1
|
Sudheer AC, Anilkumar GM, Kuroki H, Yamaguchi T. Support-Free, Connected Core-Shell Nanoparticle Catalysts Synthesized via a Low-Temperature Process for Advanced Oxygen Reduction Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408614. [PMID: 39726238 PMCID: PMC11831485 DOI: 10.1002/advs.202408614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/06/2024] [Indexed: 12/28/2024]
Abstract
Nanostructured Pt-based catalysts have attracted considerable attention for fuel-cell applications. This study introduces a novel one-pot and low-temperature polyol approach for synthesizing support-free, connected nanoparticles with non-Pt metal cores and Pt shells. Unlike conventional heat treatment methods, the developed support-free and Fe-free connected Pdcore@Ptshell (Pd@Pt) nanoparticle catalyst possesses a stable nanonetwork structure with a high surface area. This approach can precisely control the atomic-level structure of the Pt shell on the Pd core at a low deposition temperature. The optimized Pd@Pt catalyst with a Pt/Pd atomic ratio of 0.8 and a Pt shell thickness of 1.1 nm exhibits a threefold improvement in oxygen reduction reaction (ORR) mass activity compared to that of commercial carbon-supported Pt nanoparticle catalyst (Pt/C). Durability evaluation demonstrated 100% retention of specific activity after 10,000 load cycles, owing to the stable nanonetwork and uniform coverage of the Pt shell. In addition, the support-free, connected core-shell nanoparticle catalyst overcomes the carbon corrosion issues commonly associated with conventional carbon-supported catalysts while simultaneously improving both ORR activity and load cycle durability. These findings highlight the potential of this innovative approach to develop support-free catalysts for polymer electrolyte fuel cells and other energy devices.
Collapse
Affiliation(s)
- Aparna Chitra Sudheer
- Laboratory for Chemistry and Life SciencesTokyo Institute of TechnologyYokohamaKanagawa226–8501Japan
| | - Gopinathan M. Anilkumar
- Laboratory for Chemistry and Life SciencesTokyo Institute of TechnologyYokohamaKanagawa226–8501Japan
- R&D CenterNoritake Co., Ltd300 HigashiyamaMiyoshi‐ChoAichi470‐0293Japan
| | - Hidenori Kuroki
- Laboratory for Chemistry and Life SciencesTokyo Institute of TechnologyYokohamaKanagawa226–8501Japan
| | - Takeo Yamaguchi
- Laboratory for Chemistry and Life SciencesTokyo Institute of TechnologyYokohamaKanagawa226–8501Japan
| |
Collapse
|
2
|
Wang H, He J, Zhou M, Xia Y. Continuous-Flow and Scalable Synthesis of Pd@Pt nL Core-Shell Nanocrystals with Enhanced Activity toward Oxygen Reduction. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:21310-21316. [PMID: 39720331 PMCID: PMC11664583 DOI: 10.1021/acs.jpcc.4c07102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
We report a scalable method based on continuous-flow reactors for conformally coating the surfaces of facet-controlled Pd nanocrystals with uniform, ultrathin shells made of Pt. The key to the success of such an approach is the identification of a proper polyol to generate the Pt atoms at a relatively slow rate to ensure adequate surface diffusion and thus the formation of uniform shells in a layer-by-layer fashion. We first demonstrate the concept using the production of Pd@PtnL (n = 2-5) core-shell icosahedral nanocrystals and then have the strategy successfully extended to the syntheses of Pd@PtnL cubic and octahedral nanocrystals. All these core-shell nanocrystals showed great enhancement in catalytic activity toward the oxygen reduction reaction. Our results suggest that seed-mediated growth can be combined with a continuous-flow reactor to achieve scalable production of bimetallic and even trimetallic nanocrystals with controlled sizes, shapes, compositions, and properties.
Collapse
Affiliation(s)
- Helan Wang
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Jianlong He
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Ming Zhou
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Younan Xia
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Omondi AS, Kovács D, Radnóczi GZ, Horváth ZE, Tolnai I, Deák A, Zámbó D. Symmetry breaking enhances the catalytic and electrocatalytic performance of core/shell tetrametallic porous nanoparticles. NANOSCALE 2024; 17:261-275. [PMID: 39559946 DOI: 10.1039/d4nr03589e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The performance of functional nanocatalysts can be extended by integrating multiple types of metals into well-designed nanoparticles. A porous multimetallic shell grown around high-quality monometallic seeds significantly enhances the availability of active sites. Here, tetrametallic core/shell nanoparticles (Au@mPdPtIr) featuring micro- and mesoporous shells are synthesized with strict control over the overall particle morphology. To reveal the impact of the core nanoparticle morphology on the optical, structural and electrocatalytic properties, tetrametallic particles are prepared using gold cores with different shapes but identical volumes and surface chemistry. Our general synthetic approach ensures the successful and reliable synthesis of porous trimetallic shells around the cores, keeping the final atomic composition of the different multimetallic particles identical. The results clearly highlight the significance of the core morphology in the catalytic performance and the superior activity of symmetry-broken core/shell particles in heterogeneous as well as electrocatalytic oxidation reactions. These can be attributed to the fine structural details of the deposited trimetallic shells and their influence on the charge carrier transport between the multimetallic particles and the organic test molecules. While all nanocatalysts show excellent morphological robustness, the optimal morphology also depends on the reaction type and conditions of the specific reaction.
Collapse
Affiliation(s)
- Apoko S Omondi
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary.
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Dávid Kovács
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary.
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - György Z Radnóczi
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary.
| | - Zsolt E Horváth
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary.
| | - István Tolnai
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary.
| | - András Deák
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary.
| | - Dániel Zámbó
- HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary.
| |
Collapse
|
4
|
Feng R, Li D, Yang H, Li C, Zhao Y, Waterhouse GIN, Shang L, Zhang T. Epitaxial Ultrathin Pt Atomic Layers on CrN Nanoparticle Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309251. [PMID: 37897297 DOI: 10.1002/adma.202309251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Indexed: 10/30/2023]
Abstract
The construction of platinum (Pt) atomic layers is an effective strategy to improve the utilization efficiency of Pt atoms in electrocatalysis, thus is important for reducing the capital costs of a wide range of energy storage and conversion devices. However, the substrates used to grow Pt atomic layers are largely limited to noble metals and their alloys, which is not conducive to reducing catalyst costs. Herein, low-cost chromium nitride (CrN) is utilized as a support for the loading of epitaxial ultrathin Pt atomic layers via a simple thermal ammonolysis method. Owing to the strong anchoring and electronic regulation of Pt atomic layers by CrN, the obtained Pt atomic layers catalyst (containing electron-deficient Pt sites) exhibits excellent activity and endurance for the formic acid oxidation reaction, with a mass activity of 5.17 A mgPt -1 that is 13.6 times higher than that of commercial Pt/C catalyst. This novel strategy demonstrates that CrN can replace noble metals as a low-cost substrate for constructing Pt atomic layers catalysts.
Collapse
Affiliation(s)
- Ruixue Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongzhou Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chengyu Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Lu G, Men X, Tang R, Wang Z, Cui H, Zheng T, Wang M, Yang H, Liu Z. Bionic Fe-N-C catalyst with abundant exposed Fe-N x sites and enhanced mass transfer properties for efficient oxygen reduction. J Colloid Interface Sci 2024; 655:90-99. [PMID: 37925972 DOI: 10.1016/j.jcis.2023.10.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Transition metal and nitrogen co-doped carbon electrocatalysts are promising candidates to replace the precious metal platinum (Pt) in oxygen reduction reactions (ORR). Unfortunately, the electrochemical performance of existing electrocatalysts is restricted due to limited accessibility of active sites. Inspired by jellyfish tentacles, we design an efficient ORR micro-reactor called Fe-Nx/HC@NWs. It features abundant exposed Fe-Nx active sites dispersed on nitrogen-doped cubic carbon cages, which have a hierarchically porous and hairy structure. The accessible, atomically dispersed Fe-Nx sites and the elaborate substrate architecture synergize to provide the catalyst withremarkable ORR catalytic activity, extraordinary long-term stability, and favorable methanol tolerance in an alkaline electrolyte; overall, its performance is comparable to that of commercial carbon-supported Pt. Our synthesis is facile and controllable, paving a new avenue toward advanced non-precious metal-based electrocatalysts for energy storage and conversion.
Collapse
Affiliation(s)
- Guolong Lu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Xin Men
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Ruoqi Tang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Zhida Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Hao Cui
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Tongxi Zheng
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Mi Wang
- Engineering College, Changchun Normal University, Changchun 130032, China
| | - Haoqi Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China.
