1
|
Kim JH, Yoon H, Viswanath S, Dagdeviren C. Conformable Piezoelectric Devices and Systems for Advanced Wearable and Implantable Biomedical Applications. Annu Rev Biomed Eng 2025; 27:255-282. [PMID: 40310886 DOI: 10.1146/annurev-bioeng-020524-121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
With increasing demands for continuous health monitoring remotely, wearable and implantable devices have attracted considerable interest. To fulfill such demands, novel materials and device structures have been investigated, since commercial biomedical devices are not compatible with flexible and conformable form factors needed for soft tissue monitoring and intervention. Among various materials, piezoelectric materials have been widely adopted for multiple applications including sensing, energy harvesting, neurostimulation, drug delivery, and ultrasound imaging owing to their unique electromechanical conversion properties. In this review, we provide a comprehensive overview of piezoelectric-based wearable and implantable biomedical devices. We first provide the basic principles of piezoelectric devices and device design strategies for wearable and implantable form factors. Then, we discuss various state-of-the-art applications of wearable and implantable piezoelectric devices and their design strategies. Finally, we demonstrate several challenges and outlooks for designing piezoelectric-based conformable biomedical devices.
Collapse
Affiliation(s)
- Jin-Hoon Kim
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Hyeokjun Yoon
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Shrihari Viswanath
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
2
|
Said N, Venketaraman V. Neuroinflammation, Blood-Brain Barrier, and HIV Reservoirs in the CNS: An In-Depth Exploration of Latency Mechanisms and Emerging Therapeutic Strategies. Viruses 2025; 17:572. [PMID: 40285014 PMCID: PMC12030944 DOI: 10.3390/v17040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/12/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Despite the success of antiretroviral therapy (ART) in suppressing viral replication in the blood, HIV persists in the central nervous system (CNS) and causes chronic neurocognitive impairment, a hallmark of HIV-associated neurocognitive disorders (HAND). This review looks at the complex interactions among HIV, the blood-brain barrier (BBB), neuroinflammation, and the roles of viral proteins, immune cell trafficking, and pro-inflammatory mediators in establishing and maintaining latent viral reservoirs in the CNS, particularly microglia and astrocytes. Key findings show disruption of the BBB, monocyte infiltration, and activation of CNS-resident cells by HIV proteins like Tat and gp120, contributing to the neuroinflammatory environment and neuronal damage. Advances in epigenetic regulation of latency have identified targets like histone modifications and DNA methylation, and new therapeutic strategies like latency-reversing agents (LRAs), gene editing (CRISPR/Cas9), and nanoparticle-based drug delivery also offer hope. While we have made significant progress in understanding the molecular basis of HIV persistence in the CNS, overcoming the challenges of BBB penetration and neuroinflammation is key to developing effective therapies. Further research into combination therapies and novel drug delivery systems will help improve outcomes for HAND patients and bring us closer to a functional cure for HIV.
Collapse
Affiliation(s)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA;
| |
Collapse
|
3
|
Andre V, Abdel-Mottaleb M, Shotbolt M, Chen S, Ramezini Z, Zhang E, Conlan S, Telisman O, Liang P, Bryant JM, Chomko R, Khizroev S. Foundational insights for theranostic applications of magnetoelectric nanoparticles. NANOSCALE HORIZONS 2025; 10:699-718. [PMID: 39898755 PMCID: PMC11789716 DOI: 10.1039/d4nh00560k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Reviewing emerging biomedical applications of MagnetoElectric NanoParticles (MENPs), this paper presents basic physics considerations to help understand the possibility of future theranostic applications. Currently emerging applications include wireless non-surgical neural modulation and recording, functional brain mapping, high-specificity cell electroporation for targeted cancer therapies, targeted drug delivery, early screening and diagnostics, and others. Using an ab initio analysis, each application is discussed from the perspective of its fundamental limitations. Furthermore, the review identifies the most eminent challenges and offers potential engineering solutions on the pathway to implement each application and combine the therapeutic and diagnostic capabilities of the nanoparticles.
Collapse
Affiliation(s)
- Victoria Andre
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | | | - Max Shotbolt
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Shawnus Chen
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Coral Gables, FL, USA
| | - Zeinab Ramezini
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA.
| | - Elric Zhang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA.
| | - Skye Conlan
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Ozzie Telisman
- Department of Chemistry, University of Miami, Coral Gables, FL, USA
| | | | - John M Bryant
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Roman Chomko
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA.
- The Miami Project to Cure Paralysis, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| |
Collapse
|
4
|
Shotbolt M, Zhu E, Andre V, Zhang E, Duran I, Bryant J, El-Rifai W, Liang P, Khizroev S. Catalytic Degradation of Organic Dyes Indicates Anti-Proliferative Effects of Magnetoelectric Nanoparticles. JOURNAL OF ELECTRONIC MATERIALS 2025; 54:5529-5538. [PMID: 40491600 PMCID: PMC12145325 DOI: 10.1007/s11664-025-11843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/13/2025] [Indexed: 06/11/2025]
Abstract
Over the past decade, magnetoelectric nanoparticles (MENPs) have proven effective in generating local electric fields in response to stimulation with a magnetic field. The applications of such nanoparticles are many and varied, with examples of prior research including use for on-demand drug release, wireless modulation and recording of neural activity, and organic dye degradation. This study investigates the potential for organic dye degradation to be used as a rapid and efficient screening tool to detect the magnetoelectric effect of MENPs, and how the results of such a test mirror the antiproliferative effect of said nanoparticles. Trypan blue was selected as an azo dye to test for dye degradation. Vials of the dye were treated with CoFe2O4@BaTiO3 core-shell MENPs of varying characteristics, both with and without concurrent 1-kHz 250-Oe magnetic stimulation. Dye degradation was measured using ultraviolet (UV)-vis spectroscopy. Dye degradation efficacy varied with varying nanoparticle synthesis parameters. As controls, nanoparticles of the same composition, but with an insignificant magnetoelectric effect, were used. SKOV-3 ovarian cancer cells were then treated with the same nanoparticles, and viability was measured with an adenosine triphosphate (ATP) assay. These measurements show a decrease in cell viability up to 60.3% of control (p = 0.0052), which mirrored the efficacy of dye degradation of up to 69.8% (p = 0.0037) in each of the particle variants, demonstrating the value of azo dye degradation as a simple screening test for MENPs, and showing the potential of MENPs used as wirelessly controlled nanodevices to allow targeted electric field-based treatments.
Collapse
Affiliation(s)
- Max Shotbolt
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| | - Emily Zhu
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| | - Victoria Andre
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| | - Elric Zhang
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| | - Isabelle Duran
- Miami Palmetto Highschool, 7431 SW 120th St, Pinecrest, FL 33156 USA
| | - John Bryant
- MOFFITT Cancer Center, 603 N Flamingo Rd # 151, Pembroke Pines, FL 33028 USA
| | - Wael El-Rifai
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| | - Ping Liang
- Cellular Nanomed, Irvine at 8 Corporate Park, Irvine, CA 93606 USA
| | - Sakhrat Khizroev
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| |
Collapse
|
5
|
Zuo C, Wen Y, Chen D, Ouyang J, Li P. Residence time prediction in magnetically controlled biomolecular local rebinding-dissociation kinetics. Anal Chim Acta 2024; 1331:343341. [PMID: 39532424 DOI: 10.1016/j.aca.2024.343341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/26/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The residence time of drug-target conjugates is a critical factor in drug screening and efficacy prediction. The local rebinding-dissociation kinetics gives insights into in-vivo drug-target interactions. A magnetic torque system (MTS) is designed to observe rebinding-dissociation kinetics for predicting residence time. The system utilizes an alternating magnetic field (AMF) to manipulate the magnetization motion of magnetically labeled biomolecules and the forces acting upon biomolecular bonds. The motion, sensed by a quartz crystal microbalance (QCM), reflects biomolecular interactions occurring at the particle surface. Meanwhile, the motion facilitates the separation of dissociated molecules from the surface, thereby obviating the necessity for fixed and mobile phases in common kinetics observations. The constant and static solution environment minimizes reagent consumption. The MTS was utilized to observe the local rebinding-dissociation of antibodies (PAB and MAB) to magnetic beads (MB) and to HER2 receptors. The residence times recorded by the MTS were larger than the results obtained via SPR method, due to the occurrences of rebinding-dissociation kinetics. Interaction behaviours can be meticulously regulated for varying affinities by modulating the intensity of magnetic field. A high intensity field (400 Oe) was applied for strong binding between antibody-MB (biotin-streptavidin), and a low intensity field (300 Oe) was applied for weak antigen-antibody interactions. An increase in AMF strength enhanced dissociation, with a shift from 300 Oe to 400 Oe resulting in a 1 ∼ 4-fold reduction in residence time. Overall, the MTS provides an interactive and customizable perspective on kinetics observations.
