1
|
Ouyang Y, Willner I. Photomodulated Transient Catalytic Constitutional Dynamic Networks and Reaction Circuits. Angew Chem Int Ed Engl 2025; 64:e202420787. [PMID: 39757120 DOI: 10.1002/anie.202420787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
A method to photomodulate dynamically transient DNA-based reaction circuits and networks is introduced. The method relies on the integration of photoresponsive o-nitrobenzyl-phosphate ester-caged DNA hairpin with a "mute" reaction module. Photodeprotection (λ=365 nm) of the hairpin structure separates a fuel strand triggering the dynamic, transient, operation of the DNA circuit/network. By temporal photocleavage of the hairpin within the course of transient operation of the circuit, photomodulation of the systems are demonstrated. The modulation amplitude and rhythms are controlled by the time-interval and cycle numbers of photo-deprotecting the hairpin structure. The method is applied to transiently photomodulate the catalytic activities of a DNAzyme, enabling the photomodulation of the transient assembly of a constitutional dynamic network (CDN) and the transient reconfiguration of the CDN framework. The different systems are supported by computational kinetic models allowing to predict, and experimentally validate, the behavior of the systems under variable auxiliary conditions. Moreover, the photomodulated transient CDNs are implemented as functional frameworks guiding the thrombin-catalyzed coagulation of fibrinogen to fibrin (fibrinogenesis) and photomodulated operation of a biocatalytic cascade.
Collapse
Affiliation(s)
- Yu Ouyang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
2
|
Lien D. The role of DNA nanotechnology in medical sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1148-1159. [PMID: 39714254 DOI: 10.1039/d4ay01803f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
This paper explores how DNA nanotechnology enhances biosensors in medicine and pharmacology by taking advantage of the unique characteristics of DNA and the unique advantages of DNA origami technology. DNA origami allows the establishment of complex nanoobjects with precise size and complete molecular writability as well as the possibility of seamless integration and biocompatibility with biological systems. Utilizing this, the chemical denaturation of DNA chains allows for the combination of various functions, including organic fluorescence groups and photoreaction elements, etc. This has allowed DNA origami to become a transformative tool in biotechnology and other fields because of its versatility, use in innovative applications improving the design and function of biosensors, and potential to provide greater possibilities for early disease diagnosis and personalized medicine.
Collapse
Affiliation(s)
- Darell Lien
- Troy High School, 2200 Dorothy Ln, Fullerton, CA 92831, USA
| |
Collapse
|
3
|
Jain N, Singh A, Bhatia D. DNA-amphiphilic nanostructures: synthesis, characterization and applications. NANOSCALE 2024; 17:18-52. [PMID: 39560070 DOI: 10.1039/d4nr03236e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
DNA's extraordinary potential reaches far beyond its role as a carrier of genetic information. It serves as a remarkably adaptable structural foundation for constructing intricate nanostructures with a diverse range of functionalities. This inherent programmability sets DNA apart from other biomolecules like peptides, proteins, and small molecules. By covalently attaching DNA to synthetic hydrophobic moieties, researchers create DNA amphiphiles capable of interacting with artificial lipid bilayers and cell membranes. These hybrid structures have rapidly gained prominence due to their promising potential in the medical field. This review provides a comprehensive overview of the latest advancements in the synthesis of DNA amphiphiles and their assembly into well-defined nanostructures. It explores the diverse applications of these nanostructures across various medical domains, including targeted drug delivery, innovative immunotherapies, and gene-silencing techniques. Moreover, the review delves into the current challenges and prospects of this rapidly evolving field, highlighting the potential of DNA hybrid materials to revolutionize medical treatments and diagnostics. By addressing the limitations and exploring new avenues of research, scientists aim to unlock the full potential of DNA nanotechnology for the benefit of human health.
Collapse
Affiliation(s)
- Nishkarsh Jain
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Prem Nagar, Patiala, Punjab 147004, India
| | - Ankur Singh
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
4
|
Ma Y, Winegar PH, Figg CA, Ramani N, Anderson AJ, Ngo K, Ahrens JF, Chellam NS, Kim YJ, Mirkin CA. DNA-Regulated Multi-Protein Complement Control. J Am Chem Soc 2024; 146:32912-32918. [PMID: 39569872 PMCID: PMC11755408 DOI: 10.1021/jacs.4c11315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In nature, the interactions between proteins and their complements/substrates can dictate complex functions. Herein, we explore how DNA on nucleic acid modified proteins can be used as scaffolds to deliberately control interactions with a peptide complement (by adjusting length, sequence, and rigidity). As model systems, split GFPs were covalently connected through DNA scaffolds (36-58 bp). Increasing the length or decreasing the rigidity of the DNA scaffold (through removal of the duplex) increases the extent of intramolecular protein binding (up to 7.5-fold) between these GFP fragments. Independent and dynamic control over functional outputs can also be regulated by DNA hybridization; a multi-protein (split CFP and YFP) architecture was synthesized and characterized by fluorescence. This ternary construct shows that DNA displacement strands in different stoichiometric ratios can be used deliberately to regulate competitive binding between two unique sets of proteins. These studies establish a foundation for creating new classes of biological machinery based upon the concept of DNA-regulated multi-protein complement control.
Collapse
Affiliation(s)
- Yinglun Ma
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Peter H. Winegar
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - C. Adrian Figg
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Namrata Ramani
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Alex J. Anderson
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Kathleen Ngo
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - John F. Ahrens
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Nikhil S. Chellam
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Young Jun Kim
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Chad. A. Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| |
Collapse
|
5
|
Li W, Wang S, Zong H, Li J, Zhou Y, Wang Z. Enzyme-Powered, Label-Free DNA Walker for Uracil-DNA Glycosylase Detection at Single-Cell Level. Chem Asian J 2024; 19:e202400608. [PMID: 38949517 DOI: 10.1002/asia.202400608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Uracil-DNA glycosylase (UDG) plays a crucial role in the removal of damaged uracil bases, thereby upholding genetic stability and integrity. An enzyme-powered, label-free DNA walker was devised for UDG activity detection. Initially, a label-free DNA track, incorporating a gold nanoparticle (AuNP), multiple hairpin structures, and various swing arms, was engineered for walking mechanism. The hairpin structure was meticulously crafted to include a G-quadruplex sequence, enabling the generation of a label-free fluorescence signal. The swing arm remained inert in the absence of UDG, but became activated upon the introduction of UDG, thereby initiating the enzyme-powered walking process and generating significant dissociative G-quadruplex sequences. By integrating a selective fluorescent dye into the design, an enhanced label-free fluorescence response was achieved. The proposed DNA walker presented a direct and label-free approach for UDG detection, demonstrating exceptional sensitivity with a detection limit of 0.00004 U/mL. Using the uracil glycosylase inhibitor (UGI) as an inhibitory model, inhibitor assay was conducted with satisfactory precision. Furthermore, successful analysis of cellular UDG at the single-cell level was accomplished. Consequently, the developed DNA walker serves as a label-free, selective, and sensitive tool for UDG activity assessment, showing great potential for applications in disease diagnosis, inhibitor screening, and biomedical investigations.
Collapse
Affiliation(s)
- Wei Li
- Institute of Rural Revitalization, Institute of Medicine and Health Care, Dezhou University, 253023, Dezhou, China
| | - Shuaijing Wang
- College of Pharmaceutical Science, Hebei University, 071002, Baoding, China
| | - Haotian Zong
- College of Pharmaceutical Science, Hebei University, 071002, Baoding, China
| | - Jiayue Li
- College of Pharmaceutical Science, Hebei University, 071002, Baoding, China
| | - Yi Zhou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Zhenguang Wang
- College of Chemistry and Environmental Science, Hebei University, 071002, Baoding, China
| |
Collapse
|
6
|
Xie C, Chen K, Chen Z, Hu Y, Pan L. A Chemo-Mechanically Coupled DNA Origami Clamp Capable of Generating Robust Compression Forces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401396. [PMID: 38973093 DOI: 10.1002/smll.202401396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/10/2024] [Indexed: 07/09/2024]
Abstract
DNA nanostructures have been utilized to study biological mechanical processes and construct artificial nanosystems. Many application scenarios necessitate nanodevices able to robustly generate large single molecular forces. However, most existing dynamic DNA nanostructures are triggered by probabilistic hybridization reactions between spatially separated DNA strands, which only non-deterministically generate relatively small compression forces (≈0.4 piconewtons (pN)). Here, an intercalator-triggered dynamic DNA origami nanostructure is developed, where large amounts of local binding reactions between intercalators and the nanostructure collectively lead to the robust generation of relatively large compression forces (≈11.2 pN). Biomolecular loads with different stiffnesses, 3, 4, and 6-helix DNA bundles are efficiently bent by the compression forces. This work provides a robust and powerful force-generation tool for building highly chemo-mechanically coupled molecular machines in synthetic nanosystems.
