1
|
Blonde C, Caddeo A, Nasser W, Reverchon S, Peyraud R, Haichar FEZ. New insights in metabolism modelling to decipher plant-microbe interactions. THE NEW PHYTOLOGIST 2025; 246:1485-1493. [PMID: 40119556 PMCID: PMC12018784 DOI: 10.1111/nph.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/18/2025] [Indexed: 03/24/2025]
Abstract
Plant disease outbreaks, exacerbated by climate change, threaten food security and environmental sustainability world-wide. Plants interact with a wide range of microorganisms. The quest for resilient agriculture requires a deep insight into the molecular and ecological interplays between plants and their associated microbial communities. Omics methods, by profiling entire molecular sets, have shed light on these complex interactions. Nonetheless, deciphering the relationships among thousands of molecular components remains a formidable challenge, and studies that integrate these components into cohesive biological networks involving plants and associated microbes are still limited. Systems biology has the potential to predict the effects of biotic and abiotic perturbations on these networks. It is therefore a promising framework for addressing the full complexity of plant-microbiome interactions.
Collapse
Affiliation(s)
- Clara Blonde
- INSA Lyon, CNRS, Université Claude Bernard Lyon 1UMR5240 Microbiologie, Adaptation, Pathogénie, Université Lyon10 rue Raphaël Dubois69622VilleurbanneFrance
| | - Amélie Caddeo
- Institut Agro, INRAE, IRHS, SFR QUASAV, Univ AngersF‐49000AngersFrance
- iMEAN135 Avenue de Rangueil31077ToulouseFrance
| | - William Nasser
- INSA Lyon, CNRS, Université Claude Bernard Lyon 1UMR5240 Microbiologie, Adaptation, Pathogénie, Université Lyon10 rue Raphaël Dubois69622VilleurbanneFrance
| | - Sylvie Reverchon
- INSA Lyon, CNRS, Université Claude Bernard Lyon 1UMR5240 Microbiologie, Adaptation, Pathogénie, Université Lyon10 rue Raphaël Dubois69622VilleurbanneFrance
| | | | - Feth el Zahar Haichar
- INSA Lyon, CNRS, Université Claude Bernard Lyon 1UMR5240 Microbiologie, Adaptation, Pathogénie, Université Lyon10 rue Raphaël Dubois69622VilleurbanneFrance
| |
Collapse
|
2
|
Kong Y, Chen H, Huang X, Chang L, Yang B, Chen W. Precise metabolic modeling in post-omics era: accomplishments and perspectives. Crit Rev Biotechnol 2025; 45:683-701. [PMID: 39198033 DOI: 10.1080/07388551.2024.2390089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024]
Abstract
Microbes have been extensively utilized for their sustainable and scalable properties in synthesizing desired bio-products. However, insufficient knowledge about intracellular metabolism has impeded further microbial applications. The genome-scale metabolic models (GEMs) play a pivotal role in facilitating a global understanding of cellular metabolic mechanisms. These models enable rational modification by exploring metabolic pathways and predicting potential targets in microorganisms, enabling precise cell regulation without experimental costs. Nonetheless, simplified GEM only considers genome information and network stoichiometry while neglecting other important bio-information, such as enzyme functions, thermodynamic properties, and kinetic parameters. Consequently, uncertainties persist particularly when predicting microbial behaviors in complex and fluctuant systems. The advent of the omics era with its massive quantification of genes, proteins, and metabolites under various conditions has led to the flourishing of multi-constrained models and updated algorithms with improved predicting power and broadened dimension. Meanwhile, machine learning (ML) has demonstrated exceptional analytical and predictive capacities when applied to training sets of biological big data. Incorporating the discriminant strength of ML with GEM facilitates mechanistic modeling efficiency and improves predictive accuracy. This paper provides an overview of research innovations in the GEM, including multi-constrained modeling, analytical approaches, and the latest applications of ML, which may contribute comprehensive knowledge toward genetic refinement, strain development, and yield enhancement for a broad range of biomolecules.
Collapse
Affiliation(s)
- Yawen Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xinlei Huang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Lulu Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
3
|
Noor MS, Ferdous S, Salehi R, Gates H, Dey S, Raghunath VS, Zargar MR, Chowdhury R. Next-generation metabolic models informed by biomolecular simulations. Curr Opin Biotechnol 2025; 92:103259. [PMID: 39827498 DOI: 10.1016/j.copbio.2025.103259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
Metabolic modeling is essential for understanding the mechanistic bases of cellular metabolism in various organisms, from microbes to humans, and the design of fitter microbial strains. Metabolic networks focus on the overall fluxes through biochemical reactions that implicitly rely on several biochemical processes, such as active or diffusive uptake (or export) of nutrients (or metabolites), enzymatic turnover of metabolites, and metal-cofactor enzyme interactions. Despite independent progress in biomolecular simulations, they have yet to be integrated to inform metabolic models. We explore the evolution of computational metabolic modeling approaches, starting with flux balance analysis, dynamic, kinetic delineations of metabolic shifts in single organisms within cells and across tissues, and mutually informing, community-level modeling frameworks and provide a narrative to tie in biomolecular simulations and machine learning predictions to usher the new phase of structure-guided synthetic biology applications. These additions and prospective novel ones are likely to open hitherto untapped paradigms for optimizing/understanding metabolic pathways toward improving bioproduction of protein and small molecule products with downstream applications in health, environment, energy, and sustainability.
Collapse
Affiliation(s)
- Mohammed S Noor
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Sakib Ferdous
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Rahil Salehi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Hannah Gates
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Supantha Dey
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Vaishnavey S Raghunath
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Mohammad R Zargar
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA.
| |
Collapse
|
4
|
Siharath C, Biondi O, Peres S. Modelling energy metabolism dysregulations in neuromuscular diseases: A case study of calpainopathy. Heliyon 2024; 10:e40918. [PMID: 39759341 PMCID: PMC11698924 DOI: 10.1016/j.heliyon.2024.e40918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/05/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Biological modelling helps understanding complex processes, like energy metabolism, by predicting pathway compensations and equilibrium under given conditions. When deciphering metabolic adaptations, traditional experiments face challenges due to numerous enzymatic activities, needing modelling to anticipate pathway behaviours and orientate research. This paper aims to implement a constraint-based modelling method of muscular energy metabolism, adaptable to individual situations, energy demands, and complex disease-specific metabolic alterations like muscular dystrophy calpainopathy. Our calpainopathy-like model not only confirms the ATP production defect under increasing energy demands, but suggests compensatory mechanisms through anaerobic glycolysis. However, excessive glycolysis indicates a need to enhance mitochondrial respiration, preventing excess lactate production common in several diseases. Our model suggests that moderate-intensity physiotherapy, known to improve aerobic performance and anaerobic buffering, combined with increased carbohydrate and amino acid sources, could be a potent therapeutic approach for calpainopathy.
Collapse
Affiliation(s)
- Camille Siharath
- Laboratoire de Biométrie et de Biologie Évolutive, UMR CNRS 5558 Université Claude Bernard Lyon 1, 69622, Villeurbanne cedex, France
- ERABLE, INRIA Lyon Centre, 69622, Villeurbanne cedex, France
| | - Olivier Biondi
- Laboratoire de Biologie de l'Exercice pour la Performance et la Santé (LBEPS), UMR, Université d'Evry, IRBA, Université de Paris Saclay, 91025, Evry-Courcouronnes, France
| | - Sabine Peres
- Laboratoire de Biométrie et de Biologie Évolutive, UMR CNRS 5558 Université Claude Bernard Lyon 1, 69622, Villeurbanne cedex, France
- ERABLE, INRIA Lyon Centre, 69622, Villeurbanne cedex, France
| |
Collapse
|
5
|
Zare F, Fleming RMT. Integration of proteomic data with genome-scale metabolic models: A methodological overview. Protein Sci 2024; 33:e5150. [PMID: 39275997 PMCID: PMC11400636 DOI: 10.1002/pro.5150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 09/16/2024]
Abstract
The integration of proteomics data with constraint-based reconstruction and analysis (COBRA) models plays a pivotal role in understanding the relationship between genotype and phenotype and bridges the gap between genome-level phenomena and functional adaptations. Integrating a generic genome-scale model with information on proteins enables generation of a context-specific metabolic model which improves the accuracy of model prediction. This review explores methodologies for incorporating proteomics data into genome-scale models. Available methods are grouped into four distinct categories based on their approach to integrate proteomics data and their depth of modeling. Within each category section various methods are introduced in chronological order of publication demonstrating the progress of this field. Furthermore, challenges and potential solutions to further progress are outlined, including the limited availability of appropriate in vitro data, experimental enzyme turnover rates, and the trade-off between model accuracy, computational tractability, and data scarcity. In conclusion, methods employing simpler approaches demand fewer kinetic and omics data, consequently leading to a less complex mathematical problem and reduced computational expenses. On the other hand, approaches that delve deeper into cellular mechanisms and aim to create detailed mathematical models necessitate more extensive kinetic and omics data, resulting in a more complex and computationally demanding problem. However, in some cases, this increased cost can be justified by the potential for more precise predictions.
Collapse
Affiliation(s)
- Farid Zare
- School of Medicine, University of Galway, Galway, Ireland
| | | |
Collapse
|
6
|
Choudhury S, Narayanan B, Moret M, Hatzimanikatis V, Miskovic L. Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states. Nat Catal 2024; 7:1086-1098. [PMID: 39463726 PMCID: PMC11499278 DOI: 10.1038/s41929-024-01220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/06/2024] [Indexed: 10/29/2024]
Abstract
Generating large omics datasets has become routine for gaining insights into cellular processes, yet deciphering these datasets to determine metabolic states remains challenging. Kinetic models can help integrate omics data by explicitly linking metabolite concentrations, metabolic fluxes and enzyme levels. Nevertheless, determining the kinetic parameters that underlie cellular physiology poses notable obstacles to the widespread use of these mathematical representations of metabolism. Here we present RENAISSANCE, a generative machine learning framework for efficiently parameterizing large-scale kinetic models with dynamic properties matching experimental observations. Through seamless integration of diverse omics data and other relevant information, including extracellular medium composition, physicochemical data and expertise of domain specialists, RENAISSANCE accurately characterizes intracellular metabolic states in Escherichia coli. It also estimates missing kinetic parameters and reconciles them with sparse experimental data, substantially reducing parameter uncertainty and improving accuracy. This framework will be valuable for researchers studying metabolic variations involving changes in metabolite and enzyme levels and enzyme activity in health and biotechnology.