Collapse
Affiliation(s)
- Can Zuo
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Yumei Wen
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| | - Dongyu Chen
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Jihai Ouyang
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Ping Li
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| |
Collapse
|
6
|
Bryant JM, Stimphil E, Andre V, Shotbolt M, Zhang E, Estrella V, Husain K, Weygand J, Marchion D, Lopez AS, Abrahams D, Chen S, Abdel-Mottaleb M, Conlan S, Oraiqat I, Khatri V, Guevara JA, Pilon-Thomas S, Redler G, Latifi K, Raghunand N, Yamoah K, Hoffe S, Costello J, Frakes JM, Liang P, Khizroev S, Gatenby RA, Malafa M. Nanoparticles use magnetoelectricity to target and eradicate cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618075. [PMID: 39464093 PMCID: PMC11507724 DOI: 10.1101/2024.10.13.618075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
This study presents the first in vivo and in vitro evidence of an externally controlled, predictive, MRI-based nanotheranostic agent capable of cancer cell specific targeting and killing via irreversible electroporation (IRE) in solid tumors. The rectangular-prism-shaped magnetoelectric nanoparticle is a smart nanoparticle that produces a local electric field in response to an externally applied magnetic field. When externally activated, MENPs are preferentially attracted to the highly conductive cancer cell membranes, which occurs in cancer cells because of dysregulated ion flux across their membranes. In a pancreatic adenocarcinoma murine model, MENPs activated by external magnetic fields during magnetic resonance imaging (MRI) resulted in a mean three-fold tumor volume reduction (62.3% vs 188.7%; P < .001) from a single treatment. In a longitudinal confirmatory study, 35% of mice treated with activated MENPs achieved a durable complete response for 14 weeks after one treatment. The degree of tumor volume reduction correlated with a decrease in MRI T 2 * relaxation time ( r = .351; P = .039) which suggests that MENPs have a potential to serve as a predictive nanotheranostic agent at time of treatment. There were no discernable toxicities associated with MENPs at any timepoint or on histopathological analysis of major organs. MENPs are a noninvasive alternative modality for the treatment of cancer. Summary We investigated the theranostic capabilities of magnetoelectric nanoparticles (MENPs) combined with MRI via a murine model of pancreatic adenocarcinoma. MENPs leverage the magnetoelectric effect to convert an applied magnetic field into local electric fields, which can induce irreversible electroporation of tumor cell membranes when activated by MRI. Additionally, MENPs modulate MRI relaxivity, which can be used to predict the degree of tumor ablation. Through a pilot study (n=21) and a confirmatory study (n=27), we demonstrated that, ≥300 µg of MRI-activated MENPs significantly reduced tumor volumes, averaging a three-fold decrease as compared to controls. Furthermore, there was a direct correlation between the reduction in tumor T 2 relaxation times and tumor volume reduction, highlighting the predictive prognostic value of MENPs. Six of 17 mice in the confirmatory study's experimental arms achieved a durable complete response, showcasing the potential for durable treatment outcomes. Importantly, the administration of MENPs was not associated with any evident toxicities. This study presents the first in vivo evidence of an externally controlled, MRI-based, theranostic agent that effectively targets and treats solid tumors via irreversible electroporation while sparing normal tissues, offering a new and promising approach to cancer therapy.
Collapse
|
7
|
Zhang E, Shotbolt M, Chang CY, Scott-Vandeusen A, Chen S, Liang P, Radu D, Khizroev S. Controlling action potentials with magnetoelectric nanoparticles. Brain Stimul 2024; 17:1005-1017. [PMID: 39209064 DOI: 10.1016/j.brs.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Non-invasive or minutely invasive and wireless brain stimulation that can target any region of the brain is an open problem in engineering and neuroscience with serious implications for the treatment of numerous neurological diseases. Despite significant recent progress in advancing new methods of neuromodulation, none has successfully replicated the efficacy of traditional wired stimulation and improved on its downsides without introducing new complications. Due to the capability to convert magnetic fields into local electric fields, MagnetoElectric NanoParticle (MENP) neuromodulation is a recently proposed framework based on new materials that can locally sensitize neurons to specific, low-strength alternating current (AC) magnetic fields (50Hz 1.7 kOe field). However, the current research into this neuromodulation concept is at a very early stage, and the theoretically feasible game-changing advantages remain to be proven experimentally. To break this stalemate phase, this study leveraged understanding of the non-linear properties of MENPs and the nanoparticles' field interaction with the cellular microenvironment. Particularly, the applied magnetic field's strength and frequency were tailored to the M - H hysteresis loop of the nanoparticles. Furthermore, rectangular prisms instead of the more traditional "spherical" nanoparticle shapes were used to: (i) maximize the magnetoelectric effect and (ii) improve the nanoparticle-cell-membrane surface interface. Neuromodulation performance was evaluated in a series of exploratory in vitro experiments on 2446 rat hippocampus neurons. Linear mixed effect models were used to ensure the independence of samples by accounting for fixed adjacency effects in synchronized firing. Neural activity was measured over repeated 4-min segments, containing 90 s of baseline measurements, 90 s of stimulation measurements, and 60 s of post stimulation measurements. 87.5 % of stimulation attempts produced statistically significant (P < 0.05) changes in neural activity, with 58.3 % producing large changes (P < 0.01). In negative controls using either zero or 1.7 kOe-strength field without nanoparticles, no experiments produced significant changes in neural activity (P > 0.05 and P > 0.15 respectively). Furthermore, an exploratory analysis of a direct current (DC) magnetic field indicated that the DC field could be used with MENPs to inhibit neuron activity (P < 0.01). These experiments demonstrated the potential for magnetoelectric neuromodulation to offer a near one-to-one functionality match with conventional electrode stimulation without requiring surgical intervention or genetic modification to achieve success, instead relying on physical properties of these nanoparticles as "On/Off" control mechanisms. ONE-SENTENCE SUMMARY: This in vitro neural cell culture study explores how to exploit the non-linear and anisotropic properties of magnetoelectric nanoparticles for wireless neuromodulation, the importance of magnetic field strength and frequency matching for optimization, and demonstrates, for the first time, that magnetoelectric neuromodulation can inhibit neural responses.
Collapse
Affiliation(s)
- Elric Zhang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| | - Max Shotbolt
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Chen-Yu Chang
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, USA
| | | | - Shawnus Chen
- Department of Chemical, Environmental and Materials Engineering, Coral Gables, FL, University of Miami, USA
| | | | - Daniela Radu
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, USA
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA; The Miami Project to Cure Paralysis, Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
8
|
Giménez S, Millan A, Mora-Morell A, Ayuso N, Gastaldo-Jordán I, Pardo M. Advances in Brain Stimulation, Nanomedicine and the Use of Magnetoelectric Nanoparticles: Dopaminergic Alterations and Their Role in Neurodegeneration and Drug Addiction. Molecules 2024; 29:3580. [PMID: 39124985 PMCID: PMC11314096 DOI: 10.3390/molecules29153580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Recent advancements in brain stimulation and nanomedicine have ushered in a new era of therapeutic interventions for psychiatric and neurodegenerative disorders. This review explores the cutting-edge innovations in brain stimulation techniques, including their applications in alleviating symptoms of main neurodegenerative disorders and addiction. Deep Brain Stimulation (DBS) is an FDA-approved treatment for specific neurodegenerative disorders, including Parkinson's Disease (PD), and is currently under evaluation for other conditions, such as Alzheimer's Disease. This technique has facilitated significant advancements in understanding brain electrical circuitry by enabling targeted brain stimulation and providing insights into neural network function and dysfunction. In reviewing DBS studies, this review places particular emphasis on the underlying main neurotransmitter modifications and their specific brain area location, particularly focusing on the dopaminergic system, which plays a critical role in these conditions. Furthermore, this review delves into the groundbreaking developments in nanomedicine, highlighting how nanotechnology can be utilized to target aberrant signaling in neurodegenerative diseases, with a specific focus on the dopaminergic system. The discussion extends to emerging technologies such as magnetoelectric nanoparticles (MENPs), which represent a novel intersection between nanoformulation and brain stimulation approaches. These innovative technologies offer promising avenues for enhancing the precision and effectiveness of treatments by enabling the non-invasive, targeted delivery of therapeutic agents as well as on-site, on-demand stimulation. By integrating insights from recent research and technological advances, this review aims to provide a comprehensive understanding of how brain stimulation and nanomedicine can be synergistically applied to address complex neuropsychiatric and neurodegenerative disorders, paving the way for future therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giménez
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
| | - Alexandra Millan
- Department of Neurobiology and Neurophysiology, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Alba Mora-Morell
- Faculty of Biological Sciences, Universidad de Valencia, 46100 Valencia, Spain;
| | - Noa Ayuso
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
| | - Isis Gastaldo-Jordán
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, 46017 Valencia, Spain;
| | - Marta Pardo
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), 46022 Valencia, Spain
| |
Collapse
|
9
|
Murali N, Rainu SK, Sharma A, Siddhanta S, Singh N, Betal S. Remotely Controlled Surface Charge Modulation of Magnetoelectric Nanogenerators for Swift and Efficient Drug Delivery. ACS OMEGA 2024; 9:28937-28950. [PMID: 38973906 PMCID: PMC11223158 DOI: 10.1021/acsomega.4c03825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 07/09/2024]
Abstract
We have developed a highly efficient technique of magnetically controlled swift loading and release of doxorubicin (DOX) drug using a magnetoelectric nanogenerator (MENG). Core-shell nanostructured MENG with a magnetostrictive core and piezoelectric shell act as field-responsive nanocarriers and possess the capability of field-triggered drug release in a cancerous environment. MENGs generate a surface electric dipole when subjected to a magnetic field due to the strain-mediated magnetoelectric effect. The capability of directional magnetic field-assisted modulation of the surface electrical dipole of MENG provides a mechanism to create/break ionic bonds with DOX molecules, which facilitates efficient drug attachment and on-demand swift detachment of the drug at a targeted site. The magnetic field-assisted drug-loading mechanism was minutely analyzed using spectrophotometry and Raman spectroscopy. The detailed time-dependent analysis of controlled drug release by the MENG under unidirectional and rotating magnetic field excitation was conducted using field-emission scanning electron microscopy, energy-dispersive X-ray, and atomic force microscopic measurements. In vitro, experiments validate the cytocompatibility and magnetically assisted on-demand and swift DOX drug delivery by the MENG near MCF-7 breast cancer cells, which results in a significant enhancement of cancer cell killing efficiency. A state-of-the-art experiment was performed to visualize the nanoscale magnetoelectric effect of MENG using off-axis electron holography under Lorentz conditions.
Collapse
Affiliation(s)
- Nandan Murali
- Department
of Electrical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Simran Kaur Rainu
- Center
for Biomedical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Arti Sharma
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | - Soumik Siddhanta
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | - Neetu Singh
- Center
for Biomedical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Soutik Betal
- Department
of Electrical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Song X, Yi B, Chen Q, Zhou Y, Cho H, Hong Y, Chung S, You L, Li S, Hong J. Machine Learning-Powered Ultrahigh Controllable and Wearable Magnetoelectric Piezotronic Touching Device. ACS NANO 2024; 18:16648-16657. [PMID: 38888126 DOI: 10.1021/acsnano.4c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Recent advancements in nanomaterials have enabled the application of nanotechnology to the development of cutting-edge sensing and actuating devices. For instance, nanostructures' collective and predictable responses to various stimuli can be monitored to determine the physical environment of the nanomaterial, such as temperature or applied pressure. To achieve optimal sensing and actuation capabilities, the nanostructures should be controllable. However, current applications are limited by inherent challenges in controlling nanostructures that counteract many sensing mechanisms that are reliant on their area or spacing. This work presents a technique utilizing the piezo-magnetoelectric properties of nanoparticles to enable strain sensing and actuation in a flexible and wearable patch. The alignment of nanoparticles has been achieved using demagnetization fields with computational simulations confirming device characteristics under various types of deformation followed by experimental demonstrations. The device exhibits favorable piezoelectric performance, hydrophobicity, and body motion-sensing capabilities, as well as machine learning-powered touch-sensing/actuating features.
