1
|
Kawamura G, Ozawa T. Luciferase complementation for cellular assays beyond protein-protein interactions. ANAL SCI 2025; 41:571-583. [PMID: 39966321 PMCID: PMC12064465 DOI: 10.1007/s44211-025-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
Luciferase complementation assays have emerged in 2001 as a useful tool to analyze biological processes through diverse biological assays such as cellular studies and in vivo imaging. The assay has an advantage of wide dynamic ranges, high signal-to-noise ratios, and capability for real-time monitoring of dynamic biological events with a readout of bioluminescence. While it was initially harnessed for detecting protein-protein interactions, biosensors based on luciferase-fragment complementation have achieved significant advancements in their designs, expanding versatility and applicability beyond the initial scope. This review aims to provide a comprehensive overview of designing strategies employed in split luciferase complementation assays and to highlight their diverse bioanalytical applications. Because simple bi-molecular detection of protein-protein interactions by this approach is well-established, this review will focus on introducing diverse sensor designs using the concept of split luciferase complementation.
Collapse
Affiliation(s)
- Genki Kawamura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 133-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 133-0033, Japan.
| |
Collapse
|
2
|
Wazawa T, Ozaki-Noma R, Kai L, Fukushima SI, Matsuda T, Nagai T. Genetically-encoded temperature indicators for thermal biology. Biophys Physicobiol 2025; 22:e220008. [PMID: 40309302 PMCID: PMC12040488 DOI: 10.2142/biophysico.bppb-v22.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Temperature crucially affects molecular processes in living organisms and thus it is one of the vital physical parameters for life. To investigate how temperature is biologically maintained and regulated and its biological impact on organisms, it is essential to measure the spatial distribution and/or temporal changes of temperature across different biological scales, from whole organism to subcellular structures. Fluorescent nanothermometers have been developed as probes for temperature measurement by fluorescence microscopy for applications in microscopic scales where macroscopic temperature sensors are inaccessible, such as embryos, tissues, cells, and organelles. Although fluorescent nanothermometers have been developed from various materials, fluorescent protein-based ones are especially of interest because they can be introduced into cells as the transgenes for expression with or without specific localization, making them suitable for less-invasive temperature observation in living biological samples. In this article, we review protein-based fluorescent nanothermometers also known as genetically-encoded temperature indicators (GETIs), covering most published GETIs, for developers, users, and researchers in thermal biology as well as interested readers. We provide overviews of the temperature sensing mechanisms and measurement methods of these protein-based fluorescent nanothermometers. We then outline key information for GETI development, focusing on unique protein engineering techniques and building blocks distinct to GETIs, unlike other fluorescent nanothermometers. Furthermore, we propose several standards for the characterization of GETIs. Additionally, we explore various issues and offer perspectives in the field of thermal biology.
Collapse
Affiliation(s)
- Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Ryohei Ozaki-Noma
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Lu Kai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Shun-ichi Fukushima
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Tomoki Matsuda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Sescil J, Havens SM, Wang W. Principles and Design of Molecular Tools for Sensing and Perturbing Cell Surface Receptor Activity. Chem Rev 2025; 125:2665-2702. [PMID: 39999110 PMCID: PMC11934152 DOI: 10.1021/acs.chemrev.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cell-surface receptors are vital for controlling numerous cellular processes with their dysregulation being linked to disease states. Therefore, it is necessary to develop tools to study receptors and the signaling pathways they control. This Review broadly describes molecular approaches that enable 1) the visualization of receptors to determine their localization and distribution; 2) sensing receptor activation with permanent readouts as well as readouts in real time; and 3) perturbing receptor activity and mimicking receptor-controlled processes to learn more about these processes. Together, these tools have provided valuable insight into fundamental receptor biology and helped to characterize therapeutics that target receptors.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Steven M. Havens
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Wenjing Wang
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
- Neuroscience Graduate Program, University of Michigan, Ann
Arbor, MI, 48109
- Program in Chemical Biology, University of Michigan, Ann
Arbor, MI, 48109
| |
Collapse
|
4
|
Kusama K, Oishi A, Ueno H, Yoshimi A, Nagase M, Shintake J. Electrically Driven, Bioluminescent Compliant Devices for Soft Robotics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11248-11258. [PMID: 39930615 PMCID: PMC11843531 DOI: 10.1021/acsami.4c18209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Soft robotics, a research field wherein robots are fabricated from compliant materials, has sparked widespread research interest because of its potential applications in a variety of scenarios. In soft robots, luminescence is an important functionality for communication and information transmission, and it is typically achieved through electroluminescence, which relies on synthetic substances activated by external electric sources, such as batteries. This paper focuses on the use of luciferase, a biologically derived luminescent enzyme, as a luminescent material. Bioluminescence, which is triggered by the luciferin-luciferase reaction, is highly energy-efficient, nontoxic, and eco-friendly. In this regard, a mammalian cell-derived secreted luciferase bioluminescent liquid was developed. This bioluminescent liquid is strongly bright, stable, freezable, and scalable for use as a soft robotic material. To investigate the applicability of this bioluminescent liquid to soft robotics, it was incorporated as an electrode in electrically driven soft actuators, sensors, and robots. Specifically, dielectric elastomer sensors (DESs) and dielectric elastomer actuators (DEAs) were fabricated and characterized using established fabrication processes. The resistivity of the bioluminescent liquid was found to be 448.1 Ω·cm. When the DES was subjected to uniaxial strain, it exhibited a linear response and large deformation of up to 200% strain, with a simultaneous luminance change of 27%. The DEA displayed an areal strain of 46.0% and a luminance change of 31% at an applied voltage of 3.4 kV. The waterproof bending DEA generated a tip angle of 21.8° at 10 kV and was applied to a jellyfish robot that could swim in water at a speed of 2.1 mm/s. The experimental results demonstrated the successful operation of these devices, validating the concept of energy-efficient, safe, and environmentally friendly bioluminescent soft robots.
Collapse
Affiliation(s)
- Kengo Kusama
- Department
of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Tokyo 182-8585, Japan
| | - Atsuro Oishi
- Department
of Anatomy, Kyorin University School of
Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-0004, Japan
| | - Hitoshi Ueno
- Department
of Anatomy, Kyorin University School of
Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-0004, Japan
| | - Akihide Yoshimi
- Division
of Cancer RNA Research, National Cancer
Center Research Institute, 5-1-1 Tsukiji, Chuo, Tokyo 104-0045, Japan
| | - Miki Nagase
- Department
of Anatomy, Kyorin University School of
Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-0004, Japan
| | - Jun Shintake
- Department
of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Tokyo 182-8585, Japan
| |
Collapse
|
5
|
Hattori M, Wazawa T, Orioka M, Hiruta Y, Nagai T. Creating coveted bioluminescence colors for simultaneous multi-color bioimaging. SCIENCE ADVANCES 2025; 11:eadp4750. [PMID: 39841832 PMCID: PMC11753369 DOI: 10.1126/sciadv.adp4750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Bioluminescence, an optical marker that does not require excitation by light, allows researchers to simultaneously observe multiple targets, each exhibiting a different color. Notably, the colors of the bioluminescent proteins must sufficiently vary to enable simultaneous detection. Here, we aimed to introduce a method that can be used to expand the color variation by tuning dual-acceptor bioluminescence resonance energy transfer. Using this approach, we could visualize multiple targets with up to 20 colors through single-shot acquisition using a color complementary metal-oxide semiconductor camera. Overall, this method enables simple and simultaneous observation of multiple biological targets and phenomena.
Collapse
Affiliation(s)
- Mitsuru Hattori
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tetsuichi Wazawa
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Mariko Orioka
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Transdimensional Life Imaging Division, OTRI, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Institute for Electronic Science, Hokkaido University, Kita-ku-ku, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
6
|
Tian X, Zhang Y, Ai HW. PEGylated ATP-Independent Luciferins for Noninvasive High-Sensitivity High-Speed Bioluminescence Imaging. ACS Chem Biol 2025; 20:128-136. [PMID: 39714242 PMCID: PMC11744661 DOI: 10.1021/acschembio.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/17/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
Bioluminescence imaging (BLI) is a powerful, noninvasive imaging method for animal studies. NanoLuc luciferase and its derivatives are attractive bioluminescent reporters recognized for their efficient photon production and ATP independence. However, utilizing them for animal imaging poses notable challenges. Low substrate solubility has been a prominent problem, limiting in vivo brightness, while the susceptibility of luciferins to auto-oxidation by molecular oxygen in air increases handling complexity and poses an obstacle to obtaining consistent results. To address these issues, we developed a range of caged PEGylated luciferins with increased auto-oxidation resistance and water solubility of up to 25 mM, resulting in substantial in vivo bioluminescence increases in mouse models. This advancement has created the brightest and most sensitive luciferase-luciferin combination, enabling high-speed video-rate imaging of freely moving mice with brain-expressed luciferase. These innovative substrates offer new possibilities for investigating a wide range of biological processes and are poised to become invaluable resources for chemical, biological, and biomedical fields.
Collapse
Affiliation(s)
- Xiaodong Tian
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Yiyu Zhang
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Hui-Wang Ai
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- The
UVA Comprehensive Cancer Center, University
of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
7
|
Lambert GG, Crespo EL, Murphy J, Boassa D, Luong S, Celinskis D, Venn S, Nguyen DK, Hu J, Sprecher B, Tree MO, Orcutt R, Heydari D, Bell AB, Torreblanca-Zanca A, Hakimi A, Lipscombe D, Moore CI, Hochgeschwender U, Shaner NC. CaBLAM! A high-contrast bioluminescent Ca 2+ indicator derived from an engineered Oplophorus gracilirostris luciferase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.25.546478. [PMID: 37425712 PMCID: PMC10327125 DOI: 10.1101/2023.06.25.546478] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Ca2+ plays many critical roles in cell physiology and biochemistry, leading researchers to develop a number of fluorescent small molecule dyes and genetically encodable probes that optically report changes in Ca2+ concentrations in living cells. Though such fluorescence-based genetically encoded Ca2+ indicators (GECIs) have become a mainstay of modern Ca2+ sensing and imaging, bioluminescence-based GECIs-probes that generate light through oxidation of a small-molecule by a luciferase or photoprotein-have several distinct advantages over their fluorescent counterparts. Bioluminescent tags do not photobleach, do not suffer from nonspecific autofluorescent background, and do not lead to phototoxicity since they do not require the extremely bright extrinsic excitation light typically required for fluorescence imaging, especially with 2-photon microscopy. Current BL GECIs perform poorly relative to fluorescent GECIs, producing small changes in bioluminescence intensity due to high baseline signal at resting Ca2+ concentrations and suboptimal Ca2+ affinities. Here, we describe the development of a new bioluminescent GECI, "CaBLAM," which displays much higher contrast (dynamic range) than previously described bioluminescent GECIs and has a Ca2+ affinity suitable for capturing physiological changes in cytosolic Ca2+ concentration. Derived from a new variant of Oplophorus gracilirostris luciferase with superior in vitro properties and a highly favorable scaffold for insertion of sensor domains, CaBLAM allows for single-cell and subcellular resolution imaging of Ca2+ dynamics at high frame rates in cultured neurons and in vivo. CaBLAM marks a significant milestone in the GECI timeline, enabling Ca2+ recordings with high spatial and temporal resolution without perturbing cells with intense excitation light.
