1
|
Acharya R, Dutta SD, Mallik H, Patil TV, Ganguly K, Randhawa A, Kim H, Lee J, Park H, Mo C, Lim KT. Physical stimuli-responsive DNA hydrogels: design, fabrication strategies, and biomedical applications. J Nanobiotechnology 2025; 23:233. [PMID: 40119420 PMCID: PMC11929200 DOI: 10.1186/s12951-025-03237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/16/2025] [Indexed: 03/24/2025] Open
Abstract
Physical stimuli-responsive DNA hydrogels hold immense potential for tissue engineering due to their inherent biocompatibility, tunable properties, and capacity to replicate the mechanical environment of natural tissue, making physical stimuli-responsive DNA hydrogels a promising candidate for tissue engineering. These hydrogels can be tailored to respond to specific physical triggers such as temperature, light, magnetic fields, ultrasound, mechanical force, and electrical stimuli, allowing precise control over their behavior. By mimicking the extracellular matrix (ECM), DNA hydrogels provide structural support, biomechanical cues, and cell signaling essential for tissue regeneration. This article explores various physical stimuli and their incorporation into DNA hydrogels, including DNA self-assembly and hybrid DNA hydrogel methods. The aim is to demonstrate how DNA hydrogels, in conjunction with other biomolecules and the ECM environment, generate dynamic scaffolds that respond to physical stimuli to facilitate tissue regeneration. We investigate the most recent developments in cancer therapies, including injectable DNA hydrogel for bone regeneration, personalized scaffolds, and dynamic culture models for drug discovery. The study concludes by delineating the remaining obstacles and potential future orientations in the optimization of DNA hydrogel design for the regeneration and reconstruction of tissue. It also addresses strategies for surmounting current challenges and incorporating more sophisticated technologies, thereby facilitating the clinical translation of these innovative hydrogels.
Collapse
Affiliation(s)
- Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institution of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hemadri Mallik
- Department of Botany, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Changyeun Mo
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Institution of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Wang Y, Yung P, Lu G, Liu Y, Ding C, Mao C, Li ZA, Tuan RS. Musculoskeletal Organs-on-Chips: An Emerging Platform for Studying the Nanotechnology-Biology Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2401334. [PMID: 38491868 PMCID: PMC11733728 DOI: 10.1002/adma.202401334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Nanotechnology-based approaches are promising for the treatment of musculoskeletal (MSK) disorders, which present significant clinical burdens and challenges, but their clinical translation requires a deep understanding of the complex interplay between nanotechnology and MSK biology. Organ-on-a-chip (OoC) systems have emerged as an innovative and versatile microphysiological platform to replicate the dynamics of tissue microenvironment for studying nanotechnology-biology interactions. This review first covers recent advances and applications of MSK OoCs and their ability to mimic the biophysical and biochemical stimuli encountered by MSK tissues. Next, by integrating nanotechnology into MSK OoCs, cellular responses and tissue behaviors may be investigated by precisely controlling and manipulating the nanoscale environment. Analysis of MSK disease mechanisms, particularly bone, joint, and muscle tissue degeneration, and drug screening and development of personalized medicine may be greatly facilitated using MSK OoCs. Finally, future challenges and directions are outlined for the field, including advanced sensing technologies, integration of immune-active components, and enhancement of biomimetic functionality. By highlighting the emerging applications of MSK OoCs, this review aims to advance the understanding of the intricate nanotechnology-MSK biology interface and its significance in MSK disease management, and the development of innovative and personalized therapeutic and interventional strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Yuwei Liu
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- The First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenGuangdong518037P. R. China
| | - Changhai Ding
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Zhong Alan Li
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Key Laboratory of Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Shenzhen Research InstituteThe Chinese University of Hong KongShenzhen518172P. R. China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| |
Collapse
|
3
|
Yu ZJ, Deng DH, Liang SR, Huang YL, Yi XY. Overview of Gas-Generating-Reaction-Based Immunoassays. BIOSENSORS 2024; 14:580. [PMID: 39727844 PMCID: PMC11726966 DOI: 10.3390/bios14120580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Point-of-care (POC) immunoassays have become convincing alternatives to traditional immunosensing methods for the sensitive and real-time detection of targets. Immunoassays based on gas-generating reactions were recently developed and have been used in various fields due to their advantages, such as rapid measurement, direct reading, simple operation, and low cost. Enzymes or nanoparticles modified with antibodies can effectively catalyze gas-generating reactions and convert immunorecognition events into gas pressure signals, which can be easily recorded by multifunctional portable devices. This article summarizes the advances in gas-generating-reaction-based immunoassays, according to different types of signal output systems, including distance-based readout, pressure differential, visualized detection, and thermal measurement. The review mainly focuses on the role of photothermal materials and the working principle of immunoassays. In addition, the challenges and prospects for the future development of gas-generating-reaction-based immunoassays are briefly discussed.
Collapse
Affiliation(s)
- Zhao-Jiang Yu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
| | - De-Hua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
| | - Si-Rui Liang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
| | - Ya-Liang Huang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| | - Xin-Yao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| |
Collapse
|
4
|
Lu Z, Yuan Y, Han Q, Wang Y, Liang Q. Lab-on-a-chip: an advanced technology for the modernization of traditional Chinese medicine. Chin Med 2024; 19:80. [PMID: 38853247 PMCID: PMC11163804 DOI: 10.1186/s13020-024-00956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024] Open
Abstract
Benefiting from the complex system composed of various constituents, medicament portions, species, and places of origin, traditional Chinese medicine (TCM) possesses numerous customizable and adaptable efficacies in clinical practice guided by its theories. However, these unique features are also present challenges in areas such as quality control, screening active ingredients, studying cell and organ pharmacology, and characterizing the compatibility between different Chinese medicines. Drawing inspiration from the holistic concept, an integrated strategy and pattern more aligned with TCM research emerges, necessitating the integration of novel technology into TCM modernization. The microfluidic chip serves as a powerful platform for integrating technologies in chemistry, biology, and biophysics. Microfluidics has given rise to innovative patterns like lab-on-a-chip and organoids-on-a-chip, effectively challenging the conventional research paradigms of TCM. This review provides a systematic summary of the nature and advanced utilization of microfluidic chips in TCM, focusing on quality control, active ingredient screening/separation, pharmaceutical analysis, and pharmacological/toxicological assays. Drawing on these remarkable references, the challenges, opportunities, and future trends of microfluidic chips in TCM are also comprehensively discussed, providing valuable insights into the development of TCM.
Collapse
Affiliation(s)
- Zenghui Lu
- Institute of Traditional Chinese Medicine-X, State Administration of Traditional Chinese Medicine Third-Level Laboratory of Traditional Chinese Medicine Chemistry, Modern Research Center for Traditional Chinese Medicine, Tsinghua University, Beijing, 100084, China
| | - Yue Yuan
- Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100730, China
| | - Qiang Han
- Institute of Traditional Chinese Medicine-X, State Administration of Traditional Chinese Medicine Third-Level Laboratory of Traditional Chinese Medicine Chemistry, Modern Research Center for Traditional Chinese Medicine, Tsinghua University, Beijing, 100084, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine-X, State Administration of Traditional Chinese Medicine Third-Level Laboratory of Traditional Chinese Medicine Chemistry, Modern Research Center for Traditional Chinese Medicine, Tsinghua University, Beijing, 100084, China
| | - Qionglin Liang
- Institute of Traditional Chinese Medicine-X, State Administration of Traditional Chinese Medicine Third-Level Laboratory of Traditional Chinese Medicine Chemistry, Modern Research Center for Traditional Chinese Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Qian C, Li P, Wang J, Hong X, Zhao X, Wu L, Miao Z, Du W, Feng X, Li Y, Chen P, Liu BF. Centrifugo-Pneumatic Reciprocating Flowing Coupled with a Spatial Confinement Strategy for an Ultrafast Multiplexed Immunoassay. Anal Chem 2024; 96:7145-7154. [PMID: 38656793 DOI: 10.1021/acs.analchem.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Immunoassays serve as powerful diagnostic tools for early disease screening, process monitoring, and precision treatment. However, the current methods are limited by high costs, prolonged processing times (>2 h), and operational complexities that hinder their widespread application in point-of-care testing. Here, we propose a novel centrifugo-pneumatic reciprocating flowing coupled with spatial confinement strategy, termed PRCM, for ultrafast multiplexed immunoassay of pathogens on a centrifugal microfluidic platform. Each chip consists of four replicated units; each unit allows simultaneous detection of three targets, thereby facilitating high-throughput parallel analysis of multiple targets. The PRCM platform enables sequential execution of critical steps such as solution mixing, reaction, and drainage by coordinating inherent parameters, including motor rotation speed, rotation direction, and acceleration/deceleration. By integrating centrifugal-mediated pneumatic reciprocating flow with spatial confinement strategies, we significantly reduce the duration of immune binding from 30 to 5 min, enabling completion of the entire testing process within 20 min. As proof of concept, we conducted a simultaneous comparative test on- and off-the-microfluidics using 12 negative and positive clinical samples. The outcomes yielded 100% accuracy in detecting the presence or absence of the SARS-CoV-2 virus, thus highlighting the potential of our PRCM system for multiplexed point-of-care immunoassays.