Collapse
Affiliation(s)
- Xingjuan Song
- School of Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Bao Yi
- School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qijun Chen
- CEE & EECS, UC Berkeley, Berkeley, California 94720, United States
| | - Yifei Zhou
- Department of Mechanical Engineering, UC-Riverside, Riverside, California 92507, United States
| | - Hyeon Cho
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| | - Yongtaek Hong
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| | - Seungjun Chung
- School of Electrical Engineering, Korea University, Seoul 02841, Korea
| | - Long You
- School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaofan Li
- CEE & EECS, UC Berkeley, Berkeley, California 94720, United States
| | - Jeongmin Hong
- School of Sciences, Hubei University of Technology, Wuhan 430068, China
- CEE & EECS, UC Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Wang J, Wang F, Huang W, Cui W, Hu N. Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe incidence of large bone and articular cartilage defects caused by traumatic injury is increasing worldwide; the tissue regeneration process for these injuries is lengthy due to limited self‐healing ability. Endogenous bioelectrical phenomenon has been well recognized to play an important role in bone and cartilage homeostasis and regeneration. Studies have reported that electrical stimulation (ES) can effectively regulate various biological processes and holds promise as an external intervention to enhance the synthesis of the extracellular matrix, thereby accelerating the process of bone and cartilage regeneration. Hence, electroactive biomaterials have been considered a biomimetic approach to ensure functional recovery by integrating various physiological signals, including electrical, biochemical, and mechanical signals. This review will discuss the role of endogenous bioelectricity in bone and cartilage tissue, as well as the effects of ES on cellular behaviors. Then, recent advances in electroactive materials and their applications in bone and cartilage tissue regeneration are systematically overviewed, with a focus on their advantages and disadvantages as tissue repair materials and performances in the modulation of cell fate. Finally, the significance of mimicking the electrophysiological microenvironment of target tissue is emphasized and future development challenges of electroactive biomaterials for bone and cartilage repair strategies are proposed.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Jianye Yang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Zhengwei Cai
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yanran Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Pengcheng Xiao
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Fan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wei Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Ning Hu
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
12
|
Ramezani Z, André V, Khizroev S. Modeling the effect of magnetoelectric nanoparticles on neuronal electrical activity: An analog circuit approach. Biointerphases 2024; 19:031001. [PMID: 38738941 DOI: 10.1116/5.0199163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
This paper introduces a physical neuron model that incorporates magnetoelectric nanoparticles (MENPs) as an essential electrical circuit component to wirelessly control local neural activity. Availability of such a model is important as MENPs, due to their magnetoelectric effect, can wirelessly and noninvasively modulate neural activity, which, in turn, has implications for both finding cures for neurological diseases and creating a wireless noninvasive high-resolution brain-machine interface. When placed on a neuronal membrane, MENPs act as magnetic-field-controlled finite-size electric dipoles that generate local electric fields across the membrane in response to magnetic fields, thus allowing to controllably activate local ion channels and locally initiate an action potential. Herein, the neuronal electrical characteristic description is based on ion channel activation and inhibition mechanisms. A MENP-based memristive Hodgkin-Huxley circuit model is extracted by combining the Hodgkin-Huxley model and an equivalent circuit model for a single MENP. In this model, each MENP becomes an integral part of the neuron, thus enabling wireless local control of the neuron's electric circuit itself. Furthermore, the model is expanded to include multiple MENPs to describe collective effects in neural systems.
Collapse
Affiliation(s)
- Zeinab Ramezani
- Department of Electrical and Computer Engineering, College of Engineering, University of Miami, Miami, Florida 33146
| | - Victoria André
- Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, Florida 33146
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, College of Engineering, University of Miami, Miami, Florida 33146
| |
Collapse
|
13
|
Marques-Almeida T, Lanceros-Mendez S, Ribeiro C. State of the Art and Current Challenges on Electroactive Biomaterials and Strategies for Neural Tissue Regeneration. Adv Healthc Mater 2024; 13:e2301494. [PMID: 37843074 DOI: 10.1002/adhm.202301494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/22/2023] [Indexed: 10/17/2023]
Abstract
The loss or failure of an organ/tissue stands as one of the healthcare system's most prevalent, devastating, and costly challenges. Strategies for neural tissue repair and regeneration have received significant attention due to their particularly strong impact on patients' well-being. Many research efforts are dedicated not only to control the disease symptoms but also to find solutions to repair the damaged tissues. Neural tissue engineering (TE) plays a key role in addressing this problem and significant efforts are being carried out to develop strategies for neural repair treatment. In the last years, active materials allowing to tune cell-materials interaction are being increasingly used, representing a recent paradigm in TE applications. Among the most important stimuli influencing cell behavior are the electrical and mechanical ones. In this way, materials with the ability to provide this kind of stimuli to the neural cells seem to be appropriate to support neural TE. In this scope, this review summarizes the different biomaterials types used for neural TE, highlighting the relevance of using active biomaterials and electrical stimulation. Furthermore, this review provides not only a compilation of the most relevant studies and results but also strategies for novel and more biomimetic approaches for neural TE.
Collapse
Affiliation(s)
- Teresa Marques-Almeida
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Clarisse Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
| |
Collapse
|
14
|
Koshev N, Kapralov P, Evstigneeva S, Lutsenko O, Shilina P, Zharkov M, Pyataev N, Darwish A, Timin A, Ostras M, Radchenko I, Sukhorukov G, Vetoshko P. Yttrium-Iron Garnet Film Magnetometer for Registration of Magnetic Nano- and Submicron Particles: In Vitro and In Vivo Studies. IEEE Trans Biomed Eng 2024; 71:122-129. [PMID: 37506012 DOI: 10.1109/tbme.2023.3293553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
In the current article, we present a new kind of magnetometer for quantitative detection of magnetic objects (magnetic nano- and submicron particles) in biological fluids and tissues. The sensor is based on yttrium-iron garnet film with optical signal registration system. Inheriting the working principle of a fluxgate magnetometers, the sensor works at a room-temperature, its wide dynamic range allows the measurements in an unshielded environment. A small size of sensitive element combined with a short recovery time after the excitation coils are off provide us with a potentially high spatial and temporal resolution of measurements. We show the feasibility of the developed devices by sensing the remanent magnetization of magnetic nanoparticles (MNPs) both in vitro (test tubes, dry MNPs) and in vivo (local injection of the MNPs into mice).
Collapse
|
15
|
Mutalik SP, Gaikwad SY, Fernandes G, More A, Kulkarni S, Fayaz SMA, Tupally K, Parekh HS, Kulkarni S, Mukherjee A, Mutalik S. Anti-CD4 antibody and dendrimeric peptide based targeted nano-liposomal dual drug formulation for the treatment of HIV infection. Life Sci 2023; 334:122226. [PMID: 37918627 DOI: 10.1016/j.lfs.2023.122226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
AIMS Development and characterization of LAM and DTG loaded liposomes conjugated anti-CD4 antibody and peptide dendrimer (PD2) to improve the therapeutic efficacy and to achieve targeted treatment for HIV infection. MAIN METHODS A 2-level full factorial design was used to optimize the preparation of dual drug loaded liposomes. Optimized dual drug loaded ligand conjugated liposomes were assessed for their cytotoxicity and cell internalization on TZM-bl cells. Anti-HIV efficiency of the dual drug loaded liposomes were screened for their inhibitory potential in TZM-bl cells and the activities were confirmed using Peripheral Blood Mononuclear Cells (PBMCs). KEY FINDINGS The particle size of the optimized dual drug-loaded liposomes was 133.7 ± 4.04 nm, and the spherical morphology of the liposomes was confirmed by TEM analysis. The entrapment efficiency was 34 ± 4.9 % and 54 ± 1.8 % for LAM and DTG, respectively, and a slower in vitro release of LAM and DTG was observed when entrapped into liposomes. The cytotoxicity of the dual drug loaded liposomes was similar to the cytotoxicity of free drug solutions. Conjugation of anti-CD4 antibody and PD2 did not significantly influence the cytotoxicity but it enhanced the uptake of liposomes into the cells. Conjugated dual drug loaded liposomes exhibited better HIV inhibition with lower IC50 values (0.0003 ± 0.0002 μg/mL) compared to their free drug solutions (0.002 ± 0.001 μg/mL). The liposomal formulations have shown similar activities in both screening and confirmatory cell-based assays. SIGNIFICANCE The results demonstrated the cell targeting ability of dual drug loaded liposomes conjugated with anti-CD4 antibody and peptide dendrimer. Conjugated liposomes also improved anti-HIV efficiency of LAM and DTG.
Collapse
Affiliation(s)
- Sadhana P Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shraddha Y Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Pune 411026, Maharashtra, India
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ashwini More
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Pune 411026, Maharashtra, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shaik Mohammad Abdul Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Karnaker Tupally
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Harendra S Parekh
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Smita Kulkarni
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Pune 411026, Maharashtra, India.
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Pune 411026, Maharashtra, India.
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
16
|
Bhunia S, Kolishetti N, Vashist A, Yndart Arias A, Brooks D, Nair M. Drug Delivery to the Brain: Recent Advances and Unmet Challenges. Pharmaceutics 2023; 15:2658. [PMID: 38139999 PMCID: PMC10747851 DOI: 10.3390/pharmaceutics15122658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023] Open
Abstract
Brain cancers and neurodegenerative diseases are on the rise, treatments for central nervous system (CNS) diseases remain limited. Despite the significant advancement in drug development technology with emerging biopharmaceuticals like gene therapy or recombinant protein, the clinical translational rate of such biopharmaceuticals to treat CNS disease is extremely poor. The blood-brain barrier (BBB), which separates the brain from blood and protects the CNS microenvironment to maintain essential neuronal functions, poses the greatest challenge for CNS drug delivery. Many strategies have been developed over the years which include local disruption of BBB via physical and chemical methods, and drug transport across BBB via transcytosis by targeting some endogenous proteins expressed on brain-capillary. Drug delivery to brain is an ever-evolving topic, although there were multiple review articles in literature, an update is warranted due to continued growth and new innovations of research on this topic. Thus, this review is an attempt to highlight the recent strategies employed to overcome challenges of CNS drug delivery while emphasizing the necessity of investing more efforts in CNS drug delivery technologies parallel to drug development.