Collapse
Affiliation(s)
- Subham Choudhury
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bharath Narayanan
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Present Address: Department of Oncology, University of Cambridge, Cambridge, UK
| | - Michael Moret
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Present Address: Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ljubisa Miskovic
- Laboratory of Computational Systems Biology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Schroeder WL, Suthers PF, Willis TC, Mooney EJ, Maranas CD. Current State, Challenges, and Opportunities in Genome-Scale Resource Allocation Models: A Mathematical Perspective. Metabolites 2024; 14:365. [PMID: 39057688 PMCID: PMC11278519 DOI: 10.3390/metabo14070365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Stoichiometric genome-scale metabolic models (generally abbreviated GSM, GSMM, or GEM) have had many applications in exploring phenotypes and guiding metabolic engineering interventions. Nevertheless, these models and predictions thereof can become limited as they do not directly account for protein cost, enzyme kinetics, and cell surface or volume proteome limitations. Lack of such mechanistic detail could lead to overly optimistic predictions and engineered strains. Initial efforts to correct these deficiencies were by the application of precursor tools for GSMs, such as flux balance analysis with molecular crowding. In the past decade, several frameworks have been introduced to incorporate proteome-related limitations using a genome-scale stoichiometric model as the reconstruction basis, which herein are called resource allocation models (RAMs). This review provides a broad overview of representative or commonly used existing RAM frameworks. This review discusses increasingly complex models, beginning with stoichiometric models to precursor to RAM frameworks to existing RAM frameworks. RAM frameworks are broadly divided into two categories: coarse-grained and fine-grained, with different strengths and challenges. Discussion includes pinpointing their utility, data needs, highlighting framework strengths and limitations, and appropriateness to various research endeavors, largely through contrasting their mathematical frameworks. Finally, promising future applications of RAMs are discussed.
Collapse
Affiliation(s)
- Wheaton L. Schroeder
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Bioenergy Innovation, Oak Ridge, TN 37830, USA
| | - Patrick F. Suthers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Bioenergy Innovation, Oak Ridge, TN 37830, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Thomas C. Willis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Bioenergy Innovation, Oak Ridge, TN 37830, USA
| | - Eric J. Mooney
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry, Microbiology and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Bioenergy Innovation, Oak Ridge, TN 37830, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Chakraborty C, Bhattacharya M, Alshammari A, Albekairi TH. Blueprint of differentially expressed genes reveals the dynamic gene expression landscape and the gender biases in long COVID. J Infect Public Health 2024; 17:748-766. [PMID: 38518681 DOI: 10.1016/j.jiph.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Long COVID has appeared as a significant global health issue and is an extra burden to the healthcare system. It affects a considerable number of people throughout the globe. However, substantial research gaps have been noted in understanding the mechanism and genomic landscape during the long COVID infection. A study has aimed to identify the differentially expressed genes (DEGs) in long COVID patients to fill the gap. METHODS We used the RNA-seq GEO dataset acquired through the GPL20301 Illumina HiSeq 4000 platform. The dataset contains 36 human samples derived from PBMC (Peripheral blood mononuclear cells). Thirty-six human samples contain 13 non-long COVID individuals' samples and 23 long COVID individuals' samples, considered the first direction analysis. Here, we performed two-direction analyses. In the second direction analysis, we divided the dataset gender-wise into four groups: the non-long COVID male group, the long COVID male group, the non-long COVID female group, and the long COVID female group. RESULTS In the first analysis, we found no gene expression. In the second analysis, we identified 250 DEGs. During the DEG profile analysis of the non-long COVID male group and the long COVID male group, we found three upregulated genes: IGHG2, IGHG4, and MIR8071-2. Similarly, the analysis of the non-long COVID female group and the long COVID female group reveals eight top-ranking genes. It also indicates the gender biases of differentially expressed genes among long COVID individuals. We found several DEGs involved in PPI and co-expression network formation. Similarly, cluster enrichment and gene list enrichment analysis were performed, suggesting several genes are involved in different biological pathways or processes. CONCLUSIONS This study will help better understand the gene expression landscape in long COVID. However, it might help the discovery and development of therapeutics for long COVID.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Gong Z, Chen J, Jiao X, Gong H, Pan D, Liu L, Zhang Y, Tan T. Genome-scale metabolic network models for industrial microorganisms metabolic engineering: Current advances and future prospects. Biotechnol Adv 2024; 72:108319. [PMID: 38280495 DOI: 10.1016/j.biotechadv.2024.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
The construction of high-performance microbial cell factories (MCFs) is the centerpiece of biomanufacturing. However, the complex metabolic regulatory network of microorganisms poses great challenges for the efficient design and construction of MCFs. The genome-scale metabolic network models (GSMs) can systematically simulate the metabolic regulation process of microorganisms in silico, providing effective guidance for the rapid design and construction of MCFs. In this review, we summarized the development status of 16 important industrial microbial GSMs, and further outline the technologies or methods that continuously promote high-quality GSMs construction from five aspects: I) Databases and modeling tools facilitate GSMs reconstruction; II) evolving gap-filling technologies; III) constraint-based model reconstruction; IV) advances in algorithms; and V) developed visualization tools. In addition, we also summarized the applications of GSMs in guiding metabolic engineering from four aspects: I) exploring and explaining metabolic features; II) predicting the effects of genetic perturbations on metabolism; III) predicting the optimal phenotype; IV) guiding cell factories construction in practical experiment. Finally, we discussed the development of GSMs, aiming to provide a reference for efficiently reconstructing GSMs and guiding metabolic engineering.
Collapse
Affiliation(s)
- Zhijin Gong
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiayao Chen
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyu Jiao
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Gong
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Danzi Pan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingli Liu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Baghdassarian HM, Lewis NE. Resource allocation in mammalian systems. Biotechnol Adv 2024; 71:108305. [PMID: 38215956 PMCID: PMC11182366 DOI: 10.1016/j.biotechadv.2023.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cells execute biological functions to support phenotypes such as growth, migration, and secretion. Complementarily, each function of a cell has resource costs that constrain phenotype. Resource allocation by a cell allows it to manage these costs and optimize their phenotypes. In fact, the management of resource constraints (e.g., nutrient availability, bioenergetic capacity, and macromolecular machinery production) shape activity and ultimately impact phenotype. In mammalian systems, quantification of resource allocation provides important insights into higher-order multicellular functions; it shapes intercellular interactions and relays environmental cues for tissues to coordinate individual cells to overcome resource constraints and achieve population-level behavior. Furthermore, these constraints, objectives, and phenotypes are context-dependent, with cells adapting their behavior according to their microenvironment, resulting in distinct steady-states. This review will highlight the biological insights gained from probing resource allocation in mammalian cells and tissues.
Collapse
Affiliation(s)
- Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Akbari A, Haiman ZB, Palsson BO. A data-driven approach for timescale decomposition of biochemical reaction networks. mSystems 2024; 9:e0100123. [PMID: 38259168 PMCID: PMC10946255 DOI: 10.1128/msystems.01001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Understanding the dynamics of biological systems in evolving environments is a challenge due to their scale and complexity. Here, we present a computational framework for the timescale decomposition of biochemical reaction networks to distill essential patterns from their intricate dynamics. This approach identifies timescale hierarchies, concentration pools, and coherent structures from time-series data, providing a system-level description of reaction networks at physiologically important timescales. We apply this technique to kinetic models of hypothetical and biological pathways, validating it by reproducing analytically characterized or previously known concentration pools of these pathways. Moreover, by analyzing the timescale hierarchy of the glycolytic pathway, we elucidate the connections between the stoichiometric and dissipative structures of reaction networks and the temporal organization of coherent structures. Specifically, we show that glycolysis is a cofactor-driven pathway, the slowest dynamics of which are described by a balance between high-energy phosphate bond and redox trafficking. Overall, this approach provides more biologically interpretable characterizations of network dynamics than large-scale kinetic models, thus facilitating model reduction and personalized medicine applications. IMPORTANCE Complex interactions within interconnected biochemical reaction networks enable cellular responses to a wide range of unpredictable environmental perturbations. Understanding how biological functions arise from these intricate interactions has been a long-standing problem in biology. Here, we introduce a computational approach to dissect complex biological systems' dynamics in evolving environments. This approach characterizes the timescale hierarchies of complex reaction networks, offering a system-level understanding at physiologically relevant timescales. Analyzing various hypothetical and biological pathways, we show how stoichiometric properties shape the way energy is dissipated throughout reaction networks. Notably, we establish that glycolysis operates as a cofactor-driven pathway, where the slowest dynamics are governed by a balance between high-energy phosphate bonds and redox trafficking. This approach enhances our understanding of network dynamics and facilitates the development of reduced-order kinetic models with biologically interpretable components.