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
6
|
Bijelić L, Ruiz-Zepeda F, Hodnik N. The role of high-resolution transmission electron microscopy and aberration corrected scanning transmission electron microscopy in unraveling the structure-property relationships of Pt-based fuel cells electrocatalysts. Inorg Chem Front 2024; 11:323-341. [PMID: 38235274 PMCID: PMC10790562 DOI: 10.1039/d3qi01998e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Platinum-based fuel cell electrocatalysts are structured on a nano level in order to extend their active surface area and maximize the utilization of precious and scarce platinum. Their performance is dictated by the atomic arrangement of their surface layers atoms via structure-property relationships. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are the preferred methods for characterizing these catalysts, due to their capacity to achieve local atomic-level resolutions. Size, morphology, strain and local composition are just some of the properties of Pt-based nanostructures that can be obtained by (S)TEM. Furthermore, advanced methods of (S)TEM are able to provide insights into the quasi-in situ, in situ or even operando stability of these nanostructures. In this review, we present state-of-the-art applications of (S)TEM in the investigation and interpretation of structure-activity and structure-stability relationships.
Collapse
Affiliation(s)
- Lazar Bijelić
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 Nova Gorica SI-5000 Slovenia
| | - Francisco Ruiz-Zepeda
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- Department of Physics and Chemistry of Materials, Institute for Metals and Technology IMT Lepi pot 11 1000 Ljubljana Slovenia
| | - Nejc Hodnik
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 Nova Gorica SI-5000 Slovenia
| |
Collapse
|
7
|
Meyer Q, Yang C, Cheng Y, Zhao C. Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-023-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractProton exchange membrane fuel cells (PEMFCs) are becoming a major part of a greener and more sustainable future. However, the costs of high-purity hydrogen and noble metal catalysts alongside the complexity of the PEMFC system severely hamper their commercialization. Operating PEMFCs at high temperatures (HT-PEMFCs, above 120 °C) brings several advantages, such as increased tolerance to contaminants, more affordable catalysts, and operations without liquid water, hence considerably simplifying the system. While recent progresses in proton exchange membranes for HT-PEMFCs have made this technology more viable, the HT-PEMFC viscous acid electrolyte lowers the active site utilization by unevenly diffusing into the catalyst layer while it acutely poisons the catalytic sites. In recent years, the synthesis of platinum group metal (PGM) and PGM-free catalysts with higher acid tolerance and phosphate-promoted oxygen reduction reaction, in conjunction with the design of catalyst layers with improved acid distribution and more triple-phase boundaries, has provided great opportunities for more efficient HT-PEMFCs. The progress in these two interconnected fields is reviewed here, with recommendations for the most promising routes worthy of further investigation. Using these approaches, the performance and durability of HT-PEMFCs will be significantly improved.
Collapse
|
8
|
Abdelhafiz A, Choi JI, Zhao B, Cho J, Ding Y, Soule L, Jang SS, Liu M, Alamgir FM. Catalysis Sans Catalyst Loss: The Origins of Prolonged Stability of Graphene-Metal-Graphene Sandwich Architecture for Oxygen Reduction Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304616. [PMID: 37863808 DOI: 10.1002/advs.202304616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Indexed: 10/22/2023]
Abstract
Over the past decades, the design of active catalysts has been the subject of intense research efforts. However, there has been significantly less deliberate emphasis on rationally designing a catalyst system with a prolonged stability. A major obstacle comes from the ambiguity behind how catalyst degrades. Several degradation mechanisms are proposed in literature, but with a lack of systematic studies, the causal relations between degradation and those proposed mechanisms remain ambiguous. Here, a systematic study of a catalyst system comprising of small particles and single atoms of Pt sandwiched between graphene layers, GR/Pt/GR, is studied to unravel the degradation mechanism of the studied electrocatalyst for oxygen reduction reaction(ORR). Catalyst suffers from atomic dissolution under ORR harsh acidic and oxidizing operation voltages. Single atoms trapped in point defects within the top graphene layer on their way hopping through toward the surface of GR/Pt/GR architecture. Trapping mechanism renders individual Pt atoms as single atom catalyst sites catalyzing ORR for thousands of cycles before washed away in the electrolyte. The GR/Pt/GR catalysts also compare favorably to state-of-the-art commercial Pt/C catalysts and demonstrates a rational design of a hybrid nanoarchitecture with a prolonged stability for thousands of operation cycles.
Collapse
Affiliation(s)
- Ali Abdelhafiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, MA, 02139, USA
| | - Ji Il Choi
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Bote Zhao
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Jinwon Cho
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Yong Ding
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Luke Soule
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Seung Soon Jang
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Meilin Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Faisal M Alamgir
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
9
|
Sun M, Gong S, Li Z, Huang H, Chen Y, Niu Z. Terrace-Rich Ultrathin PtCu Surface on Earth-Abundant Metal for Oxygen Reduction Reaction. ACS NANO 2023; 17:19421-19430. [PMID: 37721808 DOI: 10.1021/acsnano.3c07863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The activity and stability of the platinum electrode toward the oxygen reduction reaction are size-dependent. Although small nanoparticles have high Pt utilization, the undercoordinated Pt sites on their surface are assumed to have too strong oxygen binding strength, thus often leading to compromised activity and surface instability. Herein, we report an extended nanostructured PtCu ultrathin surface to reduce the number of low-coordination sites without sacrificing the electrochemical active surface area (ECSA). The surface shows (111)-oriented characteristics, as proven by electrochemical probe reactions and spectroscopies. The PtCu surface brings over an order of magnitude increase in specific activity relative to commercial Pt/C and nearly 4-fold enhancement in ECSA compared to traditional thin films. Moreover, due to the weak absorption of air impurities (e.g., SO2, NO, CO) on highly coordinated sites, the catalyst displays enhanced contaminant tolerance compared with nanoparticulate Pt/C. This work promises a broad screening of extended nanostructured surface catalysts for electrochemical conversions.
Collapse
Affiliation(s)
- Mingze Sun
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuyan Gong
- Department of Chemistry Analytical Instrumentation Center, Capital Normal University, Beijing, 100048, China
| | - Zhengwen Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Helai Huang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanjun Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhiqiang Niu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Dong Y, Li Z, Zheng G, Zhang J, Zhou J, Orikasa Y, Uchimoto Y, Wang X. Observing the Structural Evolution of Quasi-Monolayer Pt Shell on Pd Core in the Electrocatalytic Oxygen-Reduction Reaction. J Phys Chem Lett 2023; 14:7027-7031. [PMID: 37523861 DOI: 10.1021/acs.jpclett.3c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The use of a quasi-monolayer Pt shell (Ptqms) on a Pd core (Pdc) can reach cost and activity targets for the electrocatalytic oxygen-reduction reaction (ORR). The structure of PdcPtqms in the ORR will vary; however, direct observation of this issue is scarce. Here, during cyclic staircase voltammetry (ranging from 0.5 to 1.15 VRHE) in 0.1 M O2-saturated HClO4, the structure of PdcPtqms was monitored by in situ X-ray absorption spectroscopy. The qualitative and quantitative structural information clearly exhibits a complete picture that Ptqms will directly restructure to form Pt clusters and holes, while Pdc almost remains stable. These findings identify the initial structural evolution of PdcPtqms in the ORR, highlighting the importance of protecting Pdc in the development of high-performance PdcPtqms electrocatalysts.
Collapse
Affiliation(s)
- Yan Dong
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Zhenlan Li
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Guocheng Zheng
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jiawei Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jiawei Zhou
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Yuki Orikasa
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Yoshiharu Uchimoto
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Xiaoming Wang
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| |
Collapse
|
11
|
Wang S, Zhu S, Kang Z, Wang X, Deng Z, Hu K, Hu J, Liu X, Wang G, Zang G, Zhang Y. Particle Size-Controlled Oxygen Reduction and Evolution Reaction Nanocatalysts Regulate Ru(bpy) 32+'s Dual-potential Electrochemiluminescence for Sandwich Immunoassay. RESEARCH (WASHINGTON, D.C.) 2023; 6:0117. [PMID: 37287888 PMCID: PMC10243198 DOI: 10.34133/research.0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/19/2023] [Indexed: 06/09/2023]
Abstract
Multiple signal strategies remarkably improve the accuracy and efficiency of electrochemiluminescence (ECL) immunoassays, but the lack of potential-resolved luminophore pairs and chemical cross talk hinders their development. In this study, we synthesized a series of gold nanoparticles (AuNPs)/reduced graphene oxide (Au/rGO) composites as adjustable oxygen reduction reaction and oxygen evolution reaction catalysts to promote and modulate tris(2,2'-bipyridine) ruthenium(II) (Ru(bpy)32+)'s multisignal luminescence. With the increase in the diameter of AuNPs (3 to 30 nm), their ability to promote Ru(bpy)32+'s anodic ECL was first impaired and then strengthened, and cathodic ECL was first enhanced and then weakened. Au/rGOs with medium-small and medium-large AuNP diameters remarkably increased Ru(bpy)32+'s cathodic and anodic luminescence, respectively. Notably, the stimulation effects of Au/rGOs were superior to those of most existing Ru(bpy)32+ co-reactants. Moreover, we proposed a novel ratiometric immunosensor construction strategy using Ru(bpy)32+'s luminescence promoter rather than luminophores as tags of antibodies to achieve signal resolution. This method avoids signal cross talk between luminophores and their respective co-reactants, which achieved a good linear range of 10-7 to 10-1 ng/ml and a limit of detection of 0.33 fg/ml for detecting carcinoembryonic antigen. This study addresses the previous scarcity of the macromolecular co-reactants of Ru(bpy)32+, broadening its application in biomaterial detection. Furthermore, the systematic clarification of the detailed mechanisms for converting the potential-resolved luminescence of Ru(bpy)32+ could facilitate an in-depth understanding of the ECL process and should inspire new designs of Ru(bpy)32+ luminescence enhancers or applications of Au/rGOs to other luminophores. This work removes some impediments to the development of multisignal ECL biodetection systems and provides vitality into their widespread applications.