Collapse
Affiliation(s)
- Sukanya Bhunia
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Arti Vashist
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Adriana Yndart Arias
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Deborah Brooks
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
17
|
Sadiq S, Khan I, Shen Z, Wang M, Xu T, Khan S, Zhou X, Bahadur A, Rafiq M, Sohail S, Wu P. Recent Updates on Multifunctional Nanomaterials as Antipathogens in Humans and Livestock: Classification, Application, Mode of Action, and Challenges. Molecules 2023; 28:7674. [PMID: 38005395 PMCID: PMC10675011 DOI: 10.3390/molecules28227674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens cause infections and millions of deaths globally, while antipathogens are drugs or treatments designed to combat them. To date, multifunctional nanomaterials (NMs), such as organic, inorganic, and nanocomposites, have attracted significant attention by transforming antipathogen livelihoods. They are very small in size so can quickly pass through the walls of bacterial, fungal, or parasitic cells and viral particles to perform their antipathogenic activity. They are more reactive and have a high band gap, making them more effective than traditional medications. Moreover, due to some pathogen's resistance to currently available medications, the antipathogen performance of NMs is becoming crucial. Additionally, due to their prospective properties and administration methods, NMs are eventually chosen for cutting-edge applications and therapies, including drug administration and diagnostic tools for antipathogens. Herein, NMs have significant characteristics that can facilitate identifying and eliminating pathogens in real-time. This mini-review analyzes multifunctional NMs as antimicrobial tools and investigates their mode of action. We also discussed the challenges that need to be solved for the utilization of NMs as antipathogens.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Zhenyu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Mengdong Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Tao Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Sohail Khan
- Department of Pharmacy, University of Swabi, Khyber Pakhtunkhwa 94640, Pakistan;
| | - Xuemin Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Ali Bahadur
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou 325060, China;
| | - Madiha Rafiq
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
| | - Sumreen Sohail
- Department of Information Technology, Careerera, Beltsville, MD 20705, USA;
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| |
Collapse
|
18
|
Mahdikia H, Saadati F, Alizadeh AM, Khalighfard S, Bekeschus S, Shokri B. Low-frequency magnetic fields potentiate plasma-modified magneto-electric nanoparticle drug loading for anticancer activity in vitro and in vivo. Sci Rep 2023; 13:17536. [PMID: 37845238 PMCID: PMC10579258 DOI: 10.1038/s41598-023-44683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
A multiferroic nanostructure of manganese ferrite barium-titanate called magneto-electric nanoparticles (MENs) was synthesized by a co-precipitation method. FTIR, Raman spectroscopy, TEM, and X-ray diffraction confirmed the presence of spinel core and perovskite shell phases with average crystallite sizes of 70-90 nm. Magnetic, optical, and magnetoelectrical properties of MENs were investigated using VSM, UV-Vis spectrophotometry, DLS, and EIS spectroscopy techniques. After pre-activation by low-pressure argon (Ar) plasma, the MENs were functionalized by a highly hydrophilic acrylic acid and Oxygen (AAc+O2) mixture to produce COOH and C=O-rich surfaces. The loading and release of doxorubicin hydrochloride (DOX) on MENs were investigated using UV-vis and fluorescence spectrophotometry under alternating low-frequency magnetic fields. Plasma treatment enabled drug-loading control by changing the particles' roughness as physical adsorption and creating functional groups for chemical absorption. This led to reduced metabolic activity and cell adherences associated with elevated expression of pro-apoptotic genes (BCL-2, caspase 3) in 4T1 breast cancer cells in vitro exposed to alternating current magnetic field (ACMF) compared to MENs-DOX without field exposure. ACMF-potentiated anticancer effects of MENs were validated in vivo in tumor-bearing Balb/C mice. Altogether, our results suggest potentiated drug loading of MENs showing superior anticancer activity in vitro and in vivo when combined with ACMF.
Collapse
Affiliation(s)
- Hamed Mahdikia
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Fariba Saadati
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Ali Mohammad Alizadeh
- Breast Diseases Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Babak Shokri
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
19
|
Chernozem RV, Urakova AO, Chernozem PV, Koptsev DA, Mukhortova YR, Grubova IY, Wagner DV, Gerasimov EY, Surmeneva MA, Kholkin AL, Surmenev RA. Novel Biocompatible Magnetoelectric MnFe 2 O 4 Core@BCZT Shell Nano-Hetero-Structures with Efficient Catalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302808. [PMID: 37357170 DOI: 10.1002/smll.202302808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Indexed: 06/27/2023]
Abstract
Magnetoelectric (ME) small-scale robotic devices attract great interest from the scientific community due to their unique properties for biomedical applications. Here, novel ME nano hetero-structures based on the biocompatible magnetostrictive MnFe2 O4 (MFO) and ferroelectric Ba0.85 Ca0.15 Zr0.1 Ti0.9 O3 (BCZT) are developed solely via the hydrothermal method for the first time. An increase in the temperature and duration of the hydrothermal synthesis results in increasing the size, improving the purity, and inducing morphology changes of MFO nanoparticles (NPs). A successful formation of a thin epitaxial BCZT-shell with a 2-5 nm thickness is confirmed on the MFO NPs (77 ± 14 nm) preliminarily treated with oleic acid (OA) or polyvinylpyrrolidone (PVP), whereas no shell is revealed on the surface of pristine MFO NPs. High magnetization is revealed for the developed ME NPs based on PVP- and OA-functionalized MFO NPs (18.68 ± 0.13 and 20.74 ± 0.22 emu g-1 , respectively). Moreover, ME NPs demonstrate 95% degradation of a model pollutant Rhodamine B within 2.5 h under an external AC magnetic field (150 mT, 100 Hz). Thus, the developed biocompatible core-shell ME NPs of MFO and BCZT can be considered as a promising tool for non-invasive biomedical applications, environmental remediation, and hydrogen generation for renewable energy sources.
Collapse
Affiliation(s)
- Roman V Chernozem
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Alina O Urakova
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Polina V Chernozem
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Danila A Koptsev
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Yulia R Mukhortova
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Irina Yu Grubova
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Dmitry V Wagner
- Faculty of Radiophysics, National Research Tomsk State University, Tomsk, 634050, Russia
| | - Evgeny Yu Gerasimov
- Catalyst Research Department, Boreskov Institute of Catalysis, Lavrentieva ave. 5, Novosibirsk, 630090, Russia
| | - Maria A Surmeneva
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Andrei L Kholkin
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Roman A Surmenev
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| |
Collapse
|
20
|
Marrella A, Suarato G, Fiocchi S, Chiaramello E, Bonato M, Parazzini M, Ravazzani P. Magnetoelectric nanoparticles shape modulates their electrical output. Front Bioeng Biotechnol 2023; 11:1219777. [PMID: 37691903 PMCID: PMC10485842 DOI: 10.3389/fbioe.2023.1219777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Core-shell magnetoelectric nanoparticles (MENPs) have recently gained popularity thanks to their capability in inducing a local electric polarization upon an applied magnetic field and vice versa. This work estimates the magnetoelectrical behavior, in terms of magnetoelectric coupling coefficient (αME), via finite element analysis of MENPs with different shapes under either static (DC bias) and time-variant (AC bias) external magnetic fields. With this approach, the dependence of the magnetoelectrical performance on the MENPs geometrical features can be directly derived. Results show that MENPs with a more elongated morphology exhibits a superior αME if compared with spherical nanoparticles of similar volume, under both stimulation conditions analyzed. This response is due to the presence of a larger surface area at the interface between the magnetostrictive core and piezoelectric shell, and to the MENP geometrical orientation along the direction of the magnetic field. These findings pave a new way for the design of novel high-aspect ratio magnetic nanostructures with an improved magnetoelectric behaviour.
Collapse
Affiliation(s)
| | - G. Suarato
- *Correspondence: A. Marrella, ; G. Suarato,
| | | | | | | | | | | |
Collapse
|
21
|
Tomitaka A, Vashist A, Kolishetti N, Nair M. Machine learning assisted-nanomedicine using magnetic nanoparticles for central nervous system diseases. NANOSCALE ADVANCES 2023; 5:4354-4367. [PMID: 37638161 PMCID: PMC10448356 DOI: 10.1039/d3na00180f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Magnetic nanoparticles possess unique properties distinct from other types of nanoparticles developed for biomedical applications. Their unique magnetic properties and multifunctionalities are especially beneficial for central nervous system (CNS) disease therapy and diagnostics, as well as targeted and personalized applications using image-guided therapy and theranostics. This review discusses the recent development of magnetic nanoparticles for CNS applications, including Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and drug addiction. Machine learning (ML) methods are increasingly applied towards the processing, optimization and development of nanomaterials. By using data-driven approach, ML has the potential to bridge the gap between basic research and clinical research. We review ML approaches used within the various stages of nanomedicine development, from nanoparticle synthesis and characterization to performance prediction and disease diagnosis.