Collapse
Affiliation(s)
- Amir Akbari
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Zachary B. Haiman
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
12
|
Noirungsee N, Changkhong S, Phinyo K, Suwannajak C, Tanakul N, Inwongwan S. Genome-scale metabolic modelling of extremophiles and its applications in astrobiological environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13231. [PMID: 38192220 PMCID: PMC10866088 DOI: 10.1111/1758-2229.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Metabolic modelling approaches have become the powerful tools in modern biology. These mathematical models are widely used to predict metabolic phenotypes of the organisms or communities of interest, and to identify metabolic targets in metabolic engineering. Apart from a broad range of industrial applications, the possibility of using metabolic modelling in the contexts of astrobiology are poorly explored. In this mini-review, we consolidated the concepts and related applications of applying metabolic modelling in studying organisms in space-related environments, specifically the extremophilic microbes. We recapitulated the current state of the art in metabolic modelling approaches and their advantages in the astrobiological context. Our review encompassed the applications of metabolic modelling in the theoretical investigation of the origin of life within prebiotic environments, as well as the compilation of existing uses of genome-scale metabolic models of extremophiles. Furthermore, we emphasize the current challenges associated with applying this technique in extreme environments, and conclude this review by discussing the potential implementation of metabolic models to explore theoretically optimal metabolic networks under various space conditions. Through this mini-review, our aim is to highlight the potential of metabolic modelling in advancing the study of astrobiology.
Collapse
Affiliation(s)
- Nuttapol Noirungsee
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| | - Sakunthip Changkhong
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Department of Thoracic SurgeryUniversity Hospital ZurichZurichSwitzerland
| | - Kittiya Phinyo
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research group on Earth—Space Ecology (ESE), Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Office of Research AdministrationChiang Mai UniversityChiang MaiThailand
| | | | - Nahathai Tanakul
- National Astronomical Research Institute of ThailandChiang MaiThailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| |
Collapse
|
13
|
Wendering P, Nikoloski Z. Model-driven insights into the effects of temperature on metabolism. Biotechnol Adv 2023; 67:108203. [PMID: 37348662 DOI: 10.1016/j.biotechadv.2023.108203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Temperature affects cellular processes at different spatiotemporal scales, and identifying the genetic and molecular mechanisms underlying temperature responses paves the way to develop approaches for mitigating the effects of future climate scenarios. A systems view of the effects of temperature on cellular physiology can be obtained by focusing on metabolism since: (i) its functions depend on transcription and translation and (ii) its outcomes support organisms' development, growth, and reproduction. Here we provide a systematic review of modelling efforts directed at investigating temperature effects on properties of single biochemical reactions, system-level traits, metabolic subsystems, and whole-cell metabolism across different prokaryotes and eukaryotes. We compare and contrast computational approaches and theories that facilitate modelling of temperature effects on key properties of enzymes and their consideration in constraint-based as well as kinetic models of metabolism. In addition, we provide a summary of insights from computational approaches, facilitating integration of omics data from temperature-modulated experiments with models of metabolic networks, and review the resulting biotechnological applications. Lastly, we provide a perspective on how different types of metabolic modelling can profit from developments in machine learning and models of different cellular layers to improve model-driven insights into the effects of temperature relevant for biotechnological applications.
Collapse
Affiliation(s)
- Philipp Wendering
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany.
| |
Collapse
|
14
|
Bruggeman FJ, Teusink B, Steuer R. Trade-offs between the instantaneous growth rate and long-term fitness: Consequences for microbial physiology and predictive computational models. Bioessays 2023; 45:e2300015. [PMID: 37559168 DOI: 10.1002/bies.202300015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023]
Abstract
Microbial systems biology has made enormous advances in relating microbial physiology to the underlying biochemistry and molecular biology. By meticulously studying model microorganisms, in particular Escherichia coli and Saccharomyces cerevisiae, increasingly comprehensive computational models predict metabolic fluxes, protein expression, and growth. The modeling rationale is that cells are constrained by a limited pool of resources that they allocate optimally to maximize fitness. As a consequence, the expression of particular proteins is at the expense of others, causing trade-offs between cellular objectives such as instantaneous growth, stress tolerance, and capacity to adapt to new environments. While current computational models are remarkably predictive for E. coli and S. cerevisiae when grown in laboratory environments, this may not hold for other growth conditions and other microorganisms. In this contribution, we therefore discuss the relationship between the instantaneous growth rate, limited resources, and long-term fitness. We discuss uses and limitations of current computational models, in particular for rapidly changing and adverse environments, and propose to classify microbial growth strategies based on Grimes's CSR framework.
Collapse
Affiliation(s)
- Frank J Bruggeman
- Systems Biology Lab/AIMMS, VU University, Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Biology Lab/AIMMS, VU University, Amsterdam, The Netherlands
| | - Ralf Steuer
- Institute for Theoretical Biology (ITB), Institute for Biology, Humboldt-University of Berlin, Berlin, Germany
| |
Collapse
|
15
|
Caivano A, van Winden W, Dragone G, Mussatto SI. Enzyme-constrained metabolic model and in silico metabolic engineering of Clostridium ljungdahlii for the development of sustainable production processes. Comput Struct Biotechnol J 2023; 21:4634-4646. [PMID: 37790242 PMCID: PMC10543971 DOI: 10.1016/j.csbj.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023] Open
Abstract
Constraint-based genome-scale models (GEMs) of microorganisms provide a powerful tool for predicting and analyzing microbial phenotypes as well as for understanding how these are affected by genetic and environmental perturbations. Recently, MATLAB and Python-based tools have been developed to incorporate enzymatic constraints into GEMs. These constraints enhance phenotype predictions by accounting for the enzyme cost of catalyzed model´s reactions, thereby reducing the space of possible metabolic flux distributions. In this study, enzymatic constraints were added to an existing GEM of Clostridium ljungdahlii, a model acetogenic bacterium, by including its enzyme turnover numbers (kcats) and molecular masses, using the Python-based AutoPACMEN approach. When compared to the metabolic model iHN637, the enzyme cost-constrained model (ec_iHN637) obtained in our study showed an improved predictive ability of growth rate and product profile. The model ec_iHN637 was then employed to perform in silico metabolic engineering of C. ljungdahlii, by using the OptKnock computational framework to identify knockouts to enhance the production of desired fermentation products. The in silico metabolic engineering was geared towards increasing the production of fermentation products by C. ljungdahlii, with a focus on the utilization of synthesis gas and CO2. This resulted in different engineering strategies for overproduction of valuable metabolites under different feeding conditions, without redundant knockouts for different products. Importantly, the results of the in silico engineering results indicated that the mixotrophic growth of C. ljungdahlii is a promising approach to coupling improved cell growth and acetate and ethanol productivity with net CO2 fixation.
Collapse
Affiliation(s)
- Antonio Caivano
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| | - Wouter van Winden
- DSM-Firmenich Science & Research - Bioprocess Innovation, Rosalind Franklin Biotechnology Center, Alexander Fleminglaan 1, 2613 AX, Delft, the Netherlands
| | - Giuliano Dragone
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| | - Solange I. Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Masson HO, Karottki KJLC, Tat J, Hefzi H, Lewis NE. From observational to actionable: rethinking omics in biologics production. Trends Biotechnol 2023; 41:1127-1138. [PMID: 37062598 PMCID: PMC10524802 DOI: 10.1016/j.tibtech.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023]
Abstract
As the era of omics continues to expand with increasing ubiquity and success in both academia and industry, omics-based experiments are becoming commonplace in industrial biotechnology, including efforts to develop novel solutions in bioprocess optimization and cell line development. Omic technologies provide particularly valuable 'observational' insights for discovery science, especially in academic research and industrial R&D; however, biomanufacturing requires a different paradigm to unlock 'actionable' insights from omics. Here, we argue the value of omic experiments in biotechnology can be maximized with deliberate selection of omic approaches and forethought about analysis techniques. We describe important considerations when designing and implementing omic-based experiments and discuss how systems biology analysis strategies can enhance efforts to obtain actionable insights in mammalian-based biologics production.
Collapse
Affiliation(s)
- Helen O Masson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | - Jasmine Tat
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Amgen Inc., Thousand Oaks, CA, USA
| | | | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Tec-Campos D, Posadas C, Tibocha-Bonilla JD, Thiruppathy D, Glonek N, Zuñiga C, Zepeda A, Zengler K. The genome-scale metabolic model for the purple non-sulfur bacterium Rhodopseudomonas palustris Bis A53 accurately predicts phenotypes under chemoheterotrophic, chemoautotrophic, photoheterotrophic, and photoautotrophic growth conditions. PLoS Comput Biol 2023; 19:e1011371. [PMID: 37556472 PMCID: PMC10441798 DOI: 10.1371/journal.pcbi.1011371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/21/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
The purple non-sulfur bacterium Rhodopseudomonas palustris is recognized as a critical microorganism in the nitrogen and carbon cycle and one of the most common members in wastewater treatment communities. This bacterium is metabolically extremely versatile. It is capable of heterotrophic growth under aerobic and anaerobic conditions, but also able to grow photoautotrophically as well as mixotrophically. Therefore R. palustris can adapt to multiple environments and establish commensal relationships with other organisms, expressing various enzymes supporting degradation of amino acids, carbohydrates, nucleotides, and complex polymers. Moreover, R. palustris can degrade a wide range of pollutants under anaerobic conditions, e.g., aromatic compounds such as benzoate and caffeate, enabling it to thrive in chemically contaminated environments. However, many metabolic mechanisms employed by R. palustris to breakdown and assimilate different carbon and nitrogen sources under chemoheterotrophic or photoheterotrophic conditions remain unknown. Systems biology approaches, such as metabolic modeling, have been employed extensively to unravel complex mechanisms of metabolism. Previously, metabolic models have been reconstructed to study selected capabilities of R. palustris under limited experimental conditions. Here, we developed a comprehensive metabolic model (M-model) for R. palustris Bis A53 (iDT1294) consisting of 2,721 reactions, 2,123 metabolites, and comprising 1,294 genes. We validated the model using high-throughput phenotypic, physiological, and kinetic data, testing over 350 growth conditions. iDT1294 achieved a prediction accuracy of 90% for growth with various carbon and nitrogen sources and close to 80% for assimilation of aromatic compounds. Moreover, the M-model accurately predicts dynamic changes of growth and substrate consumption rates over time under nine chemoheterotrophic conditions and demonstrated high precision in predicting metabolic changes between photoheterotrophic and photoautotrophic conditions. This comprehensive M-model will help to elucidate metabolic processes associated with the assimilation of multiple carbon and nitrogen sources, anoxygenic photosynthesis, aromatic compound degradation, as well as production of molecular hydrogen and polyhydroxybutyrate.