Collapse
Affiliation(s)
- Gerard G. Lambert
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | | | - Jeremy Murphy
- Carney Institute for Brain Sciences, Department of Neuroscience, Brown University, Providence, RI USA
| | - Daniela Boassa
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Selena Luong
- University of California San Diego, La Jolla, CA USA
| | - Dmitrijs Celinskis
- Carney Institute for Brain Sciences, Department of Neuroscience, Brown University, Providence, RI USA
| | - Stephanie Venn
- College of Medicine, Central Michigan University, Mt. Pleasant, MI USA
| | | | - Junru Hu
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA USA
| | - Brittany Sprecher
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Maya O. Tree
- College of Medicine, Central Michigan University, Mt. Pleasant, MI USA
| | - Richard Orcutt
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Daniel Heydari
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Aidan B. Bell
- University of California San Diego, La Jolla, CA USA
| | | | | | - Diane Lipscombe
- College of Medicine, Central Michigan University, Mt. Pleasant, MI USA
| | - Christopher I. Moore
- Carney Institute for Brain Sciences, Department of Neuroscience, Brown University, Providence, RI USA
| | | | - Nathan C. Shaner
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA USA
| |
Collapse
|
8
|
Tanaka R, Sugiura K, Osabe K, Hattori M, Nagai T. Genetically encoded bioluminescent glucose indicator for biological research. Biochem Biophys Res Commun 2025; 742:151092. [PMID: 39626367 DOI: 10.1016/j.bbrc.2024.151092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Glucose is an essential energy source in living cells and is involved in various phenomena. To understand the roles of glucose, measuring cellular glucose levels is important. Here, we developed a bioluminescent glucose indicator called LOTUS-Glc. Unlike fluorescence, bioluminescence doesn't require excitation light when imaging. Using LOTUS-Glc, we demonstrated drug effect evaluation, concurrent use with the optogenetic tool in HEK293T cells, and the measurement of light-dependent glucose fluctuations in plant-derived protoplasts. LOTUS-Glc would be a useful tool for understanding the roles of glucose in living organisms.
Collapse
Affiliation(s)
- Rikuto Tanaka
- Graduate School of Frontier Biosciences, The University of Osaka, Suita, Osaka, 565-0871, Japan
| | - Kazunori Sugiura
- SANKEN, The University of Osaka, Ibaraki, Osaka, 567-0047, Japan
| | - Kenji Osabe
- SANKEN, The University of Osaka, Ibaraki, Osaka, 567-0047, Japan
| | - Mitsuru Hattori
- SANKEN, The University of Osaka, Ibaraki, Osaka, 567-0047, Japan
| | - Takeharu Nagai
- Graduate School of Frontier Biosciences, The University of Osaka, Suita, Osaka, 565-0871, Japan; SANKEN, The University of Osaka, Ibaraki, Osaka, 567-0047, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.
| |
Collapse
|
9
|
Michetti C, Benfenati F. Homeostatic regulation of brain activity: from endogenous mechanisms to homeostatic nanomachines. Am J Physiol Cell Physiol 2024; 327:C1384-C1399. [PMID: 39401424 DOI: 10.1152/ajpcell.00470.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 11/12/2024]
Abstract
After the initial concepts of the constancy of the internal milieu or homeostasis, put forward by Claude Bernard and Walter Cannon, homeostasis emerged as a mechanism to control oscillations of biologically meaningful variables within narrow physiological ranges. This is a primary need in the central nervous system that is continuously subjected to a multitude of stimuli from the internal and external environments that affect its function and structure, allowing to adapt the individual to the ever-changing daily conditions. Preserving physiological levels of activity despite disturbances that could either depress neural computation or excessively stimulate neural activity is fundamental, and failure of these homeostatic mechanisms can lead to brain diseases. In this review, we cover the role and main mechanisms of homeostatic plasticity involving the regulation of excitability and synaptic strength from the single neuron to the network level. We analyze the relationships between homeostatic and Hebbian plasticity and the conditions under which the preservation of the excitatory/inhibitory balance fails, triggering epileptogenesis and eventually epilepsy. Several therapeutic strategies to cure epilepsy have been designed to strengthen homeostasis when endogenous homeostatic plasticity mechanisms have become insufficient or ineffective to contrast hyperactivity. We describe "on demand" gene therapy strategies, including optogenetics, chemogenetics, and chemo-optogenetics, and particularly focus on new closed loop sensor-actuator strategies mimicking homeostatic plasticity that can be endogenously expressed to strengthen the homeostatic defenses against brain diseases.
Collapse
Affiliation(s)
- Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
10
|
Sangeetha B, Leroy KI, Udaya Kumar B. Harnessing Bioluminescence: A Comprehensive Review of In Vivo Imaging for Disease Monitoring and Therapeutic Intervention. Cell Biochem Funct 2024; 42:e70020. [PMID: 39673353 DOI: 10.1002/cbf.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/16/2024]
Abstract
The technique of using naturally occurring light-emitting reactants (photoproteins and luciferases] that have been extracted from a wide range of animals is known as bioluminescence imaging, or BLI. This imaging offers important details on the location and functional state of regenerative cells inserted into various disease-modeling animals. Reports on gene expression patterns, cell motions, and even the actions of individual biomolecules in whole tissues and live animals have all been made possible by bioluminescence. Generally speaking, bioluminescent light in animals may be found down to a few centimetres, while the precise limit depends on the signal's brightness and the detector's sensitivity. We can now spatiotemporally visualize cell behaviors in any body region of a living animal in a time frame process, including proliferation, apoptosis, migration, and immunological responses, thanks to BLI. The biological applications of in vivo BLI in nondestructively monitoring biological processes in intact small animal models are reviewed in this work, along with some of the advancements that will make BLI a more versatile molecular imaging tool.
Collapse
Affiliation(s)
- B Sangeetha
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, Tamilnadu, India
| | - K I Leroy
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, Tamilnadu, India
| | - B Udaya Kumar
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, Tamilnadu, India
| |
Collapse
|
11
|
Hino H, Takaki K, Kobe M, Mochida S. Development of luminescent probes for real-time detection of the CDK/PP2A balance during the cell cycle. Genes Cells 2024; 29:1002-1011. [PMID: 39262142 DOI: 10.1111/gtc.13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
From a biochemical viewpoint, the cell cycle is controlled by the phosphorylation of cyclin-dependent kinase (CDK) substrates, and the phosphorylation level is determined by the enzymatic balance between CDK and protein phosphatase 2A (PP2A). However, the conventional techniques for analyzing protein phosphorylation using radioisotopes and antibodies involve many operational steps and take days before obtaining results, making them difficult to apply to high-throughput screening and real-time observations. In this study, we developed luminescent probes with a light intensity that changes depending on its phosphorylation state. We modified the Nano-lantern probe (Renilla luciferase-based Ca2+ probe) by introducing a CDK-substrate peptide and a phosphopeptide-binding domain into the luciferase. Our initial trial resulted in new probes that could report the CDK/PP2A balance in a purified system. Further modifications of these probes (replacing the phospho-Ser with phospho-Thr and randomly replacing its surrounding amino acids) improved the dynamic range by up to four-fold, making them practical for use in the Xenopus egg extracts system, where many physiological events can be reproduced. Taken together, our new probes enabled the monitoring of the CDK/PP2A balance in real time, and are applicable to high-throughput systems; the new probes thus appear promising for use in substrate and drug screening.
Collapse
Affiliation(s)
- Hirotsugu Hino
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Kaori Takaki
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | - Mika Kobe
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | - Satoru Mochida
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
- Institute of Molecular Embryology and Genetics (IMEG)
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- PRESTO Program, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
12
|
Kusuma SH, Kakizuka T, Hattori M, Nagai T. Autonomous multicolor bioluminescence imaging in bacteria, mammalian, and plant hosts. Proc Natl Acad Sci U S A 2024; 121:e2406358121. [PMID: 39356665 PMCID: PMC11474039 DOI: 10.1073/pnas.2406358121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Bioluminescence imaging has become a valuable tool in biological research, offering several advantages over fluorescence-based techniques, including the absence of phototoxicity and photobleaching, along with a higher signal-to-noise ratio. Common bioluminescence imaging methods often require the addition of an external chemical substrate (luciferin), which can result in a decrease in luminescence intensity over time and limit prolonged observations. Since the bacterial bioluminescence system is genetically encoded for luciferase-luciferin production, it enables autonomous bioluminescence (auto-bioluminescence) imaging. However, its application to multiple reporters is restricted due to a limited range of color variants. Here, we report five-color auto-bioluminescence system named Nano-lanternX (NLX), which can be expressed in bacterial, mammalian, and plant hosts, thereby enabling auto-bioluminescence in various living organisms. Utilizing spectral unmixing, we achieved the successful observation of multicolor auto-bioluminescence, enabling detailed single-cell imaging across both bacterial and mammalian cells. We have also expanded the applications of the NLX system, such as multiplexed auto-bioluminescence imaging for gene expression, protein localization, and dynamics of biomolecules within living mammalian cells.