Collapse
Affiliation(s)
- Asahi Tomitaka
- Department of Computer and Information Sciences, College of Natural and Applied Science, University of Houston-Victoria Texas 77901 USA
| | - Arti Vashist
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
- Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
- Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
- Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
| |
Collapse
|
22
|
Liu W, Zhao H, Zhang C, Xu S, Zhang F, Wei L, Zhu F, Chen Y, Chen Y, Huang Y, Xu M, He Y, Heng BC, Zhang J, Shen Y, Zhang X, Huang H, Chen L, Deng X. In situ activation of flexible magnetoelectric membrane enhances bone defect repair. Nat Commun 2023; 14:4091. [PMID: 37429900 DOI: 10.1038/s41467-023-39744-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
For bone defect repair under co-morbidity conditions, the use of biomaterials that can be non-invasively regulated is highly desirable to avoid further complications and to promote osteogenesis. However, it remains a formidable challenge in clinical applications to achieve efficient osteogenesis with stimuli-responsive materials. Here, we develop polarized CoFe2O4@BaTiO3/poly(vinylidene fluoridetrifluoroethylene) [P(VDF-TrFE)] core-shell particle-incorporated composite membranes with high magnetoelectric conversion efficiency for activating bone regeneration. An external magnetic field force conduct on the CoFe2O4 core can increase charge density on the BaTiO3 shell and strengthens the β-phase transition in the P(VDF-TrFE) matrix. This energy conversion increases the membrane surface potential, which hence activates osteogenesis. Skull defect experiments on male rats showed that repeated magnetic field applications on the membranes enhanced bone defect repair, even when osteogenesis repression is elicited by dexamethasone or lipopolysaccharide-induced inflammation. This study provides a strategy of utilizing stimuli-responsive magnetoelectric membranes to efficiently activate osteogenesis in situ.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Han Zhao
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Chenguang Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shiqi Xu
- School of Materials Science and Engineering & Advanced Research, Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, P. R. China
| | - Fengyi Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Ling Wei
- Third Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China
| | - Fangyu Zhu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Ying Chen
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China
| | - Yumin Chen
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Mingming Xu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Ying He
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China
| | - Jinxing Zhang
- Department of Physics, Beijing Normal University, Beijing, P. R. China
| | - Yang Shen
- State Key Laboratory of New Ceramics and Fine Processing Department of Materials Science and Engineering Tsinghua University, Beijing, P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China.
| | - Houbing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China.
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China.
| |
Collapse
|
23
|
Smith IT, Zhang E, Yildirim YA, Campos MA, Abdel-Mottaleb M, Yildirim B, Ramezani Z, Andre VL, Scott-Vandeusen A, Liang P, Khizroev S. Nanomedicine and nanobiotechnology applications of magnetoelectric nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1849. [PMID: 36056752 DOI: 10.1002/wnan.1849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Unlike any other nanoparticles known to date, magnetoelectric nanoparticles (MENPs) can generate relatively strong electric fields locally via the application of magnetic fields and, vice versa, have their magnetization change in response to an electric field from the microenvironment. Hence, MENPs can serve as a wireless two-way interface between man-made devices and physiological systems at the molecular level. With the recent development of room-temperature biocompatible MENPs, a number of novel potential medical applications have emerged. These applications include wireless brain stimulation and mapping/recording of neural activity in real-time, targeted delivery across the blood-brain barrier (BBB), tissue regeneration, high-specificity cancer cures, molecular-level rapid diagnostics, and others. Several independent in vivo studies, using mice and nonhuman primates models, demonstrated the capability to deliver MENPs in the brain across the BBB via intravenous injection or, alternatively, bypassing the BBB via intranasal inhalation of the nanoparticles. Wireless deep brain stimulation with MENPs was demonstrated both in vitro and in vivo in different rodents models by several independent groups. High-specificity cancer treatment methods as well as tissue regeneration approaches with MENPs were proposed and demonstrated in in vitro models. A number of in vitro and in vivo studies were dedicated to understand the underlying mechanisms of MENPs-based high-specificity targeted drug delivery via application of d.c. and a.c. magnetic fields. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Isadora Takako Smith
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Elric Zhang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Yagmur Akin Yildirim
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Manuel Alberteris Campos
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Mostafa Abdel-Mottaleb
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Burak Yildirim
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Zeinab Ramezani
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Victoria Louise Andre
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Aidan Scott-Vandeusen
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Ping Liang
- Cellular Nanomed, Inc. (CNMI), Irvine, California, USA
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
24
|
Nizamov TR, Amirov AA, Kuznetsova TO, Dorofievich IV, Bordyuzhin IG, Zhukov DG, Ivanova AV, Gabashvili AN, Tabachkova NY, Tepanov AA, Shchetinin IV, Abakumov MA, Savchenko AG, Majouga AG. Synthesis and Functional Characterization of Co xFe 3-xO 4-BaTiO 3 Magnetoelectric Nanocomposites for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:811. [PMID: 36903693 PMCID: PMC10004808 DOI: 10.3390/nano13050811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, magnetoelectric nanomaterials are on their way to finding wide applications in biomedicine for various cancer and neurological disease treatment, which is mainly restricted by their relatively high toxicity and complex synthesis. This study for the first time reports novel magnetoelectric nanocomposites of CoxFe3-xO4-BaTiO3 series with tuned magnetic phase structures, which were synthesized via a two-step chemical approach in polyol media. The magnetic CoxFe3-xO4 phases with x = 0.0, 0.5, and 1.0 were obtained by thermal decomposition in triethylene glycol media. The magnetoelectric nanocomposites were synthesized by the decomposition of barium titanate precursors in the presence of a magnetic phase under solvothermal conditions and subsequent annealing at 700 °C. X-ray diffraction revealed the presence of both spinel and perovskite phases after annealing with average crystallite sizes in the range of 9.0-14.5 nm. Transmission electron microscopy data showed two-phase composite nanostructures consisting of ferrites and barium titanate. The presence of interfacial connections between magnetic and ferroelectric phases was confirmed by high-resolution transmission electron microscopy. Magnetization data showed expected ferrimagnetic behavior and σs decrease after the nanocomposite formation. Magnetoelectric coefficient measurements after the annealing showed non-linear change with a maximum of 89 mV/cm*Oe with x = 0.5, 74 mV/cm*Oe with x = 0, and a minimum of 50 mV/cm*Oe with x = 0.0 core composition, that corresponds with the coercive force of the nanocomposites: 240 Oe, 89 Oe and 36 Oe, respectively. The obtained nanocomposites show low toxicity in the whole studied concentration range of 25-400 μg/mL on CT-26 cancer cells. The synthesized nanocomposites show low cytotoxicity and high magnetoelectric effects, therefore they can find wide applications in biomedicine.
Collapse
Affiliation(s)
- Timur R. Nizamov
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Abdulkarim A. Amirov
- Amirkhanov Institute of Physics of Dagestan Federal Research Center, Russian Academy of Sciences, 367003 Makhachkala, Russia
| | - Tatiana O. Kuznetsova
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Irina V. Dorofievich
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Igor G. Bordyuzhin
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Dmitry G. Zhukov
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Anna V. Ivanova
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Anna N. Gabashvili
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Nataliya Yu. Tabachkova
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | | | - Igor V. Shchetinin
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Maxim A. Abakumov
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander G. Savchenko
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Alexander G. Majouga
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
25
|
Andre M, Nair M, Raymond AD. HIV Latency and Nanomedicine Strategies for Anti-HIV Treatment and Eradication. Biomedicines 2023; 11:biomedicines11020617. [PMID: 36831153 PMCID: PMC9953021 DOI: 10.3390/biomedicines11020617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Antiretrovirals (ARVs) reduce Human Immunodeficiency Virus (HIV) loads to undetectable levels in infected patients. However, HIV can persist throughout the body in cellular reservoirs partly due to the inability of some ARVs to cross anatomical barriers and the capacity of HIV-1 to establish latent infection in resting CD4+ T cells and monocytes/macrophages. A cure for HIV is not likely unless latency is addressed and delivery of ARVs to cellular reservoir sites is improved. Nanomedicine has been used in ARV formulations to improve delivery and efficacy. More specifically, researchers are exploring the benefit of using nanoparticles to improve ARVs and nanomedicine in HIV eradication strategies such as shock and kill, block and lock, and others. This review will focus on mechanisms of HIV-1 latency and nanomedicine-based approaches to treat HIV.
Collapse
Affiliation(s)
- Mickensone Andre
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Andrea D. Raymond
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Correspondence: ; Tel.: +1-305-348-6430
| |
Collapse
|
26
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
27
|
Song H, Kim DI, Abbasi SA, Latifi Gharamaleki N, Kim E, Jin C, Kim S, Hwang J, Kim JY, Chen XZ, Nelson BJ, Pané S, Choi H. Multi-target cell therapy using a magnetoelectric microscale biorobot for targeted delivery and selective differentiation of SH-SY5Y cells via magnetically driven cell stamping. MATERIALS HORIZONS 2022; 9:3031-3038. [PMID: 36129054 PMCID: PMC9704487 DOI: 10.1039/d2mh00693f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cell therapy refers to a treatment that involves the delivery of cells or cellular material by means of injection, grafting, or implantation in order to replace damaged tissue and restore its function, or to aid the body in fighting disease. However, limitations include poor targeting delivery and low therapeutic efficacy due to low cell survival. Hence, novel approaches are required to increase cell delivery efficiency and enhance therapeutic efficacy via selective cell differentiation at target areas. Here, we present a stamping magnetoelectric microscale biorobot (SMMB) consisting of neuron-like cell spheroids loaded with magnetoelectric nanoparticles. The SMMB enables not only effective targeted delivery of cells to multiple target areas (via minimally invasive stamping employing magnetic actuation) but also facilitates selective neuronal differentiation via magnetoelectric (ME) stimulation. This ensures rapid colonization and enhances efficacy. SMMBs were fabricated using SH-SY5Y cells. Magnetoelectric nanoparticles for ME stimulation responded to an alternating magnetic field that ensured targeted cell differentiation. Multi-target cell therapy facilitated the targeted delivery and selective differentiation of SH-SY5Y cells to multiple regions using a single SMMB with rotating and alternating magnetic fields for delivery and ME stimulation. This promising tool may overcome the limitations of existing cell therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyunseok Song
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Dong-In Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sarmad Ahmad Abbasi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Nader Latifi Gharamaleki
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Eunhee Kim
- IMsystem Co., Ltd., Daegu, Republic of Korea
| | - Chaewon Jin
- Department of Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Samhwan Kim
- Brain Science Department, Daegu Gyeongbuk Institute of Science and Technology (DGIST) 711-873, Daegu, South Korea
| | - Junsun Hwang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jin-Young Kim
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- IMsystem Co., Ltd., Daegu, Republic of Korea
| | - Xiang-Zhong Chen
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland.
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland.