Collapse
Affiliation(s)
- Diego Tec-Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Camila Posadas
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Juan D. Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, United States of America
| | - Deepan Thiruppathy
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California, San Diego, La Jolla California, United States of America
| | - Nathan Glonek
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Cristal Zuñiga
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Alejandro Zepeda
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California, San Diego, La Jolla California, United States of America
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
18
|
Choi YM, Choi DH, Lee YQ, Koduru L, Lewis NE, Lakshmanan M, Lee DY. Mitigating biomass composition uncertainties in flux balance analysis using ensemble representations. Comput Struct Biotechnol J 2023; 21:3736-3745. [PMID: 37547082 PMCID: PMC10400880 DOI: 10.1016/j.csbj.2023.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
The biomass equation is a critical component in genome-scale metabolic models (GEMs): it is used as the de facto objective function in flux balance analysis (FBA). This equation accounts for the quantities of all known biomass precursors that are required for cell growth based on the macromolecular and monomer compositions measured at certain conditions. However, it is often reported that the macromolecular composition of cells could change across different environmental conditions and thus the use of the same single biomass equation in FBA, under multiple conditions, is questionable. Herein, we first investigated the qualitative and quantitative variations of macromolecular compositions of three representative host organisms, Escherichia coli, Saccharomyces cerevisiae and Cricetulus griseus, across different environmental/genetic variations. While macromolecular building blocks such as RNA, protein, and lipid composition vary notably, changes in fundamental biomass monomer units such as nucleotides and amino acids are not appreciable. We also observed that flux predictions through FBA is quite sensitive to macromolecular compositions but not the monomer compositions. Based on these observations, we propose ensemble representations of biomass equation in FBA to account for the natural variation of cellular constituents. Such ensemble representations of biomass better predicted the flux through anabolic reactions as it allows for the flexibility in the biosynthetic demands of the cells. The current study clearly highlights that certain component of the biomass equation indeed vary across different conditions, and the ensemble representation of biomass equation in FBA by accounting for such natural variations could avoid inaccuracies that may arise from in silico simulations.
Collapse
Affiliation(s)
- Yoon-Mi Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), Singapore
| | - Dong-Hyuk Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Yi Qing Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Lokanand Koduru
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), Singapore
| | - Nathan E. Lewis
- Departments of Pediatrics and Bioengineering, University of California, La Jolla, San Diego, USA
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), Singapore
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, and Centre for Integrative Biology and Systems medicinE (IBSE), Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
- Bitwinners Pte. Ltd., Singapore
| |
Collapse
|
19
|
Leng H, Wang Y, Zhao W, Sievert SM, Xiao X. Identification of a deep-branching thermophilic clade sheds light on early bacterial evolution. Nat Commun 2023; 14:4354. [PMID: 37468486 DOI: 10.1038/s41467-023-39960-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
It has been proposed that early bacteria, or even the last universal common ancestor of all cells, were thermophilic. However, research on the origin and evolution of thermophily is hampered by the difficulties associated with the isolation of deep-branching thermophilic microorganisms in pure culture. Here, we isolate a deep-branching thermophilic bacterium from a deep-sea hydrothermal vent, using a two-step cultivation strategy ("Subtraction-Suboptimal", StS) designed to isolate rare organisms. The bacterium, which we name Zhurongbacter thermophilus 3DAC, is a sulfur-reducing heterotroph that is phylogenetically related to Coprothermobacterota and other thermophilic bacterial groups, forming a clade that seems to represent a major, early-diverging bacterial lineage. The ancestor of this clade might be a thermophilic, strictly anaerobic, motile, hydrogen-dependent, and mixotrophic bacterium. Thus, our study provides insights into the early evolution of thermophilic bacteria.
Collapse
Affiliation(s)
- Hao Leng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Weishu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China.
| |
Collapse
|
20
|
Fan X, Cao L, Yan X. Sensitivity analysis and adaptive mutation strategy differential evolution algorithm for optimizing enzymes' turnover numbers in metabolic models. Biotechnol Bioeng 2023. [PMID: 37448239 DOI: 10.1002/bit.28493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/04/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Genome-scale metabolic network model (GSMM) based on enzyme constraints greatly improves general metabolic models. The turnover number ( k cat ${k}_{\mathrm{cat}}$ ) of enzymes is used as a parameter to limit the reaction when extending GSMM. Therefore, turnover number plays a crucial role in the prediction accuracy of cell metabolism. In this work, we proposed an enzyme-constrained GSMM parameter optimization method. First, sensitivity analysis of the parameters was carried out to select the parameters with the greatest influence on predicting the specific growth rate. Then, differential evolution (DE) algorithm with adaptive mutation strategy was adopted to optimize the parameters. This algorithm can dynamically select five different mutation strategies. Finally, the specific growth rate prediction, flux variability, and phase plane of the optimized model were analyzed to further evaluate the model. The enzyme-constrained GSMM of Saccharomyces cerevisiae, ecYeast8.3.4, was optimized. Results of the sensitivity analysis showed that the optimization variables can be divided into three groups based on sensitivity: most sensitive (149 k cat ${k}_{\mathrm{cat}}$ c), highly sensitive (1759 k cat ${k}_{\mathrm{cat}}$ ), and nonsensitive (2502 k cat ${k}_{\mathrm{cat}}$ ) groups. Six optimization strategies were developed based on the results of the sensitivity analysis. The results showed that the DE with adaptive mutation strategy can indeed improve the model by optimizing highly sensitive parameters. Retaining all parameters and optimizing the highly sensitive parameters are the recommended optimization strategy.
Collapse
Affiliation(s)
- Xingcun Fan
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Lingfeng Cao
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Xuefeng Yan
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
21
|
Kroll A, Rousset Y, Hu XP, Liebrand NA, Lercher MJ. Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning. Nat Commun 2023; 14:4139. [PMID: 37438349 DOI: 10.1038/s41467-023-39840-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
The turnover number kcat, a measure of enzyme efficiency, is central to understanding cellular physiology and resource allocation. As experimental kcat estimates are unavailable for the vast majority of enzymatic reactions, the development of accurate computational prediction methods is highly desirable. However, existing machine learning models are limited to a single, well-studied organism, or they provide inaccurate predictions except for enzymes that are highly similar to proteins in the training set. Here, we present TurNuP, a general and organism-independent model that successfully predicts turnover numbers for natural reactions of wild-type enzymes. We constructed model inputs by representing complete chemical reactions through differential reaction fingerprints and by representing enzymes through a modified and re-trained Transformer Network model for protein sequences. TurNuP outperforms previous models and generalizes well even to enzymes that are not similar to proteins in the training set. Parameterizing metabolic models with TurNuP-predicted kcat values leads to improved proteome allocation predictions. To provide a powerful and convenient tool for the study of molecular biochemistry and physiology, we implemented a TurNuP web server.
Collapse
Affiliation(s)
- Alexander Kroll
- Institute for Computer Science and Department of Biology, Heinrich Heine University, D-40225, Düsseldorf, Germany
| | - Yvan Rousset
- Institute for Computer Science and Department of Biology, Heinrich Heine University, D-40225, Düsseldorf, Germany
| | - Xiao-Pan Hu
- Institute for Computer Science and Department of Biology, Heinrich Heine University, D-40225, Düsseldorf, Germany
| | - Nina A Liebrand
- Institute for Computer Science and Department of Biology, Heinrich Heine University, D-40225, Düsseldorf, Germany
| | - Martin J Lercher
- Institute for Computer Science and Department of Biology, Heinrich Heine University, D-40225, Düsseldorf, Germany.
| |
Collapse
|
22
|
Wendering P, Arend M, Razaghi-Moghadam Z, Nikoloski Z. Data integration across conditions improves turnover number estimates and metabolic predictions. Nat Commun 2023; 14:1485. [PMID: 36932067 PMCID: PMC10023748 DOI: 10.1038/s41467-023-37151-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Turnover numbers characterize a key property of enzymes, and their usage in constraint-based metabolic modeling is expected to increase the prediction accuracy of diverse cellular phenotypes. In vivo turnover numbers can be obtained by integrating reaction rate and enzyme abundance measurements from individual experiments. Yet, their contribution to improving predictions of condition-specific cellular phenotypes remains elusive. Here, we show that available in vitro and in vivo turnover numbers lead to poor prediction of condition-specific growth rates with protein-constrained models of Escherichia coli and Saccharomyces cerevisiae, particularly when protein abundances are considered. We demonstrate that correction of turnover numbers by simultaneous consideration of proteomics and physiological data leads to improved predictions of condition-specific growth rates. Moreover, the obtained estimates are more precise than corresponding in vitro turnover numbers. Therefore, our approach provides the means to correct turnover numbers and paves the way towards cataloguing kcatomes of other organisms.