Collapse
Affiliation(s)
- Chun Xie
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Kuiting Chen
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhekun Chen
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yingxin Hu
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, Hebei, 050043, China
| | - Linqiang Pan
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
7
|
Sun P, Gou H, Che X, Chen G, Feng C. Recent advances in DNAzymes for bioimaging, biosensing and cancer therapy. Chem Commun (Camb) 2024; 60:10805-10821. [PMID: 39248025 DOI: 10.1039/d4cc03774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
DNAzymes, a class of single-stranded catalytic DNA with good stability, high catalytic activity, and easy synthesis, functionalization and modification properties, have garnered significant interest in the realm of biosensing and bioimaging. Their integration with fluorescent dyes or chemiluminescent moieties has led to remarkable bioimaging outcomes, while DNAzyme-based biosensors have demonstrated robust sensitivity and selectivity in detecting metal ions, nucleic acids, proteins, enzyme activities, exosomes, bacteria and microorganisms. In addition, by delivering DNAzymes into tumor cells, the mRNA therein can be cleaved to regulate the expression of corresponding proteins, which has further propelled the application of DNAzymes in cancer gene therapy and synergistic therapy. This paper reviews the strategies for screening attractive DNAzymes such as SELEX and high-throughput sequencing, and briefly describes the amplification strategies of DNAzymes, which mainly include catalytic hairpin assembly (CHA), DNA walker, hybridization chain reaction (HCR), DNA origami, CRISPR-Cas12a, rolling circle amplification (RCA), and aptamers. In addition, applications of DNAzymes in bioimaging, biosensing, and cancer therapy are also highlighted. Subsequently, the possible challenges of these DNAzymes in practical applications are further pointed out, and future research directions are suggested.
Collapse
Affiliation(s)
- Pei Sun
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Hongquan Gou
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Xinran Che
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
8
|
Yu L, Chen L, Satyabola D, Prasad A, Yan H. NucleoCraft: The Art of Stimuli-Responsive Precision in DNA and RNA Bioengineering. BME FRONTIERS 2024; 5:0050. [PMID: 39290204 PMCID: PMC11407293 DOI: 10.34133/bmef.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/19/2024] Open
Abstract
Recent advancements in DNA and RNA bioengineering have paved the way for developing stimuli-responsive nanostructures with remarkable potential across various applications. These nanostructures, crafted through sophisticated bioengineering techniques, can dynamically and precisely respond to both physiological and physical stimuli, including nucleic acids (DNA/RNA), adenosine triphosphate, proteins, ions, small molecules, pH, light, and temperature. They offer high sensitivity and specificity, making them ideal for applications such as biomarker detection, gene therapy, and controlled targeted drug delivery. In this review, we summarize the bioengineering methods used to assemble versatile stimuli-responsive DNA/RNA nanostructures and discuss their emerging applications in structural biology and biomedicine, including biosensing, targeted drug delivery, and therapeutics. Finally, we highlight the challenges and opportunities in the rational design of these intelligent bioengineered nanostructures.
Collapse
Affiliation(s)
- Lu Yu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Liangxiao Chen
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Deeksha Satyabola
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Abhay Prasad
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Hao Yan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
9
|
Zheng J, Tian S, Lai Q, Ji X, Zhou F, He Z. Target-induced DNA nanomachine operation for the detection of proteins. Talanta 2024; 275:126143. [PMID: 38669960 DOI: 10.1016/j.talanta.2024.126143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Accurate and sensitive detection of disease-associated proteins in early stage of patients plays an important role in timely treatment and successfully extending patients' lives. To meet this demand, we herein rationally designed a flexible target-induced DNA nanomachine operation (TIDNMO) sensor for the detection of proteins. The TIDNMO system was composed of DNA nanoswitch and DNA walker. Triplex DNA nanoswitch was triggered by specific target, followed by the release of the walking strand, which initiated the DNA walker amplification as signal output. In addition, the Exo III could drive walking strand autonomously move on gold nanoparticle surface to realize 2 orders of magnitude signal amplification. What's more, this sensor could transform its suitable functional recognition element of DNA nanoswitch to recognize other specific molecule and realize different targets sensing based on identical walking tracks. Considering the facile reporter elements and efficient amplification performance, the present DNA nanomachine as a sensor could achieve a detection limit of 68 pM for anti-Dig antibody, 0.95 pM for mucin-1 respectively, along with a superb specificity. Furthermore, the method reported here opened a new chapter in disease-related protein sensing for the development of clinical early diagnosis.
Collapse
Affiliation(s)
- Jiao Zheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, 430071, Wuhan, China; College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Songbai Tian
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China; School of Basic Medical Sciences, Hubei University of Medicine, 442000, Shiyan, China
| | - Qizhen Lai
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, 430071, Wuhan, China
| | - Zhike He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, 430071, Wuhan, China; College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
10
|
Xia L, Chen J, Hou X, Zhou R, Cheng N. Construction of a streptavidin-based dual-localized DNAzyme walker for disease biomarker detection. Chem Commun (Camb) 2024; 60:5848-5851. [PMID: 38752318 DOI: 10.1039/d4cc00912f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A dual-localized DNAzyme walker (dlDW) was constructed by utilizing multiple split DNAzymes with probes, and their substrates are separately localized on streptavidin and AuNPs, serving as walking pedals and tracks, respectively. Based on dlDW, biosensing platform was successfully constructed and showed great potential application in clinical disease diagnosis.
Collapse
Affiliation(s)
- Lingying Xia
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Junbo Chen
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rongxing Zhou
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Nansheng Cheng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
11
|
Ma C, Li S, Zeng Y, Lyu Y. DNA-Based Molecular Machines: Controlling Mechanisms and Biosensing Applications. BIOSENSORS 2024; 14:236. [PMID: 38785710 PMCID: PMC11117991 DOI: 10.3390/bios14050236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The rise of DNA nanotechnology has driven the development of DNA-based molecular machines, which are capable of performing specific operations and tasks at the nanoscale. Benefitting from the programmability of DNA molecules and the predictability of DNA hybridization and strand displacement, DNA-based molecular machines can be designed with various structures and dynamic behaviors and have been implemented for wide applications in the field of biosensing due to their unique advantages. This review summarizes the reported controlling mechanisms of DNA-based molecular machines and introduces biosensing applications of DNA-based molecular machines in amplified detection, multiplex detection, real-time monitoring, spatial recognition detection, and single-molecule detection of biomarkers. The challenges and future directions of DNA-based molecular machines in biosensing are also discussed.
Collapse
Affiliation(s)
- Chunran Ma
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
| | - Shiquan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
- Furong Laboratory, Changsha 410082, China
| |
Collapse
|
12
|
Bai D, Zhang J, Zhang Y, Yu H, Zhang L, Han X, Lv K, Wang L, Luo W, Wu Y, Zhou X, Wang W, Feng T, Xie G. A Spatially Controlled Proximity Split Tweezer Switch for Enhanced DNA Circuit Construction and Multifunctional Transduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307421. [PMID: 38072808 DOI: 10.1002/smll.202307421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/15/2023] [Indexed: 05/03/2024]
Abstract
DNA strand displacement reactions are vital for constructing intricate nucleic acid circuits, owing to their programmability and predictability. However, the scarcity of effective methods for eliminating circuit leakages has hampered the construction of circuits with increased complexity. Herein, a versatile strategy is developed that relies on a spatially controlled proximity split tweezer (PST) switch to transduce the biomolecular signals into the independent oligonucleotides. Leveraging the double-stranded rigidity of the tweezer works synergistically with the hindering effect of the hairpin lock, effectively minimizing circuit leakage compared with sequence-level methods. In addition, the freely designed output strand is independent of the target binding sequence, allowing the PST switch conformation to be modulated by nucleic acids, small molecules, and proteins, exhibiting remarkable adaptability to a wide range of targets. Using this platform, established logical operations between different types of targets for multifunctional transduction are successfully established. Most importantly, the platform can be directly coupled with DNA catalytic circuits to further enhance transduction performance. The uniqueness of this platform lies in its design straightforwardness, flexibility, scalable intricacy, and system compatibility. These attributes pave a broad path toward nucleic acid-based development of sophisticated transduction networks, making them widely applied in basic science research and biomedical applications.
Collapse
Affiliation(s)
- Dan Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Jianhong Zhang
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yaoyi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Li Zhang
- Department of Forensic, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Ke Lv
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, P. R. China
| | - Li Wang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - You Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Xi Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Weitao Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Tong Feng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| |
Collapse
|
13
|
McDonough R, Williams CC, Hartley CJ, French N, Scott C, Lewis DA. Kinetic Model for the Heterogeneous Biocatalytic Reactions Using Tethered Cofactors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6685-6693. [PMID: 38525517 DOI: 10.1021/acs.langmuir.3c02958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Understanding the mechanism of interfacial enzyme kinetics is critical to the development of synthetic biological systems for the production of value-added chemicals. Here, the interfacial kinetics of the catalysis of β-nicotinamide adenine dinucleotide (NAD+)-dependent enzymes acting on NAD+ tethered to the surface of silica nanoparticles (SiNPs) has been investigated using two complementary and supporting kinetic approaches: enzyme excess and reactant (NAD+) excess. Kinetic models developed for these two approaches characterize several critical reaction steps including reversible enzyme adsorption, complexation, decomplexation, and catalysis of the surface-bound enzyme/NAD+ complex. The analysis reveals a concentrating effect resulting in a very high local concentration of enzyme and cofactor on the particle surface, in which the enzyme is saturated by surface-bound NAD, facilitating a rate enhancement of enzyme/NAD+ complexation and catalysis. This resulted in high enzyme efficiency within the tethered NAD+ system compared to that of the free enzyme/NAD+ system, which increases with decreasing enzyme concentration. The role of enzyme adsorption onto solid substrates with a tethered catalyst (such as NAD+) has potential for creating highly efficient flow biocatalytic systems.