Collapse
Affiliation(s)
- Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong 518116, China
| | - Pengjie Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingjing Wang
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong 518116, China
| | - Xianzhe Hong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xudong Zhao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liqiang Wu
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong 518116, China
| | - Zeyu Miao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Mim JJ, Hasan M, Chowdhury MS, Ghosh J, Mobarak MH, Khanom F, Hossain N. A comprehensive review on the biomedical frontiers of nanowire applications. Heliyon 2024; 10:e29244. [PMID: 38628721 PMCID: PMC11016983 DOI: 10.1016/j.heliyon.2024.e29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.
Collapse
Affiliation(s)
- Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mehedi Hasan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Shakil Chowdhury
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Jubaraz Ghosh
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fahmida Khanom
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| |
Collapse
|
7
|
Samadi Khezri M, Housaindokht MR, Firouzi M. Designing and prototyping a novel biosensor based on a volumetric bar-chart chip for urea detection. LAB ON A CHIP 2024; 24:2298-2305. [PMID: 38517043 DOI: 10.1039/d3lc00730h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A volumetric bar-chart chip (V-chip) is a microfluidic device based on distance-based quantitative measurement that visualizes analyte concentration without the need for apparatus or data processing. This typically utilizes special receptors and catalysis parts that generate oxygen, so ink can be moved inside the channels, and enables instant visual quantitation of the analyte. However, the low stability of some macromolecules, the use of expensive catalysts, and difficulty in controlling the process cause inaccurate readings, and therefore, limit further development and the use of these systems. In this article, we introduced a novel approach that eliminates the use of catalysts in V-chips and provides an efficient and simple path in the design of biosensors. The product of the enzymatic reaction of urease with urea is bicarbonate, which turns into CO2 gas in an acidic environment. Therefore, the amount of gas produced is proportional to the amount of urea in the sample, and it can be quantitatively measured by visual detection from the amount of ink movement caused by CO2 gas pressure. This biosensor has a linear response range of 0 to 1000 μg ml-1 and a detection limit of 3.6 μg ml-1 in raw milk. The recovery of urea in raw milk at 100 and 400 μg ml-1 concentrations was 96.5% and 98.9%, respectively. This volumetric chip shows potential for determining urea levels in real samples without requiring additional equipment. The combination of the sensitivity and specificity of enzymatic reactions, inherent gas-generating reactions, and the processability of microchips discussed in this paper can be the basis for the comprehensive development of volumetric chips, which can create a new path for the development of efficient and cheap biosensors.
Collapse
Affiliation(s)
- Mahdi Samadi Khezri
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Reza Housaindokht
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mojtaba Firouzi
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
8
|
Liu W, Yao Y, Liu Q, Chen X. Photothermal hydrogel-integrated paper-based point-of-care platform for visible distance-readout of glucose. Anal Chim Acta 2024; 1285:342035. [PMID: 38057044 DOI: 10.1016/j.aca.2023.342035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND The accurate detection of glucose and cholesterol plays a pivotal role in disease diagnosis and home care. To this end, biochemical analyzers have become extensively utilized tools for measuring disease biomarkers. Nonetheless, their poor portability and high cost have restricted their accessibility, limiting their use to laboratory settings and hindering the adoption of point-of-care testing (POCT). In contrast, the emergence of portable and affordable paper-based testing platform has revolutionized diagnostic testing by providing distance signals, enhancing intuitiveness and visual accessibility. Consequently, these platforms have become increasingly suitable for POCT. RESULTS We have developed a POCT platform that integrated AuNS@Ag, stimulus-responsive hydrogel and test strips, enabling visual distance reading of glucose. The silver-coated AuNS and enzyme were encapsulated within a temperature-responsive N-isopropylacrylamide-acrylamide (NIPAM-AcAm) hydrogel to act as target recognition and reaction units respectively. Glucose can diffuse freely within the hydrogel porous matrix, thereby instigating enzyme-catalyzed reaction that induce alterations in the photothermal effect of the system. This dynamic process ensures efficient and responsive modulation of the system's photothermal properties. By ingeniously capturing distance signals induced by the photothermal effect-mediated water release the visualization and quantification of target substances are achieved, with a linear range spanning from 0 to 30 mM. The consistency between distance-based POCT platform and commercial blood glucose meter demonstrates that the platform provides a portable, affordable and reliable method for visual reading biomarkers. SIGNIFICANCE The proposed strategy enables direct, visual quantitative analysis of the target without the need for additional analytical instruments. Particularly, this method holds significant promise as an efficient platform for cholesterol and other disease markers measurement.
Collapse
Affiliation(s)
- Wei Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yao Yao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
9
|
Li X, Duan Q, Khan M, Yang D, Liu Q, Yin F, Hu Q, Yu L. Development of the viscosity biosensor for the detection of DNase I based on the flow distance on the paper with DNA mucus. Talanta 2024; 266:124994. [PMID: 37536109 DOI: 10.1016/j.talanta.2023.124994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Deoxyribonuclease I (DNase I) is a biomarker which has important applications in various biological processes. Thus, it is highly important to develop a user-friendly method for the detection of DNase I. Here, we present a paper-based distance sensor for the rapid detection of DNase I based on changes in the viscosity of DNA mucus. The viscosity of DNA mucus varies with different concentrations of DNase I, showing different water flow lengths on the pH test papers, this makes the quantification of DNase I possible. This method has a wide linear range (0.01-10 U/mL), excellent sensitivity, remarkable specificity and excellent reproducibility. The detection limit reaches 0.003 U/mL. Additionally, it can be well applied to detection of DNase I inhibitors, assay of DNase I in human serum and quality evaluation of nucleic acid scavengers. In general, this study offers a brief, convenient, label-free, and economical method to construct paper-based distance sensors using DNA mucus, which is very promising in the detection of DNase I in various applications.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China
| | - Qing Duan
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Mashooq Khan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Danhong Yang
- Shandong Kehong Medical Technology Co., Ltd., 2018, Dezhou, 253011, China
| | - Qian Liu
- Shandong Kehong Medical Technology Co., Ltd., 2018, Dezhou, 253011, China
| | - Fangchao Yin
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| |
Collapse
|
10
|
Qu K, Morioka K, Nakamura K, Yamamoto S, Hemmi A, Shoji A, Nakajima H. Development of a C-reactive protein quantification method based on flow rate measurement of an ink solution pushed out by oxygen gas generated by catalase reaction. Mikrochim Acta 2023; 191:24. [PMID: 38091091 DOI: 10.1007/s00604-023-06108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023]
Abstract
A novel determination method for protein biomarkers based on on-chip flow rate measurement was developed using a microchip with organic photodiodes (OPDs). This quantitative method is based on the flow rate measurement of an ink solution pushed out by oxygen gas generated through catalase reaction. The amount of oxygen gas generated in the sample reservoir is dependent on the concentration of the analyte; therefore, the flow rate of the ink solution is also dependent on the concentration of the analyte. The concentration of the analyte can thus be estimated by measurement of the ink solution flow rate. The ink solution flow rate was estimated by measuring the migration time of the ink solution between two points using two OPDs placed below the microchannel. The principle of this method was demonstrated by the measurement of catalase using the microchip. In addition, the developed method was applied to the determination of C-reactive protein (CRP), a biomarker of inflammation, based on a catalase-linked immunosorbent assay (C-LISA). The limit of detection for CRP was 0.20 µg/mL. The method was also applied to the determination of CRP in human serum, and the quantitative values obtained by this method were in excellent agreement with those obtained by the conventional enzyme-linked immunosorbent assay (ELISA) method. The developed method does not require a photodetector with high sensitivity and is thus capable of downsizing; therefore, this will be useful for on-site analyses such as point-of-care testing and field measurements.