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland.
| | - Hongsoo Choi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Robotics Research Center, DGIST, Daegu, Republic of Korea
| |
Collapse
|
28
|
Fiocchi S, Chiaramello E, Marrella A, Suarato G, Bonato M, Parazzini M, Ravazzani P. Modeling of core-shell magneto-electric nanoparticles for biomedical applications: Effect of composition, dimension, and magnetic field features on magnetoelectric response. PLoS One 2022; 17:e0274676. [PMID: 36149898 PMCID: PMC9506614 DOI: 10.1371/journal.pone.0274676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022] Open
Abstract
The recent development of core-shell nanoparticles which combine strain coupled magnetostrictive and piezoelectric phases, has attracted a lot of attention due to their ability to yield strong magnetoelectric effect even at room temperature, thus making them a promising tool to enable biomedical applications. To fully exploit their potentialities and to adapt their use to in vivo applications, this study analyzes, through a numerical approach, their magnetoelectric behavior, shortly quantified by the magnetoelectric coupling coefficient (αME), thus providing an important milestone for the characterization of the magnetoelectric effect at the nanoscale. In view of recent evidence showing that αME is strongly affected by both the applied magnetic field DC bias and AC frequency, this study implements a nonlinear model, based on magnetic hysteresis, to describe the responses of two different core-shell nanoparticles to various magnetic field excitation stimuli. The proposed model is also used to evaluate to which extent realistic variables such as core diameter and shell thickness affect the electric output. Results prove that αME of 80 nm cobalt ferrite-barium titanate (CFO-BTO) nanoparticles with a 60:40 ratio is equal to about 0.28 V/cm∙Oe corresponding to electric fields up to about 1000 V/cm when a strong DC bias is applied. However, the same electric output can be obtained even in absence of DC field with very low AC fields, by exploiting the hysteretic characteristics of the same composites. The analysis of core and shell dimension is as such to indicate that, to maximize αME, larger core diameter and thinner shell nanoparticles should be preferred. These results, taken together, suggest that it is possible to tune magnetoelectric nanoparticles electric responses by controlling their composition and their size, thus opening the opportunity to adapt their structure on the specific application to pursue.
Collapse
Affiliation(s)
- Serena Fiocchi
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Emma Chiaramello
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Alessandra Marrella
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Giulia Suarato
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Marta Bonato
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Marta Parazzini
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Paolo Ravazzani
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| |
Collapse
|
29
|
Fiocchi S, Chiaramello E, Marrella A, Bonato M, Parazzini M, Ravazzani P. Modelling of magnetoelectric nanoparticles for non-invasive brain stimulation: a computational study. J Neural Eng 2022; 19. [PMID: 36075197 DOI: 10.1088/1741-2552/ac9085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/08/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Recently developed magnetoelectric nanoparticles (MENPs) provide a potential tool to enable different biomedical applications. They could be used to overcome the intrinsic constraints posed by traditional neurostimulation techniques, namely the invasiveness of electrodes-based techniques, the limited spatial resolution, and the scarce efficiency of magnetic stimulation. APPROACH By using computational electromagnetic techniques, we modelled the behavior of recently designed biocompatible MENPs injected, in the shape of clusters, in specific cortical targets of a highly detailed anatomical head model. The distributions and the tissue penetration of the electric fields induced by MENPs clusters in each tissue will be compared to the distributions induced by traditional TMS coils for non-invasive brain stimulation positioned on the left prefrontal cortex of a highly detailed anatomical head model. MAIN RESULTS MENPs clusters can induce highly focused electric fields with amplitude close to the neural activation threshold in all the brain tissues of interest for the treatment of most neuropsychiatric disorders. Conversely, TMS coils can induce electric fields of several tens of V/m over a broad volume of the prefrontal cortex, but they are unlikely able to efficiently stimulate even small volumes of subcortical and deep tissues. SIGNIFICANCE Our numerical results suggest that the use of MENPs for brain stimulation may potentially led to a future pinpoint treatment of neuropshychiatric disorders, in which an impairment of electric activity of specific cortical and subcortical tissues and networks has been assumed to play a crucial role.
Collapse
Affiliation(s)
- Serena Fiocchi
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Emma Chiaramello
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Alessandra Marrella
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Area della Ricerca, via de Marini 6, Genova, 16149, ITALY
| | - Marta Bonato
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Paolo Ravazzani
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| |
Collapse
|
30
|
Qi H, Ke Q, Tang Q, Yin L, Yang L, Ning C, Su J, Fang L. Magnetic field regulation of mouse bone marrow mesenchymal stem cell behaviours on TiO
2
nanotubes via surface potential mediated by Terfenol‐D/P(VDF‐TrFE) film. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Haisheng Qi
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| | - Qi Ke
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou China
| | - Qiwen Tang
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| | - Lei Yin
- China‐Singapore International Joint Research Institute Guangzhou China
| | - Lixin Yang
- School of Mechanical & Automotive Engineering South China University of Technology Guangzhou China
| | - Chengyun Ning
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou China
| | - Jianyu Su
- China‐Singapore International Joint Research Institute Guangzhou China
| | - Liming Fang
- School of Materials Science and Engineering South China University of Technology Guangzhou China
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing Guangzhou China
| |
Collapse
|
31
|
Deng Q, Zhang L, Liu X, You Y, Ren J, Qu X. Magnetoelectrically ignited nanozyme-eel for combating bacterial biofilms. Chem Commun (Camb) 2022; 58:7634-7637. [PMID: 35713636 DOI: 10.1039/d2cc02603a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A magnetoelectrically ignited nanozyme-eel was developed, which could generate abundant surface charges upon the ignition of an alternating magnetic field, leading to a controllable electron transport burst between the nanozyme-eel and bacteria for the eradication of bacterial biofilms.
Collapse
Affiliation(s)
- Qingqing Deng
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Xuemeng Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yawen You
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|
32
|
Bok I, Haber I, Qu X, Hai A. In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles. Sci Rep 2022; 12:8386. [PMID: 35589877 PMCID: PMC9120189 DOI: 10.1038/s41598-022-12303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Magnetoelectric materials hold untapped potential to revolutionize biomedical technologies. Sensing of biophysical processes in the brain is a particularly attractive application, with the prospect of using magnetoelectric nanoparticles (MENPs) as injectable agents for rapid brain-wide modulation and recording. Recent studies have demonstrated wireless brain stimulation in vivo using MENPs synthesized from cobalt ferrite (CFO) cores coated with piezoelectric barium titanate (BTO) shells. CFO-BTO core-shell MENPs have a relatively high magnetoelectric coefficient and have been proposed for direct magnetic particle imaging (MPI) of brain electrophysiology. However, the feasibility of acquiring such readouts has not been demonstrated or methodically quantified. Here we present the results of implementing a strain-based finite element magnetoelectric model of CFO-BTO core-shell MENPs and apply the model to quantify magnetization in response to neural electric fields. We use the model to determine optimal MENPs-mediated electrophysiological readouts both at the single neuron level and for MENPs diffusing in bulk neural tissue for in vivo scenarios. Our results lay the groundwork for MENP recording of electrophysiological signals and provide a broad analytical infrastructure to validate MENPs for biomedical applications.
Collapse
Affiliation(s)
- Ilhan Bok
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Ido Haber
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiaofei Qu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA.
| |
Collapse
|
33
|
Pardo M, Khizroev S. Where do we stand now regarding treatment of psychiatric and neurodegenerative disorders? Considerations in using magnetoelectric nanoparticles as an innovative approach. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1781. [PMID: 35191206 DOI: 10.1002/wnan.1781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/27/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Almost 1000 million people have recently been diagnosed with a mental health or substance disorder (Ritchie & Roser, 2018). Psychiatric disorders, and their treatment, represent a big burden to the society worldwide, causing about 8 million deaths per year (Walker et al., 2015). Daily progress in science enables continuous advances in methods to treat patients; however, the brain remains to be the most unknown and complex organ of the body. There is a growing demand for innovative approaches to treat psychiatric as well as neurodegenerative disorders, disorders with unknown curability, and treatments mostly designed to slow disease progression. Based on that need and the peculiarity of the central nervous system, in the present review, we highlight the handicaps of the existing approaches as well as discuss the potential of the recently introduced magnetoelectric nanoparticles (MENPs) to become a game-changing tool in future applications for the treatment of brain alterations. Unlike other stimulation approaches, MENPs have the potential to enable a wirelessly controlled stimulation at a single-neuron level without requiring genetic modification of the neural tissue and no toxicity has yet been reported. Their potential as a new tool for targeting the brain is discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Neurological Disease.
Collapse
Affiliation(s)
- Marta Pardo
- Miller School of Medicine, Department of Neurology and Molecular and Cellular Pharmacology, University of Miami, Miami, Florida, USA
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
34
|
Alfareed TM, Slimani Y, Almessiere MA, Shirsath SE, Hassan M, Nawaz M, Khan FA, Al-Suhaimi EA, Baykal A. Structure, magnetoelectric, and anticancer activities of core-shell Co0·8Mn0.2R0.02Fe1·98O4@BaTiO3 nanocomposites (R = Ce, Eu, Tb, Tm, or Gd). CERAMICS INTERNATIONAL 2022; 48:14640-14651. [DOI: 10.1016/j.ceramint.2022.01.358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
35
|
Kolishetti N, Vashist A, Arias AY, Atluri V, Dhar S, Nair M. Recent advances, status, and opportunities of magneto-electric nanocarriers for biomedical applications. Mol Aspects Med 2022; 83:101046. [PMID: 34743901 PMCID: PMC8792247 DOI: 10.1016/j.mam.2021.101046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 02/03/2023]
Abstract
Magneto-electric (ME) materials with core-shell architecture where the core is made of magnetic materials have emerged as an attractive nanomaterial due to the coupling of magnetic and electric properties in the same material and the fact that both fields can be controlled which allows an on-demand, transport and release of loaded cargo. Over the last decade, biomedical engineers and researchers from various interdisciplinary fields have successfully demonstrated promising properties ranging from therapeutic delivery to sensing, and neuromodulation using ME materials. In this review, we systematically summarize developments in various biomedical fields using the nanoforms of these materials. Herein, we also highlight various promising biomedical applications where the ME nanocarriers are encapsulated in other materials such as gels and liposomes and their potential for promising therapeutics and diagnostic applications.