Collapse
Affiliation(s)
- Rowan McDonough
- Institute for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | | | | | - Nigel French
- CSIRO Environment, Black Mountain, ACT 2601, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain, ACT 2601, Australia
| | - David A Lewis
- Institute for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
14
|
Yao Y, Liu Y, Liu X, Zhang X, Shi P, Zhang X, Zhang Q, Wei X. Bubble DNA tweezer: A triple-conformation sensor responsive to concentration-ratios. iScience 2024; 27:109074. [PMID: 38361618 PMCID: PMC10867447 DOI: 10.1016/j.isci.2024.109074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
DNA tweezers, with their elegant simplicity and flexibility, have been pivotal in biosensing and DNA computing. However, conventional tweezers are confined to a binary transformation pre/post target signal recognition, limiting them to presence/absence judgments. This study introduces bubble DNA tweezers (BDT), capable of three distinct conformations based on variable target signal ratios. In contrast to traditional compact tweezers, BDT features a looser structure centered around a non-complementary bubble domain located between the tweezer arms' connecting axis and target signal recognition jaws. This bubble triggers toehold-free DNA strand displacement, leading to three conformational changes at different target signal concentrations. BDT detects presence/absence and true concentration with remarkable specificity and sensitivity. This adaptability is not confined to ideal scenarios, proving valuable in complex, noisy environments. Our method facilitates target DNA/miRNA signal quantification within a specific length range, promising applications in clinical research and environmental detection, while inspiring future biological assay innovations.
Collapse
Affiliation(s)
- Yao Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
15
|
Yang S, Bögels BWA, Wang F, Xu C, Dou H, Mann S, Fan C, de Greef TFA. DNA as a universal chemical substrate for computing and data storage. Nat Rev Chem 2024; 8:179-194. [PMID: 38337008 DOI: 10.1038/s41570-024-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
DNA computing and DNA data storage are emerging fields that are unlocking new possibilities in information technology and diagnostics. These approaches use DNA molecules as a computing substrate or a storage medium, offering nanoscale compactness and operation in unconventional media (including aqueous solutions, water-in-oil microemulsions and self-assembled membranized compartments) for applications beyond traditional silicon-based computing systems. To build a functional DNA computer that can process and store molecular information necessitates the continued development of strategies for computing and data storage, as well as bridging the gap between these fields. In this Review, we explore how DNA can be leveraged in the context of DNA computing with a focus on neural networks and compartmentalized DNA circuits. We also discuss emerging approaches to the storage of data in DNA and associated topics such as the writing, reading, retrieval and post-synthesis editing of DNA-encoded data. Finally, we provide insights into how DNA computing can be integrated with DNA data storage and explore the use of DNA for near-memory computing for future information technology and health analysis applications.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Bas W A Bögels
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Can Xu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Yang F, Li S, Wu J, Liu S. 2-Aminopurine-based quencher-free DNA tweezers with fluorescence properties well tuned by surrounding bases. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:576-582. [PMID: 38189219 DOI: 10.1039/d3ay01973j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Reversible structural changes in DNA nanomachines have great potential in the field of bioanalysis. Here, we demonstrate an assembly strategy for quencher-free and tunable DNA tweezers based on 2-aminopurine (2-AP), avoiding the tedious fluorescence labelling step. The conformational state of the tweezers could be controlled by specific oligonucleotides (fuel or anti-fuel). Taking advantage of the local environmental sensitivity of 2-AP, the structural changes of the tweezers were easily tracked, and multiple cyclic switching of the tweezers between the open and closed states was achieved. In addition, the influence of oligonucleotide structure on the fluorescence properties of 2-AP was deeply explored. We figured out that the fluorescence of 2-AP was highly quenched by the base-stacking of natural bases in DNA oligonucleotides. Moreover, by comprehensively regulating the type of bases surrounding the inserted 2-AP site, a sensitive fluorescence response towards dynamic change can be obtained. This principle of quencher-free nanodevices based on 2-AP provides a convenient method for monitoring the structural changes of DNA nanomachines.
Collapse
Affiliation(s)
- Fangfang Yang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Jialiang Wu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| |
Collapse
|
17
|
Wang L, Guo R, Li L, Tao Q, Xu Q, Yang X, Liu X, Li J, Wang L, Chang J, Cao C, Wen Y, Song S, Liu G. Construction of an Enzyme Cascade Based on the Accurate Adjacent Arrangement of Coupled Enzymes Using a Triblock PolyA DNA Probe. JACS AU 2024; 4:228-236. [PMID: 38274249 PMCID: PMC10806774 DOI: 10.1021/jacsau.3c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024]
Abstract
Intracellular enzyme cascades are essential for various biological processes, and mimicking their functions in artificial systems has attracted significant research attention. However, achieving convenient and efficient spatial organization of enzymes on interfaces remains a critical challenge. In this work, we designed a simple single-DNA scaffold using triblock polyA single-stranded DNA for the arrangement of coupled enzymes. The scaffold was assembled onto a gold electrode through the affinity of polyA-Au, and two enzymes (glucose oxidase and horseradish peroxidase) were captured through hybridization. The molecular distance between the enzymes was regulated by changing the length of the polyA fragment. As a proof of concept, a glucose biosensor was constructed based on the enzyme cascade amplification. The biosensor exhibited excellent detection capability for glucose in human serum samples with a limit of detection of 1.6 μM. Additionally, a trienzyme cascade reaction was successfully activated, demonstrating the potential scalability of our approach for multienzyme reactions. This study provides a promising platform for the development of easy-to-operate, highly efficient, and versatile enzyme cascade systems using DNA scaffolds.
Collapse
Affiliation(s)
- Lele Wang
- Key
Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Ruiyan Guo
- Key
Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Lanying Li
- Key
Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Qing Tao
- Key
Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Qin Xu
- Key
Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Xue Yang
- Key
Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Xue Liu
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Jiang Li
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Lihua Wang
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Jinxue Chang
- Key
Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Chengming Cao
- Key
Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Yanli Wen
- Key
Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Shiping Song
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Gang Liu
- Key
Laboratory of Bioanalysis and Metrology for state market regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| |
Collapse
|
18
|
Kim JE, Kang JH, Kwon WH, Lee I, Park SJ, Kim CH, Jeong WJ, Choi JS, Kim K. Self-assembling biomolecules for biosensor applications. Biomater Res 2023; 27:127. [PMID: 38053161 PMCID: PMC10696764 DOI: 10.1186/s40824-023-00466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Molecular self-assembly has received considerable attention in biomedical fields as a simple and effective method for developing biomolecular nanostructures. Self-assembled nanostructures can exhibit high binding affinity and selectivity by displaying multiple ligands/receptors on their surface. In addition, the use of supramolecular structure change upon binding is an intriguing approach to generate binding signal. Therefore, many self-assembled nanostructure-based biosensors have been developed over the past decades, using various biomolecules (e.g., peptides, DNA, RNA, lipids) and their combinations with non-biological substances. In this review, we provide an overview of recent developments in the design and fabrication of self-assembling biomolecules for biosensing. Furthermore, we discuss representative electrochemical biosensing platforms which convert the biochemical reactions of those biomolecules into electrical signals (e.g., voltage, ampere, potential difference, impedance) to contribute to detect targets. This paper also highlights the successful outcomes of self-assembling biomolecules in biosensor applications and discusses the challenges that this promising technology needs to overcome for more widespread use.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jeon Hyeong Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Woo Hyun Kwon
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inseo Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Sang Jun Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Woo-Jin Jeong
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Jun Shik Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
19
|
Wang Y, Jin X, Castro C. Accelerating the characterization of dynamic DNA origami devices with deep neural networks. Sci Rep 2023; 13:15196. [PMID: 37709771 PMCID: PMC10502017 DOI: 10.1038/s41598-023-41459-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023] Open
Abstract
Mechanical characterization of dynamic DNA nanodevices is essential to facilitate their use in applications like molecular diagnostics, force sensing, and nanorobotics that rely on device reconfiguration and interactions with other materials. A common approach to evaluate the mechanical properties of dynamic DNA nanodevices is by quantifying conformational distributions, where the magnitude of fluctuations correlates to the stiffness. This is generally carried out through manual measurement from experimental images, which is a tedious process and a critical bottleneck in the characterization pipeline. While many tools support the analysis of static molecular structures, there is a need for tools to facilitate the rapid characterization of dynamic DNA devices that undergo large conformational fluctuations. Here, we develop a data processing pipeline based on Deep Neural Networks (DNNs) to address this problem. The YOLOv5 and Resnet50 network architecture were used for the two key subtasks: particle detection and pose (i.e. conformation) estimation. We demonstrate effective network performance (F1 score 0.85 in particle detection) and good agreement with experimental distributions with limited user input and small training sets (~ 5 to 10 images). We also demonstrate this pipeline can be applied to multiple nanodevices, providing a robust approach for the rapid characterization of dynamic DNA devices.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Xin Jin
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Carlos Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
20
|
Su J, Sun C, Du J, Xing X, Wang F, Dong H. RNA-Cleaving DNAzyme-Based Amplification Strategies for Biosensing and Therapy. Adv Healthc Mater 2023; 12:e2300367. [PMID: 37084038 DOI: 10.1002/adhm.202300367] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Since their first discovery in 1994, DNAzymes have been extensively applied in biosensing and therapy that act as recognition elements and signal generators with the outstanding properties of good stability, simple synthesis, and high sensitivity. One subset, RNA-cleaving DNAzymes, is widely employed for diverse applications, including as reporters capable of transmitting detectable signals. In this review, the recent advances of RNA-cleaving DNAzyme-based amplification strategies in scaled-up biosensing are focused, the application in diagnosis and disease treatment are also discussed. Two major types of RNA-cleaving DNAzyme-based amplification strategies are highlighted, namely direct response amplification strategies and combinational response amplification strategies. The direct response amplification strategies refer to those based on novel designed single-stranded DNAzyme, and the combinational response amplification strategies mainly include two-part assembled DNAzyme, cascade reactions, CHA/HCR/RCA, DNA walker, CRISPR-Cas12a and aptamer. Finally, the current status of DNAzymes, the challenges, and the prospects of DNAzyme-based biosensors are presented.