Collapse
Affiliation(s)
- Kuizhi Qu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Kazuhiro Morioka
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Konoka Nakamura
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shoji Yamamoto
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Akihide Hemmi
- Mebius Advanced Technology Ltd., 3-31-6-105 Nishiogi-Kita, Suginami-Ku, Tokyo, 167-0042, Japan
| | - Atsushi Shoji
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
11
|
Zhang S, Qu W, Chen S, Guo D, Xue K, Li R, Zhang J, Yang L. A specific visual-volumetric sensor for mercury ions based on smart hydrogel. Analyst 2023; 148:5942-5948. [PMID: 37853759 DOI: 10.1039/d3an01224g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
On the basis of the "seeing is believing" concept and the existing theory of Hg2+ coordination chemistry, for the first time, we innovatively designed and synthesized a visual-volumetric sensor platform with fluorescein and uracil functionalized polyacrylamide hydrogel. Without the aid of any complicated instruments and power sources, the sensor-enabled quantitative μM-level Hg2+ detection Hg2+ by reading graduation on a pipette with the naked eye. The sensor undergoes volumetric response and shows a wide linear response range to Hg2+ (1.0 × 10-6-5.0 × 10-5 mol L-1) with 2.8 × 10-7 mol L-1 as the detection limit. The highly selective (easily distinguished Hg2+ from other common metal ions), rapid response (∼30 min), and acceptable repeatability (RSD < 5% in all cases) demonstrated that the developed sensor is suitable for onsite practical use for the determination of Hg2+ while being low-cost, simple, and portable. The design principles of the obtained materials and the construction techniques and methods of the sensors described in our study provide a new idea for the research and development of smart materials and a series of visual-volumetric sensors for other analytes.
Collapse
Affiliation(s)
- Shenghai Zhang
- School of Chemistry and Chemical Engineering, Ankang University, Quality Supervision and Inspection Centre of Se-enriched Food of Shaanxi Province, Shaanxi University Innovation Research Institute of Advanced Energy Storage Materials and Battery Technology for Future Industrialization, Ankang Research Centre of New Nano-materials Science and Technology Research Centre, Ankang, Shaanxi Province, 725000, P. R. China.
| | - Wenzhong Qu
- School of Chemistry and Chemical Engineering, Ankang University, Quality Supervision and Inspection Centre of Se-enriched Food of Shaanxi Province, Shaanxi University Innovation Research Institute of Advanced Energy Storage Materials and Battery Technology for Future Industrialization, Ankang Research Centre of New Nano-materials Science and Technology Research Centre, Ankang, Shaanxi Province, 725000, P. R. China.
| | - Simeng Chen
- School of Chemistry and Chemical Engineering, Ankang University, Quality Supervision and Inspection Centre of Se-enriched Food of Shaanxi Province, Shaanxi University Innovation Research Institute of Advanced Energy Storage Materials and Battery Technology for Future Industrialization, Ankang Research Centre of New Nano-materials Science and Technology Research Centre, Ankang, Shaanxi Province, 725000, P. R. China.
| | - Dian Guo
- School of Chemistry and Chemical Engineering, Ankang University, Quality Supervision and Inspection Centre of Se-enriched Food of Shaanxi Province, Shaanxi University Innovation Research Institute of Advanced Energy Storage Materials and Battery Technology for Future Industrialization, Ankang Research Centre of New Nano-materials Science and Technology Research Centre, Ankang, Shaanxi Province, 725000, P. R. China.
| | - Kaixi Xue
- School of Chemistry and Chemical Engineering, Ankang University, Quality Supervision and Inspection Centre of Se-enriched Food of Shaanxi Province, Shaanxi University Innovation Research Institute of Advanced Energy Storage Materials and Battery Technology for Future Industrialization, Ankang Research Centre of New Nano-materials Science and Technology Research Centre, Ankang, Shaanxi Province, 725000, P. R. China.
| | - Run Li
- School of Chemistry and Chemical Engineering, Ankang University, Quality Supervision and Inspection Centre of Se-enriched Food of Shaanxi Province, Shaanxi University Innovation Research Institute of Advanced Energy Storage Materials and Battery Technology for Future Industrialization, Ankang Research Centre of New Nano-materials Science and Technology Research Centre, Ankang, Shaanxi Province, 725000, P. R. China.
| | - Jidong Zhang
- School of Chemistry and Chemical Engineering, Ankang University, Quality Supervision and Inspection Centre of Se-enriched Food of Shaanxi Province, Shaanxi University Innovation Research Institute of Advanced Energy Storage Materials and Battery Technology for Future Industrialization, Ankang Research Centre of New Nano-materials Science and Technology Research Centre, Ankang, Shaanxi Province, 725000, P. R. China.
| | - Lingjian Yang
- School of Chemistry and Chemical Engineering, Ankang University, Quality Supervision and Inspection Centre of Se-enriched Food of Shaanxi Province, Shaanxi University Innovation Research Institute of Advanced Energy Storage Materials and Battery Technology for Future Industrialization, Ankang Research Centre of New Nano-materials Science and Technology Research Centre, Ankang, Shaanxi Province, 725000, P. R. China.
| |
Collapse
|
12
|
Liu CW, Tsutsui H. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technol 2023; 28:302-323. [PMID: 37302751 DOI: 10.1016/j.slast.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Efficient sample preparation and accurate disease diagnosis under field conditions are of great importance for the early intervention of diseases in humans, animals, and plants. However, in-field preparation of high-quality nucleic acids from various specimens for downstream analyses, such as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and nucleic acid extraction protocols suitable for portable formats have drawn significant attention. Similarly, various nucleic acid amplification techniques and detection methods have also been explored. Combining these functions in an integrated platform has resulted in emergent sample-to-answer sensing systems that allow effective disease detection and analyses outside a laboratory. Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and distributed surveillance of diseases in food and agriculture industries, environmental monitoring, and defense against biological warfare and terrorism. This paper reviews recent advances in portable sample preparation technologies and facile detection methods that have been / or could be adopted into novel sample-to-answer devices. In addition, recent developments and challenges of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
13
|
SONG X, GUO Z, LIU W, ZHA G, FAN L, CAO C, ZHANG Q. [Detection and analysis of moving reaction boundary-based electrophoresis distance using smartphone images]. Se Pu 2023; 41:752-759. [PMID: 37712539 PMCID: PMC10507530 DOI: 10.3724/sp.j.1123.2023.06001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 09/16/2023] Open
Abstract
Electrophoresis titration (ET) based on the moving reaction boundary (MRB) theory can detect the analyte contents in different samples by converting content signals into distance signals. However, this technique is only suitable for on-site qualitative testing, and accurate quantification relies on complex optical equipment and computers. Hence, applying this method to real-time point-of-care testing (POCT) is challenging. In this study, we developed a smartphone-based ET system based on a visual technique to achieve real-time quantitative detection. First, we developed a portable quantitative ET device that can connect to a smartphone; this device consisted of five components, namely, an ET chip, a power module, a microcontroller, a liquid crystal display screen, and a Bluetooth module. The device measured 10 cm×15 cm×2.5 cm, weighed 300 g, and was easy to hold. Thus, it is suitable for on-site testing with a run time of only 2-4 min. An assistant mobile software program was also developed to control the device and perform ET. The colored electrophoresis boundary can be captured using the smartphone camera, and quantitative detection results can be obtained in real time. Second, we proposed a quantitative algorithm based on ET channels. The software was used to recognize the boundary migration distance of three channels, a standard curve based on two given contents of the standards was established using the two-point method, and the content of the test sample was calculated. Human serum albumin (HSA) and uric acid (UA) were used as a model protein and biosample, respectively, to test the performance of the detection system. For HSA detection, different HSA solutions were mixed with a polyacrylamide gel (PAG) stock solution, phenolphthalein was added as an indicator, and sodium persulfate and tetramethyl ethylenediamine (TEMED) were used to promote polymerization to form a gel. For UA detection, agarose gel was filled into the ET channel, the UA sample, urate oxidase, and leucomalachite green were added into the anode cell and incubated for 20 min. ET was then performed. The fitting goodness (R2) values of HSA and UA were 0.9959 and 0.9935, respectively, with a linear range of 0.5-35.0 g/L and a log-linear range of 100-4000 μmol/L. The limits of detection for HSA and UA were 0.05 g/L and 50 μmol/L, respectively, and the corresponding relative standard deviations (RSDs) were not greater than 2.87% and 3.21%, respectively. These results demonstrate that the detection system has good accuracy and sensitivity. Clinical samples collected from healthy volunteers were used as target blood samples, and the developed system was used to measure serum total protein and UA levels. Serum samples from five volunteers were selected, standard curves of total serum protein and UA were established, and the test results were compared with hospital standard testing results. The relative errors for serum total protein and UA were less than 6.03% and 6.21%, respectively, and the corresponding RSDs were less than 3.72% and 5.84%, respectively. These findings verify the accuracy and reliability of the proposed detection system. The smartphone-based ET detection system introduced in this paper presents several advantages. First, it enables the portable real-time detection of total serum protein and UA. Second, compared with traditional ET strategies based on colored boundaries, it does not rely on optical detection equipment or computers to obtain quantitative detection results; as such, it can reduce the complexity of the operation and provide portability and real-time metrics. Third, the detection of two biomarkers, serum total protein and UA, is achieved on the same device, thereby improving the multitarget detection potential of the ET method. These advantages render the developed method a promising detection platform for clinical applications and real-time POCT.