Collapse
Affiliation(s)
- Shijun Wang
- Institute of Life Science and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Shu Zhu
- Institute of Life Science and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Ziqi Kang
- Institute of Life Science and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Zixin Deng
- Institute of Life Science and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Kun Hu
- Institute of Life Science and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Jianjun Hu
- Department of Pathology,
Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002, China
| | - Xiancheng Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Guangchao Zang
- Institute of Life Science and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center,
Chongqing Medical University, Chongqing 400016, China
- Jinfeng Laboratory, Chongqing 401329, China
- Department of Pathophysiology,
Chongqing Medical University, Chongqing 400016, China
| | - Yuchan Zhang
- Institute of Life Science and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center,
Chongqing Medical University, Chongqing 400016, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
12
|
Li N, Tang R, Su Y, Lu C, Chen Z, Sun J, Lv Y, Han S, Yang C, Zhuang X. Isometric Covalent Triazine Framework-Derived Porous Carbons as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. CHEMSUSCHEM 2023; 16:e202201937. [PMID: 36522285 DOI: 10.1002/cssc.202201937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Covalent triazine frameworks (CTFs) and their derivative N-doped carbons have attracted much attention for application in energy conversion and storage. However, previous studies have mainly focused on developing new building blocks and optimizing synthetic conditions. The use of isometric building blocks to control the porous structure and to fundamentally understand structure-property relationships have rarely been reported. In this work, two isometric building blocks are used to produce isometric CTFs with controllable pore geometries. The as-prepared CTF with nonplanar hexagonal rings demonstrates higher surface area, larger pore volume, and richer N content than the planar CTF. After pyrolysis, nonplanar porous CTF-derived N-doped carbons exhibit admirable catalytic activity for oxygen reduction in alkaline media (half-wave potential: 0.86 V; Tafel slope: 65 mV dec-1 ), owing to their larger pore volume and the abundance of pyridinic and graphitic N species. When assembled into a zinc-air battery, the as-made electrocatalysts show high capacities of up to 651 mAh g-1 and excellent durability.
Collapse
Affiliation(s)
- Nana Li
- The Soft 2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, P. R. China
| | - Ruizhi Tang
- The Soft 2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuezeng Su
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chenbao Lu
- The Soft 2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ziman Chen
- National Energy R&D Center for Biorefinery Beijing Key Laboratory of Bioprocess College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10009, P. R. China
| | - Jie Sun
- Carbon Trade Research Center, School of Finance, Shanghai Lixin University of Accounting and Finance, No. 995 Shangchuan Road, Shanghai, P. R. China
| | - Yongqin Lv
- National Energy R&D Center for Biorefinery Beijing Key Laboratory of Bioprocess College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10009, P. R. China
| | - Sheng Han
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, P. R. China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Chongqing Yang
- The Soft 2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaodong Zhuang
- The Soft 2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
13
|
Zhang Y, Wang B, Fan M, Ling L, Zhang R. Ethane Dehydrogenation over the Core-Shell Pt-Based Alloy Catalysts: Driven by Engineering the Shell Composition and Thickness. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10679-10695. [PMID: 36795766 DOI: 10.1021/acsami.2c21249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pt-based catalysts as the commercial catalysts in ethane dehydrogenation (EDH) face one of the main challenges of realizing the balance between coke formation and catalytic activity. In this work, a strategy to drive the catalytic performance of EDH on Pt-Sn alloy catalysts is proposed by rationally engineering the shell surface structure and thickness of core-shell Pt@Pt3Sn and Pt3Sn@Pt catalysts from a theoretical perspective. Eight types of Pt@Pt3Sn and Pt3Sn@Pt catalysts with different Pt and Pt3Sn shell thicknesses are considered and compared with the industrially used Pt and Pt3Sn catalysts. Density functional theory (DFT) calculations completely describe the reaction network of EDH, including the side reactions of deep dehydrogenation and C-C bond cracking. Kinetic Monte Carlo (kMC) simulations reveal the influences of the catalyst surface structure, experimentally related temperatures, and reactant partial pressures. The results show that CHCH* is the main precursor for coke formation, and Pt@Pt3Sn catalysts generally have higher C2H4(g) activity and lower selectivity compared to those of Pt3Sn@Pt catalysts, which is attributed to the unique surface geometrical and electronic properties. 1Pt3Sn@4Pt and 1Pt@4Pt3Sn are screened out as catalysts exhibiting excellent performance; especially, the 1Pt3Sn@4Pt catalyst has much higher C2H4(g) activity and 100% C2H4(g) selectivity compared to those of 1Pt@4Pt3Sn and the widely used Pt and Pt3Sn catalysts. The two descriptors C2H5* adsorption energy and reaction energy of its dehydrogenation to C2H4* are proposed to qualitatively evaluate the C2H4(g) selectivity and activity, respectively. This work facilitates a valuable exploration for optimizing the catalytic performance of core-shell Pt-based catalysts in EDH and reveals the great importance of the fine control of the catalyst shell surface structure and thickness.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Baojun Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Maohong Fan
- Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Lixia Ling
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| |
Collapse
|
14
|
Hashiguchi Y, Nakamura I, Honma T, Matsushita T, Murayama H, Tokunaga M, Choe YK, Fujitani T. Effects of the Pt Shell Thickness on the Oxygen Reduction Reaction on a Well-Defined Pd@Pt Core-Shell Model Surface. Chemphyschem 2023; 24:e202200389. [PMID: 36089540 DOI: 10.1002/cphc.202200389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/31/2022] [Indexed: 01/07/2023]
Abstract
The effect of the Pt shell thickness on the oxygen reduction reaction (ORR) of a Pd@Pt core-shell catalyst was studied using surface science technics and computational approaches. We found Pt shells on Pd rods to be negatively charged because of charge transfer from the Pd substrate when the shell thicknesses were 0.5 or 1 monolayer (ML). The activities of the ORR of the model surface with a Pt shell of 0.5 or 1 ML were similar and more than twice the activities of a Pt/C or Pt rod. The relationship between the ORR activity and the thickness of the Pt shell was the exact opposite of the relationship between the Pt binding energy and the Pt shell thickness. The indication was that more negatively charged Pt had higher ORR activity. Density functional theory calculations confirmed that a single layer of Pt atoms located on Pd was negatively charged compared to pure Pt and resulted in a lower barrier to the rate-limiting step of the ORR.
Collapse
Affiliation(s)
- Yuta Hashiguchi
- Chiba Research Laboratory, Corporate Research & Development, UBE Corporation, 8-1 Goiminamikaigan, Ichihara, Chiba 290-0045, Japan.,Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Isao Nakamura
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Toshiyuki Matsushita
- Chiba Research Laboratory, Corporate Research & Development, UBE Corporation, 8-1 Goiminamikaigan, Ichihara, Chiba 290-0045, Japan
| | - Haruno Murayama
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Makoto Tokunaga
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Yoong-Kee Choe
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Tadahiro Fujitani
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
15
|
Abstract
Adsorption energy (AE) of reactive intermediate is currently the most important descriptor for electrochemical reactions (e.g., water electrolysis, hydrogen fuel cell, electrochemical nitrogen fixation, electrochemical carbon dioxide reduction, etc.), which can bridge the gap between catalyst's structure and activity. Tracing the history and evolution of AE can help to understand electrocatalysis and design optimal electrocatalysts. Focusing on oxygen electrocatalysis, this review aims to provide a comprehensive introduction on how AE is selected as the activity descriptor, the intrinsic and empirical relationships related to AE, how AE links the structure and electrocatalytic performance, the approaches to obtain AE, the strategies to improve catalytic activity by modulating AE, the extrinsic influences on AE from the environment, and the methods in circumventing linear scaling relations of AE. An outlook is provided at the end with emphasis on possible future investigation related to the obstacles existing between adsorption energy and electrocatalytic performance.