Collapse
Affiliation(s)
- Jiaxin Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Chenyang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Jinya Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Xiaotong Xing
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Fang Wang
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, Guangdong, 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
21
|
Li HD, Ma PQ, Wang JY, Yin BC, Ye BC. A DNA Nanodevice-Based Platform with Diverse Capabilities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302301. [PMID: 37140089 DOI: 10.1002/smll.202302301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Social biotic colonies often perform intricate tasks by interindividual communication and cooperation. Inspired by these biotic behaviors, a DNA nanodevice community is proposed as a universal and scalable platform. The modular nanodevice as the infrastructure of platform contains a DNA origami triangular prism framework and a hairpin-swing arm machinery core. By coding and decoding a signal domain on the shuttled output strand in different nanodevices, an orthogonal inter-nanodevice communication network is established to connect multi-nanodevices into a functional platform. The nanodevice platform enables implementation of diverse tasks, including signal cascading and feedback, molecular input recording, distributed logic computing, and modeling of simulation for virus transmission. The nanodevice platform with powerful compatibility and programmability presents an elegant example of the combination of the distributed operation of multiple devices and the complicated interdevice communication network, and may become a new generation of intelligent DNA nanosystems.
Collapse
Affiliation(s)
- Hua-Dong Li
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Pei-Qiang Ma
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jin-Yu Wang
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832000, China
| |
Collapse
|
22
|
Takezawa Y, Mori K, Huang WE, Nishiyama K, Xing T, Nakama T, Shionoya M. Metal-mediated DNA strand displacement and molecular device operations based on base-pair switching of 5-hydroxyuracil nucleobases. Nat Commun 2023; 14:4759. [PMID: 37620299 PMCID: PMC10449808 DOI: 10.1038/s41467-023-40353-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Rational design of self-assembled DNA nanostructures has become one of the fastest-growing research areas in molecular science. Particular attention is focused on the development of dynamic DNA nanodevices whose configuration and function are regulated by specific chemical inputs. Herein, we demonstrate the concept of metal-mediated base-pair switching to induce inter- and intramolecular DNA strand displacement in a metal-responsive manner. The 5-hydroxyuracil (UOH) nucleobase is employed as a metal-responsive unit, forming both a hydrogen-bonded UOH-A base pair and a metal-mediated UOH-GdIII-UOH base pair. Metal-mediated strand displacement reactions are demonstrated under isothermal conditions based on the base-pair switching between UOH-A and UOH-GdIII-UOH. Furthermore, metal-responsive DNA tweezers and allosteric DNAzymes are developed as typical models for DNA nanodevices simply by incorporating UOH bases into the sequence. The metal-mediated base-pair switching will become a versatile strategy for constructing stimuli-responsive DNA nanostructures, expanding the scope of dynamic DNA nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Keita Mori
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Wei-En Huang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kotaro Nishiyama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tong Xing
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
23
|
Li R, Madhvacharyula AS, Du Y, Adepu HK, Choi JH. Mechanics of dynamic and deformable DNA nanostructures. Chem Sci 2023; 14:8018-8046. [PMID: 37538812 PMCID: PMC10395309 DOI: 10.1039/d3sc01793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
In DNA nanotechnology, DNA molecules are designed, engineered, and assembled into arbitrary-shaped architectures with predesigned functions. Static DNA assemblies often have delicate designs with structural rigidity to overcome thermal fluctuations. Dynamic structures reconfigure in response to external cues, which have been explored to create functional nanodevices for environmental sensing and other applications. However, the precise control of reconfiguration dynamics has been a challenge due partly to flexible single-stranded DNA connections between moving parts. Deformable structures are special dynamic constructs with deformation on double-stranded parts and single-stranded hinges during transformation. These structures often have better control in programmed deformation. However, related deformability and mechanics including transformation mechanisms are not well understood or documented. In this review, we summarize the development of dynamic and deformable DNA nanostructures from a mechanical perspective. We present deformation mechanisms such as single-stranded DNA hinges with lock-and-release pairs, jack edges, helicity modulation, and external loading. Theoretical and computational models are discussed for understanding their associated deformations and mechanics. We elucidate the pros and cons of each model and recommend design processes based on the models. The design guidelines should be useful for those who have limited knowledge in mechanics as well as expert DNA designers.
Collapse
Affiliation(s)
- Ruixin Li
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Anirudh S Madhvacharyula
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Yancheng Du
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Harshith K Adepu
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| |
Collapse
|
24
|
Kim M, Lee C, Jeon K, Lee JY, Kim YJ, Lee JG, Kim H, Cho M, Kim DN. Harnessing a paper-folding mechanism for reconfigurable DNA origami. Nature 2023; 619:78-86. [PMID: 37407684 DOI: 10.1038/s41586-023-06181-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/09/2023] [Indexed: 07/07/2023]
Abstract
The paper-folding mechanism has been widely adopted in building of reconfigurable macroscale systems because of its unique capabilities and advantages in programming variable shapes and stiffness into a structure1-5. However, it has barely been exploited in the construction of molecular-level systems owing to the lack of a suitable design principle, even though various dynamic structures based on DNA self-assembly6-9 have been developed10-23. Here we propose a method to harness the paper-folding mechanism to create reconfigurable DNA origami structures. The main idea is to build a reference, planar wireframe structure24 whose edges follow a crease pattern in paper folding so that it can be folded into various target shapes. We realized several paper-like folding and unfolding patterns using DNA strand displacement25 with high yield. Orthogonal folding, repeatable folding and unfolding, folding-based microRNA detection and fluorescence signal control were demonstrated. Stimuli-responsive folding and unfolding triggered by pH or light-source change were also possible. Moreover, by employing hierarchical assembly26 we could expand the design space and complexity of the paper-folding mechanism in a highly programmable manner. Because of its high programmability and scalability, we expect that the proposed paper-folding-based reconfiguration method will advance the development of complex molecular systems.
Collapse
Affiliation(s)
- Myoungseok Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul, Korea
| | - Chanseok Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul, Korea
| | - Kyounghwa Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea
| | - Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul, Korea
| | - Young-Joo Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea
| | - Jae Gyung Lee
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea
| | - Hyunsu Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea
| | - Maenghyo Cho
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea.
- Institute of Advanced Machines and Design, Seoul National University, Seoul, Korea.
- Institute of Engineering Research, Seoul National University, Seoul, Korea.
| |
Collapse
|
25
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
26
|
Watanabe K, Kawamata I, Murata S, Suzuki Y. Multi-Reconfigurable DNA Origami Nanolattice Driven by the Combination of Orthogonal Signals. JACS AU 2023; 3:1435-1442. [PMID: 37234113 PMCID: PMC10206592 DOI: 10.1021/jacsau.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
The progress of the scaffolded DNA origami technology has enabled the construction of various dynamic nanodevices imitating the shapes and motions of mechanical elements. To further expand the achievable configurational changes, the incorporation of multiple movable joints into a single DNA origami structure and their precise control are desired. Here, we propose a multi-reconfigurable 3 × 3 lattice structure consisting of nine frames with rigid four-helix struts connected with flexible 10-nucleotide joints. The configuration of each frame is determined by the arbitrarily selected orthogonal pair of signal DNAs, resulting in the transformation of the lattice into various shapes. We also demonstrated sequential reconfiguration of the nanolattice and its assemblies from one into another via an isothermal strand displacement reaction at physiological temperatures. Our modular and scalable design approach could serve as a versatile platform for a variety of applications that require reversible and continuous shape control with nanoscale precision.
