risk factor analysis and predictive model construction of lean MAFLD: a cross-sectional study of a health check-up population in China. Eur J Med Res 2025; 30:137. [PMID: 40001266 PMCID: PMC11863909 DOI: 10.1186/s40001-025-02373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
AIM Cardiovascular disease morbidity and mortality rates are high in patients with metabolic dysfunction-associated fatty liver disease (MAFLD). The objective of this study was to analyze the risk factors and differences between lean MAFLD and overweight MAFLD, and establish and validate a nomogram model for predicting lean MAFLD. METHODS This retrospective cross-sectional study included 4363 participants who underwent annual health checkup at Yuyao from 2019 to 2022. The study population was stratified into three groups: non-MAFLD, lean MAFLD (defined as the presence of fatty liver changes as determined by ultrasound in individuals with a BMI < 25 kg/m2), and overweight MAFLD (BMI ≥ 25.0 kg/m2). Subsequent modeling analysis was conducted in a population that included healthy subjects with < 25 kg/m2 (n = 2104) and subjects with lean MAFLD (n = 849). The study population was randomly split (7:3 ratio) to a training vs. a validation cohort. Risk factors for lean MAFLD was identify by multivariate regression of the training cohort, and used to construct a nomogram to estimate the probability of lean MAFLD. Model performance was examined using the receiver operating characteristic (ROC) curve analysis and k-fold cross-validation (k = 5). Decision curve analysis (DCA) was applied to evaluate the clinical usefulness of the prediction model. RESULTS The multivariate regression analysis indicated that the triglycerides and glucose index (TyG) was the most significant risk factor for lean MAFLD (OR: 4.03, 95% CI 2.806-5.786). The restricted cubic spline curves (RCS) regression model demonstrated that the relationships between systolic pressure (SBP), alanine aminotransferase (ALT), serum urate (UA), total cholesterol (TCHO), triglyceride (TG), triglyceride glucose (TyG) index, high density lipoprotein cholesterol (HDLC), and MAFLD were nonlinear and the cutoff values for lean MAFLD and overweight MAFLD were different. The nomogram was constructed based on seven predictors: glycosylated hemoglobin A1c (HbA1c), serum ferritin (SF), ALT, UA, BMI, TyG index, and age. In the validation cohort, the area under the ROC curve was 0.866 (95% CI 0.842-0.891), with 83.8% sensitivity and 76.6% specificity at the optimal cutoff. The PPV and NPV was 63.3% and 90.8%, respectively. Furthermore, we used fivefold cross-validation and the average area under the ROC curve was 0.866 (Figure S3). The calibration curves for the model's predictions and the actual outcomes were in good agreement. The DCA findings demonstrated that the nomogram model was clinically useful throughout a broad threshold probability range. CONCLUSIONS Lean and overweight MAFLD exhibit distinct metabolic profiles. The nomogram model developed in this study is designed to assist clinicians in the early identification of high-risk individuals with lean MAFLD, including those with a normal BMI but at metabolic risk, as well as those with abnormal blood lipid, glucose, uric acid or transaminase levels. In addition, this model enhances screening efforts in communities and medical screening centers, ultimately ensuring more timely and effective medical services for patients.
Collapse
Affiliation(s)
- Ruya Zhu
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Caicai Xu
- Chronic Liver Disease Center, The Affiliated Yangming Hospital of Ningbo University, Zhejiang, 315400, China
| | - Suwen Jiang
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Jianping Xia
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Boming Wu
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Sijia Zhang
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Jing Zhou
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Hongliang Liu
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Hongshan Li
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China.
| | - Jianjun Lou
- Chronic Liver Disease Center, The Affiliated Yangming Hospital of Ningbo University, Zhejiang, 315400, China.
| |
Collapse
|
43
|
De Giorgi M, Park SH, Castoreno A, Cao M, Hurley A, Saxena L, Chuecos MA, Walkey CJ, Doerfler AM, Furgurson MN, Ljungberg MC, Patel KR, Hyde S, Chickering T, Lefebvre S, Wassarman K, Miller P, Qin J, Schlegel MK, Zlatev I, Han J, Beeton C, Li RG, Kim J, Martin JF, Bissig KD, Jadhav V, Bao G, Lagor WR. In vivo expansion of gene-targeted hepatocytes through transient inhibition of an essential gene. Sci Transl Med 2025; 17:eadk3920. [PMID: 39937884 DOI: 10.1126/scitranslmed.adk3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 07/29/2024] [Accepted: 01/17/2025] [Indexed: 02/14/2025]
Abstract
Homology-directed repair (HDR)-based genome editing is an approach that could permanently correct a broad range of genetic diseases. However, its utility is limited by inefficient and imprecise DNA repair mechanisms in terminally differentiated tissues. Here, we tested Repair Drive, a platform technology for selectively expanding HDR-corrected hepatocytes in adult mice in vivo. Repair Drive involves transient conditioning of the liver by knocking down an essential gene, fumarylacetoacetate hydrolase (Fah), and delivering an untargetable version of the essential gene in cis with a therapeutic transgene. We show that Repair Drive increased the percentage of correctly targeted hepatocytes in healthy wild-type mice up to 25%, which resulted in a fivefold increased expression of a therapeutic transgene, human factor IX (FIX). Repair Drive was well tolerated and did not induce toxicity or tumorigenesis during a 1-year follow-up. This approach may broaden the range of liver diseases that can be treated with somatic genome editing.