Collapse
Affiliation(s)
- Junming Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hong Bin Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
16
|
Controlled Synthesis of Carbon-Supported Pt-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. ELECTROCHEM ENERGY R 2022; 5:13. [PMID: 36212026 PMCID: PMC9536324 DOI: 10.1007/s41918-022-00173-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/18/2021] [Accepted: 10/15/2021] [Indexed: 10/26/2022]
Abstract
AbstractProton exchange membrane fuel cells are playing an increasing role in postpandemic economic recovery and climate action plans. However, their performance, cost, and durability are significantly related to Pt-based electrocatalysts, hampering their large-scale commercial application. Hence, considerable efforts have been devoted to improving the activity and durability of Pt-based electrocatalysts by controlled synthesis in recent years as an effective method for decreasing Pt use, and consequently, the cost. Therefore, this review article focuses on the synthesis processes of carbon-supported Pt-based electrocatalysts, which significantly affect the nanoparticle size, shape, and dispersion on supports and thus the activity and durability of the prepared electrocatalysts. The reviewed processes include (i) the functionalization of a commercial carbon support for enhanced catalyst–support interaction and additional catalytic effects, (ii) the methods for loading Pt-based electrocatalysts onto a carbon support that impact the manufacturing costs of electrocatalysts, (iii) the preparation of spherical and nonspherical Pt-based electrocatalysts (polyhedrons, nanocages, nanoframes, one- and two-dimensional nanostructures), and (iv) the postsynthesis treatments of supported electrocatalysts. The influences of the supports, key experimental parameters, and postsynthesis treatments on Pt-based electrocatalysts are scrutinized in detail. Future research directions are outlined, including (i) the full exploitation of the potential functionalization of commercial carbon supports, (ii) scaled-up one-pot synthesis of carbon-supported Pt-based electrocatalysts, and (iii) simplification of postsynthesis treatments. One-pot synthesis in aqueous instead of organic reaction systems and the minimal use of organic ligands are preferred to simplify the synthesis and postsynthesis treatment processes and to promote the mass production of commercial carbon-supported Pt-based electrocatalysts.
Graphical Abstract
This review focuses on the synthesis process of Pt-based electrocatalysts/C to develop aqueous one-pot synthesis at large-scale production for PEMFC stack application.
Collapse
|
17
|
Chen Y, Pei J, Chen Z, Li A, Ji S, Rong H, Xu Q, Wang T, Zhang A, Tang H, Zhu J, Han X, Zhuang Z, Zhou G, Wang D. Pt Atomic Layers with Tensile Strain and Rich Defects Boost Ethanol Electrooxidation. NANO LETTERS 2022; 22:7563-7571. [PMID: 36103215 DOI: 10.1021/acs.nanolett.2c02572] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface and strain engineering are two effective strategies to improve performance; however, synergetic controls of surface and strain effects remains a grand challenge. Herein, we report a highly efficient and stable electrocatalyst with defect-rich Pt atomic layers coating an ordered Pt3Sn intermetallic core. Pt atomic layers enable the generation of 4.4% tensile strain along the [001] direction. Benefiting from synergetic controls of surface and strain engineering, Pt atomic-layer catalyst (Ptatomic-layer) achieves a remarkable enhancement on ethanol electrooxidation performance with excellent specific activity of 5.83 mA cm-2 and mass activity of 1166.6 mA mg Pt-1, which is 10.6 and 3.6 times higher than the commercial Pt/C, respectively. Moreover, the intermetallic core endows Ptatomic-layer with outstanding durability. In situ infrared reflection-absorption spectroscopy as well as density functional theory calculations reveal that tensile strain and rich defects of Ptatomci-layer facilitate to break C-C bond for complete ethanol oxidation for enhanced performance.
Collapse
Affiliation(s)
- Yuanjun Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiajing Pei
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhe Chen
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| | - Ang Li
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100024, China
| | - Shufang Ji
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| | - Aojie Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Xiaodong Han
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100024, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Gang Zhou
- School of Science, Hubei University of Technology, Wuhan 430068, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Li Q, Zhang G, Yuan B, Zhong S, Ji Y, Liu Y, Wu X, Kong Q, Han J, He W. Core‐shell nanocatalysts with reduced platinum content toward more cost‐effective proton exchange membrane fuel cells. NANO SELECT 2022. [DOI: 10.1002/nano.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Qun Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Guisheng Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Botao Yuan
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Shijie Zhong
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Yuanpeng Ji
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
- Chongqing Research Institute Harbin Institute of Technology Chongqing China
| | - Yuanpeng Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Xiaoqiang Wu
- School of Mechanical Engineering Chengdu University Chengdu China
| | - Qingquan Kong
- School of Mechanical Engineering Chengdu University Chengdu China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Weidong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
- Chongqing Research Institute Harbin Institute of Technology Chongqing China
- School of Mechanical Engineering Chengdu University Chengdu China
| |
Collapse
|
19
|
Guo K, Teng Y, Guo R, Meng Y, Fan D, Hao Q, Zhang Y, Li Y, Xu D. Engineering ultrathin PdAu nanoring via a facile process for electrocatalytic ethanol oxidation. J Colloid Interface Sci 2022; 628:53-63. [PMID: 35973257 DOI: 10.1016/j.jcis.2022.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Ultrathin nanoframes with more available electrocatalytic active sites on both internal and external surfaces have attracted great attention especially in the field of electrocatalysis. Herein, we report a facile process to prepare PdAu nanorings (NRs) in aqueous solution without adding any organic ligands. The growth mechanism of PdAu NRs was explored in detail. The Au precursors were reduced into Au clusters around the edges of Pd nanosheets (NSs) via galvanic replacement, then the center of Pd NSs was oxidatively etched by Cl-/O2, and finally the Pd and Au atoms on the edge sites were rearranged to form uniform PdAu alloy. PdAu NRs with different ratios and ternary PdAuPt NRs could be easily prepared using this strategy. Owing to the synergistically structural and compositional advantages, Pd79Au21 NRs exhibited higher electrocatalytic activity and stability, as well as low activation energy (Ea) for the ethanol electrooxidation reaction.
Collapse
Affiliation(s)
- Ke Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yuxiang Teng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Ruonan Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yang Meng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Dongping Fan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiaoqiao Hao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yan Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
20
|
Zhang D, Ding R, Zhang C, Tang Y, Yuan T, Dong Q, Bi L, Shi S, He Y. Efficient Synthesis of Fe/N-Doped Carbon Nanotube as Highly Active Catalysts for Oxygen Reduction Reaction in Alkaline Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9310-9320. [PMID: 35861595 DOI: 10.1021/acs.langmuir.2c01130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is of significant implication to fabricate high-performance, durable and low-cost catalysts toward to oxygen reduction reaction (ORR) to drive commercial application of fuel cells. In our work, we synthesize the Fe/N-CNT catalyst via one-pot grinding combined with calcination using a mixture of carbamide, CNTs and iron salts as precursors, the as-synthesized catalysts show the structure that Fe nanoparticles are encapsulated in the tube of intertwined CNTs with abundant active sites. The catalyst is synthesized at 800 °C (Fe/N-CNT-800-20) obtain high graphitization degree and high N doped content, especially the high content and proportion of Fe-N and pyridinic-N, exhibiting outstanding ORR activity. Moreover, too high calcination temperature (850 °C) and high Fe content (25%) lead to the agglomeration of Fe during the calcination, which blocked some catalytic sites, leading to poor ORR activity. This facile synergy route will provide new thoughts for the fabrication and optimization of catalysts.
Collapse
Affiliation(s)
- Da Zhang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Ruixin Ding
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Chuanqi Zhang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Yuanzheng Tang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Tiejian Yuan
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Qianpeng Dong
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Lansen Bi
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Song Shi
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Yan He
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
21
|
Bin Yousaf A, Kveton F, Blsakova A, Popelka A, Tkac J, Kasak P. Electrochemical surface activation of commercial tungsten carbide for enhanced electrocatalytic hydrogen evolution and methanol oxidation reactions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Daimon H, Yamazaki SI, Asahi M, Ioroi T, Inaba M. A Strategy for Drastic Improvement in the Durability of Pt/C and PtCo/C Alloy Catalysts for the Oxygen Reduction Reaction by Melamine Surface Modification. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hideo Daimon
- Electrochemical Laboratory, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| | - Shin-ichi Yamazaki
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Masafumi Asahi
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Tsutomu Ioroi
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Minoru Inaba
- Electrochemical Laboratory, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
23
|
Engineering gold-platinum core-shell nanoparticles by self-limitation in solution. Commun Chem 2022; 5:71. [PMID: 36697905 PMCID: PMC9814372 DOI: 10.1038/s42004-022-00680-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/04/2022] [Indexed: 01/28/2023] Open
Abstract
Core-shell particles with thin noble metal shells represent an attractive material class with potential for various applications ranging from catalysis to biomedical and pharmaceutical applications to optical crystals. The synthesis of well-defined core-shell architectures remains, however, highly challenging. Here, we demonstrate that atomically-thin and homogeneous platinum shells can be grown via a colloidal synthesis method on a variety of gold nanostructures ranging from spherical nanoparticles to nanorods and nanocubes. The synthesis is based on the exchange of low binding citrate ligands on gold, the reduction of platinum and the subsequent kinetically hindered growth by carbon monoxide as strong binding ligand. The prerequisites for homogeneous growth are low core-binding ligands with moderate fast ligand exchange in solution, a mild reducing agent to mitigate homonucleation and a strong affinity of a second ligand system that can bind to the shell's surface. The simplicity of the described synthetic route can potentially be adapted to various other material libraries to obtain atomically smooth core-shell systems.
