1
|
Li S, Shi R, Song J, Jiang X. Structure and Dissociation of Water at the Electrode-Solution Interface Studied by In Situ Vibrational Spectroscopic Techniques. Anal Chem 2025; 97:10535-10549. [PMID: 40359500 DOI: 10.1021/acs.analchem.5c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
In aqueous electrochemistry, water in contact with charged surfaces is ubiquitous and indispensable, dictating the binding of solutes to electrode surfaces as well as the transport process of protons and electrons in the interfacial region. A comprehensive understanding of the structure and dissociation of interfacial water at the molecular level is extremely important yet challenging, given its critical role in various physical, chemical, and biological processes. In situ vibrational spectroscopic techniques serve as a powerful tool for acquiring the molecular structure of electrode surfaces and probing interfacial reaction mechanisms in real time. In this review, we briefly summarize the latest advances in the electric double layer model and the experimental methods employed at the electrode-solution interface. Particular emphasis is placed on in situ vibrational spectroscopic techniques that have unveiled new insights into the molecular structure of interfacial water across diverse electrode surfaces under ambient conditions. And then, it also provides an overview of recent progress on the subtle relationship between the structure of interfacial water and its dissociation activity, aiming to provide novel insights into the fields of electrochemistry, energy and catalysis.
Collapse
Affiliation(s)
- Shanshan Li
- School of Physics, Changchun Normal University, Changchun 130032, Jilin, China
- Research Institute for Scientific and Technological Innovation, Changchun Normal University, Changchun 130032, Jilin, China
| | - Ruijia Shi
- School of Physics, Changchun Normal University, Changchun 130032, Jilin, China
| | - Jiaru Song
- School of Physics, Changchun Normal University, Changchun 130032, Jilin, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Zhou H, Li D, Lv Q, Lee C. Integrative plasmonics: optical multi-effects and acousto-electric-thermal fusion for biosensing, energy conversion, and photonic circuits. Chem Soc Rev 2025. [PMID: 40354162 DOI: 10.1039/d4cs00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Surface plasmons, a unique optical phenomenon arising at the interface between metals and dielectrics, have garnered significant interest across fields such as biochemistry, materials science, energy, optics, and nanotechnology. Recently, plasmonics is evolving from a focus on "classical plasmonics," which emphasizes fundamental effects and applications, to "integrative plasmonics," which explores the integration of plasmonics with multidisciplinary technologies. This review explores this evolution, summarizing key developments in this technological shift and offering a timely discussion on the fusion mechanisms, strategies, and applications. First, we examine the integration mechanisms of plasmons within the realm of optics, detailing how fundamental plasmonic effects give rise to optical multi-effects, such as plasmon-phonon coupling, nonlinear optical effects, electromagnetically induced transparency, chirality, nanocavity resonance, and waveguides. Next, we highlight strategies for integrating plasmons with technologies beyond optics, analyzing the processes and benefits of combining plasmonics with acoustics, electronics, and thermonics, including comprehensive plasmonic-electric-acousto-thermal integration. We then review cutting-edge applications in biochemistry (molecular diagnostics), energy (harvesting and catalysis), and informatics (photonic integrated circuits). These applications involve surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), surface-enhanced fluorescence (SEF), chirality, nanotweezers, photoacoustic imaging, perovskite solar cells, photocatalysis, photothermal therapy, and triboelectric nanogenerators (TENGs). Finally, we conclude with a forward-looking perspective on the challenges and future of integrative plasmonics, considering advances in mechanisms (quantum effects, spintronics, and topology), materials (Dirac semimetals and hydrogels), technologies (machine learning, edge computing, in-sensor computing, and neuroengineering), and emerging applications (5G, 6G, virtual reality, and point-of-care testing).