Collapse
Affiliation(s)
- Marco De Giorgi
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - So Hyun Park
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | | | - Mingming Cao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ayrea Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lavanya Saxena
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Marcel A Chuecos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher J Walkey
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandria M Doerfler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mia N Furgurson
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - M Cecilia Ljungberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kalyani R Patel
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sarah Hyde
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | | | | | | | | | - June Qin
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | | | - Ivan Zlatev
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | - Jun Han
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- UVic-GBC Proteomics Centre, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Christine Beeton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rich Gang Li
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Heart Institute, Houston, TX 77030, USA
| | - Jong Kim
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Heart Institute, Houston, TX 77030, USA
| | - James F Martin
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Heart Institute, Houston, TX 77030, USA
| | - Karl-Dimiter Bissig
- Department of Pediatrics, Alice and Y. T. Chen Center for Genetics and Genomics, Division of Medical Genetics, Duke University, Durham, NC 27710, USA
| | - Vasant Jadhav
- Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
44
|
Liu X, Zhao Y, Feng Y, Wang S, Luo A, Zhang J. Ovarian Aging: The Silent Catalyst of Age-Related Disorders in Female Body. Aging Dis 2025:AD.2024.1468. [PMID: 39965250 DOI: 10.14336/ad.2024.1468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
Age-related diseases have emerged as a global concern as the population ages. Consequently, understanding the underlying causes of aging and exploring potential anti-aging interventions is imperative. In females, the ovaries serve as the principal organs responsible for ovulation and the production of female hormones. The aging ovaries are related to infertility, menopause, and associated menopausal syndromes, with menopause representing the culmination of ovarian aging. Current evidence indicates that ovarian aging may contribute to dysfunction across multiple organ systems, including, but not limited to, cognitive impairment, osteoporosis, and cardiovascular disease. Nevertheless, due to the widespread distribution of sex hormone receptors throughout the body, ovarian aging affects not only these specific organs but also influences a broader spectrum of age-related diseases in women. Despite this, the impact of ovarian aging on overall age-related diseases has been largely neglected. This review provides a thorough summary of the impact of ovarian aging on age-related diseases, encompassing the nervous, circulatory, locomotor, urinary, digestive, respiratory, and endocrine systems. Additionally, we have outlined prospective therapeutic approaches for addressing both ovarian aging and age-related diseases, with the aim of mitigating their impacts and preserving women's fertility, physical health, and psychological well-being.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanqu Zhao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanzhi Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
45
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
46
|
Carver CM, Rodriguez SL, Atkinson EJ, Dosch AJ, Asmussen NC, Gomez PT, Leitschuh EA, Espindola-Netto JM, Jeganathan KB, Whaley MG, Kamenecka TM, Baker DJ, Haak AJ, LeBrasseur NK, Schafer MJ. IL-23R is a senescence-linked circulating and tissue biomarker of aging. NATURE AGING 2025; 5:291-305. [PMID: 39658621 PMCID: PMC11839461 DOI: 10.1038/s43587-024-00752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/17/2024] [Indexed: 12/12/2024]
Abstract
Cellular senescence is an aging mechanism characterized by cell cycle arrest and a senescence-associated secretory phenotype (SASP). Preclinical studies demonstrate that senolytic drugs, which target survival pathways in senescent cells, can counteract age-associated conditions that span several organs. The comparative efficacy of distinct senolytic drugs for modifying aging and senescence biomarkers in vivo has not been demonstrated. Here, we established aging- and senescence-related plasma proteins and tissue transcripts that changed in old versus young female and male mice. We investigated responsivity to acute treatment with venetoclax, navitoclax, fisetin or luteolin versus transgenic senescent cell clearance in aged p16-InkAttac mice. We discovered that age-dependent changes in plasma proteins, including IL-23R, CCL5 and CA13, were reversed by senotherapeutics, which corresponded to expression differences in tissues, particularly in the kidney. In plasma from humans across the lifespan, IL-23R increased with age. Our results reveal circulating factors as candidate mediators of senescence-associated interorgan signal transduction and translationally impactful biomarkers of systemic senescent cell burden.