Collapse
|
24
|
Han Y, Shen Y, Song Y, Zhang H, Liu P, Guo J. Edge‐Rich Graphene Nanopheres With Ultra‐High Nitrogen Loading Metal‐Free Electrocatalysts For Boosted Oxygen Reduction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yunjun Han
- Taiyuan University of Technology Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education CHINA
| | - Yongqing Shen
- Taiyuan University of Technology Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education CHINA
| | - Yanhui Song
- Taiyuan University of Technology Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education CHINA
| | - Haixia Zhang
- Taiyuan University of Technology Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education CHINA
| | - Peizhi Liu
- Taiyuan University of Technology Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education CHINA
| | - Junjie Guo
- Taiyuan University of Technology 79 Yingze west street Taiyuan CHINA
| |
Collapse
|
25
|
Abstract
ConspectusProton-exchange membrane fuel cells (PEMFCs) are highly efficient energy storage and conversion devices. Thus, the platinum group metal (PGM)-based catalysts which are the dominant choice for the PEMFCs have received extensive interest during the past couple of decades. However, the drawbacks in the existing PGM-based catalysts (i.e., high cost, slow kinetics, poor stability, etc.) still limit their applications in fuel cells. The Pt-based core-shell catalysts potentially alleviate these issues through the low Pt loading with the associated low cost and the high corrosion resistance and further improve the oxygen reduction reaction's (ORR's) activity and stability. This Account focuses on the synthetic strategies, catalytic mechanisms, factors influencing enhanced ORR performance, and applications in PEMFCs for the Pt-based core-shell catalysts. We first highlight the synthetic strategies for Pt-based core-shell catalysts including the galvanic displacement of an underpotentially deposited non-noble metal monolayer, thermal annealing, and dealloying methods, which can be scaled-up to meet the requirements of fuel cell operations. Subsequently, catalytic mechanisms such as the self-healing mechanism in the Pt monolayer on Pd core catalysts, the pinning effect of nitrogen (N) dopants in N-doped PtNi core-shell catalysts, and the ligand effect of the ordered intermetallic structure in L10-Pt/CoPt core-shell catalysts and their synergistic effects in N-doped L10-PtNi catalysts are described in detail. The core-shell structure in the Pt-based catalysts have two main effects for enhanced ORR performance: (i) the interaction between Pt shells and core substrates can tune the electronic state of the surface Pt, thus boosting the ORR activity and stability, and (ii) the outer Pt shell with modest thickness can enhance the oxidation and dissolution resistance of the core, resulting in improved durability. We then review the recent attempts to optimize the ORR performance of the Pt-based core-shell catalysts by considering the shape, composition, surface orientation, and shell thickness. The factors influencing the ORR performance can be grouped into two categories: the effect of the core and the effect of the shell. In the former, PtM core-shell catalysts which use different non-PGM element cores (M) are summarized, and in the latter, Pt-based core-shell catalysts with different shell structures and compositions are described. The modifications of the core and/or shell structure can not only optimize the intermediate-binding energetics on the Pt surface through tuning the strain of the surface Pt, which increases the intrinsic activity and stability, but also offer a significantly decreased catalyst cost. Finally, we discuss the membrane electrode assembly performance of Pt-based core-shell catalysts in fuel cell cathodes and evaluate their potential in real PEMFCs for light-duty and heavy-duty vehicle applications. Even though some challenges to the activity and lifetime in the fuel cells remain, the Pt-based core-shell catalysts are expected to be promising for many practical PEMFC applications.
Collapse
Affiliation(s)
- Xueru Zhao
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kotaro Sasaki
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
26
|
Chen Y, Feng C, Wang W, Liu Z, Li J, Liu C, Pan Y, Liu Y. Electronic structure engineering of bimetallic Pd-Au alloy nanocatalysts for improving electrocatalytic hydrodechlorination performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Li J, Liang X, Cai L, Huang S, Zhao C. Modification of Palladium Nanocrystals with Single Atom Platinum via an Electrochemical Self-Catalysis Strategy for Efficient Formic Acid Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8001-8009. [PMID: 35113513 DOI: 10.1021/acsami.1c23228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single atom alloys (SAA) have recently drawn increased attention due to their unique structure, high atomic utilization, and fascinating catalytic performance. However, their controllable synthesis still presents a challenge. This study proposes an electrochemical self-catalysis (ESC) strategy to synthesize Pd@Pt/C SAA catalysts, that is, depositing Pt atoms on Pd nanocrystals through in situ decomposition of sodium formate. The relationship between composition and structure of Pd@Pt/C is distinguished through a combination of electrochemical analysis, sphere-corrected scanning transmission electron microscopy, and X-ray adsorption spectra. That relationship evolved from SAA to a sea-island structure and even a core-shell structure with composition-controllable atomic ratios, highlighting the great diversity and convenience of this method in nanostructure construction. The Pd@Pt/C SAA catalyst showed excellent catalytic activity to formic acid oxidation with a peak current density of 5.2 A/mgmetal, which is about 18.6 times that of the commercial Pd/C. density functional theory calculations revealed that the enhanced activity was due to the "passivation" of Pd sites near the Pt single atoms, which attenuated the adsorption of CO. Based on electrochemical principles, this ESC strategy was also expanded to prepare a series of Pd-based SAA, including Pd-Au, Pd-Ir, and Pd-Bi.
Collapse
Affiliation(s)
- Jun Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518067, China
- College of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Xiaosi Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Liying Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Shuke Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Chenyang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| |
Collapse
|
28
|
Gao Z, Li Z, Zhao C, Li T, Lu Y, Song YY. Construction of Bi-Component CoNi Nanosheet coated TiO2 Nanotube Arrays for Photocatalysis-Assisted Poisoning Tolerance toward Methanol Oxidation Reaction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Pavko L, Gatalo M, Križan G, Križan J, Ehelebe K, Ruiz-Zepeda F, Šala M, Dražić G, Geuß M, Kaiser P, Bele M, Kostelec M, Đukić T, Van de Velde N, Jerman I, Cherevko S, Hodnik N, Genorio B, Gaberšček M. Toward the Continuous Production of Multigram Quantities of Highly Uniform Supported Metallic Nanoparticles and Their Application for Synthesis of Superior Intermetallic Pt-Alloy ORR Electrocatalysts. ACS APPLIED ENERGY MATERIALS 2021; 4:13819-13829. [PMID: 34977474 PMCID: PMC8715446 DOI: 10.1021/acsaem.1c02570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/15/2021] [Indexed: 05/27/2023]
Abstract
A fast and facile pulse combustion (PC) method that allows for the continuous production of multigram quantities of high-metal-loaded and highly uniform supported metallic nanoparticles (SMNPs) is presented. Namely, various metal on carbon (M/C) composites have been prepared by using only three feedstock components: water, metal-salt, and the supporting material. The present approach can be elegantly utilized also for numerous other applications in electrocatalysis, heterogeneous catalysis, and sensors. In this study, the PC-prepared M/C composites were used as metal precursors for the Pt NPs deposition using double passivation with the galvanic displacement method (DP method). Lastly, by using thin-film rotating disc electrode (TF-RDE) and gas-diffusion electrode (GDE) methodologies, we show that the synergistic effects of combining PC technology with the DP method enable production of superior intermetallic Pt-M electrocatalysts with an improved oxygen reduction reaction (ORR) performance when compared to a commercial Pt-Co electrocatalyst for proton exchange membrane fuel cells (PEMFCs) application.