Collapse
|
14
|
de Lima LF, Lopes Ferreira A, Martinez de Freitas ADS, de Souza Rodrigues J, Lemes AP, Ferreira M, de Araujo WR. Biodegradable and Flexible Thermoplastic Composite Graphite Electrodes: A Promising Platform for Inexpensive and Sensitive Electrochemical Detection of Creatine Kinase at the Point-of-Care. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18694-18706. [PMID: 37014991 DOI: 10.1021/acsami.3c01379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Acute myocardial infarction (AMI) is the main cause of death worldwide, and the time of diagnosis is decisive for the effectiveness of the treatment of patients with AMI. Creatine kinase-myocardial band (CK-MB) has a predominance and high affinity with myocardial tissue, making it considered one of the main biomarkers for the diagnosis of AMI. In this work, we report a novel biodegradable composite material based on a polymer blend of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Poly(butylene adipate-co-terephthalate) (PHBV:Ecoflex) and graphite microparticles for sensitive and selective electrochemical detection of CK-MB. The morphological and physicochemical characterizations of the thermoplastic composite material revealed a homogeneous and synergistic distribution of the graphite microparticles through the blend structure, providing low defects and high electrical conductivity with high electron transfer kinetics (k0 = 3.54 × 10-3 cm s-1) features with adequate flexibility for point-of-care applications. The portable and disposable devices were applied to detect CK-MB using the electrochemical impedance spectroscopy (EIS) technique in a relevant clinical concentration ranging from 5.0 ng mL-1 to 100.0 ng mL-1 and presented a limit of detection of 0.26 ng mL-1 CK-MB. The selectivity of the sensor was confirmed by testing the potential interference of major biomolecules found in biofluids and other relevant macromolecules. The accuracy and robustness were assessed by addition and recovery protocol in urine and saliva samples without sample pretreatment and demonstrated the potential of our method for rapid and decentralized tests of AMI. In addition, the study of the thermal, biological, and photodegradation of the devices after being used was also carried out, aiming at the disposal of the material more sustainably.
Collapse
Affiliation(s)
- Lucas Felipe de Lima
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), 13083-970, Campinas, São Paulo, Brazil
| | - André Lopes Ferreira
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), 13083-970, Campinas, São Paulo, Brazil
| | - Amanda de Sousa Martinez de Freitas
- Polymers and Biopolymers Technology Lab. (TecPBio), Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), 12231-280, São José dos Campos, São Paulo, Brazil
| | - Jéssica de Souza Rodrigues
- Center of Science and Technology for Sustainability (CCTS), Federal University of São Carlos (UFSCar), 18052-780, Sorocaba, São Paulo, Brazil
| | - Ana Paula Lemes
- Polymers and Biopolymers Technology Lab. (TecPBio), Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), 12231-280, São José dos Campos, São Paulo, Brazil
| | - Marystela Ferreira
- Center of Science and Technology for Sustainability (CCTS), Federal University of São Carlos (UFSCar), 18052-780, Sorocaba, São Paulo, Brazil
| | - William Reis de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), 13083-970, Campinas, São Paulo, Brazil
| |
Collapse
|
15
|
Kumar RR, Kumar A, Chuang CH, Shaikh MO. Recent Advances and Emerging Trends in Cancer Biomarker Detection Technologies. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Rajkumar Rakesh Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Amit Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Muhammad Omar Shaikh
- Sustainability Science and Management, Tunghai University, Taichung 407224, Taiwan
| |
Collapse
|
16
|
Qian C, Li J, Pang Z, Xie H, Wan C, Li S, Wang X, Xiao Y, Feng X, Li Y, Chen P, Liu BF. Hand-powered centrifugal micropipette-tip with distance-based quantification for on-site testing of SARS-CoV-2 virus. Talanta 2023; 258:124466. [PMID: 36963148 PMCID: PMC10023210 DOI: 10.1016/j.talanta.2023.124466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
This paper proposed a hand-powered centrifugal micropipette-tip strategy, termed HCM, for all-in-one immunoassay combined with a distance-based readout for portable quantitative detection of SARS-CoV-2. The target SARS-CoV-2 virus antigen triggers the binding of multiple monoclonal antibody-coated red latex nanobeads, forming larger complexes. Following incubation and centrifugation, the formed aggregated complexes settle at the bottom of the tip, while free red nanobeads remain suspended in the solution. The HCM enables sensitive (1 ng/mL) and reliable quantification of SARS-CoV-2 within 25 min. With the advantages of free washing, free fabrication, free instrument, and without the optical device, the proposed low-cost and easy-to-use HCM immunoassay shows great potential for quantitative POC diagnostics for SARS-CoV-2.
Collapse
Affiliation(s)
- Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiashuo Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Pang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yujin Xiao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
17
|
Wu T, Li XY. An instrument-free visual quantitative detection method based on clock reaction: the detection of thrombin as an example. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:48-55. [PMID: 36448577 DOI: 10.1039/d2ay01786e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Instrument-free visual quantitative detection in chemical and biochemical analysis is of great significance in practical applications especially in point-of-care testing and in places where resources are limited. In this paper, we report the development of a time-based instrument-free visual quantitative detection method by employing a clock reaction, a type of chemical reaction displaying characteristic clocking behavior. The feasibility of the method was illustrated by the quantitative detection of thrombin in buffer solution using the lapse of time as the readout signal. The linear range of detection was from 1.3 to 43 nM (r2 = 0.990, n = 3) with a LOD of 0.9 nM, which is lower than the physiological concentrations of thrombin in the resting and activated blood, which range from low nanomolar to low micromolar, respectively. This method was also validated by detecting thrombin in the serum and a good recovery of nearly 100 ± 8.0% was obtained. To the best of our knowledge, this work is the first report that uses the characteristic time of a clock reaction as the readout signal in instrument-free colorimetry for quantitative bioanalysis.
Collapse
Affiliation(s)
- Tianxiang Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, ClearWater Bay, Kowloon, Hong Kong S.A.R., People's Republic of China.
| | - Xiao-Yuan Li
- Department of Chemistry, The Hong Kong University of Science and Technology, ClearWater Bay, Kowloon, Hong Kong S.A.R., People's Republic of China.
| |
Collapse
|
18
|
Liu Q, Wei H, Du Y. Microfluidic bioanalysis based on nanozymes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Gao Y, Wang Y, Wang Y, Magaud P, Liu Y, Zeng F, Yang J, Baldas L, Song Y. Nanocatalysis meets microfluidics: A powerful platform for sensitive bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Völlmecke K, Afroz R, Bierbach S, Brenker LJ, Frücht S, Glass A, Giebelhaus R, Hoppe A, Kanemaru K, Lazarek M, Rabbe L, Song L, Velasco Suarez A, Wu S, Serpe M, Kuckling D. Hydrogel-Based Biosensors. Gels 2022; 8:768. [PMID: 36547292 PMCID: PMC9777866 DOI: 10.3390/gels8120768] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
There is an increasing interest in sensing applications for a variety of analytes in aqueous environments, as conventional methods do not work reliably under humid conditions or they require complex equipment with experienced operators. Hydrogel sensors are easy to fabricate, are incredibly sensitive, and have broad dynamic ranges. Experiments on their robustness, reliability, and reusability have indicated the possible long-term applications of these systems in a variety of fields, including disease diagnosis, detection of pharmaceuticals, and in environmental testing. It is possible to produce hydrogels, which, upon sensing a specific analyte, can adsorb it onto their 3D-structure and can therefore be used to remove them from a given environment. High specificity can be obtained by using molecularly imprinted polymers. Typical detection principles involve optical methods including fluorescence and chemiluminescence, and volume changes in colloidal photonic crystals, as well as electrochemical methods. Here, we explore the current research utilizing hydrogel-based sensors in three main areas: (1) biomedical applications, (2) for detecting and quantifying pharmaceuticals of interest, and (3) detecting and quantifying environmental contaminants in aqueous environments.