Collapse
Affiliation(s)
- Kotaro Watanabe
- Department
of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Ibuki Kawamata
- Department
of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Satoshi Murata
- Department
of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yuki Suzuki
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- Department
of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-Cho, Tsu 514-8507, Mie, Japan
| |
Collapse
|
27
|
Zhang L, Wu H, Chen Y, Zhang S, Song M, Liu C, Li J, Cheng W, Ding S. Target response controlled enzyme activity switch for multimodal biosensing detection. J Nanobiotechnology 2023; 21:122. [PMID: 37031177 PMCID: PMC10082497 DOI: 10.1186/s12951-023-01860-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 04/10/2023] Open
Abstract
How to achieve delicate regulation of enzyme activity and empower it with more roles is the peak in the field of enzyme catalysis research. Traditional proteases or novel nano-enzymes are unable to achieve stimulus-responsive activity modulation due to their own structural limitations. Here, we propose a novel Controllable Enzyme Activity Switch, CEAS, based on hemin aggregation regulation, to deeply explore its regulatory mechanism and develop multimodal biosensing applications. The core of CEAS relies on the dimerizable inactivation of catalytically active center hemin and utilizes a DNA template to orderly guide the G4-Hemin DNAzyme to tightly bind to DNA-Hemin, thereby shutting down the catalytic ability. By customizing the design of the guide template, different target stimulus responses lead to hemin dimerization dissociation and restore the synergistic catalysis of G4-Hemin and DNA-Hemin, thus achieving a target-regulated enzymatic activity switch. Moreover, the programmability of CEAS allowed it easy to couple with a variety of DNA recognition and amplification techniques, thus developing a series of visual protein detection systems and highly sensitive fluorescent detection systems with excellent bioanalytical performance. Therefore, the construction of CEAS is expected to break the limitation of conventional enzymes that cannot be targetable regulated, thus enabling customizable enzymatic reaction systems and providing a new paradigm for controllable enzyme activities.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yirong Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Songzhi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mingxuan Song
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Changjin Liu
- Department of Laboratory Medicine, The Fifth People's Hospital of Chongqing, Chongqing, 400062, China
| | - Jia Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
28
|
Zhao H, Xiu X, Li M, Dai S, Gou M, Tao L, Zuo X, Fan C, Tian Z, Song P. Programming Super DNA-Enzyme Molecules for On-Demand Enzyme Activity Modulation. Angew Chem Int Ed Engl 2023; 62:e202214450. [PMID: 36756781 DOI: 10.1002/anie.202214450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/01/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
Dynamic interactions of enzymes, including programmable configuration and cycling of enzymes, play important roles in the regulation of cellular metabolism. Here, we constructed a super DNA-enzymes molecule (SDEM) that comprises at least two cascade enzymes and multiple linked DNA strands to control and detect metabolism. We found that the programmable SDEM, which comprises glucose oxidase (GOx) and horseradish peroxidase (HRP), has a 20-fold lower detection limit and a 1.6-fold higher reaction rate than free enzymes. An SDEM can be assembled and disassembled using a hairpin structure and a displacement DNA strand to complete multiple cycles. An entropically driven catalytic assembly (catassembly) enables different SDEMs to switch from an SDEM with GOx and HRP cascades to an SDEM with sarcosine oxidase (SOX) and HRP cascades in over six orders of magnitude less time than without the catassembly to detect different metabolisms (GO and sarcosine) on demand.
Collapse
Affiliation(s)
- Haipei Zhao
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehao Xiu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaobo Dai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingyang Gou
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Leyang Tao
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhongqun Tian
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ping Song
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
29
|
Maingi V, Zhang Z, Thachuk C, Sarraf N, Chapman ER, Rothemund PWK. Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers. Nat Commun 2023; 14:1532. [PMID: 36941256 PMCID: PMC10027858 DOI: 10.1038/s41467-023-36996-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Interactions between membrane proteins are essential for cell survival but are often poorly understood. Even the biologically functional ratio of components within a multi-subunit membrane complex-the native stoichiometry-is difficult to establish. Here we demonstrate digital nanoreactors that can control interactions between lipid-bound molecular receptors along three key dimensions: stoichiometric, spatial, and temporal. Each nanoreactor is based on a DNA origami ring, which both templates the synthesis of a liposome and provides tethering sites for DNA-based receptors (modelling membrane proteins). Receptors are released into the liposomal membrane using strand displacement and a DNA logic gate measures receptor heterodimer formation. High-efficiency tethering of receptors enables the kinetics of receptors in 1:1 and 2:2 absolute stoichiometries to be observed by bulk fluorescence, which in principle is generalizable to any ratio. Similar single-molecule-in-bulk experiments using DNA-linked membrane proteins could determine native stoichiometry and the kinetics of membrane protein interactions for applications ranging from signalling research to drug discovery.
Collapse
Affiliation(s)
- Vishal Maingi
- Department of Bioengineering, California Institute of Technology, Pasadena, CA, USA.
| | - Zhao Zhang
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Chris Thachuk
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA.
| | - Namita Sarraf
- Department of Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Edwin R Chapman
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA.
| | - Paul W K Rothemund
- Department of Bioengineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computation & Neural Systems, California Institute of Technology, Pasadena, CA, USA.
- Department of Computation + Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
30
|
Kucinic A, Huang CM, Wang J, Su HJ, Castro CE. DNA origami tubes with reconfigurable cross-sections. NANOSCALE 2023; 15:562-572. [PMID: 36520453 DOI: 10.1039/d2nr05416g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Structural DNA nanotechnology has enabled the design and construction of complex nanoscale structures with precise geometry and programmable dynamic and mechanical properties. Recent efforts have led to major advances in the capacity to actuate shape changes of DNA origami devices and incorporate DNA origami into larger assemblies, which open the prospect of using DNA to design shape-morphing assemblies as components of micro-scale reconfigurable or sensing materials. Indeed, a few studies have constructed higher order assemblies with reconfigurable devices; however, these demonstrations have utilized structures with relatively simple motion, primarily hinges that open and close. To advance the shape changing capabilities of DNA origami assemblies, we developed a multi-component DNA origami 6-bar mechanism that can be reconfigured into various shapes and can be incorporated into larger assemblies while maintaining capabilities for a variety of shape transformations. We demonstrate the folding of the 6-bar mechanism into four different shapes and demonstrate multiple transitions between these shapes. We also studied the shape preferences of the 6-bar mechanism in competitive folding reactions to gain insight into the relative free energies of the shapes. Furthermore, we polymerized the 6-bar mechanism into tubes with various cross-sections, defined by the shape of the individual mechanism, and we demonstrate the ability to change the shape of the tube cross-section. This expansion of current single-device reconfiguration to higher order scales provides a foundation for nano to micron scale DNA nanotechnology applications such as biosensing or materials with tunable properties.
Collapse
Affiliation(s)
- Anjelica Kucinic
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chao-Min Huang
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jingyuan Wang
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Hai-Jun Su
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Carlos E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
31
|
Snider DM, Pandit S, Coffin ML, Ebrahimi SB, Samanta D. DNA-Mediated Control of Protein Function in Semi-Synthetic Systems. Chembiochem 2022; 23:e202200464. [PMID: 36058885 DOI: 10.1002/cbic.202200464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Indexed: 01/25/2023]
Abstract
The development of strategies for controlling protein function in a precise and predictable manner has the potential to revolutionize catalysis, diagnostics, and medicine. In this regard, the use of DNA has emerged as a powerful approach for modulating protein activity. The programmable nature of DNA allows for constructing sophisticated architectures wherein proteins can be placed with control over position, orientation, and stoichiometry. This ability is especially useful considering that the properties of proteins can be influenced by their local environment or their proximity to other functional molecules. Here, we chronicle the different strategies that have been developed to interface DNA with proteins in semi-synthetic systems. We further delineate the unique applications unlocked by the unprecedented level of structural control that DNA affords. We end by outlining outstanding challenges in the area and discuss future research directions towards potential solutions.
Collapse
Affiliation(s)
- Dylan M Snider
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Subrata Pandit
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Mackenzie L Coffin
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Sasha B Ebrahimi
- Drug Product Development - Steriles, GlaxoSmithKline 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| |
Collapse
|
32
|
Chen Z, Chen K, Xie C, Liao K, Xu F, Pan L. Cyclic transitions of DNA origami dimers driven by thermal cycling. NANOTECHNOLOGY 2022; 34:065601. [PMID: 36332233 DOI: 10.1088/1361-6528/aca02f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
It is widely observed that life activities are regulated through conformational transitions of biological macromolecules, which inspires the construction of environmental responsive nanomachines in recent years. Here we present a thermal responsive DNA origami dimers system, whose conformations can be cyclically switched by thermal cycling. In our strategy, origami dimers are assembled at high temperatures and disassembled at low temperatures, which is different from the conventional strategy of breaking nanostructures using high temperatures. The advantage of this strategy is that the dimers system can be repeatedly operated without significant performance degradation, compared to traditional strategies such as conformational transitions via i-motif and G-quadruplexes, whose performance degrades with sample dilution due to repeated addition of trigger solutions. The cyclic conformational transitions of the dimers system are verified by fluorescence curves and AFM images. This research offered a new way to construct cyclic transformational nanodevices, such as reusable nanomedicine delivery systems or nanorobots with long service lifetimes.