Collapse
Affiliation(s)
- Luka Pavko
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, 1001 Ljubljana, Slovenia
| | - Matija Gatalo
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- ReCatalyst
d.o.o., Hajdrihova 19, 1001 Ljubljana, Slovenia
| | | | | | - Konrad Ehelebe
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstr.3, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Francisco Ruiz-Zepeda
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Martin Šala
- Department
of Analytical Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Goran Dražić
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Moritz Geuß
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstr.3, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Pascal Kaiser
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstr.3, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Marjan Bele
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Mitja Kostelec
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, 1001 Ljubljana, Slovenia
| | - Tina Đukić
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, 1001 Ljubljana, Slovenia
| | - Nigel Van de Velde
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Ivan Jerman
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Serhiy Cherevko
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstr.3, 91058 Erlangen, Germany
| | - Nejc Hodnik
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Boštjan Genorio
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, 1001 Ljubljana, Slovenia
| | - Miran Gaberšček
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
30
|
Zhai M, Chen F, Wu N, Zhang X, Guo R, Ma M, Hu T. Highly Conductive and CO‐Resistant Cobalt‐Based Monolithic Electrodes for the Catalytic Oxidation of Methanol. ChemElectroChem 2021. [DOI: 10.1002/celc.202101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meixu Zhai
- Department of Chemistry College of Science North University of China Taiyuan 030051 China
| | - Fei Chen
- Department of Chemistry College of Science North University of China Taiyuan 030051 China
| | - Na Wu
- Department of Chemistry College of Science North University of China Taiyuan 030051 China
| | - Xue Zhang
- Department of Chemistry College of Science North University of China Taiyuan 030051 China
| | - Ruihong Guo
- Department of Chemistry College of Science North University of China Taiyuan 030051 China
| | - Mingming Ma
- Department of Chemistry College of Science North University of China Taiyuan 030051 China
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemistry University of Science and Technology of China Hefei 230026 Anhui China
| | - Tuoping Hu
- Department of Chemistry College of Science North University of China Taiyuan 030051 China
| |
Collapse
|
31
|
Oyarzún MP, Silva N, Cortés-Arriagada D, Silva JF, Ponce IO, Flores M, Tammeveski K, Bélanger D, Zitolo A, Jaouen F, Zagal JH. Enhancing the electrocatalytic activity of Fe phthalocyanines for the oxygen reduction reaction by the presence of axial ligands: Pyridine-functionalized single-walled carbon nanotubes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Tan HY, Lin SC, Wang J, Chang CJ, Haw SC, Lin KH, Tsai LD, Chen HC, Chen HM. MOF-Templated Sulfurization of Atomically Dispersed Manganese Catalysts Facilitating Electroreduction of CO 2 to CO. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52134-52143. [PMID: 34258990 DOI: 10.1021/acsami.1c10059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To reach a carbon-neutral future, electrochemical CO2 reduction reaction (eCO2RR) has proven to be a strong candidate for the next-generation energy system. Among potential materials, single-atom catalysts (SACs) serve as a model to study the mechanism behind the reduction of CO2 to CO, given their well-defined active metal centers and structural simplicity. Moreover, using metal-organic frameworks (MOFs) as supports to anchor and stabilize central metal atoms, the common concern, metal aggregation, for SACs can be addressed well. Furthermore, with their turnability and designability, MOF-derived SACs can also extend the scope of research on SACs for the eCO2RR. Herein, we synthesize sulfurized MOF-derived Mn SACs to study effects of the S dopant on the eCO2RR. Using complementary characterization techniques, the metal moiety of the sulfurized MOF-derived Mn SACs (MnSA/SNC) is identified as MnN3S1. Compared with its non-sulfur-modified counterpart (MnSA/NC), the MnSA/SNC provides uniformly superior activity to produce CO. Specifically, a nearly 30% enhancement of Faradaic efficiency (F.E.) in CO production is observed, and the highest F.E. of approximately 70% is identified at -0.45 V. Through operando spectroscopic characterization, the probing results reveal that the overall enhancement of CO production on the MnSA/SNC is possibly caused by the S atom in the local MnN3S1 moiety, as the sulfur atom may induce the formation of S-O bonding to stabilize the critical intermediate, *COOH, for CO2-to-CO. Our results provide novel design insights into the field of SACs for the eCO2RR.
Collapse
Affiliation(s)
- Hui-Ying Tan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Chih Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jiali Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Jui Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shu-Chih Haw
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Kuo-Hsin Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31040, Taiwan
| | - Li Duan Tsai
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31040, Taiwan
| | - Hsiao-Chien Chen
- Center for Reliability Sciences and Technologies, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
33
|
Zhao F, Zheng L, Yuan Q, Yang X, Zhang Q, Xu H, Guo Y, Yang S, Zhou Z, Gu L, Wang X. Ultrathin PdAuBiTe Nanosheets as High-Performance Oxygen Reduction Catalysts for a Direct Methanol Fuel Cell Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103383. [PMID: 34468056 DOI: 10.1002/adma.202103383] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Ultrathin 2D metal nanostructures have sparked a lot of research interest because of their improved electrocatalytic properties for fuel cells. So far, no effective technique for preparing ultrathin 2D Pd-based metal nanostructures with more than three compositions has been published. Herein, a new visible-light-induced template technique for producing PdAuBiTe alloyed 2D ultrathin nanosheets is developed. The mass activity of the PdAuBiTe nanosheets against the oxygen reduction reaction (ORR) is 2.48 A mgPd -1 , which is 27.5/17.7 times that of industrial Pd/C/Pt/C, respectively. After 10 000 potential cyclings, there is no decrease in ORR activity. The PdAuBiTe nanosheets exhibit high methanol tolerance and in situ anti-CO poisoning properties. The PdAuBiTe nanosheets, as cathode electrocatalysts in direct methanol fuel cells, can thus give significant improvement in terms of power density and durability. In O2 /air, the power density can be increased to 235.7/173.5 mW cm-2 , higher than that reported in previous work, and which is 2.32/3.59 times higher than Pt/C.
Collapse
Affiliation(s)
- Fengling Zhao
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaotong Yang
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
| | - Qinghua Zhang
- Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing, 100190, P. R. China
| | - Han Xu
- Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing, 100190, P. R. China
| | - Yuanlong Guo
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
| | - Song Yang
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China
| | - Zhiyou Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lin Gu
- Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing, 100190, P. R. China
| | - Xun Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
34
|
Chen D, Lai Z, Zhang J, Chen J, Hu P, Wang H. Gold Segregation Improves Electrocatalytic Activity of Icosahedron Au@Pt Nanocluster: Insights from Machine Learning
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dingming Chen
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhuangzhuang Lai
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jiawei Zhang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jianfu Chen
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Peijun Hu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
35
|
Kostuch A, Rutkowska IA, Dembinska B, Wadas A, Negro E, Vezzù K, Di Noto V, Kulesza PJ. Enhancement of Activity and Development of Low Pt Content Electrocatalysts for Oxygen Reduction Reaction in Acid Media. Molecules 2021; 26:molecules26175147. [PMID: 34500578 PMCID: PMC8434571 DOI: 10.3390/molecules26175147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Platinum is a main catalyst for the electroreduction of oxygen, a reaction of primary importance to the technology of low-temperature fuel cells. Due to the high cost of platinum, there is a need to significantly lower its loadings at interfaces. However, then O2-reduction often proceeds at a less positive potential, and produces higher amounts of undesirable H2O2-intermediate. Hybrid supports, which utilize metal oxides (e.g., CeO2, WO3, Ta2O5, Nb2O5, and ZrO2), stabilize Pt and carbon nanostructures and diminish their corrosion while exhibiting high activity toward the four-electron (most efficient) reduction in oxygen. Porosity of carbon supports facilitates dispersion and stability of Pt nanoparticles. Alternatively, the Pt-based bi- and multi-metallic catalysts, including PtM alloys or M-core/Pt-shell nanostructures, where M stands for certain transition metals (e.g., Au, Co, Cu, Ni, and Fe), can be considered. The catalytic efficiency depends on geometric (decrease in Pt-Pt bond distances) and electronic (increase in d-electron vacancy in Pt) factors, in addition to possible metal-support interactions and interfacial structural changes affecting adsorption and activation of O2-molecules. Despite the stabilization of carbons, doping with heteroatoms, such as sulfur, nitrogen, phosphorus, and boron results in the formation of catalytically active centers. Thus, the useful catalysts are likely to be multi-component and multi-functional.
Collapse
Affiliation(s)
- Aldona Kostuch
- Faculty of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland; (A.K.); (I.A.R.); (B.D.); (A.W.)
| | - Iwona A. Rutkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland; (A.K.); (I.A.R.); (B.D.); (A.W.)
| | - Beata Dembinska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland; (A.K.); (I.A.R.); (B.D.); (A.W.)
| | - Anna Wadas
- Faculty of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland; (A.K.); (I.A.R.); (B.D.); (A.W.)
| | - Enrico Negro
- Department of Industrial Engineering, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy; (E.N.); (K.V.); (V.D.N.)
| | - Keti Vezzù
- Department of Industrial Engineering, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy; (E.N.); (K.V.); (V.D.N.)
| | - Vito Di Noto
- Department of Industrial Engineering, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy; (E.N.); (K.V.); (V.D.N.)
| | - Pawel J. Kulesza
- Faculty of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland; (A.K.); (I.A.R.); (B.D.); (A.W.)