Collapse
Affiliation(s)
- Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Arti Vashist
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Adriana Yndart Arias
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Venkata Atluri
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT, 84606, USA
| | - Shanta Dhar
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
36
|
Casillas-Popova S, Bernad-Bernad M, Gracia-Mora J. Modeling of adsorption and release kinetics of methotrexate from thermo/magnetic responsive CoFe2O4–BaTiO3, CoFe2O4–Bi4Ti3O12 and Fe3O4–BaTiO3 core-shell magnetoelectric nanoparticles functionalized with PNIPAm. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Mhambi S, Fisher D, Tchokonte MBT, Dube A. Permeation Challenges of Drugs for Treatment of Neurological Tuberculosis and HIV and the Application of Magneto-Electric Nanoparticle Drug Delivery Systems. Pharmaceutics 2021; 13:1479. [PMID: 34575555 PMCID: PMC8466684 DOI: 10.3390/pharmaceutics13091479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
The anatomical structure of the brain at the blood-brain barrier (BBB) creates a limitation for the movement of drugs into the central nervous system (CNS). Drug delivery facilitated by magneto-electric nanoparticles (MENs) is a relatively new non-invasive approach for the delivery of drugs into the CNS. These nanoparticles (NPs) can create localized transient changes in the permeability of the cells of the BBB by inducing electroporation. MENs can be applied to deliver antiretrovirals and antibiotics towards the treatment of human immunodeficiency virus (HIV) and tuberculosis (TB) infections in the CNS. This review focuses on the drug permeation challenges and reviews the application of MENs for drug delivery for these diseases. We conclude that MENs are promising systems for effective CNS drug delivery and treatment for these diseases, however, further pre-clinical and clinical studies are required to achieve translation of this approach to the clinic.
Collapse
Affiliation(s)
- Sinaye Mhambi
- Discipline of Pharmaceutics, School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa;
| | - David Fisher
- Department of Medical Bioscience, University of the Western Cape, Cape Town 7535, South Africa;
| | | | - Admire Dube
- Discipline of Pharmaceutics, School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa;
| |
Collapse
|
38
|
Kopyl S, Surmenev R, Surmeneva M, Fetisov Y, Kholkin A. Magnetoelectric effect: principles and applications in biology and medicine- a review. Mater Today Bio 2021; 12:100149. [PMID: 34746734 PMCID: PMC8554634 DOI: 10.1016/j.mtbio.2021.100149] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
Magnetoelectric (ME) effect experimentally discovered about 60 years ago remains one of the promising research fields with the main applications in microelectronics and sensors. However, its applications to biology and medicine are still in their infancy. For the diagnosis and treatment of diseases at the intracellular level, it is necessary to develop a maximally non-invasive way of local stimulation of individual neurons, navigation, and distribution of biomolecules in damaged cells with relatively high efficiency and adequate spatial and temporal resolution. Recently developed ME materials (composites), which combine elastically coupled piezoelectric (PE) and magnetostrictive (MS) phases, have been shown to yield very strong ME effects even at room temperature. This makes them a promising toolbox for solving many problems of modern medicine. The main ME materials, processing technologies, as well as most prospective biomedical applications will be overviewed, and modern trends in using ME materials for future therapies, wireless power transfer, and optogenetics will be considered.
Collapse
Affiliation(s)
- S. Kopyl
- Department of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - R. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - M. Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Y. Fetisov
- Research & Education Centre ‘Magnetoelectric Materials and Devices’, MIREA – Russian Technological University, Moscow, Russia
| | - A. Kholkin
- Department of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
39
|
Yang J, Yue L, Yang Z, Miao Y, Ouyang R, Hu Y. Metal-Based Nanomaterials: Work as Drugs and Carriers against Viral Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2129. [PMID: 34443959 PMCID: PMC8400983 DOI: 10.3390/nano11082129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023]
Abstract
Virus infection is one of the threats to the health of organisms, and finding suitable antiviral agents is one of the main tasks of current researchers. Metal ions participate in multiple key reaction stages of organisms and maintain the important homeostasis of organisms. The application of synthetic metal-based nanomaterials as an antiviral therapy is a promising new research direction. Based on the application of synthetic metal-based nanomaterials in antiviral therapy, we summarize the research progress of metal-based nanomaterials in recent years. This review analyzes the three inhibition pathways of metal nanomaterials as antiviral therapeutic materials against viral infections, including direct inactivation, inhibition of virus adsorption and entry, and intracellular virus suppression; it further classifies and summarizes them according to their inhibition mechanisms. In addition, the use of metal nanomaterials as antiviral drug carriers and vaccine adjuvants is summarized. The analysis clarifies the antiviral mechanism of metal nanomaterials and broadens the application in the field of antiviral therapy.
Collapse
Affiliation(s)
- Junlei Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Y.); (Z.Y.); (Y.M.)
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China;
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhu Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Y.); (Z.Y.); (Y.M.)
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
| | - Yuqing Miao
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Y.); (Z.Y.); (Y.M.)
| | - Ruizhuo Ouyang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Y.); (Z.Y.); (Y.M.)
| | - Yihong Hu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China;
| |
Collapse
|
40
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
41
|
Sonti S, Sharma AL, Tyagi M. HIV-1 persistence in the CNS: Mechanisms of latency, pathogenesis and an update on eradication strategies. Virus Res 2021; 303:198523. [PMID: 34314771 DOI: 10.1016/j.virusres.2021.198523] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022]
Abstract
Despite four decades of research into the human immunodeficiency virus (HIV-1), a successful strategy to eradicate the virus post-infection is lacking. The major reason for this is the persistence of the virus in certain anatomical reservoirs where it can become latent and remain quiescent for as long as the cellular reservoir is alive. The Central Nervous System (CNS), in particular, is an intriguing anatomical compartment that is tightly regulated by the blood-brain barrier. Targeting the CNS viral reservoir is a major challenge owing to the decreased permeability of drugs into the CNS and the cellular microenvironment that facilitates the compartmentalization and evolution of the virus. Therefore, despite effective antiretroviral (ARV) treatment, virus persists in the CNS, and leads to neurological and neurocognitive deficits. To date, viral eradication strategies fail to eliminate the virus from the CNS. To facilitate the improvement of the existing elimination strategies, as well as the development of potential therapeutic targets, the aim of this review is to provide an in-depth understanding of HIV latency in CNS and the onset of HIV-1 associated neurological disorders.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
42
|
Citrate-Coated Magnetic Polyethyleneimine Composites for Plasmid DNA Delivery into Glioblastoma. Polymers (Basel) 2021; 13:polym13142228. [PMID: 34300986 PMCID: PMC8309231 DOI: 10.3390/polym13142228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Several ternary composites that are based on branched polyethyleneimine (bPEI 25 kDa, polydispersity 2.5, 0.1 or 0.2 ng), citrate-coated ultrasmall superparamagnetic iron oxide nanoparticles (citrate-NPs, 8-10 nm, 0.1, 1.0, or 2.5 µg), and reporter circular plasmid DNA pEGFP-C1 or pRL-CMV (pDNA 0.5 µg) were studied for optimization of the best composite for transfection into glioblastoma U87MG or U138MG cells. The efficiency in terms of citrate-NP and plasmid DNA gene delivery with the ternary composites could be altered by tuning the bPEI/citrate-NP ratios in the polymer composites, which were characterized by Prussian blue staining, in vitro magnetic resonance imaging as well as green fluorescence protein and luciferase expression. Among the composites prepared, 0.2 ng bPEI/0.5 μg pDNA/1.0 µg citrate-NP ternary composite possessed the best cellular uptake efficiency. Composite comprising 0.1 ng bPEI/0.5 μg pDNA/0.1 μg citrate-NP gave the optimal efficiency for the cellular uptake of the two plasmid DNAs to the nucleus. The best working bPEI concentration range should not exceed 0.2 ng/well to achieve a relatively low cytotoxicity.
Collapse
|
43
|
Nguyen T, Gao J, Wang P, Nagesetti A, Andrews P, Masood S, Vriesman Z, Liang P, Khizroev S, Jin X. In Vivo Wireless Brain Stimulation via Non-invasive and Targeted Delivery of Magnetoelectric Nanoparticles. Neurotherapeutics 2021; 18:2091-2106. [PMID: 34131858 PMCID: PMC8609092 DOI: 10.1007/s13311-021-01071-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 02/04/2023] Open
Abstract
Wireless and precise stimulation of deep brain structures could have important applications to study intact brain circuits and treat neurological disorders. Herein, we report that magnetoelectric nanoparticles (MENs) can be guided to a targeted brain region to stimulate brain activity with a magnetic field. We demonstrated the nanoparticles' capability to reliably evoke fast neuronal responses in cortical slices ex vivo. After fluorescently labeled MENs were intravenously injected and delivered to a targeted brain region by applying a magnetic field gradient, a magnetic field of low intensity (350-450 Oe) applied to the mouse head reliably evoked cortical activities, as revealed by two-photon and mesoscopic imaging of calcium signals and by an increased number of c-Fos expressing cells after stimulation. Neither brain delivery of MENs nor the magnetic stimulation caused significant increases in astrocytes and microglia. Thus, MENs could enable a non-invasive and contactless deep brain stimulation without the need of genetic manipulation.
Collapse
Affiliation(s)
- Tyler Nguyen
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN USA
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN USA
- Medical Neuroscience Program, Indiana University School of Medicine, Indianapolis, IN USA
| | - Jianhua Gao
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN USA
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| | - Ping Wang
- Department of Electrical and Computer Engineering, College of Engineering, University of Miami, Miami, FL USA
| | - Abhignyan Nagesetti
- Department of Electrical and Computer Engineering, College of Engineering, University of Miami, Miami, FL USA
| | - Peter Andrews
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| | - Sehban Masood
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| | - Zoe Vriesman
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| | | | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, College of Engineering, University of Miami, Miami, FL USA
| | - Xiaoming Jin
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN USA
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute & Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
44
|
Abstract
![]()
Manipulation and navigation of micro
and nanoswimmers in different
fluid environments can be achieved by chemicals, external fields,
or even motile cells. Many researchers have selected magnetic fields
as the active external actuation source based on the advantageous
features of this actuation strategy such as remote and spatiotemporal
control, fuel-free, high degree of reconfigurability, programmability,
recyclability, and versatility. This review introduces fundamental
concepts and advantages of magnetic micro/nanorobots (termed here
as “MagRobots”) as well as basic knowledge of magnetic
fields and magnetic materials, setups for magnetic manipulation, magnetic
field configurations, and symmetry-breaking strategies for effective
movement. These concepts are discussed to describe the interactions
between micro/nanorobots and magnetic fields. Actuation mechanisms
of flagella-inspired MagRobots (i.e., corkscrew-like motion and traveling-wave
locomotion/ciliary stroke motion) and surface walkers (i.e., surface-assisted
motion), applications of magnetic fields in other propulsion approaches,
and magnetic stimulation of micro/nanorobots beyond motion are provided
followed by fabrication techniques for (quasi-)spherical, helical,
flexible, wire-like, and biohybrid MagRobots. Applications of MagRobots
in targeted drug/gene delivery, cell manipulation, minimally invasive
surgery, biopsy, biofilm disruption/eradication, imaging-guided delivery/therapy/surgery,
pollution removal for environmental remediation, and (bio)sensing
are also reviewed. Finally, current challenges and future perspectives
for the development of magnetically powered miniaturized motors are
discussed.