Collapse
Affiliation(s)
- Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Kuiting Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Chun Xie
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Kangchao Liao
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Fei Xu
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| |
Collapse
|
33
|
Bucci J, Irmisch P, Del Grosso E, Seidel R, Ricci F. Orthogonal Enzyme-Driven Timers for DNA Strand Displacement Reactions. J Am Chem Soc 2022; 144:19791-19798. [PMID: 36257052 DOI: 10.1021/jacs.2c06599] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we demonstrate a strategy to rationally program a delayed onset of toehold-mediated DNA strand displacement reactions (SDRs). The approach is based on blocker strands that efficiently inhibit the strand displacement by binding to the toehold domain of the target DNA. Specific enzymatic degradation of the blocker strand subsequently enables SDR. The kinetics of the blocker enzymatic degradation thus controls the time at which the SDR starts. By varying the concentration of the blocker strand and the concentration of the enzyme, we show that we can finely tune and modulate the delayed onset of SDR. Additionally, we show that the strategy is versatile and can be orthogonally controlled by different enzymes each specifically targeting a different blocker strand. We designed and established three different delayed SDRs using RNase H and two DNA repair enzymes (formamidopyrimidine DNA glycosylase and uracil-DNA glycosylase) and corresponding blockers. The achieved temporal delay can be programed with high flexibility without undesired leak and can be conveniently predicted using kinetic modeling. Finally, we show three possible applications of the delayed SDRs to temporally control the ligand release from a DNA nanodevice, the inhibition of a target protein by a DNA aptamer, and the output signal generated by a DNA logic circuit.
Collapse
Affiliation(s)
- Juliette Bucci
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Patrick Irmisch
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Erica Del Grosso
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Ralf Seidel
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Francesco Ricci
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
34
|
Wang Z, St Iago-Mcrae E, Ebrahimimojarad A, Won Oh S, Fu J. Modulation of Enzyme Cascade Activity by Local Substrate Enrichment and Exclusion on DNA Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12594-12601. [PMID: 36194827 DOI: 10.1021/acs.langmuir.2c02064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Substrate confinement and channeling play a critical role in multienzyme pathways and are considered to impact the catalytic efficiency and specificity of biomimetic and artificial nanoreactors. Here we reported a modulation of a multienzyme system with the cascade activity impacted by the surface affinity binding to substrate molecules. A DNA origami modified with aptamers was used to bind and enrich ATP molecules in the local area of immobilized enzymes, thereby enhancing the activity of an enzyme cascade by more than 2-fold. Alternatively, DNA nanostructure modified with blocked aptamers does not bind with ATP, thereby reducing the activity of the enzyme cascade. The Michaelis-Menten kinetics showed decreased apparent KM values (∼3-fold lower) for enzyme nanostructures modified with aptamers, suggesting the higher effective substrate concentration near enzymes due to the local enrichment of substrates. Conversely, increased apparent KM values (∼2-fold higher) were observed for enzyme nanostructures modified with blocked aptamers, possibly due to the exclusion of substrates approaching the surface. The similar concept of this modified surface-substrate interaction should be applicable to other multienzyme systems immobilized on nanostructures, which could be useful in the development of biomimetic nanoreactors.
Collapse
Affiliation(s)
- Zhicheng Wang
- Center for Computational and Integrative Biology, Rutgers University-Camden, 201 Broadway, Camden, New Jersey08103, United States
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, New Jersey08102, United States
| | - Ezry St Iago-Mcrae
- Center for Computational and Integrative Biology, Rutgers University-Camden, 201 Broadway, Camden, New Jersey08103, United States
| | - Alireza Ebrahimimojarad
- Center for Computational and Integrative Biology, Rutgers University-Camden, 201 Broadway, Camden, New Jersey08103, United States
| | - Sung Won Oh
- Center for Computational and Integrative Biology, Rutgers University-Camden, 201 Broadway, Camden, New Jersey08103, United States
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, New Jersey08102, United States
| | - Jinglin Fu
- Center for Computational and Integrative Biology, Rutgers University-Camden, 201 Broadway, Camden, New Jersey08103, United States
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, New Jersey08102, United States
| |
Collapse
|
35
|
Wang Z, Xie S, Wu L, Chen F, Qiu L, Tan W. Aptamer-Functionalized Nanodevices for Dynamic Manipulation of Membrane Receptor Signaling in Living Cells. NANO LETTERS 2022; 22:7853-7859. [PMID: 36126113 DOI: 10.1021/acs.nanolett.2c02522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The capacity to regulate the signaling amplitude of membrane receptors in a user-defined manner would open various opportunities for precise biological study and therapy. While partial agonists enabled downtuning of cellular responses, they required esoteric optimization of the ligand-receptor interface, limiting their practical applications. Herein, we developed an aptamer-functionalized, tweezer-like nanodevice to dynamically modulate the cellular behavior through control over the distance between receptors in the dimer with no need to involve complicated structural analysis. By combining a reversible conformation switch with aptamer-based molecular recognition, this nanodevice showed excellent performance on dynamic regulation of CD28 receptor-mediated T cell immunity. With the modular design, this nanodevice could be extended to dynamically modulate the activity of other membrane receptors (e.g., c-Met), expecting to offer a new paradigm for precise study and manipulation of specific molecular events in complex biological systems.
Collapse
Affiliation(s)
- Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Sitao Xie
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Limei Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
36
|
Trinh T, Thompson IAP, Clark F, Remington JM, Eisenstein M, Li J, Soh HT. A Photoresponsive Intramolecular Triplex Motif That Enables Rapid and Reversible Control of Aptamer Binding Activity. ACS NANO 2022; 16:14549-14557. [PMID: 36094303 DOI: 10.1021/acsnano.2c05010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNA switches that can change conformation in response to certain wavelengths of light could enable rapid and noninvasive control of chemical processes for a wide range of applications. However, most current photoresponsive DNA switches are limited by either irreversible switching or reversible switching with impractically slow kinetics. Here, we report the design of an intramolecular triplex photoswitch (TPS) design based on single-stranded DNA that undergoes rapid and reversible photoswitching between folded and unfolded states through isomerization of internal azobenzene modifications. After optimizing the performance of our photoswitch design, we used molecular dynamics simulations to reveal how individual azobenzenes contribute to the stabilization or destabilization of the triplex depending on their photoisomerization state. By coupling our TPS to an existing aptamer, we can reversibly modulate its binding affinity with less than 15 s of UV light exposure. We further demonstrate reproducible shifting in affinity over multiple cycles of UV and blue light irradiation without substantial photobleaching.
Collapse
Affiliation(s)
- Tuan Trinh
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Ian Andrew Paul Thompson
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Finley Clark
- Department of Chemistry, The University of Vermont, Burlington, Vermont 05405, United States
| | - Jacob M Remington
- Department of Chemistry, The University of Vermont, Burlington, Vermont 05405, United States
| | - Michael Eisenstein
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Jianing Li
- Department of Chemistry, The University of Vermont, Burlington, Vermont 05405, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hyongsok Tom Soh
- Department of Radiology, Stanford University, Stanford, California 94305, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
37
|
Sekhon H, Ha JH, Loh SN. Engineering protein and DNA tools for creating DNA-dependent protein switches. Methods Enzymol 2022; 675:1-32. [PMID: 36220266 PMCID: PMC10314797 DOI: 10.1016/bs.mie.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Switchable proteins are capable of changing conformations from inactive (OFF) to active (ON) forms in response to inputs such as ligand binding, pH or temperature change, or light absorption. A particularly powerful class of protein switches, exemplified by the Cas nucleases of CRISPR systems, are activated by binding of specific DNA or RNA sequences. The mechanism by which oligonucleotide binding regulates biological activity is complex and highly specialized in the case of Cas enzymes, but recent advancements in protein and DNA engineering have made it possible to introduce this mode of control into other enzymes. This chapter highlights recent examples of protein switches that combine these two fields of engineering for the purpose of creating biosensors that detect pathogen and other genomic sequences. One protein engineering method-alternate frame folding-has the potential to convert many proteins into ligand-activated switches by inserting a binding protein (input domain) into an enzyme (output domain). The steps for doing so are illustrated using GCN4 as a DNA recognition domain and nanoluciferase as a luminescent reporter that changes color as a result of DNA binding. DNA engineering protocols are included for creating DNA tools (de novo designed hairpins and modified aptamers), that enable the biosensor to be activated by arbitrary DNA/RNA sequences and small molecules/proteins, respectively. These methodologies can be applied to other proteins to gain control of their functions by DNA binding.
Collapse
Affiliation(s)
- Harsimranjit Sekhon
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
38
|
Wang L, Cui J, Tanner JA, Shiu SCC. Self-Assembly of DNA Tiles with G-Quadruplex DNAzyme Catalytic Activity for Sensing Applications. ACS APPLIED BIO MATERIALS 2022; 5:3788-3794. [PMID: 35916910 DOI: 10.1021/acsabm.2c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA tiles form through self-assembly of a small number of DNA strands that interact through basic repeated interactions, allowing the growth of nanoscale structures seeded by molecular inputs. If an approach for catalytic signal amplification can be integrated into the resultant nanostructure, then one can anticipate biosensing or diagnostic applications mediated by DNA tile self-assembly. Here, two-dimensional DNA tiles with split quadruplexes were designed as diagnostic tools for nucleic acid sensing without the use of protein enzymes. The presence of a target sequence leads to formation of extended microscale structures with arrayed multiple G-quadruplexes across the tile plane, with catalytic activity coupled to a colorimetric reporter. Such a mechanism has potential for low-cost signal amplification using unmodified DNA without the use of protein enzymes for biosensing.