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Qiaoya Lv
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
3
|
Getmanov I, Wang Q, Wang H, Shamim A, Anjum DH. Microwave characterization of plasmonic antennas through electron energy loss spectroscopy. NANOSCALE ADVANCES 2025; 7:2695-2708. [PMID: 40160257 PMCID: PMC11949246 DOI: 10.1039/d4na00960f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
The absence of suitable equipment has long hindered traditional microwave characterization of nano-antennas and their effective design at frequencies beyond several terahertz, limiting the exploration of the myriad applications of plasmonic antennas by the microwave engineering community and necessitating a paradigm shift in characterization methods. This work addresses this challenge by introducing a novel approach employing electron energy loss spectroscopy (EELS) to characterize input impedance and scattering parameters of plasmonic antennas from mid-infrared to optical frequencies. Central to this method is a newly developed theoretical framework that links electron energy loss probability with microwave scattering parameters, crucial for antenna design. We validated this approach through a study of a single plasmonic dipole, finding a good correspondence between the measured EEL spectra and our theoretical model, supported by our developed simulation model. Drawing upon this correlation, we proposed an algorithm for the reverse procedure of extracting S-parameters and input impedance from experimental EEL probability. Spatial profiles of input impedance and S-parameters for a single plasmonic dipole were experimentally characterized across the broad frequency spectrum ranging from 25 to 150 THz and compared with simulation results, revealing a robust correlation, particularly at resonant frequencies. Our non-contact method could serve as an alternative approach to microwave parameters characterization, functioning similarly to a vector network analyzer (VNA) but extending its capabilities to much higher frequencies, where VNAs are not available.
Collapse
Affiliation(s)
- Igor Getmanov
- IMPACT Lab, King Abdullah University of Science and Technology Thuwal 23955 Kingdom of Saudi Arabia
| | - Qingxiao Wang
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology Thuwal 23955 Kingdom of Saudi Arabia
| | - Heng Wang
- IMPACT Lab, King Abdullah University of Science and Technology Thuwal 23955 Kingdom of Saudi Arabia
| | - Atif Shamim
- IMPACT Lab, King Abdullah University of Science and Technology Thuwal 23955 Kingdom of Saudi Arabia
| | | |
Collapse
|
4
|
Li Q, Yu S, Li Z, Liu W, Cheng H, Chen S. Metasurface-enhanced biomedical spectroscopy. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:1045-1068. [PMID: 40290277 PMCID: PMC12019954 DOI: 10.1515/nanoph-2024-0589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/18/2024] [Indexed: 04/30/2025]
Abstract
Enhancing the sensitivity of biomedical spectroscopy is crucial for advancing medical research and diagnostics. Metasurfaces have emerged as powerful platforms for enhancing the sensitivity of various biomedical spectral detection technologies. This capability arises from their unparalleled ability to improve interactions between light and matter through the localization and enhancement of light fields. In this article, we review representative approaches and recent advances in metasurface-enhanced biomedical spectroscopy. We provide a comprehensive discussion of various biomedical spectral detection technologies enhanced by metasurfaces, including infrared spectroscopy, Raman spectroscopy, fluorescence spectroscopy, and other spectral modalities. We demonstrate the advantages of metasurfaces in improving detection sensitivity, reducing detection limits, and achieving rapid biomolecule detection while discussing the challenges associated with the design, preparation, and stability of metasurfaces in biomedical detection procedures. Finally, we explore future development trends of metasurfaces for enhancing biological detection sensitivity and emphasize their wide-ranging applications.
Collapse
Affiliation(s)
- Qiang Li
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Shiwang Yu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Zhancheng Li
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Wenwei Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Hua Cheng
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Shuqi Chen
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin300350, China
- The Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China
| |
Collapse
|
5
|
Herkert EK, Garcia-Parajo MF. Harnessing the Power of Plasmonics for in Vitro and in Vivo Biosensing. ACS PHOTONICS 2025; 12:1259-1275. [PMID: 40124941 PMCID: PMC11926962 DOI: 10.1021/acsphotonics.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/25/2025]
Abstract
Plasmonic nanostructures exhibit localized surface plasmon resonances due to collective oscillation of conducting electrons that can be tuned by modulating the nanostructure size, shape, material composition, and local dielectric environment. The strong field confinement and enhancement provided by plasmonic nanostructures have been exploited over the years to enhance the sensitivity for analyte detection down to the single-molecule level, rendering these devices as potentially outstanding biosensors. Here, we summarize methods to detect biological analytes in vitro and in living cells, with a focus on plasmon-enhanced fluorescence, Raman scattering, infrared absorption, circular dichroism, and refractive index sensing. Given the tremendous advances in the field, we concentrate on a few recent examples toward biosensing under highly challenging detection conditions, including clinically relevant biomarkers in body fluids and nascent applications in living cells and in vivo. These emerging platforms serve as inspiration for exploring future directions of nanoplasmonics that can be further harnessed to advance real-world biosensing applications.