- Correspondence: ; Tel.: +48-2255-26-344
| |
Collapse
|
36
|
Zhou X, Leng X, Ling C, Chong H, Xu AW, Yang Z. Integrating a metal framework with Co-confined carbon nanotubes as trifunctional electrocatalysts to boost electron and mass transfer approaching practical applications. NANOSCALE 2021; 13:12651-12658. [PMID: 34477615 DOI: 10.1039/d1nr02476k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A facile and large-scale construction of robust and inexpensive trifunctional self-supporting electrodes for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in metal-air batteries and water splitting is crucial but remains challenging. Herein, we report a direct and up-scalable all-solid-phase strategy for the synthesis of a porous three-dimensional electrode consisting of cobalt nanoparticles wrapped in nitrogen-doped carbon tubes (Co/N-CNTs), which are in situ planted onto the surface of a cobalt foam. The resultant Co/N-CNTs can directly serve as a self-supporting and adhesive-free electrode with excellent and durable catalytic performances for the ORR, OER and HER. The metal framework substrate with an open-pore architecture is favorable for electron and mass transfer and allows fast catalytic kinetics. More importantly, when used in Zn-air batteries and overall water splitting, the as-prepared Co/N-CNT electrode displays a remarkable performance, implying bright perspects for practical application.
Collapse
Affiliation(s)
- Xiao Zhou
- Institutes of Physical Science and Information Technology, Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, China.
| | | | | | | | | | | |
Collapse
|
37
|
Hashiguchi Y, Watanabe F, Honma T, Nakamura I, Poly SS, Kawaguchi T, Tsuji T, Murayama H, Tokunaga M, Fujitani T. Continuous-flow synthesis of Pd@Pt core-shell nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Zaman S, Huang L, Douka AI, Yang H, You B, Xia BY. Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angew Chem Int Ed Engl 2021; 60:17832-17852. [PMID: 33533165 DOI: 10.1002/anie.202016977] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/23/2022]
Abstract
Fuel cells are an incredibly powerful renewable energy technology, but their broad applications remains lagging because of the high cost and poor reliability of cathodic electrocatalysts for the oxygen reduction reaction (ORR). This review focuses on the recent progress of ORR electrocatalysts in fuel cells. More importantly, it highlights the fundamental problems associated with the insufficient activity translation from rotating disk electrode to membrane electrode assembly in the fuel cells. Finally, for the atomic-level in-depth information on ORR catalysts in fuel cells, potential perspectives are suggested, including large-scale preparation, unified assessment criteria, advanced interpretation techniques, advanced simulation and artificial intelligence. This review aims to provide valuable insights into the fundamental science and technical engineering for efficient ORR electrocatalysts in fuel cells.
Collapse
Affiliation(s)
- Shahid Zaman
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Abdoulkader Ibro Douka
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Huan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
39
|
Zaman S, Huang L, Douka AI, Yang H, You B, Xia BY. Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016977] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shahid Zaman
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| | - Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| | - Abdoulkader Ibro Douka
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| | - Huan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| |
Collapse
|
40
|
Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanoparticle fuel cell catalysts. Nat Commun 2021; 12:859. [PMID: 33558516 PMCID: PMC7870895 DOI: 10.1038/s41467-021-21017-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/08/2021] [Indexed: 11/08/2022] Open
Abstract
Alloying noble metals with non-noble metals enables high activity while reducing the cost of electrocatalysts in fuel cells. However, under fuel cell operating conditions, state-of-the-art oxygen reduction reaction alloy catalysts either feature high atomic percentages of noble metals (>70%) with limited durability or show poor durability when lower percentages of noble metals (<50%) are used. Here, we demonstrate a highly-durable alloy catalyst derived by alloying PtPd (<50%) with 3d-transition metals (Cu, Ni or Co) in ternary compositions. The origin of the high durability is probed by in-situ/operando high-energy synchrotron X-ray diffraction coupled with pair distribution function analysis of atomic phase structures and strains, revealing an important role of realloying in the compressively-strained single-phase alloy state despite the occurrence of dealloying. The implication of the finding, a striking departure from previous perceptions of phase-segregated noble metal skin or complete dealloying of non-noble metals, is the fulfilling of the promise of alloy catalysts for mass commercialization of fuel cells.
Collapse
|
41
|
Timoshenko J, Roldan Cuenya B. In Situ/ Operando Electrocatalyst Characterization by X-ray Absorption Spectroscopy. Chem Rev 2021; 121:882-961. [PMID: 32986414 PMCID: PMC7844833 DOI: 10.1021/acs.chemrev.0c00396] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/18/2022]
Abstract
During the last decades, X-ray absorption spectroscopy (XAS) has become an indispensable method for probing the structure and composition of heterogeneous catalysts, revealing the nature of the active sites and establishing links between structural motifs in a catalyst, local electronic structure, and catalytic properties. Here we discuss the fundamental principles of the XAS method and describe the progress in the instrumentation and data analysis approaches undertaken for deciphering X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra. Recent usages of XAS in the field of heterogeneous catalysis, with emphasis on examples concerning electrocatalysis, will be presented. The latter is a rapidly developing field with immense industrial applications but also unique challenges in terms of the experimental characterization restrictions and advanced modeling approaches required. This review will highlight the new insight that can be gained with XAS on complex real-world electrocatalysts including their working mechanisms and the dynamic processes taking place in the course of a chemical reaction. More specifically, we will discuss applications of in situ and operando XAS to probe the catalyst's interactions with the environment (support, electrolyte, ligands, adsorbates, reaction products, and intermediates) and its structural, chemical, and electronic transformations as it adapts to the reaction conditions.
Collapse
Affiliation(s)
- Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
42
|
Kusunoki K, Kudo D, Hayashi K, Chida Y, Todoroki N, Wadayama T. Oxygen Reduction Reaction of Third Element-Modified Pt/Pd(111): Effect of Atomically Controlled Ir Locations on the Activity and Durability. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keisuke Kusunoki
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Daisuke Kudo
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Kenta Hayashi
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Yoshihiro Chida
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Naoto Todoroki
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Toshimasa Wadayama
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
43
|
Luo N, Chen Y, Zhang D, Guo M, Xue Z, Wang X, Cheng Z, Xu J. High-Sensitive MEMS Hydrogen Sulfide Sensor made from PdRh Bimetal Hollow Nanoframe Decorated Metal Oxides and Sensitization Mechanism Study. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56203-56215. [PMID: 33272011 DOI: 10.1021/acsami.0c18369] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here we report the fabrication of a high performance metal oxide semiconductor (MOS) sensor for the detection of hydrogen sulfide (H2S) using PdRh bimetal hollow nanocube (HC) with Rh-rich hollow frame and Pd-rich core frame as sensitizing materials. PdRh bimetal HC with the edge-length about 10 nm was prepared by chemical etching PdRh bimetal solid nanocube (SC) in HNO3 aqueous solution. The results of gas-sensing tests indicate that the response value order of the MEMS gas sensors based on MOSs (including ZnO, MoO3 and SnO2) is as follows: RPdRh HC/MOS > RPdRh SC/MOS > RMOS. First, in the system of ZnO, gas sensor modified by PdRh (PdRh SC/ZnO and PdRh HC/ZnO) possess enhanced H2S sensing performance with a better response and excellent low-concentration detection capability (down to 15 ppb) comparing to pure ZnO. The improved H2S sensing performance could be attributed to the good conductivity of Rh-rich frame, the high catalytic activity of PdRh bimetal and formation of Schottky barrier-type junctions and defect. Second, PdRh HC/ZnO sensor shows better response (185-1 ppm of H2S) compared to PdRh SC/ZnO sensor (108-1 ppm of H2S), which is due to the higher specific surface area of PdRh HC/ZnO and good gas diffusion of the hollow structure. This work indicate that the sensitization characteristics of PdRh bimetal HC will provide new paradigms for the future development of the high performance sensor.