Collapse
Affiliation(s)
- Katharina Völlmecke
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Rowshon Afroz
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Sascha Bierbach
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Lee Josephine Brenker
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Sebastian Frücht
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Alexandra Glass
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Ryland Giebelhaus
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Axel Hoppe
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Karen Kanemaru
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Michal Lazarek
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Lukas Rabbe
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Longfei Song
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Andrea Velasco Suarez
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Shuang Wu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Michael Serpe
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Dirk Kuckling
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
21
|
Zhou D, Yin Y, Zhu Z, Gao Y, Yang J, Pan Y, Song Y. Orally Administered Platinum Nanomarkers for Urinary Monitoring of Inflammatory Bowel Disease. ACS NANO 2022; 16:18503-18514. [PMID: 36300570 DOI: 10.1021/acsnano.2c06705] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing autoimmune disease with rising incidence worldwide. There is an increasing desire for non-invasive diagnostic tools to enable simple and sensitive IBD monitoring. Here, we report an orally administered nanosensor which will dissociate into ultrasmall platinum nanoclusters (PtNCs) in IBD-related inflammatory microenvironments. By exploiting the enzyme-mimicking activity of PtNCs and the precise bandpass filterability of kidney, the released-PtNCs can be detected in a scalable urinary readout, such as fluorescence and volumetric bar-chart chip (V-Chip), for point-of-care (POC) analysis. Our results demonstrate that the nanosensors exhibit significant signal differences between IBD-model mice and healthy mice, which is more sensitive than clinical ELISA assay based on fecal calprotectin. Such a non-invasive diagnostic modality significantly assists in the personalized assessment of pharmacological and follow-up efficacy. We envision that this modular conception will promote the rapid diagnosis of diverse diseases by changing specific responsive components.
Collapse
Affiliation(s)
- Dongtao Zhou
- Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yi Yin
- Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhenxing Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Yanfeng Gao
- Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongchun Pan
- Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yujun Song
- Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
22
|
Amen MT, Pham TTT, Cheah E, Tran DP, Thierry B. Metal-Oxide FET Biosensor for Point-of-Care Testing: Overview and Perspective. Molecules 2022; 27:molecules27227952. [PMID: 36432052 PMCID: PMC9698540 DOI: 10.3390/molecules27227952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Metal-oxide semiconducting materials are promising for building high-performance field-effect transistor (FET) based biochemical sensors. The existence of well-established top-down scalable manufacturing processes enables the reliable production of cost-effective yet high-performance sensors, two key considerations toward the translation of such devices in real-life applications. Metal-oxide semiconductor FET biochemical sensors are especially well-suited to the development of Point-of-Care testing (PoCT) devices, as illustrated by the rapidly growing body of reports in the field. Yet, metal-oxide semiconductor FET sensors remain confined to date, mainly in academia. Toward accelerating the real-life translation of this exciting technology, we review the current literature and discuss the critical features underpinning the successful development of metal-oxide semiconductor FET-based PoCT devices that meet the stringent performance, manufacturing, and regulatory requirements of PoCT.
Collapse
|
23
|
Development of an Integrated Biochip System Consisting of a Magnetic Particle Washing Station and a Markerless Volumetric Biochip. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Self-assembly strategy to reduce non-specific adsorption for the development of high sensitivity quantitative immunoassay. Anal Chim Acta 2022; 1229:340367. [PMID: 36156225 DOI: 10.1016/j.aca.2022.340367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022]
Abstract
The development of functionalized surfaces with low non-specific adsorption is important for their biomedical applications. To inhibit non-specific adsorption on glass substrate, we designed a novel optical biochip by modifying a layer of dense negatively charged film (SO32-) on its substrate surface via self-assembly. Compared with the untreated glass substrate, it reduced the adsorption by about 300-fold or 400-fold by poly (styrene sulfonic acid) sodium salt (PSS), or meso-tetra (4-sulfonatophenyl) porphine dihydrochloride (TSPP) on individually the modified glass substrate. Considering the effect of fluorescence resonance energy transfer (FRET) between TSPP and the QDs in solution by mixing, a strategy of 2-layer of TSPP followed by 4-layer of PSS was designed to modify the glass for preparing biochips. Under the optimized conditions, the biochip on functionalized glass substrate co-treated with TSPP and PSS realized the sensitive quantitative detection of C-reactive protein (CRP) based on a quantum dot fluorescence immunosorbent assay (QD-FLISA). The limit of detection (LOD) for CRP achieved 0.69 ng/mL with the range of 1-1,000 ng/mL using TSPP and PSS co-treated glass substrate surface, which was respectively about 1.9-fold and 7.5-fold more sensitive to the PSS-modified biochip and the TSPP-modified biochip. This work demonstrated an effective and convenient strategy to obtain biochips with low non-specific adsorption properties on functionalized surfaces, thus providing a new approach for creating ultra-high sensitivity microchannels or microarrays on glass substrates.
Collapse
|
25
|
Chavez‐Pineda OG, Rodriguez‐Moncayo R, Cedillo‐Alcantar DF, Guevara‐Pantoja PE, Amador‐Hernandez JU, Garcia‐Cordero JL. Microfluidic systems for the analysis of blood‐derived molecular biomarkers. Electrophoresis 2022; 43:1667-1700. [DOI: 10.1002/elps.202200067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Oriana G. Chavez‐Pineda
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Roberto Rodriguez‐Moncayo
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Diana F. Cedillo‐Alcantar
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Pablo E. Guevara‐Pantoja
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Josue U. Amador‐Hernandez
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Jose L. Garcia‐Cordero
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
- Roche Institute for Translational Bioengineering (ITB) Roche Pharma Research and Early Development, Roche Innovation Center Basel Basel Switzerland
| |
Collapse
|
26
|
Wang Y, Gao Y, Song Y. Microfluidics-Based Urine Biopsy for Cancer Diagnosis: Recent Advances and Future Trends. ChemMedChem 2022; 17:e202200422. [PMID: 36040297 DOI: 10.1002/cmdc.202200422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/23/2022] [Indexed: 11/08/2022]
Abstract
Urine biopsy, allowing for the detection, analysis and monitoring of numerous cancer-associated urinary biomarkers to provide insights into cancer occurrence, progression and metastasis, has emerged as an attractive liquid biopsy strategy with enormous advantages over traditional tissue biopsy, such as noninvasiveness, large sample volume, and simple sampling operation. Microfluidics enables precise manipulation of fluids in a tiny chip and exhibits outstanding performance in urine biopsy owing to its minimization, low cost, high integration, high throughput and low sample consumption. Herein, we review recent advances in microfluidic techniques employed in urine biopsy for cancer detection. After briefly summarizing the major urinary biomarkers used for cancer diagnosis, we provide an overview of the typical microfluidic techniques utilized to develop urine biopsy devices. Some prospects along with the major challenges to be addressed for the future of microfluidic-based urine biopsy are also discussed.
Collapse
Affiliation(s)
- Yanping Wang
- Nanjing University of Science and Technology, Sino-French Engineer School, CHINA
| | - Yanfeng Gao
- Nanjing University, College of Engineering and Applied Sciences, CHINA
| | - Yujun Song
- Nanjing University, Biomedical Engineering, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
27
|
Lin A, Liu Q, Zhang Y, Wang Q, Li S, Zhu B, Miao L, Du Y, Zhao S, Wei H. A Dopamine-Enabled Universal Assay for Catalase and Catalase-Like Nanozymes. Anal Chem 2022; 94:10636-10642. [PMID: 35758679 DOI: 10.1021/acs.analchem.2c00804] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Developing a universal strategy to measure catalase (CAT)/CAT-like activity, on one hand, overcomes limitations on current assays, such as moderate sensitivity and limited sample scope; on the other hand, facilitates insightful studies on applications of CAT and CAT-like nanozymes. Herein, the oxygen-sensitive and H2O2-inhibitory self-polymerization of dopamine (DA) was demonstrated as an activity indicator of CAT or CAT-like nanozymes, which monitors the catalytically generated O2 in a hypoxic environment. A typical assay for natural CAT was achieved under the optimized conditions. Moreover, this assay was suitable for diverse types of samples, ranging from nanozymes, animal tissues, to human saliva. By comparing the merits and limitations of common methods, this assay shows all-round advantages in sensitivity, specificity, and versatility, facilitating the formulation of measurement criteria and the development of potential standardized assays for CAT (or CAT-like nanozyme) activity.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yihong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bijun Zhu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sheng Zhao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
28
|
Kinnamon DS, Heggestad JT, Liu J, Chilkoti A. Technologies for Frugal and Sensitive Point-of-Care Immunoassays. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:123-149. [PMID: 35216530 PMCID: PMC10024863 DOI: 10.1146/annurev-anchem-061020-123817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunoassays are a powerful tool for sensitive and quantitative analysis of a wide range of biomolecular analytes in the clinic and in research laboratories. However, enzyme-linked immunosorbent assay (ELISA)-the gold-standard assay-requires significant user intervention, time, and clinical resources, making its deployment at the point-of-care (POC) impractical. Researchers have made great strides toward democratizing access to clinical quality immunoassays at the POC and at an affordable price. In this review, we first summarize the commercially available options that offer high performance, albeit at high cost. Next, we describe strategies for the development of frugal POC assays that repurpose consumer electronics and smartphones for the quantitative detection of analytes. Finally, we discuss innovative assay formats that enable highly sensitive analysis in the field with simple instrumentation.