Collapse
Affiliation(s)
- Subhan Hadi Kusuma
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka567-0047, Japan
| | - Taishi Kakizuka
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka567-0047, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
| | - Mitsuru Hattori
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka567-0047, Japan
| | - Takeharu Nagai
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka567-0047, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido001-0020, Japan
| |
Collapse
|
13
|
Takahashi M, Fujishiro J, Nomura S, Harada M, Hinoki A, Arake M, Ozeki E, Hara I, Satoh A, Tainaka T, Uchida HO, Morimoto Y. DDS-type near-infrared light absorber enables deeper lesion treatment in laser photothermal therapy while avoiding damage to surrounding organs. Front Bioeng Biotechnol 2024; 12:1444107. [PMID: 39211012 PMCID: PMC11357940 DOI: 10.3389/fbioe.2024.1444107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The efficacy of drug delivery system (DDS)-type near-infrared (NIR) absorbing agents in enhancing laser photothermal therapy is widely acknowledged. Despite the acknowledged efficacy, the therapeutic advantages of photothermal therapy using DDS-type NIR-absorbing agents over simple photothermal therapy without such agents have not been fully elucidated. This study was designed to investigate two primary objectives: firstly, the ability of DDS-type NIR-absorbing agents to induce cell death at greater depths within tumors, and secondly, their capacity to minimize collateral damage to adjacent healthy organs. To investigate these objectives, we employed a combination of indocyanine green lactosome-a DDS-type NIR-absorbing agent-and a precision-controlled laser hyperthermia system. An orthotopic neuroblastoma tumor model was used to closely simulate clinical conditions. The findings revealed that photothermal therapy using the DDS-type NIR-absorbing agent not only facilitates deeper penetration of cell death within tumors but also significantly mitigates thermal damage to surrounding healthy tissues, when compared to simple phototherapy without the agent. Furthermore, the combined treatment significantly prolonged the survival periods of the animals involved. This study is the first to analyze these therapeutic efficacies using quantitative data from an orthotopic tumor animal model and substantiated the potential of DDS-type NIR-absorbing agents to deepen the therapeutic impact of photothermal therapy while safeguarding vital organs, thereby enhancing overall treatment outcomes.
Collapse
Affiliation(s)
- Masataka Takahashi
- Department of Pediatric Surgery, The University of Tokyo, Tokyo, Japan
- Department of Cell Engineering, National Center for Child Health and Development, Tokyo, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Nomura
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Manabu Harada
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Akinari Hinoki
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masashi Arake
- Department of Physiology, National Defense Medical College, Tokorozawa, Japan
| | - Eiichi Ozeki
- Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Isao Hara
- Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Ayano Satoh
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University, Okayama, Japan
| | - Takahisa Tainaka
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiro-o Uchida
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuji Morimoto
- Department of Physiology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
14
|
Kim H, Jung SO, Lee S, Lee Y. Bioluminescent Systems for Theranostic Applications. Int J Mol Sci 2024; 25:7563. [PMID: 39062805 PMCID: PMC11277111 DOI: 10.3390/ijms25147563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bioluminescence, the light produced by biochemical reactions involving luciferases in living organisms, has been extensively investigated for various applications. It has attracted particular interest as an internal light source for theranostic applications due to its safe and efficient characteristics that overcome the limited penetration of conventional external light sources. Recent advancements in protein engineering technologies and protein delivery platforms have expanded the application of bioluminescence to a wide range of theranostic areas, including bioimaging, biosensing, photodynamic therapy, and optogenetics. This comprehensive review presents the fundamental concepts of bioluminescence and explores its recent applications across diverse fields. Moreover, it discusses future research directions based on the current status of bioluminescent systems for further expansion of their potential.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.O.J.); (S.L.); (Y.L.)
| | | | | | | |
Collapse
|
15
|
Decker JT, Hall MS, Nanua D, Orbach SM, Roy J, Angadi A, Caton J, Hesse L, Jeruss JS, Shea LD. Dynamic Transcriptional Programs During Single NK Cell Killing: Connecting Form to Function in Cellular Immunotherapy. Cell Mol Bioeng 2024; 17:177-188. [PMID: 39050513 PMCID: PMC11263395 DOI: 10.1007/s12195-024-00812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Natural killer (NK) cell-based therapies are a promising new method for treating indolent cancer, however engineering new therapies is complex and progress towards therapy for solid tumors is slow. New methods for determining the underlying intracellular signaling driving the killing phenotype would significantly improve this progress. Methods We combined single-cell RNA sequencing with live cell imaging of a model system of NK cell killing to correlate transcriptomic data with functional output. A model of NK cell activity, the NK-92 cell line killing of HeLa cervical cancer cells, was used for these studies. NK cell killing activity was observed by microscopy during co-culture with target HeLa cells and killing activity subsequently manually mapped based on NK cell location and Annexin V expression. NK cells from this culture system were profiled by single-cell RNA sequencing using the 10× Genomics platform, and transcription factor activity inferred using the Viper and DoRothEA R packages. Luminescent microscopy of reporter constructs in the NK cells was then used to correlate activity of inferred transcriptional activity with killing activity. Results NK cells had heterogeneous killing activity during 10 h of culture with target HeLa cells. Analysis of the single cell sequencing data identified Nuclear Factor Kappa B (NF-κB), Signal Transducer and Activator of Transcription 1 (STAT1) and MYC activity as potential drivers of NK cell functional phenotype in our model system. Live cell imaging of the transcription factor activity found NF-κB activity was significantly correlated with past killing activity. No correlation was observed between STAT1 or MYC activity and NK cell killing. Conclusions Combining luminescent microscopy of transcription factor activity with single-cell RNA sequencing is an effective means of assigning functional phenotypes to inferred transcriptomics data. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00812-3.
Collapse
Affiliation(s)
- Joseph T. Decker
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109 USA
| | - Matthew S. Hall
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
| | - Devak Nanua
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
| | - Sophia M. Orbach
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028 USA
| | - Jyotirmoy Roy
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
| | - Amogh Angadi
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
| | - Julianna Caton
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
| | - Lauren Hesse
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
| | - Jacqueline S. Jeruss
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
| |
Collapse
|
16
|
Zhao S, Xiong Y, Sunnapu R, Zhang Y, Tian X, Ai HW. Bioluminescence Imaging of Potassium Ion Using a Sensory Luciferin and an Engineered Luciferase. J Am Chem Soc 2024; 146:13406-13416. [PMID: 38698549 PMCID: PMC11100015 DOI: 10.1021/jacs.4c02473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Bioluminescent indicators are power tools for studying dynamic biological processes. In this study, we present the generation of novel bioluminescent indicators by modifying the luciferin molecule with an analyte-binding moiety. Specifically, we have successfully developed the first bioluminescent indicator for potassium ions (K+), which are critical electrolytes in biological systems. Our approach involved the design and synthesis of a K+-binding luciferin named potassiorin. Additionally, we engineered a luciferase enzyme called BRIPO (bioluminescent red indicator for potassium) to work synergistically with potassiorin, resulting in optimized K+-dependent bioluminescence responses. Through extensive validation in cell lines, primary neurons, and live mice, we demonstrated the efficacy of this new tool for detecting K+. Our research demonstrates an innovative concept of incorporating sensory moieties into luciferins to modulate luciferase activity. This approach has great potential for developing a wide range of bioluminescent indicators, advancing bioluminescence imaging (BLI), and enabling the study of various analytes in biological systems.
Collapse
Affiliation(s)
- Shengyu Zhao
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ying Xiong
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Ranganayakulu Sunnapu
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Yiyu Zhang
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Xiaodong Tian
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Hui-wang Ai
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Center
for Membrane and Cell Physiology, University
of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- The
UVA Comprehensive Cancer Center, University
of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
17
|
Tian X, Zhang Y, Ai HW. ATP-Independent Water-Soluble Luciferins Enable Non-Invasive High-Speed Video-Rate Bioluminescence Imaging of Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591933. [PMID: 38746394 PMCID: PMC11092570 DOI: 10.1101/2024.04.30.591933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
NanoLuc luciferase and its derivatives are attractive bioluminescent reporters recognized for their efficient photon production and ATP independence. However, utilizing them for in vivo imaging poses notable challenges. Low substrate solubility has been a prominent problem, limiting in vivo brightness, while substrate instability hampers consistent results and handling. To address these issues, we developed a range of caged PEGylated luciferins with improved stability and water solubility of up to 25 mM, resulting in substantial bioluminescence increases in mouse models. This advancement has created the brightest and most sensitive luciferase-luciferin combination, enabling high-speed video-rate imaging of freely moving mice with brain-expressed luciferase. Furthermore, we developed a bioluminescent Ca 2+ indicator with exceptional sensitivity to physiological Ca 2+ changes and paired it with a new substrate to showcase non-invasive, video-rate imaging of Ca 2+ activity in a defined brain region in awake mice. These innovative substrates and the Ca 2+ indicator are poised to become invaluable resources for biological and biomedical fields.
Collapse
|
18
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
19
|
Björefeldt A, Murphy J, Crespo EL, Lambert GG, Prakash M, Ikefuama EC, Friedman N, Brown TM, Lipscombe D, Moore CI, Hochgeschwender U, Shaner NC. Efficient opto- and chemogenetic control in a single molecule driven by FRET-modified bioluminescence. NEUROPHOTONICS 2024; 11:021005. [PMID: 38450294 PMCID: PMC10917299 DOI: 10.1117/1.nph.11.2.021005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Significance Bioluminescent optogenetics (BL-OG) offers a unique and powerful approach to manipulate neural activity both opto- and chemogenetically using a single actuator molecule (a LuMinOpsin, LMO). Aim To further enhance the utility of BL-OG by improving the efficacy of chemogenetic (bioluminescence-driven) LMO activation. Approach We developed novel luciferases optimized for Förster resonance energy transfer when fused to the fluorescent protein mNeonGreen, generating bright bioluminescent (BL) emitters spectrally tuned to Volvox Channelrhodopsin 1 (VChR1). Results A new LMO generated from this approach (LMO7) showed significantly stronger BL-driven opsin activation compared to previous and other new variants. We extensively benchmarked LMO7 against LMO3 (current standard) and found significantly stronger neuronal activity modulation ex vivo and in vivo, and efficient modulation of behavior. Conclusions We report a robust new option for achieving multiple modes of control in a single actuator and a promising engineering strategy for continued improvement of BL-OG.