Collapse
Affiliation(s)
- Lin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Jingyu Cui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Julian A Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Hong Kong, China.,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Simon Chi-Chin Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Hong Kong, China
| |
Collapse
|
39
|
Liu C, Deng J, Yi J, Zhang R, Chen L, Fu X, Liao S, Yi W, Zou G, Yang H. A novel binding-induced DNAzyme motor triggered by survivin mRNA. Anal Bioanal Chem 2022; 414:6167-6175. [PMID: 35767031 DOI: 10.1007/s00216-022-04183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
The accurate and sensitive detection of survivin mRNA is of great significance for cancer diagnosis and treatment. However, limited by the low-abundance mRNA in live cells, most strategies of survivin mRNA detection that were one-to-one signal-triggered model (one target triggered one signal) were inapplicable in practice. Here, we reported a binding-induced DNAzyme motor triggered by the survivin mRNA, which was a one-to-more signal-triggered model (one target triggered more signals), amplifying the detection signal and enhancing the sensitivity. The nanomotor is constructed by assembling several DNAzyme motor strands silenced by the blocker strands, and dozens of FAM-labeled substrate strands on a single gold nanoparticle (AuNP), forming three-dimensional DNA tracks. Through building the survivin mRNA bridge between the blocker and the DNAzyme motor strand, the binding-induced DNA nanomotor could be triggered by survivin mRNA. The operation of the DNAzyme motor was self-powered. And each walking step of the DNAzyme motor was fueled by DNAzyme-catalyzed substrate cleavage, along with the cleavage of the fluorescent molecule, resulting in autonomous and progressive walking along the AuNP-based tracks, and the fluorescence increase. The DNAzyme motor exhibited excellent sensitivity and remarkable specificity for survivin mRNA, providing the potential for cell image.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China.
| | - Jiyu Deng
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Juan Yi
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Ru Zhang
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Lixin Chen
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Xin Fu
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Shuzhen Liao
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Wenjun Yi
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, Hunan, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Hai Yang
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China.
| |
Collapse
|
40
|
Del Grosso E, Irmisch P, Gentile S, Prins LJ, Seidel R, Ricci F. Dissipative Control over the Toehold-Mediated DNA Strand Displacement Reaction. Angew Chem Int Ed Engl 2022; 61:e202201929. [PMID: 35315568 PMCID: PMC9324813 DOI: 10.1002/anie.202201929] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 12/31/2022]
Abstract
Here we show a general approach to achieve dissipative control over toehold-mediated strand-displacement, the most widely employed reaction in the field of DNA nanotechnology. The approach relies on rationally re-engineering the classic strand displacement reaction such that the high-energy invader strand (fuel) is converted into a low-energy waste product through an energy-dissipating reaction allowing the spontaneous return to the original state over time. We show that such dissipative control over the toehold-mediated strand displacement process is reversible (up to 10 cycles), highly controllable and enables unique temporal activation of DNA systems. We show here two possible applications of this strategy: the transient labelling of DNA structures and the additional temporal control of cascade reactions.
Collapse
Affiliation(s)
- Erica Del Grosso
- Department of ChemistryUniversity of Rome Tor VergataVia della Ricerca Scientifica00133RomeItaly
| | - Patrick Irmisch
- Molecular Biophysics GroupPeter Debye Institute for Soft Matter PhysicsUniversität Leipzig04103LeipzigGermany
| | - Serena Gentile
- Department of ChemistryUniversity of Rome Tor VergataVia della Ricerca Scientifica00133RomeItaly
| | - Leonard J. Prins
- Department of Chemical fSciencesUniversity of PaduaVia Marzolo 135131PaduaItaly
| | - Ralf Seidel
- Molecular Biophysics GroupPeter Debye Institute for Soft Matter PhysicsUniversität Leipzig04103LeipzigGermany
| | - Francesco Ricci
- Department of ChemistryUniversity of Rome Tor VergataVia della Ricerca Scientifica00133RomeItaly
| |
Collapse
|
41
|
Song L, Zhuge Y, Zuo X, Li M, Wang F. DNA Walkers for Biosensing Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200327. [PMID: 35460209 PMCID: PMC9366574 DOI: 10.1002/advs.202200327] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Indexed: 05/07/2023]
Abstract
The ability to design nanostructures with arbitrary shapes and controllable motions has made DNA nanomaterials used widely to construct diverse nanomachines with various structures and functions. The DNA nanostructures exhibit excellent properties, including programmability, stability, biocompatibility, and can be modified with different functional groups. Among these nanoscale architectures, DNA walker is one of the most popular nanodevices with ingenious design and flexible function. In the past several years, DNA walkers have made amazing progress ranging from structural design to biological applications including constructing biosensors for the detection of cancer-associated biomarkers. In this review, the key driving forces of DNA walkers are first summarized. Then, the DNA walkers with different numbers of legs are introduced. Furthermore, the biosensing applications of DNA walkers including the detection- of nucleic acids, proteins, ions, and bacteria are summarized. Finally, the new frontiers and opportunities for developing DNA walker-based biosensors are discussed.
Collapse
Affiliation(s)
- Lu Song
- Department of CardiologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200800China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Ying Zhuge
- Department of CardiologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200800China
| | - Xiaolei Zuo
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Min Li
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Fang Wang
- Department of CardiologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200800China
| |
Collapse
|
42
|
Ouyang Y, Zhang P, Willner I. Dissipative biocatalytic cascades and gated transient biocatalytic cascades driven by nucleic acid networks. SCIENCE ADVANCES 2022; 8:eabn3534. [PMID: 35522744 PMCID: PMC9075803 DOI: 10.1126/sciadv.abn3534] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Living systems consist of complex transient cellular networks guiding structural, catalytic, and switchable functions driven by auxiliary triggers, such as chemical or light energy inputs. We introduce two different transient, dissipative, biocatalytic cascades, the coupled glucose oxidase (GOx)/horseradish peroxidase (HRP) glucose-driven oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2-) to the radical anion (ABTS•-) and the lactate dehydrogenase (LDH)/nicotinamide adenine dinucleotide (NAD+) lactate-driven reduction of NAD+ to NADH. The transient biocatalytic systems are driven by nucleic acid reaction modules using a nucleic acid fuel strand L1' and a nicking enzyme, Nt.BbvCI, as fuel-degrading catalyst, leading to the dynamic spatiotemporal transient formation of structurally proximate biocatalysts activating the biocatalytic cascades and transient coupled processes, including the generation of chemiluminescence and the synthesis of alanine. Subjecting the mixture of biocatalysts to selective inhibitors allows the gated transient operation of the biocatalysts. The kinetics of transient biocatalytic cascades are accompanied by kinetic models and computational simulations.
Collapse
|
43
|
Del Grosso E, Irmisch P, Gentile S, Prins LJ, Seidel R, Ricci F. Dissipative Control over the Toehold‐Mediated DNA Strand Displacement Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Erica Del Grosso
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Patrick Irmisch
- Molecular Biophysics Group Peter Debye Institute for Soft Matter Physics Universität Leipzig 04103 Leipzig Germany
| | - Serena Gentile
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Leonard J. Prins
- Department of Chemical fSciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Ralf Seidel
- Molecular Biophysics Group Peter Debye Institute for Soft Matter Physics Universität Leipzig 04103 Leipzig Germany
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
44
|
Chang X, Yang Q, Lee J, Zhang F. Self-Assembled Nucleic Acid Nanostructures for Biomedical Applications. Curr Top Med Chem 2022; 22:652-667. [PMID: 35319373 DOI: 10.2174/1568026622666220321140729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
Structural DNA nanotechnology has been developed into a powerful method for creating self-assembled nanomaterials. Their compatibility with biosystems, nanoscale addressability, and programmable dynamic features make them appealing candidates for biomedical research. This review paper focuses on DNA self-assembly strategies and designer nanostructures with custom functions for biomedical applications. Specifically, we review the development of DNA self-assembly methods, from simple DNA motifs consisting of a few DNA strands to complex DNA architectures assembled by DNA origami. Three advantages are discussed using structural DNA nanotechnology for biomedical applications: (1) precise spatial control, (2) molding and guiding other biomolecules, and (3) using reconfigurable DNA nanodevices to overcome biomedical challenges. Finally, we discuss the challenges and opportunities of employing DNA nanotechnology for biomedical applications, emphasizing diverse assembly strategies to create a custom DNA nanostructure with desired functions.