Collapse
Affiliation(s)
- Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Sonia L Rodriguez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth J Atkinson
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Andrew J Dosch
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Niels C Asmussen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Ethan A Leitschuh
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Jair M Espindola-Netto
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Karthik B Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Madison G Whaley
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Theodore M Kamenecka
- Department of Molecular Medicine, UF Scripps Institute, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Nathan K LeBrasseur
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Neuroscience, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
47
|
Gold NM, Ding Q, Yang Y, Pu S, Cao W, Ge X, Yang P, Okeke MN, Nisar A, Pan Y, Luo Q, Wang X, Xu H, Tian R, Zi M, Zhang X, Li S, He Y. Therapeutic potential of nicotinamide and ABT263 in alcohol-associated liver disease through targeting cellular senescence. MedComm (Beijing) 2025; 6:e70086. [PMID: 39931736 PMCID: PMC11808045 DOI: 10.1002/mco2.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Alcohol-associated liver disease (ALD) is a major cause of liver-related morbidity and mortality, yet clinically effective therapies for ALD remain lacking. Here, we demonstrate that alcohol intake and its metabolite, acetaldehyde (ACH), induce senescence in the liver and liver cells, respectively. To assess the therapeutic potential of targeting liver senescence in ALD, we treated ALD-affected mice with the senolytic compound ABT263 and the senomorphic NAD+ precursor, nicotinamide (NAM). The results show that ABT263 effectively clears senescent hepatocytes and stellate cells, and reduces liver triglyceride (TG), but increases plasma alanine aminotransferase and TG levels. Conversely, NAM efficiently suppresses senescence and the senescence-associated secretory phenotype (SASP), protecting the liver from alcohol-induced injury in ALD mice. RNA-sequencing analysis revealed that ABT263 treatment downregulated genes involved in adipogenesis while activating the complement pathway. In contrast, NAM upregulated metabolism-related genes, such as Sirt1, and downregulated DNA damage marker genes, including Rec8 and E2f1, in the liver. These findings suggest that cellular senescence plays a critical role in alcohol-induced liver injury. Compared with senescent cell clearance by ABT263, suppressing senescence and SASP by NAM may provide a safer and more effective therapeutic approach for ALD.
Collapse
Affiliation(s)
- Naheemat Modupeola Gold
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Qinchao Ding
- Department of Nutrition and Food Hygiene, School of Public HealthZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yang Yang
- Department of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Shaoyan Pu
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Biodiversity Data Center of Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Wenjing Cao
- Department of Nutrition and Food Hygiene, School of Public HealthZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Xinxuan Ge
- Department of Nutrition and Food Hygiene, School of Public HealthZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Pengyun Yang
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Michael Ngozi Okeke
- Guangdong Key Laboratory of NanomedicineInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Ayesha Nisar
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Yongzhang Pan
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Qiuni Luo
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Xiayan Wang
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Han Xu
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Rui Tian
- Department of UltrasonographyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Meiting Zi
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural ResourceMinistry of EducationYunnan Characteristic Plant Extraction LaboratoryYunnan Key Laboratory of Research and Development for Natural ProductsState Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanSchool of Pharmacy and School of Chemical Science and TechnologyYunnan UniversityKunmingYunnanChina
| | - Songtao Li
- Department of Nutrition and Food Hygiene, School of Public HealthZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yonghan He
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| |
Collapse
|
48
|
Kineman RD, Del Rio-Moreno M, Waxman DJ. Liver-specific actions of GH and IGF1 that protect against MASLD. Nat Rev Endocrinol 2025; 21:105-117. [PMID: 39322791 DOI: 10.1038/s41574-024-01037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; also known as nonalcoholic fatty liver disease) is a chronic condition associated with metabolic syndrome, a group of conditions that includes obesity, insulin resistance, hyperlipidaemia and cardiovascular disease. Primary growth hormone (GH) deficiency is associated with MASLD, and the decline in circulating levels of GH with weight gain might contribute to the development of MASLD. Raising endogenous GH secretion or administering GH replacement therapy in the context of MASLD enhances insulin-like growth factor 1 (IGF1) production and reduces steatosis and the severity of liver injury. GH and IGF1 indirectly control MASLD progression by regulating systemic metabolic function. Evidence supports the proposal that GH and IGF1 also have a direct role in regulating liver metabolism and health. This Review focuses on how GH acts on the hepatocyte in a sex-dependent manner to limit lipid accumulation, reduce stress, and promote survival and regeneration. In addition, we discuss how GH and IGF1 might regulate non-parenchymal cells of the liver to control inflammation and fibrosis, which have a major effect on hepatocyte survival and regeneration. Development of a better understanding of how GH and IGF1 coordinate the functions of specific, individual liver cell types might provide insight into the aetiology of MASLD initiation and progression and suggest novel approaches for the treatment of MASLD.
Collapse
Affiliation(s)
- Rhonda D Kineman
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA.