Collapse
Affiliation(s)
- Andreas Björefeldt
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
- University of Gothenburg, Institute of Neuroscience and Physiology, Department of Physiology, Gothenburg, Sweden
| | - Jeremy Murphy
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Emmanuel L. Crespo
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cell, and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
| | - Gerard G. Lambert
- University of California, San Diego, School of Medicine, Department of Neurosciences, La Jolla, California, United States
| | - Mansi Prakash
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Ebenezer C. Ikefuama
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| | - Nina Friedman
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Tariq M. Brown
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Diane Lipscombe
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Christopher I. Moore
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Ute Hochgeschwender
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cell, and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| | - Nathan C. Shaner
- University of California, San Diego, School of Medicine, Department of Neurosciences, La Jolla, California, United States
| |
Collapse
|
20
|
Slaviero AN, Gorantla N, Simkins J, Crespo EL, Ikefuama EC, Tree MO, Prakash M, Björefeldt A, Barnett LM, Lambert GG, Lipscombe D, Moore CI, Shaner NC, Hochgeschwender U. Engineering luminopsins with improved coupling efficiencies. NEUROPHOTONICS 2024; 11:024208. [PMID: 38559366 PMCID: PMC10980360 DOI: 10.1117/1.nph.11.2.024208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Significance Luminopsins (LMOs) are bioluminescent-optogenetic tools with a luciferase fused to an opsin that allow bimodal control of neurons by providing both optogenetic and chemogenetic access. Determining which design features contribute to the efficacy of LMOs will be beneficial for further improving LMOs for use in research. Aim We investigated the relative impact of luciferase brightness, opsin sensitivity, pairing of emission and absorption wavelength, and arrangement of moieties on the function of LMOs. Approach We quantified efficacy of LMOs through whole cell patch clamp recordings in HEK293 cells by determining coupling efficiency, the percentage of maximum LED induced photocurrent achieved with bioluminescent activation of an opsin. We confirmed key results by multielectrode array recordings in primary neurons. Results Luciferase brightness and opsin sensitivity had the most impact on the efficacy of LMOs, and N-terminal fusions of luciferases to opsins performed better than C-terminal and multi-terminal fusions. Precise paring of luciferase emission and opsin absorption spectra appeared to be less critical. Conclusions Whole cell patch clamp recordings allowed us to quantify the impact of different characteristics of LMOs on their function. Our results suggest that coupling brighter bioluminescent sources to more sensitive opsins will improve LMO function. As bioluminescent activation of opsins is most likely based on Förster resonance energy transfer, the most effective strategy for improving LMOs further will be molecular evolution of luciferase-fluorescent protein-opsin fusions.
Collapse
Affiliation(s)
- Ashley N. Slaviero
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
| | - Nipun Gorantla
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Jacob Simkins
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Emmanuel L. Crespo
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
| | - Ebenezer C. Ikefuama
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| | - Maya O. Tree
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Mansi Prakash
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Andreas Björefeldt
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Lauren M. Barnett
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Gerard G. Lambert
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Diane Lipscombe
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Christopher I. Moore
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Nathan C. Shaner
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Ute Hochgeschwender
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| |
Collapse
|
21
|
Porta-de-la-Riva M, Morales-Curiel LF, Carolina Gonzalez A, Krieg M. Bioluminescence as a functional tool for visualizing and controlling neuronal activity in vivo. NEUROPHOTONICS 2024; 11:024203. [PMID: 38348359 PMCID: PMC10861157 DOI: 10.1117/1.nph.11.2.024203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
The use of bioluminescence as a reporter for physiology in neuroscience is as old as the discovery of the calcium-dependent photon emission of aequorin. Over the years, luciferases have been largely replaced by fluorescent reporters, but recently, the field has seen a renaissance of bioluminescent probes, catalyzed by unique developments in imaging technology, bioengineering, and biochemistry to produce luciferases with previously unseen colors and intensity. This is not surprising as the advantages of bioluminescence make luciferases very attractive for noninvasive, longitudinal in vivo observations without the need of an excitation light source. Here, we review how the development of dedicated and specific sensor-luciferases afforded, among others, transcranial imaging of calcium and neurotransmitters, or cellular metabolites and physical quantities such as forces and membrane voltage. Further, the increased versatility and light output of luciferases have paved the way for a new field of functional bioluminescence optogenetics, in which the photon emission of the luciferase is coupled to the gating of a photosensor, e.g., a channelrhodopsin and we review how they have been successfully used to engineer synthetic neuronal connections. Finally, we provide a primer to consider important factors in setting up functional bioluminescence experiments, with a particular focus on the genetic model Caenorhabditis elegans, and discuss the leading challenges that the field needs to overcome to regain a competitive advantage over fluorescence modalities. Together, our paper caters to experienced users of bioluminescence as well as novices who would like to experience the advantages of luciferases in their own hand.
Collapse
Affiliation(s)
- Montserrat Porta-de-la-Riva
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Luis-Felipe Morales-Curiel
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Adriana Carolina Gonzalez
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Michael Krieg
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| |
Collapse
|
22
|
Zhao S, Xiong Y, Sunnapu R, Zhang Y, Tian X, Ai HW. Bioluminescence Imaging of Potassium Ion Using a Sensory Luciferin and an Engineered Luciferase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.581057. [PMID: 38559024 PMCID: PMC10980066 DOI: 10.1101/2024.03.13.581057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bioluminescent indicators are power tools for studying dynamic biological processes. In this study, we present the generation of novel bioluminescent indicators by modifying the luciferin molecule with an analyte-binding moiety. Specifically, we have successfully developed the first bioluminescent indicator for potassium ions (K+), which are critical electrolytes in biological systems. Our approach involved the design and synthesis of a K+-binding luciferin named potassiorin. Additionally, we engineered a luciferase enzyme called BRIPO (bioluminescent red indicator for potassium) to work synergistically with potassiorin, resulting in optimized K+-dependent bioluminescence responses. Through extensive validation in cell lines, primary neurons, and live mice, we demonstrated the efficacy of this new tool for detecting K+. Our research demonstrates an innovative concept of incorporating sensory moieties into luciferins to modulate luciferase activity. This approach has great potential for developing a wide range of bioluminescent indicators, advancing bioluminescence imaging (BLI), and enabling the study of various analytes in biological systems.
Collapse
Affiliation(s)
- Shengyu Zhao
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Ying Xiong
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Ranganayakulu Sunnapu
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Yiyu Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Xiaodong Tian
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Hui-Wang Ai
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
23
|
Sakama A, Orioka M, Hiruta Y. Current advances in the development of bioluminescent probes toward spatiotemporal trans-scale imaging. Biophys Physicobiol 2024; 21:e211004. [PMID: 39175853 PMCID: PMC11338684 DOI: 10.2142/biophysico.bppb-v21.s004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/31/2024] [Indexed: 08/24/2024] Open
Abstract
Bioluminescence imaging has recently attracted great attention as a highly sensitive and non-invasive analytical method. However, weak signal and low chemical stability of the luciferin are conventional drawbacks of bioluminescence imaging. In this review article, we describe the recent progress on the development and applications of bioluminescent probes for overcoming the aforementioned limitations, thereby enabling spatiotemporal trans-scale imaging. The detailed molecular design for manipulation of their luminescent properties and functions enabled a variety of applications, including in vivo deep tissue imaging, long-term imaging, and chemical sensor.
Collapse
Affiliation(s)
- Akihiro Sakama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Mariko Orioka
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
24
|
Bjorefeldt A, Murphy J, Crespo EL, Lambert GG, Prakash M, Ikefuama EC, Friedman N, Brown TM, Lipscombe D, Moore CI, Hochgeschwender U, Shaner NC. A New Highly Efficient Molecule for Both Optogenetic and Chemogenetic Control Driven by FRET Amplification of BioLuminescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.545546. [PMID: 37425735 PMCID: PMC10327108 DOI: 10.1101/2023.06.26.545546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
SIGNIFICANCE Bioluminescent optogenetics (BL-OG) offers a unique and powerful approach to manipulate neural activity both opto- and chemogenetically using a single actuator molecule (a LuMinOpsin, LMO). AIM To further enhance the utility of BL-OG by improving the efficacy of chemogenetic (bioluminescence-driven) LMO activation. APPROACH We developed novel luciferases optimized for Forster resonance energy transfer (FRET) when fused to the fluorescent protein mNeonGreen, generating bright bioluminescent (BL) emitters spectrally tuned to Volvox Channelrhodopsin 1 (VChR1). RESULTS A new LMO generated from this approach (LMO7) showed significantly stronger BL-driven opsin activation compared to previous and other new variants. We extensively benchmarked LMO7 against LMO3 (current standard), and found significantly stronger neuronal activity modulation ex vivo and in vivo, and efficient modulation of behavior. CONCLUSIONS We report a robust new option for achieving multiple modes of control in a single actuator, and a promising engineering strategy for continued improvement of BL-OG.
Collapse
|
25
|
Slaviero A, Gorantla N, Simkins J, Crespo EL, Ikefuama EC, Tree MO, Prakash M, Björefeldt A, Barnett LM, Lambert GG, Lipscombe D, Moore CI, Shaner NC, Hochgeschwender U. Engineering luminopsins with improved coupling efficiencies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568342. [PMID: 38045286 PMCID: PMC10690276 DOI: 10.1101/2023.11.22.568342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Significance Luminopsins (LMOs) are bioluminescent-optogenetic tools with a luciferase fused to an opsin that allow bimodal control of neurons by providing both optogenetic and chemogenetic access. Determining which design features contribute to the efficacy of LMOs will be beneficial for further improving LMOs for use in research. Aim We investigated the relative impact of luciferase brightness, opsin sensitivity, pairing of emission and absorption wavelength, and arrangement of moieties on the function of LMOs. Approach We quantified efficacy of LMOs through whole cell patch clamp recordings in HEK293 cells by determining coupling efficiency, the percentage of maximum LED induced photocurrent achieved with bioluminescent activation of an opsin. We confirmed key results by multielectrode array (MEAs) recordings in primary neurons. Results Luciferase brightness and opsin sensitivity had the most impact on the efficacy of LMOs, and N-terminal fusions of luciferases to opsins performed better than C-terminal and multi-terminal fusions. Precise paring of luciferase emission and opsin absorption spectra appeared to be less critical. Conclusions Whole cell patch clamp recordings allowed us to quantify the impact of different characteristics of LMOs on their function. Our results suggest that coupling brighter bioluminescent sources to more sensitive opsins will improve LMO function. As bioluminescent activation of opsins is most likely based on Förster resonance energy transfer (FRET), the most effective strategy for improving LMOs further will be molecular evolution of luciferase-fluorescent protein-opsin fusions.