Collapse
Affiliation(s)
- Philipp Wendering
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Marius Arend
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zahra Razaghi-Moghadam
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| |
Collapse
|
23
|
Inwongwan S, Pekkoh J, Pumas C, Sattayawat P. Metabolic network reconstruction of Euglena gracilis: Current state, challenges, and applications. Front Microbiol 2023; 14:1143770. [PMID: 36937274 PMCID: PMC10018167 DOI: 10.3389/fmicb.2023.1143770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
A metabolic model, representing all biochemical reactions in a cell, is a prerequisite for several approaches in systems biology used to explore the metabolic phenotype of an organism. Despite the use of Euglena in diverse industrial applications and as a biological model, there is limited understanding of its metabolic network capacity. The unavailability of the completed genome data and the highly complex evolution of Euglena are significant obstacles to the reconstruction and analysis of its genome-scale metabolic model. In this mini-review, we discuss the current state and challenges of metabolic network reconstruction in Euglena gracilis. We have collated and present the available relevant data for the metabolic network reconstruction of E. gracilis, which could be used to improve the quality of the metabolic model of E. gracilis. Furthermore, we deliver the potential applications of the model in metabolic engineering. Altogether, it is supposed that this mini-review would facilitate the investigation of metabolic networks in Euglena and further lay out a direction for model-assisted metabolic engineering.
Collapse
Affiliation(s)
- Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
24
|
Sangtani R, Nogueira R, Yadav AK, Kiran B. Systematizing Microbial Bioplastic Production for Developing Sustainable Bioeconomy: Metabolic Nexus Modeling, Economic and Environmental Technologies Assessment. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2023; 31:2741-2760. [PMID: 36811096 PMCID: PMC9933833 DOI: 10.1007/s10924-023-02787-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 06/12/2023]
Abstract
The excessive usage of non-renewable resources to produce plastic commodities has incongruously influenced the environment's health. Especially in the times of COVID-19, the need for plastic-based health products has increased predominantly. Given the rise in global warming and greenhouse gas emissions, the lifecycle of plastic has been established to contribute to it significantly. Bioplastics such as polyhydroxy alkanoates, polylactic acid, etc. derived from renewable energy origin have been a magnificent alternative to conventional plastics and reconnoitered exclusively for combating the environmental footprint of petrochemical plastic. However, the economically reasonable and environmentally friendly procedure of microbial bioplastic production has been a hard nut to crack due to less scouted and inefficient process optimization and downstream processing methodologies. Thereby, meticulous employment of computational tools such as genome-scale metabolic modeling and flux balance analysis has been practiced in recent times to understand the effect of genomic and environmental perturbations on the phenotype of the microorganism. In-silico results not only aid us in determining the biorefinery abilities of the model microorganism but also curb our reliance on equipment, raw materials, and capital investment for optimizing the best conditions. Additionally, to accomplish sustainable large-scale production of microbial bioplastic in a circular bioeconomy, extraction, and refinement of bioplastic needs to be investigated extensively by practicing techno-economic analysis and life cycle assessment. This review put forth state-of-the-art know-how on the proficiency of these computational techniques in laying the foundation of an efficient bioplastic manufacturing blueprint, chiefly focusing on microbial polyhydroxy alkanoates (PHA) production and its efficacy in outplacing fossil based plastic products.
Collapse
Affiliation(s)
- Rimjhim Sangtani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, 453552, Indore, India
| | - Regina Nogueira
- Institute for Sanitary Engineering and Waste Management, Leibniz Universität Hannover, Hannover, Germany
| | - Asheesh Kumar Yadav
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Bala Kiran
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, 453552, Indore, India
| |
Collapse
|
25
|
Vilkhovoy M, Dammalapati S, Vadhin S, Adhikari A, Varner JD. Integrated Constraint-Based Modeling of E. coli Cell-Free Protein Synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528035. [PMID: 36798424 PMCID: PMC9934623 DOI: 10.1101/2023.02.10.528035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cell-free protein expression has become a widely used research tool in systems and synthetic biology and a promising technology for protein biomanufacturing. Cell-free protein synthesis relies on in-vitro transcription and translation processes to produce a protein of interest. However, transcription and translation depend upon the operation of complex metabolic pathways for precursor and energy regeneration. Toward understanding the role of metabolism in a cell-free system, we developed a dynamic constraint-based simulation of protein production in the myTXTL E. coli cell-free system with and without electron transport chain inhibitors. Time-resolved absolute metabolite measurements for â"³ = 63 metabolites, along with absolute concentration measurements of the mRNA and protein abundance and measurements of enzyme activity, were integrated with kinetic and enzyme abundance information to simulate the time evolution of metabolic flux and protein production with and without inhibitors. The metabolic flux distribution estimated by the model, along with the experimental metabolite and enzyme activity data, suggested that the myTXTL cell-free system has an active central carbon metabolism with glutamate powering the TCA cycle. Further, the electron transport chain inhibitor studies suggested the presence of oxidative phosphorylation activity in the myTXTL cell-free system; the oxidative phosphorylation inhibitors provided biochemical evidence that myTXTL relied, at least partially, on oxidative phosphorylation to generate the energy required to sustain transcription and translation for a 16-hour batch reaction.
Collapse
|
26
|
Strain B, Morrissey J, Antonakoudis A, Kontoravdi C. Genome-scale models as a vehicle for knowledge transfer from microbial to mammalian cell systems. Comput Struct Biotechnol J 2023; 21:1543-1549. [PMID: 36879884 PMCID: PMC9984296 DOI: 10.1016/j.csbj.2023.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
With the plethora of omics data becoming available for mammalian cell and, increasingly, human cell systems, Genome-scale metabolic models (GEMs) have emerged as a useful tool for their organisation and analysis. The systems biology community has developed an array of tools for the solution, interrogation and customisation of GEMs as well as algorithms that enable the design of cells with desired phenotypes based on the multi-omics information contained in these models. However, these tools have largely found application in microbial cells systems, which benefit from smaller model size and ease of experimentation. Herein, we discuss the major outstanding challenges in the use of GEMs as a vehicle for accurately analysing data for mammalian cell systems and transferring methodologies that would enable their use to design strains and processes. We provide insights on the opportunities and limitations of applying GEMs to human cell systems for advancing our understanding of health and disease. We further propose their integration with data-driven tools and their enrichment with cellular functions beyond metabolism, which would, in theory, more accurately describe how resources are allocated intracellularly.
Collapse
Affiliation(s)
- Benjamin Strain
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - James Morrissey
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
27
|
Predicting stress response and improved protein overproduction in Bacillus subtilis. NPJ Syst Biol Appl 2022; 8:50. [PMID: 36575180 PMCID: PMC9794813 DOI: 10.1038/s41540-022-00259-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/07/2022] [Indexed: 12/28/2022] Open
Abstract
Bacillus subtilis is a well-characterized microorganism and a model for the study of Gram-positive bacteria. The bacterium can produce proteins at high densities and yields, which has made it valuable for industrial bioproduction. Like other cell factories, metabolic modeling of B. subtilis has discovered ways to optimize its metabolism toward various applications. The first genome-scale metabolic model (M-model) of B. subtilis was published more than a decade ago and has been applied extensively to understand metabolism, to predict growth phenotypes, and served as a template to reconstruct models for other Gram-positive bacteria. However, M-models are ill-suited to simulate the production and secretion of proteins as well as their proteomic response to stress. Thus, a new generation of metabolic models, known as metabolism and gene expression models (ME-models), has been initiated. Here, we describe the reconstruction and validation of a ME model of B. subtilis, iJT964-ME. This model achieved higher performance scores on the prediction of gene essentiality as compared to the M-model. We successfully validated the model by integrating physiological and omics data associated with gene expression responses to ethanol and salt stress. The model further identified the mechanism by which tryptophan synthesis is upregulated under ethanol stress. Further, we employed iJT964-ME to predict amylase production rates under two different growth conditions. We analyzed these flux distributions and identified key metabolic pathways that permitted the increase in amylase production. Models like iJT964-ME enable the study of proteomic response to stress and the illustrate the potential for optimizing protein production in bacteria.
Collapse
|
28
|
Souza JL, Nunes VV, Calazans CC, Silva-Mann R. Biotechnological potential of medicinal plant Erythrina velutina Willd: A systematic review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
29
|
Chowdhury NB, Alsiyabi A, Saha R. Characterizing the Interplay of Rubisco and Nitrogenase Enzymes in Anaerobic-Photoheterotrophically Grown Rhodopseudomonas palustris CGA009 through a Genome-Scale Metabolic and Expression Model. Microbiol Spectr 2022; 10:e0146322. [PMID: 35730964 PMCID: PMC9431616 DOI: 10.1128/spectrum.01463-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
Rhodopseudomonas palustris CGA009 is a Gram-negative purple nonsulfur bacterium that grows phototrophically by fixing carbon dioxide and nitrogen or chemotrophically by fixing or catabolizing a wide array of substrates, including lignin breakdown products for its carbon and fixing nitrogen for its nitrogen requirements. It can grow aerobically or anaerobically and can use light, inorganic, and organic compounds for energy production. Due to its ability to convert different carbon sources into useful products during anaerobic growth, this study reconstructed a metabolic and expression (ME) model of R. palustris to investigate its anaerobic-photoheterotrophic growth. Unlike metabolic (M) models, ME models include transcription and translation reactions along with macromolecules synthesis and couple these reactions with growth rate. This unique feature of the ME model led to nonlinear growth curve predictions, which matched closely with experimental growth rate data. At the theoretical maximum growth rate, the ME model suggested a diminishing rate of carbon fixation and predicted malate dehydrogenase and glycerol-3 phosphate dehydrogenase as alternate electron sinks. Moreover, the ME model also identified ferredoxin as a key regulator in distributing electrons between major redox balancing pathways. Because ME models include the turnover rate for each metabolic reaction, it was used to successfully capture experimentally observed temperature regulation of different nitrogenases. Overall, these unique features of the ME model demonstrated the influence of nitrogenases and rubiscos on R. palustris growth and predicted a key regulator in distributing electrons between major redox balancing pathways, thus establishing a platform for in silico investigation of R. palustris metabolism from a multiomics perspective. IMPORTANCE In this work, we reconstructed the first ME model for a purple nonsulfur bacterium (PNSB). Using the ME model, different aspects of R. palustris metabolism were examined. First, the ME model was used to analyze how reducing power entering the R. palustris cell through organic carbon sources gets partitioned into biomass, carbon dioxide fixation, and nitrogen fixation. Furthermore, the ME model predicted electron flux through ferredoxin as a major bottleneck in distributing electrons to nitrogenase enzymes. Next, the ME model characterized different nitrogenase enzymes and successfully recapitulated experimentally observed temperature regulations of those enzymes. Identifying the bottleneck responsible for transferring an electron to nitrogenase enzymes and recapitulating the temperature regulation of different nitrogenase enzymes can have profound implications in metabolic engineering, such as hydrogen production from R. palustris. Another interesting application of this ME model can be to take advantage of its redox balancing strategy to gain an understanding of the regulatory mechanism of biodegradable plastic production precursors, such as polyhydroxybutyrate (PHB).