Collapse
Affiliation(s)
- David S Kinnamon
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Jacob T Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Jason Liu
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| |
Collapse
|
29
|
Electrified lab on disc systems: A comprehensive review on electrokinetic applications. Biosens Bioelectron 2022; 214:114381. [DOI: 10.1016/j.bios.2022.114381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/24/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022]
|
30
|
Yang J, Yang J, Gong X, Zheng Y, Yi S, Cheng Y, Li Y, Liu B, Xie X, Yi C, Jiang L. Recent Progress in Microneedles-Mediated Diagnosis, Therapy, and Theranostic Systems. Adv Healthc Mater 2022; 11:e2102547. [PMID: 35034429 DOI: 10.1002/adhm.202102547] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Indexed: 02/06/2023]
Abstract
Theranostic system combined diagnostic and therapeutic modalities is critical for the real-time monitoring of disease-related biomarkers and personalized therapy. Microneedles, as a multifunctional platform, are promising for transdermal diagnostics and drug delivery. They have shown attractive properties including painless skin penetration, easy self-administration, prominent therapeutic effects, and good biosafety. Herein, an overview of the microneedles-based diagnosis, therapies, and theranostic systems is given. Four microneedles-based detection methods are concluded based on the sensing mechanism: i) electrochemistry, ii) fluorometric, iii) colorimetric, and iv) Raman methods. Additionally, robust microneedles are suitable for implantable drug delivery. Microneedles-assisted transdermal drug delivery can be primarily classified as passive, active, and responsive drug release, based on the release mechanisms. Microneedles-assisted oral and implantable drug delivery mechanisms are also presented in this review. Furthermore, the key frontier developments in microneedles-mediated theranostic systems as the major selling points are emphasized in this review. These systems are classified into open-loop and closed-loop theranostic systems based on the indirectness and directness of feedback between the transdermal diagnosis and therapy, respectively. Finally, conclusions and future perspectives for next-generation microneedles-mediated theranostic systems are also discussed. Taken together, microneedle-based systems are promising as the new avenue for diagnosis, therapy, and disease-specific closed-loop theranostic applications.
Collapse
Affiliation(s)
- Jian Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Jingbo Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Xia Gong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Ying Zheng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Shengzhu Yi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Yanxiang Cheng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Yanjun Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Bin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Sun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Changqing Yi
- Research Institute of Sun Yat‐Sen University in Shenzhen Shenzhen 518057 P. R. China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| |
Collapse
|
31
|
Wang Y, Gao Y, Yin Y, Pan Y, Wang Y, Song Y. Nanomaterial-assisted microfluidics for multiplex assays. Mikrochim Acta 2022; 189:139. [PMID: 35275267 DOI: 10.1007/s00604-022-05226-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Simultaneous detection of different biomarkers from a single specimen in a single test, allowing more rapid, efficient, and low-cost analysis, is of great significance for accurate diagnosis of disease and efficient monitoring of therapy. Recently, developments in microfabrication and nanotechnology have advanced the integration of nanomaterials in microfluidic devices toward multiplex assays of biomarkers, combining both the advantages of microfluidics and the unique properties of nanomaterials. In this review, we focus on the state of the art in multiplexed detection of biomarkers based on nanomaterial-assisted microfluidics. Following an overview of the typical microfluidic analytical techniques and the most commonly used nanomaterials for biochemistry analysis, we highlight in detail the nanomaterial-assisted microfluidic strategies for different biomarkers. These highly integrated platforms with minimum sample consumption, high sensitivity and specificity, low detection limit, enhanced signals, and reduced detection time have been extensively applied in various domains and show great potential in future point-of-care testing and clinical diagnostics.
Collapse
Affiliation(s)
- Yanping Wang
- Sino-French Engineer School, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yi Yin
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
32
|
Nuchtavorn N, Rypar T, Nedjl L, Vaculovicova M, Macka M. Distance-based detection in analytical flow devices: from gas detection tubes to microfluidic chips and microfluidic paper-based analytical devices. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Zhi L, Zhang S, Li M, Tu J, Lu X. Achieving Ultrasensitive Point-of-Care Assay for Mercury Ions with a Triple-Mode Strategy Based on the Mercury-Triggered Dual-Enzyme Mimetic Activities of Au/WO 3 Hierarchical Hollow Nanoflowers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9442-9453. [PMID: 35138810 DOI: 10.1021/acsami.1c22764] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The exploration of new strategies for portable detection of mercury ions with high sensitivity and selectivity is of great value for biochemical and environmental analyses. Herein, a straightforward, convenient, label-free, and portable sensing platform based on a Au nanoparticle (NP)-decorated WO3 hollow nanoflower was constructed for the sensitive and selective detection of Hg(II) with a pressure, temperature, and colorimetric triple-signal readout. The resulting Au/WO3 hollow nanoflowers (Au/WO3 HNFs) could efficaciously impede the aggregation of Au NPs, thus significantly improving their catalytic activity and stability. The sensing mechanism of this new strategy using pressure as a signal readout was based on the mercury-triggered catalase mimetic activity of Au/WO3 HNFs. In the presence of the model analyte Hg(II), H2O2 in the detection system was decomposed to O2 fleetly, resulting in a detectable pressure signal. Accordingly, the quantification of Hg(II) was facilely realized based on the pressure changes, and the detection limit could reach as low as 0.224 nM. In addition, colorimetric and photothermal detection of Hg(II) using the Au/WO3 HNFs based on their mercury-stimulated peroxidase mimetic activity was also investigated, and the detection limits were calculated to be 78 nM and 0.22 μM for colorimetric and photothermal methods, respectively. Hence, this nanosensor can even achieve multimode determination of Hg(II) with the concept of point-of-care testing (POCT). Furthermore, the proposed multimode sensing platform also displayed satisfactory sensing performance for the Hg(II) assay in actual water samples. This promising strategy may provide novel insights on the fabrication of a multimode POCT platform for sensitive, selective, and accurate detection of heavy metal ions.
Collapse
Affiliation(s)
- Lihua Zhi
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Shengya Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Min Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Jibing Tu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
34
|
Annese VF, Giagkoulovits C, Hu C, Al-Rawhani MA, Grant J, Patil SB, Cumming DRS. Micromolar Metabolite Measurement in an Electronically Multiplexed Format. IEEE Trans Biomed Eng 2022; 69:2715-2722. [PMID: 35104208 DOI: 10.1109/tbme.2022.3147855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The detection of metabolites such as choline in blood are important in clinical care for patients with cancer and cardiovascular disease. Choline is only present in human blood at low concentrations hence accurate measurement in an affordable point-of-care format is extremely challenging. Integration of microfluidics on to complementary metal-oxide semiconductor (CMOS) technology has the potential to enable advanced sensing technologies with extremely low limit of detection that are well suited to multiple clinical metabolite measurements. Although CMOS and microfluidics are individually mature technologies, their integration has presented challenges that we overcome in a novel, cost-effective, single-step process. To demonstrate the process, we present the microfluidic integration of a metabolomics-on-CMOS point-of-care platform with four capillary microfluidic channels on top of a CMOS optical sensor array. The fabricated device was characterised to verify the required structural profile, mechanical strength, optical spectra, and fluid flow. As a proof of concept, we used the device for the in-vitro quantification of choline in human blood plasma with a limit of detection of 3.2 M and a resolution of 1.6 M.