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA.
| | - Mercedes Del Rio-Moreno
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
49
|
Shi Y, Hong R, Fan Z, Huan R, Gao Y, Ma M, Liu T, Pan C. Chronic environmental exposure to polystyrene microplastics increases the risk of nonalcoholic fatty liver disease. Toxicology 2025; 511:154067. [PMID: 39864238 DOI: 10.1016/j.tox.2025.154067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 01/28/2025]
Abstract
Microplastics (MPs), as the crucial environmental pollutants, can be easily transported into the human body and accumulate in the liver. However, current studies mainly focus on acute exposure to MPs, investigations on long-term interactions with MPs alone remain limited. Thereby, we examined noxious properties of MPs and selected the most common polystyrene (PS) MPs as the research object, including unmodified PS MPs (PS-MPs) and positive-charged PS MPs (PS-NH2) at 10 mg/L employing oral drinking water methods in mice for six consecutive months in vivo. In vitro, we treated the human hepatocyte cells with MPs at 25 μg/mL to explore involved mechanisms. The results revealed that six-month MPs exposure led to nonalcoholic fatty liver disease (NAFLD) including impaired liver functions, extensive lipid depositions accompanied by abnormal levels of metabolic genes and PS-NH2 MPs exerted a stronger effect than PS-MPs. Concurrently, mice treated with MPs revealed the accumulation of senescent hepatocytes, leading to increased secretions of senescent phenotypes in the liver. We also discovered that MPs initiated the HO-1/Nrf2 axis consequently inducing ferroptosis in vivo and in vitro, as shown by massive iron deposition, extensive lipid peroxidation along with significant protein expressions in ferroptosis-related markers. Additionally, targeting the HO-1/Nrf2 pathway to further alleviate ferroptosis with corresponding inhibitors could efficiently alleviate cell senescence. Therefore, our study reveals new evidence of the relationship between chronic exposure to MPs and NAFLD and furthers the understanding of how plastic pollution affects human health.
Collapse
Affiliation(s)
- Yujie Shi
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Runyang Hong
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zhencheng Fan
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Ran Huan
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yajie Gao
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Min Ma
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Department of Obstetrics and Gynecology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225001, China; Jiangsu Key Laboratory of Non coding RNA Basic and Clinical Transformation, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Tingting Liu
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Chun Pan
- Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Jiangsu Key Laboratory of Non coding RNA Basic and Clinical Transformation, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|
50
|
Ma R, Zhou Y, Huang W, Kong X. Icariin maintaining TMEM119-positive microglial population improves hippocampus-associated memory in senescent mice in relation to R-3-hydroxybutyric acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119287. [PMID: 39736348 DOI: 10.1016/j.jep.2024.119287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium Tourn. ex L. is a traditional Chinese medicine used for thousands of years in China to treat forgetfulness. Icariin is a principal component of the genus Epimedium. AIM OF THE STUDY The metabolic mechanism of icariin treating forgetfulness is explored. MATERIALS AND METHODS A D-galactose-induced senescent mouse model was employed. The cognitive performance of mice was assessed in the fear conditioning test. Hippocampal pathology was assessed in the immunohistochemistry assay. Plasma metabolome was analyzed using GC-MS method, and the differential metabolites were further identified by UPLC-MS/MS or GC-MS method. The liver function, including ALT and AST, was assessed by enzyme reaction. Icariin was administered intraperitoneally at 50 and 100 mg/kg. Mice were administered five consecutive days per week for 8 weeks. RESULTS Icariin treatment improved hippocampus-related fear memory but not amygdala-related memory, whereas Pexidartinib (PLX3397), a microglial scavenger, did not. Icariin treatment maintained the TMEM119-positive microglial population and decreased the accumulation of the senescent biomarker p16 in the dorsal hippocampus in senescent mouse brains, whereas PLX3397 did not. Notably, p16 in the CA2 subregion significantly decreased in icariin-treated mice than the other hippocampal subregions. The senescent mice exhibited the circulating metabolic characteristics of mild ketoacidosis, active tricarboxylic acid (TCA) cycle, lactic acidosis, hyperglycemia, active detoxification, active cis-oleic acid metabolism, and inhibitory GABA shut. R-3-Hydroxybutyric acid primarily produced in the liver was selectively and robustly decreased by icariin treatment, which was not observed with PLX3397 treatment. The TCA cycle was rescued in senescent mice by icariin treatment. Icariin also protected liver function (plasma ALT) in D-gal-induced senescent mice. CONCLUSIONS Icariin may protect mouse hippocampal cognition from D-gal-induced senescence by protecting microglial homeostasis, and facilitating the utilization of R-3-hydroxybutyric acid is one of the underpins.
Collapse
Affiliation(s)
- Rong Ma
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuge Zhou
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Weifan Huang
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|