Collapse
Affiliation(s)
- Xu Chang
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
| | - Qi Yang
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
| | - Jungyeon Lee
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
| | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
45
|
Pal N. Single-Molecule FRET: A Tool to Characterize DNA Nanostructures. Front Mol Biosci 2022; 9:835617. [PMID: 35330798 PMCID: PMC8940195 DOI: 10.3389/fmolb.2022.835617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
DNA nanostructures often involve temporally evolving spatial features. Tracking these temporal behaviors in real time requires sophisticated experimental methods with sufficiently high spatial and temporal resolution. Among the several strategies developed for this purpose, single-molecule FRET (smFRET) offers avenues to observe the structural rearrangement or locomotion of DNA nanostructures in real time and quantitatively measure the kinetics as well at the single nanostructure level. In this mini review, we discuss a few applications of smFRET-based techniques to study DNA nanostructures. These examples exemplify how smFRET signals not only have played an important role in the characterization of the nanostructures but also often have helped to improve the design and overall performance of the nanostructures and the devices designed from those structures. Overall, this review consolidates the potential of smFRET in providing crucial quantitative information on structure–function relations in DNA nanostructures.
Collapse
|
46
|
Liu S, Xiang K, Wang C, Zhang Y, Fan GC, Wang W, Han H. DNA Nanotweezers for Biosensing Applications: Recent Advances and Future Prospects. ACS Sens 2022; 7:3-20. [PMID: 34989231 DOI: 10.1021/acssensors.1c01647] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA nanotweezers (DTs) are reversible DNA nanodevices that can optionally switch between opened and closed states. Due to their excellent flexibility and high programmability, they have been recognized as a promising platform for constructing a diversity of biosensors and logic gates, as well as a versatile tool for molecular biology studies. In this review, we provide an overview of biosensing applications using DTs. First, the design and working principle of DTs are introduced. Next, the signal producing principles of DTs are summarized. Furthermore, biosensing applications of DTs for varying targets and purposes, both in buffers and complex biological environments, are highlighted. Finally, we provide potential opportunities and challenges for the further development of DTs.
Collapse
Affiliation(s)
- Shanshan Liu
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Kaikai Xiang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Chunyan Wang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Yutian Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Gao-Chao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, People’s Republic of China
| | - Wenjing Wang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People’s Republic of China
| | - Heyou Han
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| |
Collapse
|
47
|
Adendorff MR, Tang GQ, Millar D, Bathe M, Bricker W. Computational investigation of the impact of core sequence on immobile DNA four-way junction structure and dynamics. Nucleic Acids Res 2022; 50:717-730. [PMID: 34935970 PMCID: PMC8789063 DOI: 10.1093/nar/gkab1246] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Immobile four-way junctions (4WJs) are core structural motifs employed in the design of programmed DNA assemblies. Understanding the impact of sequence on their equilibrium structure and flexibility is important to informing the design of complex DNA architectures. While core junction sequence is known to impact the preferences for the two possible isomeric states that junctions reside in, previous investigations have not quantified these preferences based on molecular-level interactions. Here, we use all-atom molecular dynamics simulations to investigate base-pair level structure and dynamics of four-way junctions, using the canonical Seeman J1 junction as a reference. Comparison of J1 with equivalent single-crossover topologies and isolated nicked duplexes reveal conformational impact of the double-crossover motif. We additionally contrast J1 with a second junction core sequence termed J24, with equal thermodynamic preference for each isomeric configuration. Analyses of the base-pair degrees of freedom for each system, free energy calculations, and reduced-coordinate sampling of the 4WJ isomers reveal the significant impact base sequence has on local structure, isomer bias, and global junction dynamics.
Collapse
Affiliation(s)
- Matthew R Adendorff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guo Qing Tang
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - David P Millar
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William P Bricker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
48
|
Narayanan RP, Abraham L. Structural DNA nanotechnology: Immobile Holliday junctions to artificial robots. Curr Top Med Chem 2022; 22:668-685. [PMID: 35023457 DOI: 10.2174/1568026622666220112143401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
DNA nanotechnology marvels the scientific world with its capabilities to design, engineer, and demonstrate nanoscale shapes. This review is a condensed version walking the reader through the structural developments in the field over the past 40 years starting from the basic design rules of the double-stranded building block to the most recent advancements in self-assembled hierarchically achieved structures to date. It builds off from the fundamental motivation of building 3-dimensional (3D) lattice structures of tunable cavities going all the way up to artificial nanorobots fighting cancer. The review starts by covering the most important developments from the fundamental bottom-up approach of building structures, which is the 'tile' based approach covering 1D, 2D, and 3D building blocks, after which, the top-down approach using DNA origami and DNA bricks is also covered. Thereafter, DNA nanostructures assembled using not so commonly used (yet promising) techniques like i-motifs, quadruplexes, and kissing loops are covered. Highlights from the field of dynamic DNA nanostructures have been covered as well, walking the reader through the various approaches used within the field to achieve movement. The article finally concludes by giving the authors a view of what the future of the field might look like while suggesting in parallel new directions that fellow/future DNA nanotechnologists could think about.
Collapse
Affiliation(s)
- Raghu Pradeep Narayanan
- Centre for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe-85281, USA
| | - Leeza Abraham
- Centre for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe-85281, USA
| |
Collapse
|
49
|
Saliba D, Trinh T, Lachance-Brais C, Prinzen AL, Rizzuto FJ, de Rochambeau D, Sleiman HF. Asymmetric patterning drives the folding of a tripodal DNA nanotweezer. Chem Sci 2021; 13:74-80. [PMID: 35059153 PMCID: PMC8694393 DOI: 10.1039/d1sc04793k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022] Open
Abstract
DNA tweezers have emerged as powerful devices for a wide range of biochemical and sensing applications; however, most DNA tweezers consist of single units activated by DNA recognition, limiting their range of motion and ability to respond to complex stimuli. Herein, we present an extended, tripodal DNA nanotweezer with a small molecule junction. Simultaneous, asymmetric elongation of our molecular core is achieved using polymerase chain reaction (PCR) to produce length- and sequence-specific DNA arms with repeating DNA regions. When rigidified, our DNA tweezer can be addressed with streptavidin-binding ligands. Full control over the number, separation, and location of these ligands enables site-specific streptavidin recognition; all three arms of the DNA nanotweezer wrap around multiple streptavidin units simultaneously. Our approach combines the simplicity of DNA tile arrays with the size regime normally provided by DNA origami, offering an integrated platform for the use of branched DNA scaffolds as structural building blocks, protein sensors, and dynamic, stimuli-responsive materials.
Collapse
Affiliation(s)
- Daniel Saliba
- Department of Chemistry, McGill University 801 rue Sherbrooke West Montreal QC H3A 0B8 Canada
| | - Tuan Trinh
- Department of Chemistry, McGill University 801 rue Sherbrooke West Montreal QC H3A 0B8 Canada
| | | | - Alexander L Prinzen
- Department of Chemistry, McGill University 801 rue Sherbrooke West Montreal QC H3A 0B8 Canada
| | - Felix J Rizzuto
- Department of Chemistry, McGill University 801 rue Sherbrooke West Montreal QC H3A 0B8 Canada
| | - Donatien de Rochambeau
- Department of Chemistry, McGill University 801 rue Sherbrooke West Montreal QC H3A 0B8 Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University 801 rue Sherbrooke West Montreal QC H3A 0B8 Canada
| |
Collapse
|
50
|
Liu M, Xu R, Liu W, Qiu JG, Wang Y, Ma F, Zhang CY. Integration of exonuclease III-powered three-dimensional DNA walker with single-molecule detection for multiple initiator caspases assay. Chem Sci 2021; 12:15645-15654. [PMID: 35003595 PMCID: PMC8654043 DOI: 10.1039/d1sc05115f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Initiator caspases are important components of cellular apoptotic signaling and they can activate effector caspases in extrinsic and intrinsic apoptotic pathways. The simultaneous detection of multiple initiator caspases is essential for apoptosis mechanism studies and disease therapy. Herein, we develop a sensitive nanosensor based on the integration of exonuclease III (Exo III)-powered three-dimensional (3D) DNA walker with single-molecule detection for the simultaneous measurement of initiator caspase-8 and caspase-9. This assay involves two peptide-DNA detection probe-conjugated magnetic beads and two signal probe-conjugated gold nanoparticles (signal probes@AuNPs). The presence of caspase-8 and caspase-9 can induce the cleavage of peptides in two peptide-DNA detection probes, releasing two trigger DNAs from the magnetic beads, respectively. The two trigger DNAs can serve as the walker DNA to walk on the surface of the signal probes@AuNPs powered by Exo III digestion, liberating numerous Cy5 and Texas Red fluorophores which can be quantified by single-molecule detection, with Cy5 indicating caspase-8 and Texas Red indicating caspase-9. Notably, the introduction of the AuNP-based 3D DNA walker greatly reduces the background signal and amplifies the output signals, and the introduction of single-molecule detection further improves the detection sensitivity. This nanosensor is very sensitive with a detection limit of 2.08 × 10-6 U μL-1 for caspase-8 and 1.71 × 10-6 U μL-1 for caspase-9, and it can be used for the simultaneous screening of caspase inhibitors and the measurement of endogenous caspase activity in various cell lines at the single-cell level. Moreover, this nanosensor can be extended to detect various proteases by simply changing the peptide sequences of the detection probes.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 China +86-0531-82615258 +86-0531-86186033
| | - Rui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 China +86-0531-82615258 +86-0531-86186033
| | - Wenjing Liu
- Academy of Medical Sciences, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 China
| | - Yan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 China +86-0531-82615258 +86-0531-86186033
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 China +86-0531-82615258 +86-0531-86186033
| |
Collapse
|