Collapse
Affiliation(s)
- Ashley Slaviero
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
| | - Nipun Gorantla
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Jacob Simkins
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Emmanuel L Crespo
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
| | - Ebenezer C Ikefuama
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| | - Maya O Tree
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Mansi Prakash
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Andreas Björefeldt
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Lauren M Barnett
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Gerard G Lambert
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Diane Lipscombe
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Christopher I Moore
- Brown University, Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Nathan C Shaner
- University of California San Diego, Department of Neurosciences, La Jolla, California, United States
| | - Ute Hochgeschwender
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
- Central Michigan University, Biochemistry, Cellular and Molecular Biology Graduate Program, Mount Pleasant, Michigan, United States
- Central Michigan University, Neuroscience Graduate Program, Mount Pleasant, Michigan, United States
| |
Collapse
|
26
|
Crespo EL, Pal A, Prakash M, Silvagnoli AD, Zaidi Z, Gomez-Ramirez M, Tree MO, Shaner NC, Lipscombe D, Moore C, Hochgeschwender U. A Bioluminescent Activity Dependent (BLADe) Platform for Converting Neuronal Activity to Photoreceptor Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546469. [PMID: 37425742 PMCID: PMC10327117 DOI: 10.1101/2023.06.25.546469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
We developed a platform that utilizes a calcium-dependent luciferase to convert neuronal activity into activation of light sensing domains within the same cell. The platform is based on a Gaussia luciferase variant with high light emission split by calmodulin-M13 sequences that depends on influx of calcium ions (Ca2+) for functional reconstitution. In the presence of its luciferin, coelenterazine (CTZ), Ca2+ influx results in light emission that drives activation of photoreceptors, including optogenetic channels and LOV domains. Critical features of the converter luciferase are light emission low enough to not activate photoreceptors under baseline condition and high enough to activate photosensing elements in the presence of Ca2+ and luciferin. We demonstrate performance of this activity-dependent sensor and integrator for changing membrane potential and driving transcription in individual and populations of neurons in vitro and in vivo.
Collapse
Affiliation(s)
- Emmanuel L. Crespo
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Akash Pal
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Mansi Prakash
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Alexander D. Silvagnoli
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Zohair Zaidi
- Duke University, Undergraduate Neuroscience Program, Durham, NC 27710
| | | | - Maya O. Tree
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Nathan C. Shaner
- University of California, San Diego, School of Medicine, Department of Neuroscience, 9500 Gilman Drive La Jolla, CA 92093-0662, USA
| | - Diane Lipscombe
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
| | - Christopher Moore
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
| | - Ute Hochgeschwender
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI 48859, USA
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
27
|
Hellweg L, Edenhofer A, Barck L, Huppertz MC, Frei MS, Tarnawski M, Bergner A, Koch B, Johnsson K, Hiblot J. A general method for the development of multicolor biosensors with large dynamic ranges. Nat Chem Biol 2023; 19:1147-1157. [PMID: 37291200 PMCID: PMC10449634 DOI: 10.1038/s41589-023-01350-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
Fluorescent biosensors enable the study of cell physiology with spatiotemporal resolution; yet, most biosensors suffer from relatively low dynamic ranges. Here, we introduce a family of designed Förster resonance energy transfer (FRET) pairs with near-quantitative FRET efficiencies based on the reversible interaction of fluorescent proteins with a fluorescently labeled HaloTag. These FRET pairs enabled the straightforward design of biosensors for calcium, ATP and NAD+ with unprecedented dynamic ranges. The color of each of these biosensors can be readily tuned by changing either the fluorescent protein or the synthetic fluorophore, which enables simultaneous monitoring of free NAD+ in different subcellular compartments following genotoxic stress. Minimal modifications of these biosensors furthermore allow their readout to be switched to fluorescence intensity, fluorescence lifetime or bioluminescence. These FRET pairs thus establish a new concept for the development of highly sensitive and tunable biosensors.
Collapse
Affiliation(s)
- Lars Hellweg
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Anna Edenhofer
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Lucas Barck
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Magnus-Carsten Huppertz
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michelle S Frei
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Miroslaw Tarnawski
- Protein Expression and Characterization Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Andrea Bergner
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Birgit Koch
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Hiblot
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
28
|
Tu R, Tang XA, Xu R, Ping Z, Yu Z, Xie T. Gap junction-transported cAMP from the niche controls stem cell progeny differentiation. Proc Natl Acad Sci U S A 2023; 120:e2304168120. [PMID: 37603749 PMCID: PMC10468610 DOI: 10.1073/pnas.2304168120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/23/2023] Open
Abstract
The niche has been shown to control stem cell self-renewal in different tissue types and organisms. Recently, a separate niche has been proposed to control stem cell progeny differentiation, called the differentiation niche. However, it remains poorly understood whether and how the differentiation niche directly signals to stem cell progeny to control their differentiation. In the Drosophila ovary, inner germarial sheath (IGS) cells contribute to two separate niche compartments for controlling both germline stem cell (GSC) self-renewal and progeny differentiation. In this study, we show that IGS cells express Inx2 protein, which forms gap junctions (GJs) with germline-specific Zpg protein to control stepwise GSC lineage development, including GSC self-renewal, germline cyst formation, meiotic double-strand DNA break formation, and oocyte specification. Germline-specific Zpg and IGS-specific Inx2 knockdowns cause similar defects in stepwise GSC development. Additionally, secondary messenger cAMP is transported from IGS cells to GSCs and their progeny via GJs to activate PKA signaling for controlling stepwise GSC development. Therefore, this study demonstrates that the niche directly controls GSC progeny differentiation via the GJ-cAMP-PKA signaling axis, which provides important insights into niche control of stem cell differentiation and highlights the importance of GJ-transported cAMP in tissue regeneration. This may represent a general strategy for the niche to control adult stem cell development in various tissue types and organisms since GJs and cAMP are widely distributed.
Collapse
Affiliation(s)
- Renjun Tu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region (SAR), China
| | - Xiaohan Alex Tang
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region (SAR), China
| | - Rui Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region (SAR), China
| | - Zhaohua Ping
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region (SAR), China
- Stowers Institute for Medical Research, Kansas City, MO64110
| |
Collapse
|
29
|
Higashitani Y, Horie K. Long-read sequence analysis of MMEJ-mediated CRISPR genome editing reveals complex on-target vector insertions that may escape standard PCR-based quality control. Sci Rep 2023; 13:11652. [PMID: 37468545 DOI: 10.1038/s41598-023-38397-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
CRISPR genome editing is a powerful tool for elucidating biological functions. To modify the genome as intended, it is essential to understand the various modes of recombination that can occur. In this study, we report complex vector insertions that were identified during the generation of conditional alleles by CRISPR editing using microhomology-mediated end joining (MMEJ). The targeting vector contained two loxP sequences and flanking 40-bp microhomologies. The genomic regions corresponding to the loxP sequences were cleaved with Cas9 in mouse embryonic stem cells. PCR screening for targeted recombination revealed a high frequency of bands of a larger size than expected. Nanopore sequencing of these bands revealed complex vector insertions mediated not only by MMEJ but also by non-homologous end joining and homologous recombination in at least 17% of the clones. A new band appeared upon improving the PCR conditions, suggesting the presence of unintentionally modified alleles that escape standard PCR screening. This prompted us to characterize the recombination of each allele of the genome-edited clones using heterozygous single nucleotide polymorphisms, leading to confirmation of the presence of homozygous alleles. Our study indicates that careful quality control of genome-edited clones is needed to exclude complex, unintended, on-target vector insertion.
Collapse
Affiliation(s)
- Yuki Higashitani
- Department of Physiology II, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Nara, 634-8521, Japan.
| |
Collapse
|
30
|
Beyond luciferase-luciferin system: Modification, improved imaging and biomedical application. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Jiang T, Song J, Zhang Y. Coelenterazine-Type Bioluminescence-Induced Optical Probes for Sensing and Controlling Biological Processes. Int J Mol Sci 2023; 24:ijms24065074. [PMID: 36982148 PMCID: PMC10049153 DOI: 10.3390/ijms24065074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Bioluminescence-based probes have long been used to quantify and visualize biological processes in vitro and in vivo. Over the past years, we have witnessed the trend of bioluminescence-driven optogenetic systems. Typically, bioluminescence emitted from coelenterazine-type luciferin–luciferase reactions activate light-sensitive proteins, which induce downstream events. The development of coelenterazine-type bioluminescence-induced photosensory domain-based probes has been applied in the imaging, sensing, and control of cellular activities, signaling pathways, and synthetic genetic circuits in vitro and in vivo. This strategy can not only shed light on the mechanisms of diseases, but also promote interrelated therapy development. Here, this review provides an overview of these optical probes for sensing and controlling biological processes, highlights their applications and optimizations, and discusses the possible future directions.
Collapse
Affiliation(s)
- Tianyu Jiang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, China
- Correspondence: (T.J.); (Y.Z.)
| | - Jingwen Song
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (T.J.); (Y.Z.)
| |
Collapse
|
32
|
Niwa K, Kubota H, Enomoto T, Ichino Y, Ohmiya Y. Quantitative Analysis of Bioluminescence Optical Signal. BIOSENSORS 2023; 13:223. [PMID: 36831989 PMCID: PMC9953788 DOI: 10.3390/bios13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Bioluminescence is light emission based on the luciferin-luciferase enzymatic reaction in living organisms. Optical signals from bioluminescence (BL) reactions are available for bioanalysis and bioreporters for gene expression, in vitro, in vivo, and ex vivo bioimaging, immunoassay, and other applications. Although there are numerous bioanalysis methods based on BL signal measurements, the BL signal is measured as a relative value, and not as an absolute value. Recently, some approaches have been established to completely quantify the BL signal, resulting in, for instance, the redetermination of the quantum yield of the BL reaction and counting the photon number of the BL signal at the single-cell level. Reliable and reproducible understanding of biological events in the bioanalysis and bioreporter fields can be achieved by means of standardized absolute optical signal measurements, which is described in an International Organization for Standardization (ISO) document.