Collapse
Affiliation(s)
- Huaijuan Zhou
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.,Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno CZ-612 00, Czech Republic
| |
Collapse
|
45
|
Cao J, Zaremba OT, Lei Q, Ploetz E, Wuttke S, Zhu W. Artificial Bioaugmentation of Biomacromolecules and Living Organisms for Biomedical Applications. ACS NANO 2021; 15:3900-3926. [PMID: 33656324 DOI: 10.1021/acsnano.0c10144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The synergistic union of nanomaterials with biomaterials has revolutionized synthetic chemistry, enabling the creation of nanomaterial-based biohybrids with distinct properties for biomedical applications. This class of materials has drawn significant scientific interest from the perspective of functional extension via controllable coupling of synthetic and biomaterial components, resulting in enhancement of the chemical, physical, and biological properties of the obtained biohybrids. In this review, we highlight the forefront materials for the combination with biomacromolecules and living organisms and their advantageous properties as well as recent advances in the rational design and synthesis of artificial biohybrids. We further illustrate the incredible diversity of biomedical applications stemming from artificially bioaugmented characteristics of the nanomaterial-based biohybrids. Eventually, we aim to inspire scientists with the application horizons of the exciting field of synthetic augmented biohybrids.
Collapse
Affiliation(s)
- Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Orysia T Zaremba
- Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain
- University of California-Berkeley, Berkeley, California 94720, United States
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Evelyn Ploetz
- Ludwig-Maximilians-Universität (LMU) Munich, Munich 81377, Germany
| | - Stefan Wuttke
- Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain
- Basque Foundation for Science, Bilbao 48009, Spain
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
46
|
Pandey P, Ghimire G, Garcia J, Rubfiaro A, Wang X, Tomitaka A, Nair M, Kaushik A, He J. Single-Entity Approach to Investigate Surface Charge Enhancement in Magnetoelectric Nanoparticles Induced by AC Magnetic Field Stimulation. ACS Sens 2021; 6:340-347. [PMID: 32449356 DOI: 10.1021/acssensors.0c00664] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Magneto-electric nanoparticles (MENPs), composed of a piezoelectric shell and a ferromagnetic core, exhibited enhanced cell uptake and controlled drug release due to the enhanced localized electric field (surface charge/potential) and the generation of acoustics, respectively, upon applying alternating current (AC) magnetic (B)-field stimulation. This research, for the first time, implements an electrochemical single-entity approach to probe AC B-field induced strain mediated surface potential enhancement on MENP surface. The surface potential changes at the single-NP level can be probed by the open circuit potential changes of the floating carbon nanoelectrode (CNE) during the MENP-CNE collision events. The results confirmed that the AC B-field (60 Oe) stimulation caused localized surface potential enhancement of MENP. This observation is associated with the presence of a piezoelectric shell, whereas magnetic nanoparticles were found unaffected under identical stimulation.
Collapse
Affiliation(s)
- Popular Pandey
- Physics Department, Florida International University, Miami, Florida 33199, United States
| | - Govinda Ghimire
- Physics Department, Florida International University, Miami, Florida 33199, United States
| | - Javier Garcia
- Physics Department, Florida International University, Miami, Florida 33199, United States
| | - Alberto Rubfiaro
- Physics Department, Florida International University, Miami, Florida 33199, United States
| | - Xuewen Wang
- Physics Department, Florida International University, Miami, Florida 33199, United States
| | - Asahi Tomitaka
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, Florida 33805, United States
| | - Jin He
- Physics Department, Florida International University, Miami, Florida 33199, United States
- Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
47
|
Ferson ND, Uhl AM, Andrew JS. Piezoelectric and Magnetoelectric Scaffolds for Tissue Regeneration and Biomedicine: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:229-241. [PMID: 32866097 DOI: 10.1109/tuffc.2020.3020283] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electric fields are ubiquitous throughout the body, playing important role in a multitude of biological processes including osteo-regeneration, cell signaling, nerve regeneration, cardiac function, and DNA replication. An increased understanding of the role of electric fields in the body has led to the development of devices for biomedical applications that incorporate electromagnetic fields as an intrinsically novel functionality (e.g., bioactuators, biosensors, cardiac/neural electrodes, and tissues scaffolds). However, in the majority of the aforementioned devices, an implanted power supply is necessary for operation, and therefore requires highly invasive procedures. Thus, the ability to apply electric fields in a minimally invasive manner to remote areas of the body remains a critical and unmet need. Here, we report on the potential of magnetoelectric (ME)-based composites to overcome this challenge. ME materials are capable of producing localized electric fields in response to an applied magnetic field, which the body is permeable to. Yet, the use of ME materials for biomedical applications is just beginning to be explored. Here, we present on the potential of ME materials to be utilized in biomedical applications. This will be presented alongside current state-of-the-art for in vitro and in vivo electrical stimulation of cells and tissues. We will discuss key findings in the field, while also identifying challenges, such as the synthesis and characterization of biocompatible ME materials, challenges in experimental design, and opportunities for future research that would lead to the increased development of ME biomaterials and their applications.
Collapse
|
48
|
Tang Z, Zhang X, Shu Y, Guo M, Zhang H, Tao W. Insights from nanotechnology in COVID-19 treatment. NANO TODAY 2021; 36:101019. [PMID: 33178330 PMCID: PMC7640897 DOI: 10.1016/j.nantod.2020.101019] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
In just a few months, SARS-CoV-2 and the disease it causes, COVID-19, created a worldwide pandemic. Virologists, biologists, pharmacists, materials scientists, and clinicians are collaborating to develop efficient treatment strategies. Overall, in addition to the use of clinical equipment to assist patient rehabilitation, antiviral drugs and vaccines are the areas of greatest focus. Given the physical size of SARS-CoV-2 and the vaccine delivery platforms currently in clinical trials, the relevance of nanotechnology is clear, and previous antiviral research using nanomaterials also supports this connection. Herein we briefly summarize current representative strategies regarding nanomaterials in antiviral research. We focus specifically on SARS-CoV-2 and the detailed role that nanotechnology can play in addressing this pandemic, including i) using FDA-approved nanomaterials for drug/vaccine delivery, including further exploration of the inhalation pathway; ii) introducing promising nanomaterials currently in clinical trials for drug/vaccine delivery; iii) designing novel biocompatible nanomaterials to combat the virus via interfering in its life cycle; and iv) promoting the utilization of nanomaterials in pneumonia treatment.
Collapse
Affiliation(s)
- Zhongmin Tang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Xingcai Zhang
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States
| | - Yiqing Shu
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ming Guo
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
49
|
Hosseinpour S, Walsh LJ. Laser-assisted nucleic acid delivery: A systematic review. JOURNAL OF BIOPHOTONICS 2021; 14:e202000295. [PMID: 32931155 DOI: 10.1002/jbio.202000295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Gene therapy has become an effective treatment modality for some conditions. Laser light may augment or enhance gene therapy through photomechanical, photothermal, and photochemical. This review examined the evidence base for laser therapy to enhance nucleic acid transfection in mammalian cells. An electronic search of MEDLINE, Scopus, EMBASE, Web of Science, and Google Scholar was performed, covering all available years. The preferred reporting items for systematic reviews and meta-analyses guideline for systematic reviews was used for designing the study and analyzing the results. In total, 49 studies of laser irradiation for nucleic acid delivery were included. Key approaches were optoporation, photomechanical gene transfection, and photochemical internalization. Optoporation is better suited to cells in culture, photomechanical and photochemical approaches appear well suited to in vivo use. Additional studies explored the impact of photothermal for enhancing gene transfection. Each approach has merits and limitations. Augmenting nucleic acid delivery using laser irradiation is a promising method for improving gene therapy. Laser protocols can be non-invasive because of the penetration of desirable wavelengths of light, but it depends on various parameters such as power density, treatment duration, irradiation mode, etc. The current protocols show low efficiency, and there is a need for further work to optimize irradiation parameters.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, Oral Health Centre, The University of Queensland, Brisbane, Australia
| | - Laurence J Walsh
- School of Dentistry, Oral Health Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
50
|
Progress and Perspectives on Aurivillius-Type Layered Ferroelectric Oxides in Binary Bi4Ti3O12-BiFeO3 System for Multifunctional Applications. CRYSTALS 2020. [DOI: 10.3390/cryst11010023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Driven by potentially photo-electro-magnetic functionality, Bi-containing Aurivillius-type oxides of binary Bi4Ti3O12-BiFeO3 system with a general formula of Bin+1Fen−3Ti3O3n+3, typically in a naturally layered perovskite-related structure, have attracted increasing research interest, especially in the last twenty years. Benefiting from highly structural tolerance and simultaneous electric dipole and magnetic ordering at room temperature, these Aurivillius-phase oxides as potentially single-phase and room-temperature multiferroic materials can accommodate many different cations and exhibit a rich spectrum of properties. In this review, firstly, we discussed the characteristics of Aurivillius-phase layered structure and recent progress in the field of synthesis of such materials with various architectures. Secondly, we summarized recent strategies to improve ferroelectric and magnetic properties, consisting of chemical modification, interface engineering, oxyhalide derivatives and morphology controlling. Thirdly, we highlighted some research hotspots on magnetoelectric effect, catalytic activity, microwave absorption, and photovoltaic effect for promising applications. Finally, we provided an updated overview on the understanding and also highlighting of the existing issues that hinder further development of the multifunctional Bin+1Fen−3Ti3O3n+3 materials.
Collapse
|