Collapse
|
35
|
Cheah E, Tran DP, Amen MT, Arrua RD, Hilder EF, Thierry B. Integrated Platform Addressing the Finger-Prick Blood Processing Challenges of Point-of-Care Electrical Biomarker Testing. Anal Chem 2022; 94:1256-1263. [DOI: 10.1021/acs.analchem.1c04470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Edward Cheah
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- ARC Centre of Excellence for Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Duy P. Tran
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- ARC Centre of Excellence for Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Mohamed T. Amen
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- ARC Centre of Excellence for Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - R. Dario Arrua
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Emily F. Hilder
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- ARC Centre of Excellence for Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
36
|
Han Y, Liu X, Zhao Q, Gao Y, Zhou D, Long W, Wang Y, Song Y. Aptazyme-induced cascade amplification integrated with a volumetric bar-chart chip for highly sensitive detection of aflatoxin B1 and adenosine triphosphate. Analyst 2022; 147:2500-2507. [DOI: 10.1039/d2an00650b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A triple-channel volumetric bar-chart chip based on aptazyme-induced cascade signal amplification empowers visual readout of aflatoxin B1 and adenosine triphosphate concentration.
Collapse
Affiliation(s)
- Yuanyue Han
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xinli Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Qiao Zhao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Wenxiu Long
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
37
|
Wang S, Cai G, Duan H, Qi W, Lin J. Automatic and multi-channel detection of bacteria on a slidable centrifugal disc based on FTA card nucleic acid extraction and recombinase aided amplification. LAB ON A CHIP 2021; 22:80-89. [PMID: 34796896 DOI: 10.1039/d1lc00915j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Rapid screening of foodborne pathogens is key to preventing food poisoning. In this study, a slidable centrifugal disc was developed for automatic and multi-channel detection of Salmonella typhimurium using Flinders Technology Associates (FTA) cards for nucleic acid extraction and recombinase aided amplification (RAA) for nucleic acid detection. The slidable FTA switching and centrifugal fluidic control were elaborately combined to achieve fully automatic operations, including centrifugation of the bacterial sample to obtain the concentrated bacteria, heating and drying of the FTA card to extract the nucleic acids, washing of the FTA card to remove the impurities, and RAA detection of the extracted DNA to determine the concentration. Under the optimal conditions, this slidable centrifugal disc was able to detect 10 CFU mL-1 in a spiked chicken meat supernatant in 1 h with an average recovery of 101.8% and an average standard deviation of 6.5%. This disc has been demonstrated as an alternative for sample-in-result-out detection of Salmonella and has shown potential for simultaneous detection of multiple bacteria.
Collapse
Affiliation(s)
- Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Gaozhe Cai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hong Duan
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.
| | - Wuzhen Qi
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China
| |
Collapse
|
38
|
Wang X, Zhang W, Wang S, Liu W, Liu N, Zhang D. A visual cardiovascular biomarker detection strategy based on distance as readout by the coffee-ring effect on microfluidic paper. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Zhang P, Shao N, Qin L. Recent Advances in Microfluidic Platforms for Programming Cell-Based Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005944. [PMID: 34270839 DOI: 10.1002/adma.202005944] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Indexed: 06/13/2023]
Abstract
Cell-based living materials, including single cells, cell-laden fibers, cell sheets, organoids, and organs, have attracted intensive interests owing to their widespread applications in cancer therapy, regenerative medicine, drug development, and so on. Significant progress in materials, microfabrication, and cell biology have promoted the development of numerous promising microfluidic platforms for programming these cell-based living materials with a high-throughput, scalable, and efficient manner. In this review, the recent progress of novel microfluidic platforms for programming cell-based living materials is presented. First, the unique features, categories, and materials and related fabrication methods of microfluidic platforms are briefly introduced. From the viewpoint of the design principles of the microfluidic platforms, the recent significant advances of programming single cells, cell-laden fibers, cell sheets, organoids, and organs in turns are then highlighted. Last, by providing personal perspectives on challenges and future trends, this review aims to motivate researchers from the fields of materials and engineering to work together with biologists and physicians to promote the development of cell-based living materials for human healthcare-related applications.
Collapse
Affiliation(s)
- Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Ning Shao
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| |
Collapse
|
40
|
Wang Y, Zhao J, Zhu Y, Dong S, Liu Y, Sun Y, Qian L, Yang W, Cao Z. Monolithic integration of nanorod arrays on microfluidic chips for fast and sensitive one-step immunoassays. MICROSYSTEMS & NANOENGINEERING 2021; 7:65. [PMID: 34567777 PMCID: PMC8433357 DOI: 10.1038/s41378-021-00291-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Accepted: 06/20/2021] [Indexed: 05/27/2023]
Abstract
Here, we present integrated nanorod arrays on microfluidic chips for fast and sensitive flow-through immunoassays of physiologically relevant macromolecules. Dense arrays of Au nanorods are easily fabricated through one-step oblique angle deposition, which eliminates the requirement of advanced lithography methods. We report the utility of this plasmonic structure to improve the detection limit of the cardiac troponin I (cTnI) assay by over 6 × 105-fold, reaching down to 33.9 fg mL-1 (~1.4 fM), compared with an identical assay on glass substrates. Through monolithic integration with microfluidic elements, the device enables a flow-through assay for quantitative detection of cTnI in the serum with a detection sensitivity of 6.9 pg mL-1 (~0.3 pM) in <6 min, which was 4000 times lower than conventional glass devices. This ultrasensitive detection arises from the large surface area for antibody conjugation and metal-enhanced fluorescent signals through plasmonic nanostructures. Moreover, due to the parallel arrangement of flow paths, simultaneous detection of multiple cancer biomarkers, including prostate-specific antigen and carcinoembryonic antigen, has been fulfilled with increased signal-to-background ratios. Given the high performance of this assay, together with its simple fabrication process that is compatible with standard mass manufacturing techniques, we expect that the prepared integrated nanorod device can bring on-site point-of-care diagnosis closer to reality.
Collapse
Affiliation(s)
- Ye Wang
- College of Information Science and Electronic Engineering, Zhejiang University, 310027 Hangzhou, People’s Republic of China
| | - Jiongdong Zhao
- College of Information Science and Electronic Engineering, Zhejiang University, 310027 Hangzhou, People’s Republic of China
| | - Yu Zhu
- Suzhou Institute of Nano-tech and Nano-Bionics, Chinese Academy of Sciences, 215123 Suzhou, People’s Republic of China
| | - Shurong Dong
- College of Information Science and Electronic Engineering, Zhejiang University, 310027 Hangzhou, People’s Republic of China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 310018 Hangzhou, People’s Republic of China
| | - Yang Liu
- College of Information Science and Electronic Engineering, Zhejiang University, 310027 Hangzhou, People’s Republic of China
| | - Yijun Sun
- College of Information Science and Electronic Engineering, Zhejiang University, 310027 Hangzhou, People’s Republic of China
| | - Liling Qian
- Children’s Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Wenting Yang
- Genenexus Technology Corporation, Shanghai, People’s Republic of China
| | - Zhen Cao
- College of Information Science and Electronic Engineering, Zhejiang University, 310027 Hangzhou, People’s Republic of China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 310018 Hangzhou, People’s Republic of China
| |
Collapse
|
41
|
de Lima LF, Ferreira AL, Torres MDT, de Araujo WR, de la Fuente-Nunez C. Minute-scale detection of SARS-CoV-2 using a low-cost biosensor composed of pencil graphite electrodes. Proc Natl Acad Sci U S A 2021; 118:e2106724118. [PMID: 34244421 PMCID: PMC8325344 DOI: 10.1073/pnas.2106724118] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
COVID-19 has led to over 3.47 million deaths worldwide and continues to devastate primarily middle- and low-income countries. High-frequency testing has been proposed as a potential solution to prevent outbreaks. However, current tests are not sufficiently low-cost, rapid, or scalable to enable broad COVID-19 testing. Here, we describe LEAD (Low-cost Electrochemical Advanced Diagnostic), a diagnostic test that detects severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within 6.5 min and costs $1.50 per unit to produce using easily accessible and commercially available materials. LEAD is highly sensitive toward SARS-CoV-2 spike protein (limit of detection = 229 fg⋅mL-1) and displays an excellent performance profile using clinical saliva (100.0% sensitivity, 100.0% specificity, and 100.0% accuracy) and nasopharyngeal/oropharyngeal (88.7% sensitivity, 86.0% specificity, and 87.4% accuracy) samples. No cross-reactivity was detected with other coronavirus or influenza strains. Importantly, LEAD also successfully diagnosed the highly contagious SARS-CoV-2 B.1.1.7 UK variant. The device presents high reproducibility under all conditions tested and preserves its original sensitivity for 5 d when stored at 4 °C in phosphate-buffered saline. Our low-cost and do-it-yourself technology opens new avenues to facilitate high-frequency testing and access to much-needed diagnostic tests in resource-limited settings and low-income communities.