Collapse
Affiliation(s)
- Kazuki Niwa
- National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8563, Japan
| | | | | | - Yoshiro Ichino
- National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8563, Japan
| | - Yoshihiro Ohmiya
- National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8563, Japan
- Osaka Institute of Technology (OIT), Osaka 535-8585, Japan
| |
Collapse
|
33
|
Li S, Wang K, Wang Z, Zhang W, Liu Z, Cheng Y, Zhu J, Zhong M, Hu S, Zhang Y. Application and trend of bioluminescence imaging in metabolic syndrome research. Front Chem 2023; 10:1113546. [PMID: 36700071 PMCID: PMC9868317 DOI: 10.3389/fchem.2022.1113546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Bioluminescence imaging is a non-invasive technology used to visualize physiological processes in animals and is useful for studying the dynamics of metabolic syndrome. Metabolic syndrome is a broad spectrum of diseases which are rapidly increasing in prevalence, and is closely associated with obesity, type 2 diabetes, nonalcoholic fatty liver disease, and circadian rhythm disorder. To better serve metabolic syndrome research, researchers have established a variety of animal models expressing luciferase, while also committing to finding more suitable luciferase promoters and developing more efficient luciferase-luciferin systems. In this review, we systematically summarize the applications of different models for bioluminescence imaging in the study of metabolic syndrome.
Collapse
Affiliation(s)
- Shirui Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Kang Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,Postgraduate Department, Shandong First Medical University, Jinan, China
| | - Zeyu Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,Postgraduate Department, Shandong First Medical University, Jinan, China
| | - Wenjie Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zenglin Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yugang Cheng
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Sanyuan Hu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,*Correspondence: Sanyuan Hu, ; Yun Zhang,
| | - Yun Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,*Correspondence: Sanyuan Hu, ; Yun Zhang,
| |
Collapse
|
34
|
Kim SB, Nishihara R, Paulmurugan R. Near-Infrared Imaging of Steroid Hormone Activities Using Bright BRET Templates. Int J Mol Sci 2022; 24:ijms24010677. [PMID: 36614119 PMCID: PMC9820568 DOI: 10.3390/ijms24010677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Bioluminescence (BL) is an excellent optical readout for bioassays and molecular imaging. Herein, we accomplished new near infrared bioluminescence resonance energy transfer (NIR-BRET) templates for monitoring molecular events in cells with higher sensitivity. We first identified the best resonance energy donor for the NIR-BRET templates through the characterization of many coelenterazine (CTZ)-marine luciferase combinations. As a result, we found that NLuc-DBlueC and ALuc47-nCTZ combinations showed luminescence in the blue emission wavelength with excellent BL intensity and stability, for example, the NLuc-DBlueC and ALuc47-nCTZ combinations were 17-fold and 22-fold brighter than their second highest combinations, respectively, and were stably bright in living mammalian cells for at least 10 min. To harness the excellent BL properties to the NIR-BRET systems, NLuc and ALuc47 were genetically fused to fluorescent proteins (FPs), allowing large "blue-to-red" shifts, such as LSSmChe, LSSmKate2, and LSSmNep (where LSS means Large Stokes Shift). The excellent LSSmNep-NLuc combination showed approximately 170 nm large resonance energy shift from blue to red. The established templates were further utilized in the development of new NIR-BRET systems for imaging steroid hormone activities by sandwiching the ligand-binding domain of a nuclear receptor (NR-LBD) between the luciferase and the FP of the template. The NIR-BRET systems showed a specific luminescence signal upon exposure to steroid hormones, such as androgen, estrogen, and cortisol. The present NIR-BRET templates are important additions for utilizing their advantageous imaging of various molecular events with high efficiency and brightness in physiological samples.
Collapse
Affiliation(s)
- Sung-Bae Kim
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1, Onogawa, Tsukuba 305-8569, Ibaraki, Japan
- Correspondence: (S.-B.K.); (R.P.)
| | - Ryo Nishihara
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba 305-8566, Ibaraki, Japan
- Japan Science and Technology Agency (JST), PREST, 4-1-8, Honcho, Kawaguchi 332-0012, Saitama, Japan
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (S.-B.K.); (R.P.)
| |
Collapse
|
35
|
Ley-Ngardigal S, Bertolin G. Approaches to monitor ATP levels in living cells: where do we stand? FEBS J 2022; 289:7940-7969. [PMID: 34437768 DOI: 10.1111/febs.16169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023]
Abstract
ATP is the most universal and essential energy molecule in cells. This is due to its ability to store cellular energy in form of high-energy phosphate bonds, which are extremely stable and readily usable by the cell. This energy is key for a variety of biological functions such as cell growth and division, metabolism, and signaling, and for the turnover of biomolecules. Understanding how ATP is produced and hydrolyzed with a spatiotemporal resolution is necessary to understand its functions both in physiological and in pathological contexts. In this review, first we will describe the organization of the electron transport chain and ATP synthase, the main molecular motor for ATP production in mitochondria. Second, we will review the biochemical assays currently available to estimate ATP quantities in cells, and we will compare their readouts, strengths, and weaknesses. Finally, we will explore the palette of genetically encoded biosensors designed for microscopy-based approaches, and show how their spatiotemporal resolution opened up the possibility to follow ATP levels in living cells.
Collapse
Affiliation(s)
- Seyta Ley-Ngardigal
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France.,LVMH Research Perfumes and Cosmetics, Saint-Jean-de-Braye, France
| | - Giulia Bertolin
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France
| |
Collapse
|
36
|
Takahashi TM, Hirano A, Kanda T, Saito VM, Ashitomi H, Tanaka KZ, Yokoshiki Y, Masuda K, Yanagisawa M, Vogt KE, Tokuda T, Sakurai T. Optogenetic induction of hibernation-like state with modified human Opsin4 in mice. CELL REPORTS METHODS 2022; 2:100336. [PMID: 36452866 PMCID: PMC9701604 DOI: 10.1016/j.crmeth.2022.100336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 05/28/2023]
Abstract
We recently determined that the excitatory manipulation of Qrfp-expressing neurons in the preoptic area of the hypothalamus (quiescence-inducing neurons [Q neurons]) induced a hibernation-like hypothermic/hypometabolic state (QIH) in mice. To control the QIH with a higher time resolution, we develop an optogenetic method using modified human opsin4 (OPN4; also known as melanopsin), a G protein-coupled-receptor-type blue-light photoreceptor. C-terminally truncated OPN4 (OPN4dC) stably and reproducibly induces QIH for at least 24 h by illumination with low-power light (3 μW, 473 nm laser) with high temporal resolution. The high sensitivity of OPN4dC allows us to transcranially stimulate Q neurons with blue-light-emitting diodes and non-invasively induce the QIH. OPN4dC-mediated QIH recapitulates the kinetics of the physiological changes observed in natural hibernation, revealing that Q neurons concurrently contribute to thermoregulation and cardiovascular function. This optogenetic method may facilitate identification of the neural mechanisms underlying long-term dormancy states such as sleep, daily torpor, and hibernation.
Collapse
Affiliation(s)
- Tohru M. Takahashi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Arisa Hirano
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- JST PRESTO, Japan
| | - Takeshi Kanda
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Viviane M. Saito
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Hiroto Ashitomi
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Kazumasa Z. Tanaka
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Yasufumi Yokoshiki
- Institute of Innovative Research (IIR), Tokyo Institute of Technology, Tokyo, Japan
| | - Kosaku Masuda
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Masashi Yanagisawa
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Kaspar E. Vogt
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Takashi Tokuda
- JST PRESTO, Japan
- Institute of Innovative Research (IIR), Tokyo Institute of Technology, Tokyo, Japan
| | - Takeshi Sakurai
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
37
|
Shaw DS, Honeychurch KC. Nanosensor Applications in Plant Science. BIOSENSORS 2022; 12:675. [PMID: 36140060 PMCID: PMC9496508 DOI: 10.3390/bios12090675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 12/28/2022]
Abstract
Plant science is a major research topic addressing some of the most important global challenges we face today, including energy and food security. Plant science has a role in the production of staple foods and materials, as well as roles in genetics research, environmental management, and the synthesis of high-value compounds such as pharmaceuticals or raw materials for energy production. Nanosensors-selective transducers with a characteristic dimension that is nanometre in scale-have emerged as important tools for monitoring biological processes such as plant signalling pathways and metabolism in ways that are non-destructive, minimally invasive, and capable of real-time analysis. A variety of nanosensors have been used to study different biological processes; for example, optical nanosensors based on Förster resonance energy transfer (FRET) have been used to study protein interactions, cell contents, and biophysical parameters, and electrochemical nanosensors have been used to detect redox reactions in plants. Nanosensor applications in plants include nutrient determination, disease assessment, and the detection of proteins, hormones, and other biological substances. The combination of nanosensor technology and plant sciences has the potential to be a powerful alliance and could support the successful delivery of the 2030 Sustainable Development Goals. However, a lack of knowledge regarding the health effects of nanomaterials and the high costs of some of the raw materials required has lessened their commercial impact.
Collapse
Affiliation(s)
- Daniel S. Shaw
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Kevin C. Honeychurch
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
38
|
Tian X, Zhang Y, Li X, Xiong Y, Wu T, Ai HW. A luciferase prosubstrate and a red bioluminescent calcium indicator for imaging neuronal activity in mice. Nat Commun 2022; 13:3967. [PMID: 35803917 PMCID: PMC9270435 DOI: 10.1038/s41467-022-31673-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023] Open
Abstract
Although fluorescent indicators have been broadly utilized for monitoring bioactivities, fluorescence imaging, when applied to mammals, is limited to superficial targets or requires invasive surgical procedures. Thus, there is emerging interest in developing bioluminescent indicators for noninvasive mammalian imaging. Bioluminescence imaging (BLI) of neuronal activity is highly desired but hindered by insufficient photons needed to digitalize fast brain activities. In this work, we develop a luciferase prosubstrate deliverable at an increased dose and activated in vivo by nonspecific esterase. We further engineer a bright, bioluminescent indicator with robust responsiveness to calcium ions (Ca2+) and appreciable emission above 600 nm. Integration of these advantageous components enables the imaging of the activity of neuronal ensembles in awake mice minimally invasively with excellent signal-to-background and subsecond temporal resolution. This study thus establishes a paradigm for studying brain function in health and disease.