Collapse
Affiliation(s)
- Niaz Bahar Chowdhury
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Adil Alsiyabi
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rajib Saha
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
30
|
Köbis MA, Bockmayr A, Steuer R. Time-Optimal Adaptation in Metabolic Network Models. Front Mol Biosci 2022; 9:866676. [PMID: 35911956 PMCID: PMC9329932 DOI: 10.3389/fmolb.2022.866676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Analysis of metabolic models using constraint-based optimization has emerged as an important computational technique to elucidate and eventually predict cellular metabolism and growth. In this work, we introduce time-optimal adaptation (TOA), a new constraint-based modeling approach that allows us to evaluate the fastest possible adaptation to a pre-defined cellular state while fulfilling a given set of dynamic and static constraints. TOA falls into the mathematical problem class of time-optimal control problems, and, in its general form, can be broadly applied and thereby extends most existing constraint-based modeling frameworks. Specifically, we introduce a general mathematical framework that captures many existing constraint-based methods and define TOA within this framework. We then exemplify TOA using a coarse-grained self-replicator model and demonstrate that TOA allows us to explain several well-known experimental phenomena that are difficult to explore using existing constraint-based analysis methods. We show that TOA predicts accumulation of storage compounds in constant environments, as well as overshoot uptake metabolism after periods of nutrient scarcity. TOA shows that organisms with internal temporal degrees of freedom, such as storage, can in most environments outperform organisms with a static intracellular composition. Furthermore, TOA reveals that organisms adapted to better growth conditions than present in the environment (“optimists”) typically outperform organisms adapted to poorer growth conditions (“pessimists”).
Collapse
Affiliation(s)
- Markus A. Köbis
- Research Group Dynamical Systems and Numerical Analysis, Department of Mathematics, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Markus A. Köbis, ; Ralf Steuer,
| | - Alexander Bockmayr
- Mathematics in Life Science Group, Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Ralf Steuer
- Humboldt-University of Berlin, Institute for Biology, Institute for Theoretical Biology (ITB), Berlin, Germany
- *Correspondence: Markus A. Köbis, ; Ralf Steuer,
| |
Collapse
|
31
|
Domenzain I, Sánchez B, Anton M, Kerkhoven EJ, Millán-Oropeza A, Henry C, Siewers V, Morrissey JP, Sonnenschein N, Nielsen J. Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0. Nat Commun 2022; 13:3766. [PMID: 35773252 PMCID: PMC9246944 DOI: 10.1038/s41467-022-31421-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/16/2022] [Indexed: 01/08/2023] Open
Abstract
Genome-scale metabolic models (GEMs) have been widely used for quantitative exploration of the relation between genotype and phenotype. Streamlined integration of enzyme constraints and proteomics data into such models was first enabled by the GECKO toolbox, allowing the study of phenotypes constrained by protein limitations. Here, we upgrade the toolbox in order to enhance models with enzyme and proteomics constraints for any organism with a compatible GEM reconstruction. With this, enzyme-constrained models for the budding yeasts Saccharomyces cerevisiae, Yarrowia lipolytica and Kluyveromyces marxianus are generated to study their long-term adaptation to several stress factors by incorporation of proteomics data. Predictions reveal that upregulation and high saturation of enzymes in amino acid metabolism are common across organisms and conditions, suggesting the relevance of metabolic robustness in contrast to optimal protein utilization as a cellular objective for microbial growth under stress and nutrient-limited conditions. The functionality of GECKO is expanded with an automated framework for continuous and version-controlled update of enzyme-constrained GEMs, also producing such models for Escherichia coli and Homo sapiens. In this work, we facilitate the utilization of enzyme-constrained GEMs in basic science, metabolic engineering and synthetic biology purposes.
Collapse
Affiliation(s)
- Iván Domenzain
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Benjamín Sánchez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Mihail Anton
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Kemivägen 10, SE-412 58, Gothenburg, Sweden
| | - Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Aarón Millán-Oropeza
- Plateforme d'analyse protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Céline Henry
- Plateforme d'analyse protéomique Paris Sud-Ouest (PAPPSO), INRAE, MICALIS Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute and APC Microbiome Ireland, University College Cork, T12 K8AF, Cork, Ireland
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
- BioInnovation Institute, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark.
| |
Collapse
|
32
|
Kerkhoven EJ. Advances in constraint-based models: methods for improved predictive power based on resource allocation constraints. Curr Opin Microbiol 2022; 68:102168. [PMID: 35691074 DOI: 10.1016/j.mib.2022.102168] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
The concept of metabolic models with resource allocation constraints has been around for over a decade and has clear advantages even when implementation is relatively rudimentary. Nonetheless, the number of organisms for which such a model is reconstructed is low. Various approaches exist, from coarse-grained consideration of enzyme usage to fine-grained description of protein translation. These approaches are reviewed here, with a particular focus on user-friendly solutions that can introduce resource allocation constraints to metabolic models of any organism. The availability of kcat data is a major hurdle, where recent advances might help to fill in the numerous gaps that exist for this data, especially for nonmodel organisms.
Collapse
Affiliation(s)
- Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
33
|
Bi X, Liu Y, Li J, Du G, Lv X, Liu L. Construction of Multiscale Genome-Scale Metabolic Models: Frameworks and Challenges. Biomolecules 2022; 12:biom12050721. [PMID: 35625648 PMCID: PMC9139095 DOI: 10.3390/biom12050721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Genome-scale metabolic models (GEMs) are effective tools for metabolic engineering and have been widely used to guide cell metabolic regulation. However, the single gene–protein-reaction data type in GEMs limits the understanding of biological complexity. As a result, multiscale models that add constraints or integrate omics data based on GEMs have been developed to more accurately predict phenotype from genotype. This review summarized the recent advances in the development of multiscale GEMs, including multiconstraint, multiomic, and whole-cell models, and outlined machine learning applications in GEM construction. This review focused on the frameworks, toolkits, and algorithms for constructing multiscale GEMs. The challenges and perspectives of multiscale GEM development are also discussed.
Collapse
Affiliation(s)
- Xinyu Bi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.B.); (Y.L.); (J.L.); (G.D.); (X.L.)
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.B.); (Y.L.); (J.L.); (G.D.); (X.L.)
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.B.); (Y.L.); (J.L.); (G.D.); (X.L.)
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.B.); (Y.L.); (J.L.); (G.D.); (X.L.)
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.B.); (Y.L.); (J.L.); (G.D.); (X.L.)
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.B.); (Y.L.); (J.L.); (G.D.); (X.L.)
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-0510-8591-8312; Fax: +86-0510-8591-8309
| |
Collapse
|
34
|
Quantitative metabolic fluxes regulated by trans-omic networks. Biochem J 2022; 479:787-804. [PMID: 35356967 PMCID: PMC9022981 DOI: 10.1042/bcj20210596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022]
Abstract
Cells change their metabolism in response to internal and external conditions by regulating the trans-omic network, which is a global biochemical network with multiple omic layers. Metabolic flux is a direct measure of the activity of a metabolic reaction that provides valuable information for understanding complex trans-omic networks. Over the past decades, techniques to determine metabolic fluxes, including 13C-metabolic flux analysis (13C-MFA), flux balance analysis (FBA), and kinetic modeling, have been developed. Recent studies that acquire quantitative metabolic flux and multi-omic data have greatly advanced the quantitative understanding and prediction of metabolism-centric trans-omic networks. In this review, we present an overview of 13C-MFA, FBA, and kinetic modeling as the main techniques to determine quantitative metabolic fluxes, and discuss their advantages and disadvantages. We also introduce case studies with the aim of understanding complex metabolism-centric trans-omic networks based on the determination of metabolic fluxes.
Collapse
|
35
|
Passi A, Tibocha-Bonilla JD, Kumar M, Tec-Campos D, Zengler K, Zuniga C. Genome-Scale Metabolic Modeling Enables In-Depth Understanding of Big Data. Metabolites 2021; 12:14. [PMID: 35050136 PMCID: PMC8778254 DOI: 10.3390/metabo12010014] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Genome-scale metabolic models (GEMs) enable the mathematical simulation of the metabolism of archaea, bacteria, and eukaryotic organisms. GEMs quantitatively define a relationship between genotype and phenotype by contextualizing different types of Big Data (e.g., genomics, metabolomics, and transcriptomics). In this review, we analyze the available Big Data useful for metabolic modeling and compile the available GEM reconstruction tools that integrate Big Data. We also discuss recent applications in industry and research that include predicting phenotypes, elucidating metabolic pathways, producing industry-relevant chemicals, identifying drug targets, and generating knowledge to better understand host-associated diseases. In addition to the up-to-date review of GEMs currently available, we assessed a plethora of tools for developing new GEMs that include macromolecular expression and dynamic resolution. Finally, we provide a perspective in emerging areas, such as annotation, data managing, and machine learning, in which GEMs will play a key role in the further utilization of Big Data.