Collapse
Affiliation(s)
- Lucas F de Lima
- Machine Biology Group, Departments of Psychiatry and Microbiology, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas, São Paulo 13083-970, Brazil
| | - André L Ferreira
- Machine Biology Group, Departments of Psychiatry and Microbiology, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas, São Paulo 13083-970, Brazil
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104
| | - William R de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas, São Paulo 13083-970, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, University of Pennsylvania, Philadelphia, PA 19104;
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
42
|
Liu X, Wu W, Cui D, Chen X, Li W. Functional Micro-/Nanomaterials for Multiplexed Biodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004734. [PMID: 34137090 DOI: 10.1002/adma.202004734] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/08/2020] [Indexed: 05/24/2023]
Abstract
When analyzing biological phenomena and processes, multiplexed biodetection has many advantages over single-factor biodetection and is highly relevant to both human health issues and advancements in the life sciences. However, many key problems with current multiplexed biodetection strategies remain unresolved. Herein, the main issues are analyzed and summarized: 1) generating sufficient signal to label targets, 2) improving the signal-to-noise ratio to ensure total detection sensitivity, and 3) simplifying the detection process to reduce the time and labor costs of multiple target detection. Then, available solutions made possible by designing and controlling the properties of micro- and nanomaterials are introduced. The aim is to emphasize the role that micro-/nanomaterials can play in the improvement of multiplexed biodetection strategies. Through analyzing existing problems, introducing state-of-the-art developments regarding relevant materials, and discussing future directions of the field, it is hopeful to help promote necessary developments in multiplexed biodetection and associated scientific research.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Weijie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
43
|
Park J, Park JK. Pushbutton-activated microfluidic cartridge as a user-friendly sample preparation tool for diagnostics. BIOMICROFLUIDICS 2021; 15:041302. [PMID: 34257794 PMCID: PMC8270647 DOI: 10.1063/5.0056580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Microfluidic technologies have several advantages in sample preparation for diagnostics but suffer from the need for an external operation system that hampers user-friendliness. To overcome this limitation in microfluidic technologies, a number of user-friendly methods utilizing capillary force, degassed poly(dimethylsiloxane), pushbutton-driven pressure, a syringe, or a pipette have been reported. Among these methods, the pushbutton-driven, pressure-based method has a great potential to be widely used as a user-friendly sample preparation tool for point-of-care testing or portable diagnostics. In this Perspective, we focus on the pushbutton-activated microfluidic technologies toward a user-friendly sample preparation tool. The working principle and recent advances in pushbutton-activated microfluidic technologies are briefly reviewed, and future perspectives for wide application are discussed in terms of integration with the signal analysis system, user-dependent variation, and universal and facile use.
Collapse
Affiliation(s)
| | - Je-Kyun Park
- Author to whom correspondence should be addressed:
| |
Collapse
|
44
|
Zhou W, Fu G, Li X. Detector-Free Photothermal Bar-Chart Microfluidic Chips (PT-Chips) for Visual Quantitative Detection of Biomarkers. Anal Chem 2021; 93:7754-7762. [PMID: 33999603 DOI: 10.1021/acs.analchem.1c01323] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The volumetric bar-chart microfluidic chips (V-Chips) driven by chemical reaction-generated gas provide a promising platform for point-of-care (POC) visual biomarker quantitation. However, multiple limitations are encountered in conventional V-Chips, such as costly and complex chip fabrication, complicated chip assembly, and imprecise controllability of gas production. Herein, we introduced nanomaterial-mediated photothermal effects to V-Chips, and for the first time developed a new type of V-Chip, photothermal bar-chart microfluidic chip (PT-Chip), for visual quantitative detection of biochemicals without any bulky and costly analytical instruments. Immunosensing signals were converted to visual readout signals via photothermal effects, the on-chip bar-chart movements, enabling quantitative biomarker detection on a low-cost polymer hybrid PT-Chip with on-chip scale rulers. Four different human serum samples containing a prostate-specific antigen (PSA) as a model analyte were detected simultaneously using the PT-Chip, with a limit of detection of 2.1 ng/mL, meeting clinical diagnostic requirements. Although no conventional signal detectors were used, it achieved comparable detection sensitivity to absorbance measurements with a microplate reader. The PT-Chip was further validated by testing human whole blood without the color interference problem, demonstrating the good analytical performance of our method even in complex matrices and thus the potential to fill the gap in current clinical diagnostics that is incapable of testing whole blood. This new PT-Chip driven by nanomaterial-mediated photothermal effects opens a new horizon of microfluidic platforms for instrument-free diagnostics at the point-of-care.
Collapse
Affiliation(s)
- Wan Zhou
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Guanglei Fu
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States.,Biomedical Engineering Research Center, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Xiujun Li
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States.,Border Biomedical Research Center, Biomedical Engineering, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States.,Environmental Science and Engineering, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
45
|
Development of an Inkless, Visual Volumetric Chip Operated with a Micropipette. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00021-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Yang J, Pan B, Zeng F, He B, Gao Y, Liu X, Song Y. Magnetic Colloid Antibodies Accelerate Small Extracellular Vesicles Isolation for Point-of-Care Diagnostics. NANO LETTERS 2021; 21:2001-2009. [PMID: 33591201 DOI: 10.1021/acs.nanolett.0c04476] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Small extracellular vesicles (sEVs) are increasingly recognized as noninvasive diagnostic markers for many diseases. Hence, it is highly desirable to isolate sEVs rapidly for downstream molecular analyses. However, conventional methods for sEV isolation (such as ultracentrifugation and immune-based isolation) are time-consuming and expensive and require large sample volumes. Herein, we developed artificial magnetic colloid antibodies (MCAs) via surface imprinting technology for rapid isolation and analysis of sEVs. This approach enabled the rapid, purification-free, and low-cost isolation of sEVs based on size and shape recognition. The MCAs presented a higher capture yield in 20 min with more than 3-fold enrichment of sEVs compared with the ultracentrifugation method in 4 h. Moreover, the MCAs also proposed a reusability benefiting from the high stability of the organosilica recognition layer. By combining with volumetric bar-chart chip technology, this work provides a sensitive, rapid, and easy-to-use sEV detection platform for point-of-care (POC) diagnostics.
Collapse
Affiliation(s)
- Jingjing Yang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210023, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210023, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210023, China
| | - Xinli Liu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
47
|
Abstract
Gas-propelled biosensors display a simple gas-based signal amplification with quantitative detection features based on the target recognition event in combination with gas propulsion. Due to the liquid-gas conversion, the gas not only pushes the ink bar forward in the microchannel, but also serves as the power to propel the micromotors in the liquid. Thus, this continuous motion leads to a shift in distances which is associated with the target amount. Therefore, gas-propelled biosensors provide a visual quantification based on distance or speed signals without the need for expensive instruments. In this review, we focus on current developments in gas-propelled biosensors for quantitative analysis. First, we list the types of gas utilized as actuators in biosensors. Second, we review the representative gas-propelled biosensors, including the propulsion mechanisms and fabrication methods. Moreover, gas-propelled quantification based on distance and speed is summarized. Finally, we cover applications and provide a future perspective of gas-propelled biosensors.
Collapse
Affiliation(s)
- Xinli Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
48
|
Turntable Paper-Based Device to Detect Escherichia coli. MICROMACHINES 2021; 12:mi12020194. [PMID: 33668560 PMCID: PMC7917795 DOI: 10.3390/mi12020194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Escherichia coli has been known to cause a variety of infectious diseases. The conventional enzyme-linked immunosorbent assay (ELISA) is a well-known method widely used to diagnose a variety of infectious diseases. This method is expensive and requires considerable time and effort to conduct and complete multiple integral steps. We previously proposed the use of paper-based ELISA to rapidly detect the presence of E. coli. This approach has demonstrated utility for point-of-care (POC) urinary tract infection diagnoses. Paper-based ELISA, while advantageous, still requires the execution of several procedural steps. Here, we discuss the design and experimental implementation of a turntable paper-based device to simplify the paper-based ELISA protocols for the detection of E. coli. In this process, antibodies or reagents are preloaded onto zones of a paper-based device and allowed to dry before use. We successfully used this device to detect E. coli with a detection limit of 105 colony-forming units (colony-forming unit [CFU])/mL.
Collapse
|
49
|
Yu Z, Cai G, Liu X, Tang D. Pressure-Based Biosensor Integrated with a Flexible Pressure Sensor and an Electrochromic Device for Visual Detection. Anal Chem 2021; 93:2916-2925. [DOI: 10.1021/acs.analchem.0c04501] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhenzhong Yu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Guoneng Cai
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People’s Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| |
Collapse
|
50
|
Manmana Y, Kubo T, Otsuka K. Recent developments of point-of-care (POC) testing platform for biomolecules. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|