Collapse
Affiliation(s)
- Xiaodong Tian
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yiyu Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Xinyu Li
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ying Xiong
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Tianchen Wu
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Hui-Wang Ai
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA.
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, 22908, USA.
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
39
|
Multiplexed bioluminescence microscopy via phasor analysis. Nat Methods 2022; 19:893-898. [PMID: 35739310 DOI: 10.1038/s41592-022-01529-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 05/18/2022] [Indexed: 12/19/2022]
Abstract
Bioluminescence imaging with luciferase-luciferin pairs is a well-established technique for visualizing biological processes across tissues and whole organisms. Applications at the microscale, by contrast, have been hindered by a lack of detection platforms and easily resolved probes. We addressed this limitation by combining bioluminescence with phasor analysis, a method commonly used to distinguish spectrally similar fluorophores. We built a camera-based microscope equipped with special optical filters to directly assign phasor locations to unique luciferase-luciferin pairs. Six bioluminescent reporters were easily resolved in live cells, and the readouts were quantitative and instantaneous. Multiplexed imaging was also performed over extended time periods. Bioluminescent phasor further provided direct measures of resonance energy transfer in single cells, setting the stage for dynamic measures of cellular and molecular features. The merger of bioluminescence with phasor analysis fills a long-standing void in imaging capabilities, and will bolster future efforts to visualize biological events in real time and over multiple length scales.
Collapse
|
40
|
Viviani VR, Pelentir GF, Bevilaqua VR. Bioluminescence Color-Tuning Firefly Luciferases: Engineering and Prospects for Real-Time Intracellular pH Imaging and Heavy Metal Biosensing. BIOSENSORS 2022; 12:400. [PMID: 35735548 PMCID: PMC9221268 DOI: 10.3390/bios12060400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Firefly luciferases catalyze the efficient production of yellow-green light under normal physiological conditions, having been extensively used for bioanalytical purposes for over 5 decades. Under acidic conditions, high temperatures and the presence of heavy metals, they produce red light, a property that is called pH-sensitivity or pH-dependency. Despite the demand for physiological intracellular biosensors for pH and heavy metals, firefly luciferase pH and metal sensitivities were considered drawbacks in analytical assays. We first demonstrated that firefly luciferases and their pH and metal sensitivities can be harnessed to estimate intracellular pH variations and toxic metal concentrations through ratiometric analysis. Using Macrolampis sp2 firefly luciferase, the intracellular pH could be ratiometrically estimated in bacteria and then in mammalian cells. The luciferases of Macrolampis sp2 and Cratomorphus distinctus fireflies were also harnessed to ratiometrically estimate zinc, mercury and other toxic metal concentrations in the micromolar range. The temperature was also ratiometrically estimated using firefly luciferases. The identification and engineering of metal-binding sites have allowed the development of novel luciferases that are more specific to certain metals. The luciferase of the Amydetes viviani firefly was selected for its special sensitivity to cadmium and mercury, and for its stability at higher temperatures. These color-tuning luciferases can potentially be used with smartphones for hands-on field analysis of water contamination and biochemistry teaching assays. Thus, firefly luciferases are novel color-tuning sensors for intracellular pH and toxic metals. Furthermore, a single luciferase gene is potentially useful as a dual bioluminescent reporter to simultaneously report intracellular ATP and/or luciferase concentrations luminometrically, and pH or metal concentrations ratiometrically, providing a useful tool for real-time imaging of intracellular dynamics and stress.
Collapse
Affiliation(s)
- Vadim R. Viviani
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Sorocaba 18052-780, Brazil
- Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar), Sorocaba 18052-780, Brazil;
| | - Gabriel F. Pelentir
- Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar), Sorocaba 18052-780, Brazil;
| | - Vanessa R. Bevilaqua
- Faculty of Medical and Health Sciences, Pontifical Catholic University of São Paulo (PUC), Sorocaba 05014-901, Brazil;
| |
Collapse
|
41
|
Erdenee E, Ting AY. A Dual-Purpose Real-Time Indicator and Transcriptional Integrator for Calcium Detection in Living Cells. ACS Synth Biol 2022; 11:1086-1095. [PMID: 35254056 PMCID: PMC10395047 DOI: 10.1021/acssynbio.1c00597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium is a ubiquitous second messenger in eukaryotes, correlated with neuronal activity and T-cell activation among other processes. Real-time calcium indicators such as GCaMP have recently been complemented by newer calcium integrators that convert transient calcium activity into stable gene expression. Here we introduce LuCID, a dual-purpose real-time calcium indicator and transcriptional calcium integrator that combines the benefits of both calcium detection technologies. We show that the calcium-dependent split luciferase component of LuCID provides a real-time bioluminescence readout of calcium dynamics in cells, while the GI/FKF1 split GAL4 component of LuCID converts calcium-generated bioluminescence into stable gene expression. We also show that LuCID's modular design enables it to read out other cellular events such as protein-protein interactions. LuCID adds to the arsenal of tools for studying cells and cell populations that utilize calcium for signaling.
Collapse
Affiliation(s)
- Elbegduuren Erdenee
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Alice Y. Ting
- Department of Biology, Stanford University, Stanford, California 94305, United States
- Department of Genetics, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
42
|
Horikawa K, Nagai T. Live Imaging of cAMP Signaling in D. discoideum Based on a Bioluminescent Indicator, Nano-lantern (cAMP). Methods Mol Biol 2022; 2483:231-240. [PMID: 35286679 DOI: 10.1007/978-1-0716-2245-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioluminescence imaging of cellular function is a promising strategy. It has advantages over fluorescence imaging such as high sensitivity, no phototoxicity or no autofluorescence, and compatibility to deep-tissue imaging or optogenetics. However, functional imaging of cellular signaling by bioluminescence is not so easy due to the limited availability of bright bioluminescent indicators.Here we describe a detailed strategy to detect cellular cAMP dynamics by using Nano-lantern (cAMP1.6), one of the brightest bioluminescent indicator for cAMP . Both induced and spontaneous cAMP signaling in social amoeba, with a large and small signal change, respectively, were imaged by this method.
Collapse
Affiliation(s)
- Kazuki Horikawa
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, Tokushima City, Tokushima, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan.
| |
Collapse
|
43
|
Sato R, Masuda S. Live Cell Imaging of ATP Dynamics in Plant Cells. Methods Mol Biol 2022; 2525:259-266. [PMID: 35836074 DOI: 10.1007/978-1-0716-2473-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adenosine triphosphate (ATP) is a central metabolite that functions as the energy currency in a living cell. Therefore, visualizing cellular ATP dynamics provides the fundamental information necessary to understand the molecular events involving life phenomena. Live cell imaging technologies using fluorescence (FL)-based indicators have been developed to analyze the dynamics of various biological processes, such as intracellular ATP synthesis and consumption. However, the application of FL-based indicators to plant cells is limited due to the presence of strong chlorophyll autofluorescence, which drastically worsen the signal-to-noise ratio. The bioluminescent (BL) indicators that do not require excitation light could overcome this problem. In this chapter, we introduce a methodology to analyze ATP dynamics in plant cells using BL ATP indicators.
Collapse
Affiliation(s)
- Ryoichi Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan.
| |
Collapse
|
44
|
Mujawar A, De A. In Vivo Assessment of Protein-Protein Interactions Using BRET Assay. Methods Mol Biol 2022; 2525:239-257. [PMID: 35836073 DOI: 10.1007/978-1-0716-2473-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Proteins play an important part in almost all life activities and across all organisms. Proteins occasionally act on their own but rather fulfill most of their biological tasks by cooperating with other proteins or ligand molecules. The bioluminescence resonance energy transfer (BRET) assay serves to measure dynamic events such as protein-protein or protein-ligand interactions in vitro or in-vivo. With several inherent attributes such as rapid and fairly sensitive ratio-metric measurements, assessment of interactions irrespective of protein location within the cellular compartment, cost-effectiveness consenting to high-throughput screening compatibility, makes BRET a popular genetic reporter-based assay system for protein-protein interaction (PPI) studies. Based on the Förster principle, BRET allows to judge if the proximity has been achieved between the interacting partners. In recent years, the BRET application has emerged as a significantly versatile assay format by using multiple detection devices such as a plate reader or in-vivo optical imaging platform, or even a bioluminescence microscope has expanded its scope for advancing PPI studies. Beyond the scope of quantitative measurement of PPIs, molecular optical imaging applications based on BRET assay have expanded the scope for screening pharmacological compounds by unifying live cell and in-vivo animal-/plant-based experiments using the same platform technology. In this chapter, we have given intricate methodological details for performing in-vitro and in-vivo BRET experiments, primarily by using donor/acceptor reporter protein combinations.
Collapse
Affiliation(s)
- Aaiyas Mujawar
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Abhijit De
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Navi Mumbai, India.
| |
Collapse
|
45
|
Liu S, Su Y, Lin MZ, Ronald JA. Brightening up Biology: Advances in Luciferase Systems for in Vivo Imaging. ACS Chem Biol 2021; 16:2707-2718. [PMID: 34780699 PMCID: PMC8689642 DOI: 10.1021/acschembio.1c00549] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Bioluminescence imaging
(BLI) using luciferase reporters is an
indispensable method for the noninvasive visualization of cell populations
and biochemical events in living animals. BLI is widely performed
with preclinical rodent models to understand disease processes and
evaluate potential cell- or gene-based therapies. However, in vivo BLI remains constrained by low photon production
and tissue attenuation, limiting the sensitivity of reporting from
small numbers of cells in deep locations and hindering its application
to larger animal models. This Review highlights recent advances in
the development of luciferase systems that improve the sensitivity
of in vivo BLI and discusses the expanding array
of biological applications.