Collapse
Affiliation(s)
- Anurag Passi
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
| | - Juan D. Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA;
| | - Manish Kumar
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
| | - Diego Tec-Campos
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán, Merida 97203, Yucatan, Mexico
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0403, USA
| | - Cristal Zuniga
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
| |
Collapse
|
36
|
Sinha N, van Schothorst EM, Hooiveld GJEJ, Keijer J, Martins Dos Santos VAP, Suarez-Diez M. Exploring the associations between transcript levels and fluxes in constraint-based models of metabolism. BMC Bioinformatics 2021; 22:574. [PMID: 34839828 PMCID: PMC8628452 DOI: 10.1186/s12859-021-04488-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several computational methods have been developed that integrate transcriptomics data with genome-scale metabolic reconstructions to increase accuracy of inferences of intracellular metabolic flux distributions. Even though existing methods use transcript abundances as a proxy for enzyme activity, each method uses a different hypothesis and assumptions. Most methods implicitly assume a proportionality between transcript levels and flux through the corresponding function, although these proportionality constant(s) are often not explicitly mentioned nor discussed in any of the published methods. E-Flux is one such method and, in this algorithm, flux bounds are related to expression data, so that reactions associated with highly expressed genes are allowed to carry higher flux values. RESULTS Here, we extended E-Flux and systematically evaluated the impact of an assumed proportionality constant on model predictions. We used data from published experiments with Escherichia coli and Saccharomyces cerevisiae and we compared the predictions of the algorithm to measured extracellular and intracellular fluxes. CONCLUSION We showed that detailed modelling using a proportionality constant can greatly impact the outcome of the analysis. This increases accuracy and allows for extraction of better physiological information.
Collapse
Affiliation(s)
- Neeraj Sinha
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Human and Animal Physiology, Wageningen University & Research, De Elst 1, 6708 WD, Wageningen, The Netherlands.,Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Evert M van Schothorst
- Human and Animal Physiology, Wageningen University & Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University & Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,LifeGlimmer GmbH., Markelstrasse 38, 12163, Berlin, Germany.,Bioprocess Engineering Group, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
37
|
Panikov NS. Genome-Scale Reconstruction of Microbial Dynamic Phenotype: Successes and Challenges. Microorganisms 2021; 9:2352. [PMID: 34835477 PMCID: PMC8621822 DOI: 10.3390/microorganisms9112352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
This review is a part of the SI 'Genome-Scale Modeling of Microorganisms in the Real World'. The goal of GEM is the accurate prediction of the phenotype from its respective genotype under specified environmental conditions. This review focuses on the dynamic phenotype; prediction of the real-life behaviors of microorganisms, such as cell proliferation, dormancy, and mortality; balanced and unbalanced growth; steady-state and transient processes; primary and secondary metabolism; stress responses; etc. Constraint-based metabolic reconstructions were successfully started two decades ago as FBA, followed by more advanced models, but this review starts from the earlier nongenomic predecessors to show that some GEMs inherited the outdated biokinetic frameworks compromising their performances. The most essential deficiencies are: (i) an inadequate account of environmental conditions, such as various degrees of nutrients limitation and other factors shaping phenotypes; (ii) a failure to simulate the adaptive changes of MMCC (MacroMolecular Cell Composition) in response to the fluctuating environment; (iii) the misinterpretation of the SGR (Specific Growth Rate) as either a fixed constant parameter of the model or independent factor affecting the conditional expression of macromolecules; (iv) neglecting stress resistance as an important objective function; and (v) inefficient experimental verification of GEM against simple growth (constant MMCC and SGR) data. Finally, we propose several ways to improve GEMs, such as replacing the outdated Monod equation with the SCM (Synthetic Chemostat Model) that establishes the quantitative relationships between primary and secondary metabolism, growth rate and stress resistance, process kinetics, and cell composition.
Collapse
Affiliation(s)
- Nicolai S Panikov
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| |
Collapse
|
38
|
Ferreira M, Ventorim R, Almeida E, Silveira S, Silveira W. Protein Abundance Prediction Through Machine Learning Methods. J Mol Biol 2021; 433:167267. [PMID: 34563548 DOI: 10.1016/j.jmb.2021.167267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Proteins are responsible for most physiological processes, and their abundance provides crucial information for systems biology research. However, absolute protein quantification, as determined by mass spectrometry, still has limitations in capturing the protein pool. Protein abundance is impacted by translation kinetics, which rely on features of codons. In this study, we evaluated the effect of codon usage bias of genes on protein abundance. Notably, we observed differences regarding codon usage patterns between genes coding for highly abundant proteins and genes coding for less abundant proteins. Analysis of synonymous codon usage and evolutionary selection showed a clear split between the two groups. Our machine learning models predicted protein abundances from codon usage metrics with remarkable accuracy, achieving strong correlation with experimental data. Upon integration of the predicted protein abundance in enzyme-constrained genome-scale metabolic models, the simulated phenotypes closely matched experimental data, which demonstrates that our predictive models are valuable tools for systems metabolic engineering approaches.
Collapse
Affiliation(s)
- Mauricio Ferreira
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil. https://twitter.com/@mauriciomyces
| | - Rafaela Ventorim
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
| | - Eduardo Almeida
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil. https://twitter.com/@elm_almeida
| | - Sabrina Silveira
- Department of Computer Science, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil. https://twitter.com/@sabrina_as
| | - Wendel Silveira
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
| |
Collapse
|
39
|
Munro LJ, Kell DB. Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochem J 2021; 478:3685-3721. [PMID: 34673920 PMCID: PMC8589332 DOI: 10.1042/bcj20210535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.
Collapse
Affiliation(s)
- Lachlan J. Munro
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Mellizyme Biotechnology Ltd, IC1, Liverpool Science Park, 131 Mount Pleasant, Liverpool L3 5TF, U.K
| |
Collapse
|
40
|
Tekbaş S, Şahin NH, Sayın NC. The Effect of Treatment on Quality of Life, Symptoms, and Social Life in Gynecologic Cancer Patients. Clin Nurs Res 2021; 31:1063-1071. [PMID: 34643140 DOI: 10.1177/10547738211052387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study was carried out to determine the effect of treatment on quality of life, symptoms, and social life in patients with gynecologic cancer. Data were collected through face-to-face interviews to evaluate the individual and disease characteristics of the patients. The Edmonton Symptom Assessment Scale was used to determine the severity of the side effects. Functional Assessment of Cancer Therapy-General 4 was used to evaluate the quality of life. The total post-treatment quality of life scores of the patients were lower than their total pre-treatment scores. Patients who received chemotherapy and chemoradiotherapy had a lower quality of life than those who received radiotherapy, and they were less involved in social activities. Half of the individuals participated in social activities in the pre-treatment period, but this rate decreased to 16.4% after the treatment started. In this study, the quality-of-life scores of the patients who received gynecologic cancer treatment decreased after treatment and the patients experienced many symptoms at an increasingly severe level.
Collapse
|
41
|
Zeng H, Rohani R, Huang WE, Yang A. Understanding and mathematical modelling of cellular resource allocation in microorganisms: a comparative synthesis. BMC Bioinformatics 2021; 22:467. [PMID: 34583645 PMCID: PMC8479906 DOI: 10.1186/s12859-021-04382-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The rising consensus that the cell can dynamically allocate its resources provides an interesting angle for discovering the governing principles of cell growth and metabolism. Extensive efforts have been made in the past decade to elucidate the relationship between resource allocation and phenotypic patterns of microorganisms. Despite these exciting developments, there is still a lack of explicit comparison between potentially competing propositions and a lack of synthesis of inter-related proposals and findings. RESULTS In this work, we have reviewed resource allocation-derived principles, hypotheses and mathematical models to recapitulate important achievements in this area. In particular, the emergence of resource allocation phenomena is deciphered by the putative tug of war between the cellular objectives, demands and the supply capability. Competing hypotheses for explaining the most-studied phenomenon arising from resource allocation, i.e. the overflow metabolism, have been re-examined towards uncovering the potential physiological root cause. The possible link between proteome fractions and the partition of the ribosomal machinery has been analysed through mathematical derivations. Finally, open questions are highlighted and an outlook on the practical applications is provided. It is the authors' intention that this review contributes to a clearer understanding of the role of resource allocation in resolving bacterial growth strategies, one of the central questions in microbiology. CONCLUSIONS We have shown the importance of resource allocation in understanding various aspects of cellular systems. Several important questions such as the physiological root cause of overflow metabolism and the correct interpretation of 'protein costs' are shown to remain open. As the understanding of the mechanisms and utility of resource application in cellular systems further develops, we anticipate that mathematical modelling tools incorporating resource allocation will facilitate the circuit-host design in synthetic biology.
Collapse
Affiliation(s)
- Hong Zeng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Reza Rohani
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| |
Collapse
|
42
|
Combining Kinetic and Constraint-Based Modelling to Better Understand Metabolism Dynamics. Processes (Basel) 2021. [DOI: 10.3390/pr9101701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To understand the phenotypic capabilities of organisms, it is useful to characterise cellular metabolism through the analysis of its pathways. Dynamic mathematical modelling of metabolic networks is of high interest as it provides the time evolution of the metabolic components. However, it also has limitations, such as the necessary mechanistic details and kinetic parameters are not always available. On the other hand, large metabolic networks exhibit a complex topological structure which can be studied rather efficiently in their stationary regime by constraint-based methods. These methods produce useful predictions on pathway operations. In this review, we present both modelling techniques and we show how they bring complementary views of metabolism. In particular, we show on a simple example how both approaches can be used in conjunction to shed some light on the dynamics of metabolic networks.