Collapse
Affiliation(s)
- Na Luo
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yang Chen
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Dan Zhang
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mengmeng Guo
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zhenggang Xue
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xiaohong Wang
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zhixuan Cheng
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiaqiang Xu
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
44
|
Zhao X, Cheng H, Song L, Han L, Zhang R, Kwon G, Ma L, Ehrlich SN, Frenkel AI, Yang J, Sasaki K, Xin HL. Rhombohedral Ordered Intermetallic Nanocatalyst Boosts the Oxygen Reduction Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xueru Zhao
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hao Cheng
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Liang Song
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Lili Han
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Rui Zhang
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Gihan Kwon
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven N. Ehrlich
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Anatoly I. Frenkel
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jing Yang
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Kotaro Sasaki
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Huolin L. Xin
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
45
|
Yamazaki SI, Asahi M, Taguchi N, Ioroi T, Kishimoto Y, Daimon H, Inaba M, Koga K, Kurose Y, Inoue H. Creation of a Highly Active Pt/Pd/C Core–Shell-Structured Catalyst by Synergistic Combination of Intrinsically High Activity and Surface Decoration with Melamine or Tetra-( tert-butyl)-tetraazaporphyrin. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shin-ichi Yamazaki
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Masafumi Asahi
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Noboru Taguchi
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Tsutomu Ioroi
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yuko Kishimoto
- Faculty of Science and Engineering, Doshisha University, 1-3 Miyakodani-Tatara, Kytotanabe, Kyoto 610-0321, Japan
| | - Hideo Daimon
- Faculty of Science and Engineering, Doshisha University, 1-3 Miyakodani-Tatara, Kytotanabe, Kyoto 610-0321, Japan
| | - Minoru Inaba
- Faculty of Science and Engineering, Doshisha University, 1-3 Miyakodani-Tatara, Kytotanabe, Kyoto 610-0321, Japan
| | - Kazunori Koga
- Engineering Department, ISHIFUKU Metal Industry Co., Ltd., 2-12-30 Aoyagi, Soka, Saitama 340-0002, Japan
| | - Yutaka Kurose
- Engineering Department, ISHIFUKU Metal Industry Co., Ltd., 2-12-30 Aoyagi, Soka, Saitama 340-0002, Japan
| | - Hideo Inoue
- Engineering Department, ISHIFUKU Metal Industry Co., Ltd., 2-12-30 Aoyagi, Soka, Saitama 340-0002, Japan
| |
Collapse
|
46
|
Cao Y, Xiahou Y, Xing L, Zhang X, Li H, Wu C, Xia H. Fe(II)-Assisted one-pot synthesis of ultra-small core-shell Au-Pt nanoparticles as superior catalysts towards the HER and ORR. NANOSCALE 2020; 12:20456-20466. [PMID: 33026009 DOI: 10.1039/d0nr04995f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, uniform ultra-small core-shell Au-Pt nanoparticles (denoted as USCS Au-Pt NPs) with Au-decorated Pt surfaces are successfully prepared by Fe(ii)-assisted one-pot co-reduction of Au(iii) ions and Pt(ii) ions in a citrate solution. The as-prepared USCS Au38.4@Au9.3Pt52.3 NPs have an average diameter of 2.3 ± 0.5 nm. It is found that the morphology, composition and size of Au-Pt NPs are highly dependent on the reaction conditions including the addition sequence of the precursors, and the concentrations of Fe(ii) ions, Au(iii) ions and Pt(ii) ions. In addition, USCS Au38.4@Au9.3Pt52.3-NP/C catalysts (USCS Au38.4@Au9.3Pt52.3 NPs loaded on the Vulcan XC-72R carbon black) exhibit excellent electrocatalytic performance towards the hydrogen evolution reaction (HER) and the oxygen reduction reaction (ORR) in acidic media due to the higher electrochemically active surface area (ECSA) and electronic effect between Pt and Au. For instance, USCS Au38.4@Au9.3Pt52.3-NP/C catalysts exhibited greatly enhanced HER activity in terms of overpotential (16 mV at a current density of -10 mA cm-2) and are better than commercial Pt/C catalysts (31 mV at a current density of -10 mA cm-2) reported in the literature thus far, to the best of our knowledge. Strikingly, their mass activity is about 13.1-fold higher than that of commercial Pt/C catalysts. Moreover, they also show an improved ORR activity, Eonset = 1.015 V and E1/2 = 0.896 V, which are positively shifted by nearly 28 mV and 21 mV than those of commercial Pt/C catalysts (0.987 V and 0.875 V), respectively. In addition, they also showed a higher kinetic current density (12.85 mA cm-2 at 0.85 V) and a better long-term durability. Our synthetic strategy presented here may be extended to the preparation of ultra-small Au-based bimetallic or multi-metallic NPs.
Collapse
Affiliation(s)
- Yi Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Yujiao Xiahou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Lixiang Xing
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Xiang Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Hong Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - ChenShou Wu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Haibing Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| |
Collapse
|
47
|
Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts. Nat Commun 2020; 11:4558. [PMID: 32917900 PMCID: PMC7486907 DOI: 10.1038/s41467-020-18430-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/20/2020] [Indexed: 11/09/2022] Open
Abstract
The growth of atomically dispersed metal catalysts (ADMCs) remains a great challenge owing to the thermodynamically driven atom aggregation. Here we report a surface-limited electrodeposition technique that uses site-specific substrates for the rapid and room-temperature synthesis of ADMCs. We obtained ADMCs by the underpotential deposition of a non-noble single-atom metal onto the chalcogen atoms of transition metal dichalcogenides and subsequent galvanic displacement with a more-noble single-atom metal. The site-specific electrodeposition enables the formation of energetically favorable metal-support bonds, and then automatically terminates the sequential formation of metallic bonding. The self-terminating effect restricts the metal deposition to the atomic scale. The modulated ADMCs exhibit remarkable activity and stability in the hydrogen evolution reaction compared to state-of-the-art single-atom electrocatalysts. We demonstrate that this methodology could be extended to the synthesis of a variety of ADMCs (Pt, Pd, Rh, Cu, Pb, Bi, and Sn), showing its general scope for functional ADMCs manufacturing in heterogeneous catalysis.
Collapse
|
48
|
Zhao X, Xi C, Zhang R, Song L, Wang C, Spendelow JS, Frenkel AI, Yang J, Xin HL, Sasaki K. High-Performance Nitrogen-Doped Intermetallic PtNi Catalyst for the Oxygen Reduction Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03036] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xueru Zhao
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Cong Xi
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Rui Zhang
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Liang Song
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Chenyu Wang
- Materials Physics and Application Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jacob S. Spendelow
- Materials Physics and Application Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Anatoly I. Frenkel
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jing Yang
- Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Huolin L. Xin
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Kotaro Sasaki
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
49
|
Abstract
Graphdiyne (GDY) is a two-dimensional (2D) electron-rich full-carbon planar material composed of sp2- and sp-hybridized carbon atoms, which features highly conjugated structures, uniformly distributed pores, tunable electronic characteristics and high specific surface areas. The synthesis strategy of GDY by facile coupling reactions under mild conditions provides more convenience for the functional modification of GDY and offers opportunities for realizing the special preparation of GDY according to the desired structure and unique properties. These structural characteristics and excellent physical and chemical properties of GDY have attracted increasing attention in the field of electrocatalysis. Herein, the research progress in the synthesis of atomic-level functionalized GDYs and their electrocatalytic applications are summarized. Special attention was paid to the research progress of metal-atom-anchored and nonmetallic-atom-doped GDYs for applications in the oxygen reduction reaction (ORR), the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) catalytic processes. In addition, several potential development prospects and challenges of these 2D highly conjugated electron-rich full-carbon materials in the field of electrocatalysis are presented.
Collapse
|
50
|
Kang X, Li Y, Zhu M, Jin R. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem Soc Rev 2020; 49:6443-6514. [PMID: 32760953 DOI: 10.1039/c9cs00633h] [Citation(s) in RCA: 352] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal nanoclusters fill the gap between discrete atoms and plasmonic nanoparticles, providing unique opportunities for investigating the quantum effects and precise structure-property correlations at the atomic level. As a versatile strategy, alloying can largely improve the physicochemical performances compared to the corresponding homo-metal nanoclusters, and thus benefit the applications of such nanomaterials. In this review, we highlight the achievements of atomically precise alloy nanoclusters, and summarize the alloying principles and fundamentals, including the synthetic methods, site-preferences for different heteroatoms in the templates, and alloying-induced structure and property changes. First, based on various Au or Ag nanocluster templates, heteroatom doping modes are presented. The templates with electronic shell-closing configurations tend to maintain their structures during doping, while the others may undergo transformation and give rise to alloy nanoclusters with new structures. Second, alloy nanoclusters of specific magic sizes are reviewed. The arrangement of different atoms is related to the symmetry of the structures; that is, different atoms are symmetrically located in the nanoclusters of smaller sizes, and evolve into shell-by-shell structures at larger sizes. Then, we elaborate on the alloying effects in terms of optical, electrochemical, electroluminescent, magnetic and chiral properties, as well as the stability and reactivity via comparisons between the doped nanoclusters and their homo-metal counterparts. For example, central heteroatom-induced photoluminescence enhancement is emphasized. The applications of alloy nanoclusters in catalysis, chemical sensing, bio-labeling, and other fields are further discussed. Finally, we provide perspectives on existing issues and future efforts. Overall, this review provides a comprehensive synthetic toolbox and controllable doping modes so as to achieve more alloy nanoclusters with customized compositions, structures, and properties for applications. This review is based on publications available up to February 2020.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | | | | | | |
Collapse
|