Collapse
Affiliation(s)
- Shirley Liu
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A3K7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A3K7, Canada
| | - Yichi Su
- Department of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Michael Z. Lin
- Department of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - John A. Ronald
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A3K7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A3K7, Canada
| |
Collapse
|
46
|
Yu HY, Lee S, Ju H, Kim Y, Shin JH, Yun H, Ryu CM, Heo J, Lim J, Song S, Lee S, Hong KS, Chung HM, Kim JK, Choo MS, Shin DM. Intravital imaging and single cell transcriptomic analysis for engraftment of mesenchymal stem cells in an animal model of interstitial cystitis/bladder pain syndrome. Biomaterials 2021; 280:121277. [PMID: 34861510 DOI: 10.1016/j.biomaterials.2021.121277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 11/15/2022]
Abstract
Mesenchymal stem cell (MSC) therapy is a promising treatment for various intractable disorders including interstitial cystitis/bladder pain syndrome (IC/BPS). However, an analysis of fundamental characteristics driving in vivo behaviors of transplanted cells has not been performed, causing debates about rational use and efficacy of MSC therapy. Here, we implemented two-photon intravital imaging and single cell transcriptome analysis to evaluate the in vivo behaviors of engrafted multipotent MSCs (M-MSCs) derived from human embryonic stem cells (hESCs) in an acute IC/BPS animal model. Two-photon imaging analysis was performed to visualize the dynamic association between engrafted M-MSCs and bladder vasculature within live animals until 28 days after transplantation, demonstrating the progressive integration of transplanted M-MSCs into a perivascular-like structure. Single cell transcriptome analysis was performed in highly purified engrafted cells after a dual MACS-FACS sorting procedure and revealed expression changes in various pathways relating to pericyte cell adhesion and cellular stress. Particularly, FOS and cyclin dependent kinase-1 (CDK1) played a key role in modulating the migration, engraftment, and anti-inflammatory functions of M-MSCs, which determined their in vivo therapeutic potency. Collectively, this approach provides an overview of engrafted M-MSC behavior in vivo, which will advance our understanding of MSC therapeutic applications, efficacy, and safety.
Collapse
Affiliation(s)
- Hwan Yeul Yu
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; ToolGen Inc., Seoul, South Korea
| | - Seungun Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyein Ju
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Youngkyu Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea; Department of Convergence Medicine, University of Ulsan, College of Medicine, Seoul, South Korea
| | - Jung-Hyun Shin
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - HongDuck Yun
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chae-Min Ryu
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jinbeom Heo
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jisun Lim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sujin Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sanghwa Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea; Department of Convergence Medicine, University of Ulsan, College of Medicine, Seoul, South Korea
| | - Ki-Sung Hong
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, South Korea; Mirae Cell Bio Co., Ltd., Seoul, South Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, South Korea; Mirae Cell Bio Co., Ltd., Seoul, South Korea
| | - Jun Ki Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea; Department of Convergence Medicine, University of Ulsan, College of Medicine, Seoul, South Korea
| | - Myung-Soo Choo
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Dong-Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
47
|
Liu C, Zhou H, Zhou J. The Applications of Nanotechnology in Crop Production. Molecules 2021; 26:7070. [PMID: 34885650 PMCID: PMC8658860 DOI: 10.3390/molecules26237070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/26/2023] Open
Abstract
With the frequent occurrence of extreme climate, global agriculture is confronted with unprecedented challenges, including increased food demand and a decline in crop production. Nanotechnology is a promising way to boost crop production, enhance crop tolerance and decrease the environmental pollution. In this review, we summarize the recent findings regarding innovative nanotechnology in crop production, which could help us respond to agricultural challenges. Nanotechnology, which involves the use of nanomaterials as carriers, has a number of diverse applications in plant growth and crop production, including in nanofertilizers, nanopesticides, nanosensors and nanobiotechnology. The unique structures of nanomaterials such as high specific surface area, centralized distribution size and excellent biocompatibility facilitate the efficacy and stability of agro-chemicals. Besides, using appropriate nanomaterials in plant growth stages or stress conditions effectively promote plant growth and increase tolerance to stresses. Moreover, emerging nanotools and nanobiotechnology provide a new platform to monitor and modify crops at the molecular level.
Collapse
Affiliation(s)
- Chenxu Liu
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.L.); (H.Z.)
| | - Hui Zhou
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.L.); (H.Z.)
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.L.); (H.Z.)
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| |
Collapse
|
48
|
Deng M, Yuan J, Yang H, Wu X, Wei X, Du Y, Wong G, Tao Y, Liu G, Jin Z, Chu J. A Genetically Encoded Bioluminescent System for Fast and Highly Sensitive Detection of Antibodies with a Bright Green Fluorescent Protein. ACS NANO 2021; 15:17602-17612. [PMID: 34726889 DOI: 10.1021/acsnano.1c05164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A method for fast and highly sensitive detection of antibodies in serum would greatly facilitate the early diagnosis of disease and infection and dose optimization of therapeutic antibody. Bioluminescence detection with LUMABS (renamed mNeonG-LUMABS, where mNeonG is short for mNeonGreen) sensors based on bioluminescence resonance energy transfer (BRET) between blue-emitting luciferase Nluc and green fluorescent protein (FP) mNeonGreen has been demonstrated to enable fast detection of antibodies directly in serum with reasonable sensitivity. However, some mNeonG-LUMABS sensors exhibit low sensitivity, and thus, sensitivity improvement remains imperative. Here, we report a bright green FP, Clover4, obtained by structure-guided mutagenesis of green FP Clover. Despite similar brightness and fluorescence spectra of Clover and mNeonGreen, Clover4-LUMABS sensors exhibit a largely increased dynamic range (maximum 20-fold) and much lower limit of detection (LOD) (maximum 5.6-fold), most likely because Clover4 is positioned in a more parallel orientation to Nluc in LUMABS. Due to modular design, Clover4-LUMABS offers a general BRET system for fast and highly sensitive antibody detection in serum.
Collapse
Affiliation(s)
| | - Jing Yuan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Haibin Yang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Department of Biology, Southern University of Science and Technology, Shenzhen 518060, China
| | - Xuli Wu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | | | - Yang Du
- School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Garry Wong
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yuyong Tao
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China
| | | | | |
Collapse
|
49
|
Wang T, Wang Z, de Fabritus L, Tao J, Saied EM, Lee HJ, Ramazanov BR, Jackson B, Burkhardt D, Parker M, Gleinich AS, Wang Z, Seo DE, Zhou T, Xu S, Alecu I, Azadi P, Arenz C, Hornemann T, Krishnaswamy S, van de Pavert SA, Kaech SM, Ivanova NB, Santori FR. 1-deoxysphingolipids bind to COUP-TF to modulate lymphatic and cardiac cell development. Dev Cell 2021; 56:3128-3145.e15. [PMID: 34762852 PMCID: PMC8628544 DOI: 10.1016/j.devcel.2021.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Identification of physiological modulators of nuclear hormone receptor (NHR) activity is paramount for understanding the link between metabolism and transcriptional networks that orchestrate development and cellular physiology. Using libraries of metabolic enzymes alongside their substrates and products, we identify 1-deoxysphingosines as modulators of the activity of NR2F1 and 2 (COUP-TFs), which are orphan NHRs that are critical for development of the nervous system, heart, veins, and lymphatic vessels. We show that these non-canonical alanine-based sphingolipids bind to the NR2F1/2 ligand-binding domains (LBDs) and modulate their transcriptional activity in cell-based assays at physiological concentrations. Furthermore, inhibition of sphingolipid biosynthesis phenocopies NR2F1/2 deficiency in endothelium and cardiomyocytes, and increases in 1-deoxysphingosine levels activate NR2F1/2-dependent differentiation programs. Our findings suggest that 1-deoxysphingosines are physiological regulators of NR2F1/2-mediated transcription.
Collapse
Affiliation(s)
- Ting Wang
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA; Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zheng Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China; Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Lauriane de Fabritus
- Aix-Marseille Universite, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex 9, France
| | - Jinglian Tao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China; Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Essa M Saied
- Institut für Chemie, Humboldt Universität zu Berlin, Berlin 12489, Germany; Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Ho-Joon Lee
- Department of Genetics, Yale University, New Haven, CT 06520, USA; Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Bulat R Ramazanov
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Benjamin Jackson
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Daniel Burkhardt
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Mikhail Parker
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Anne S Gleinich
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Zhirui Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Dong Eun Seo
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Ting Zhou
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Shihao Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Irina Alecu
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Christoph Arenz
- Institut für Chemie, Humboldt Universität zu Berlin, Berlin 12489, Germany
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University and University Hospital of Zurich, Zurich 8091, Switzerland
| | | | - Serge A van de Pavert
- Aix-Marseille Universite, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex 9, France
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, the Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Natalia B Ivanova
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | - Fabio R Santori
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
50
|
Yang J, Johnson CH. Bioluminescent Sensors for Ca ++ Flux Imaging and the Introduction of a New Intensity-Based Ca ++ Sensor. Front Bioeng Biotechnol 2021; 9:773353. [PMID: 34778237 PMCID: PMC8578923 DOI: 10.3389/fbioe.2021.773353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Sensitive detection of biological events is a goal for the design and characterization of sensors that can be used in vitro and in vivo. One important second messenger is Ca++ which has been a focus of using genetically encoded Ca++ indicators (GECIs) within living cells or intact organisms in vivo. An ideal GECI would exhibit high signal intensity, excellent signal-to-noise ratio (SNR), rapid kinetics, a large dynamic range within relevant physiological conditions, and red-shifted emission. Most available GECIs are based on fluorescence, but bioluminescent GECIs have potential advantages in terms of avoiding tissue autofluorescence, phototoxicity, photobleaching, and spectral overlap, as well as enhancing SNR. Here, we summarize current progress in the development of bioluminescent GECIs and introduce a new and previously unpublished biosensor. Because these biosensors require a substrate, we also describe the pros and cons of various substrates used with these sensors. The novel GECI that is introduced here is called CalBiT, and it is a Ca++ indicator based on the functional complementation of NanoBiT which shows a high dynamic change in response to Ca++ fluxes. Here, we use CalBiT for the detection of Ca++ fluctuations in cultured cells, including its ability for real-time imaging in living cells.
Collapse
Affiliation(s)
- Jie Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|