Collapse
|
43
|
Abstract
Metal ions are essential to all living cells, as they can serve as cofactors of enzymes to drive catalysis of biochemical reactions. We present a constraint-based model of yeast that relates metabolism with metal ions via enzymes. The model is able to capture responses of metabolism and gene expression upon iron depletion, suggesting that yeast cells allocate iron resource in the way abiding to optimization principles. Interestingly, the model predicts up-regulation of several iron-containing enzymes that coincide with experiments, which raises the possibility that the decrease in activity due to limited iron could be compensated by elevated enzyme abundance. Moreover, the model paves the way for guiding biosynthesis of high-value compounds (e.g., p-coumaric acid) that relies on iron-containing enzymes. Metal ions are vital to metabolism, as they can act as cofactors on enzymes and thus modulate individual enzymatic reactions. Although many enzymes have been reported to interact with metal ions, the quantitative relationships between metal ions and metabolism are lacking. Here, we reconstructed a genome-scale metabolic model of the yeast Saccharomyces cerevisiae to account for proteome constraints and enzyme cofactors such as metal ions, named CofactorYeast. The model is able to estimate abundances of metal ions binding on enzymes in cells under various conditions, which are comparable to measured metal ion contents in biomass. In addition, the model predicts distinct metabolic flux distributions in response to reduced levels of various metal ions in the medium. Specifically, the model reproduces changes upon iron deficiency in metabolic and gene expression levels, which could be interpreted by optimization principles (i.e., yeast optimizes iron utilization based on metabolic network and enzyme kinetics rather than preferentially targeting iron to specific enzymes or pathways). At last, we show the potential of using the model for understanding cell factories that harbor heterologous iron-containing enzymes to synthesize high-value compounds such as p-coumaric acid. Overall, the model demonstrates the dependence of enzymes on metal ions and links metal ions to metabolism on a genome scale.
Collapse
|
44
|
Oftadeh O, Salvy P, Masid M, Curvat M, Miskovic L, Hatzimanikatis V. A genome-scale metabolic model of Saccharomyces cerevisiae that integrates expression constraints and reaction thermodynamics. Nat Commun 2021; 12:4790. [PMID: 34373465 PMCID: PMC8352978 DOI: 10.1038/s41467-021-25158-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic organisms play an important role in industrial biotechnology, from the production of fuels and commodity chemicals to therapeutic proteins. To optimize these industrial systems, a mathematical approach can be used to integrate the description of multiple biological networks into a single model for cell analysis and engineering. One of the most accurate models of biological systems include Expression and Thermodynamics FLux (ETFL), which efficiently integrates RNA and protein synthesis with traditional genome-scale metabolic models. However, ETFL is so far only applicable for E. coli. To adapt this model for Saccharomyces cerevisiae, we developed yETFL, in which we augmented the original formulation with additional considerations for biomass composition, the compartmentalized cellular expression system, and the energetic costs of biological processes. We demonstrated the ability of yETFL to predict maximum growth rate, essential genes, and the phenotype of overflow metabolism. We envision that the presented formulation can be extended to a wide range of eukaryotic organisms to the benefit of academic and industrial research.
Collapse
Affiliation(s)
- Omid Oftadeh
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Salvy
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Cambrium GmbH, Berlin, Germany
| | - Maria Masid
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maxime Curvat
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Quotient Suisse SA, Eysins, Switzerland
| | - Ljubisa Miskovic
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
45
|
Sahu A, Blätke MA, Szymański JJ, Töpfer N. Advances in flux balance analysis by integrating machine learning and mechanism-based models. Comput Struct Biotechnol J 2021; 19:4626-4640. [PMID: 34471504 PMCID: PMC8382995 DOI: 10.1016/j.csbj.2021.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
The availability of multi-omics data sets and genome-scale metabolic models for various organisms provide a platform for modeling and analyzing genotype-to-phenotype relationships. Flux balance analysis is the main tool for predicting flux distributions in genome-scale metabolic models and various data-integrative approaches enable modeling context-specific network behavior. Due to its linear nature, this optimization framework is readily scalable to multi-tissue or -organ and even multi-organism models. However, both data and model size can hamper a straightforward biological interpretation of the estimated fluxes. Moreover, flux balance analysis simulates metabolism at steady-state and thus, in its most basic form, does not consider kinetics or regulatory events. The integration of flux balance analysis with complementary data analysis and modeling techniques offers the potential to overcome these challenges. In particular machine learning approaches have emerged as the tool of choice for data reduction and selection of most important variables in big data sets. Kinetic models and formal languages can be used to simulate dynamic behavior. This review article provides an overview of integrative studies that combine flux balance analysis with machine learning approaches, kinetic models, such as physiology-based pharmacokinetic models, and formal graphical modeling languages, such as Petri nets. We discuss the mathematical aspects and biological applications of these integrated approaches and outline challenges and future perspectives.
Collapse
Affiliation(s)
- Ankur Sahu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Mary-Ann Blätke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Jędrzej Jakub Szymański
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Nadine Töpfer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| |
Collapse
|
46
|
Emergence of diauxie as an optimal growth strategy under resource allocation constraints in cellular metabolism. Proc Natl Acad Sci U S A 2021; 118:2013836118. [PMID: 33602812 PMCID: PMC7923608 DOI: 10.1073/pnas.2013836118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diauxie, or the sequential consumption of carbohydrates in bacteria such as Escherichia coli, has been hypothesized to be an evolutionary strategy which allows the organism to maximize its instantaneous specific growth-giving the bacterium a competitive advantage. Currently, the computational techniques used in industrial biotechnology fall short of explaining the intracellular dynamics underlying diauxic behavior. In particular, the understanding of the proteome dynamics in diauxie can be improved. We developed a robust iterative dynamic method based on expression- and thermodynamically enabled flux models to simulate the kinetic evolution of carbohydrate consumption and cellular growth. With minimal modeling assumptions, we couple kinetic uptakes, gene expression, and metabolic networks, at the genome scale, to produce dynamic simulations of cell cultures. The method successfully predicts the preferential uptake of glucose over lactose in E. coli cultures grown on a mixture of carbohydrates, a manifestation of diauxie. The simulated cellular states also show the reprogramming in the content of the proteome in response to fluctuations in the availability of carbon sources, and it captures the associated time lag during the diauxie phenotype. Our models suggest that the diauxic behavior of cells is the result of the evolutionary objective of maximization of the specific growth of the cell. We propose that genetic regulatory networks, such as the lac operon in E. coli, are the biological implementation of a robust control system to ensure optimal growth.
Collapse
|
47
|
Richelle A, Kellman BP, Wenzel AT, Chiang AW, Reagan T, Gutierrez JM, Joshi C, Li S, Liu JK, Masson H, Lee J, Li Z, Heirendt L, Trefois C, Juarez EF, Bath T, Borland D, Mesirov JP, Robasky K, Lewis NE. Model-based assessment of mammalian cell metabolic functionalities using omics data. CELL REPORTS METHODS 2021; 1:100040. [PMID: 34761247 PMCID: PMC8577426 DOI: 10.1016/j.crmeth.2021.100040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/24/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022]
Abstract
Omics experiments are ubiquitous in biological studies, leading to a deluge of data. However, it is still challenging to connect changes in these data to changes in cell functions because of complex interdependencies between genes, proteins, and metabolites. Here, we present a framework allowing researchers to infer how metabolic functions change on the basis of omics data. To enable this, we curated and standardized lists of metabolic tasks that mammalian cells can accomplish. Genome-scale metabolic networks were used to define gene sets associated with each metabolic task. We further developed a framework to overlay omics data on these sets and predict pathway usage for each metabolic task. We demonstrated how this approach can be used to quantify metabolic functions of diverse biological samples from the single cell to whole tissues and organs by using multiple transcriptomic datasets. To facilitate its adoption, we integrated the approach into GenePattern (www.genepattern.org-CellFie).
Collapse
Affiliation(s)
- Anne Richelle
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Benjamin P. Kellman
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander T. Wenzel
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Austin W.T. Chiang
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Tyler Reagan
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Jahir M. Gutierrez
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chintan Joshi
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Shangzhong Li
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joanne K. Liu
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Helen Masson
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jooyong Lee
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zerong Li
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laurent Heirendt
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christophe Trefois
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Edwin F. Juarez
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tyler Bath
- Department of Biomedical Informatics, UC San Diego Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Borland
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Jill P. Mesirov
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kimberly Robasky
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- School of Information and Library Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Health and Informatics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nathan E. Lewis
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
48
|
Palsson BO. Genome‐Scale Models. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Chen Y, Nielsen J, Kerkhoven EJ. Proteome Constraints in
Genome‐Scale
Models. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Alsiyabi A, Chowdhury NB, Long D, Saha R. Enhancing in silico strain design predictions through next generation metabolic modeling approaches. Biotechnol Adv 2021; 54:107806. [PMID: 34298108 DOI: 10.1016/j.biotechadv.2021.107806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/22/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
The reconstruction and analysis of metabolic models has garnered increasing attention due to the multitude of applications in which these have proven to be practical. The growing number of generated metabolic models has been accompanied by an exponentially expanding arsenal of tools used to analyze them. In this work, we discussed the biological relevance of a number of promising modeling frameworks, focusing on the questions and hypotheses each method is equipped to address. To this end, we critically analyzed the steady-state modeling approaches focusing on resource allocation and incorporation of thermodynamic considerations which produce promising results and aid in the generation and experimental validation of numerous predictions. For smaller networks involving more complex regulation, we addressed kinetic modeling techniques which show encouraging results in addressing questions outside the scope of steady-state modeling. Finally, we discussed the potential application of the discussed frameworks within the field of strain design. Adoption of such methodologies is believed to significantly enhance the accuracy of in silico predictions and hence decrease the number of design-build-test cycles required.
Collapse
Affiliation(s)
- Adil Alsiyabi
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, United States of America
| | - Niaz Bahar Chowdhury
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, United States of America
| | - Dianna Long
- Complex Biosystems, University of Nebraska-Lincoln, United States of America
| | - Rajib Saha
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, United States of America; Complex Biosystems, University of Nebraska-Lincoln, United States of America.
| |
Collapse
|