Collapse
Affiliation(s)
- Ediz Kaan Herkert
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science
and Technology, Castelldefels 08860 (Barcelona), Spain
| | - Maria F. Garcia-Parajo
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science
and Technology, Castelldefels 08860 (Barcelona), Spain
- ICREA-Catalan
Institute for Research and Advanced Studies, Pg. Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
6
|
Jin Z, Lou J, Shu F, Hong Z, Qiu CW. Advances in Nanoengineered Terahertz Technology: Generation, Modulation, and Bio-Applications. RESEARCH (WASHINGTON, D.C.) 2025; 8:0562. [PMID: 39807357 PMCID: PMC11725723 DOI: 10.34133/research.0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Recent advancements in nanotechnology have revolutionized terahertz (THz) technology. By enabling the creation of compact, efficient devices through nanoscale structures, such as nano-thick heterostructures, metasurfaces, and hybrid systems, these innovations offer unprecedented control over THz wave generation and modulation. This has led to substantial enhancements in THz spectroscopy, imaging, and especially bio-applications, providing higher resolution and sensitivity. This review comprehensively examines the latest advancements in nanoengineered THz technology, beginning with state-of-the-art THz generation methods based on heterostructures, metasurfaces, and hybrid systems, followed by THz modulation techniques, including both homogeneous and individual modulation. Subsequently, it explores bio-applications such as novel biosensing and biofunction techniques. Finally, it summarizes findings and reflects on future trends and challenges in the field. Each section focuses on the physical mechanisms, structural designs, and performances, aiming to provide a thorough understanding of the advancements and potential of this rapidly evolving technology domain. This review aims to provide insights into the creation of next-generation nanoscale THz devices and applications while establishing a comprehensive foundation for addressing key issues that limit the full implementation of these promising technologies in real-world scenarios.
Collapse
Affiliation(s)
- Zhongwei Jin
- College of Optical and Electronic Technology,
China Jiliang University, Hangzhou 310018, China
- Centre for Terahertz Research,
China Jiliang University, Hangzhou 310018, China
| | - Jing Lou
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, 100071 Beijing, China
| | - Fangzhou Shu
- Centre for Terahertz Research,
China Jiliang University, Hangzhou 310018, China
| | - Zhi Hong
- Centre for Terahertz Research,
China Jiliang University, Hangzhou 310018, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering,
National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
7
|
Li J, Zhang QY, Yan Z, Li J, Xia XH. Key Structure Parameters for Designing High-Performance Substrates of Surface-Enhanced Infrared Absorption Spectroelectrochemistry. Anal Chem 2024; 96:20382-20389. [PMID: 39688033 DOI: 10.1021/acs.analchem.4c03711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) plays a crucial role in understanding the interfacial reaction mechanisms at the molecular level, achieving an enhancement factor (EF) of up to 103. However, when this technique is integrated with electrochemistry (EC-ATR-SEIRAS), the EF is significantly reduced by ten- to hundred-fold. Thus, understanding of the key parameters that contribute to the EF is of great importance in designing high-performance substrates and extending the application for EC-SEIRAS. In this study, we propose that the structure of the substrate for EC-ATR-SEIRAS consists of an enhancement unit (EU) supported on a conductivity unit (CU). The CU will screen the incident IR light reaching and interacting with the EU, resulting in a smaller EF as the CU thickness increases. Then, we introduce a strategy to optimize the performance of the EC-SEIRAS substrate by assembling a plasmonic antenna array as the EU that is supported on IR-transparent and conductive monolayer graphene as the CU. The established plasmon-enhanced EC-SEIRAS substrate demonstrates much higher IR enhancement, repeatability, and stability.
Collapse
Affiliation(s)
- Jin Li
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing-Ying Zhang
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhendong Yan
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Li
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Li J, Li J, Xia XH. Plasmon Enhanced IR Spectroelectrochemistry. ACS MEASUREMENT SCIENCE AU 2024; 4:606-614. [PMID: 39713026 PMCID: PMC11659986 DOI: 10.1021/acsmeasuresciau.4c00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/24/2024]
Abstract
Plasmon-enhanced infrared (IR) techniques have garnered significant interest for their ability to achieve greatly more sensitive IR detection than conventional surface enhanced IR techniques. However, the difficulty in electrically connecting antennas has limited their application in IR spectroelectrochemistry, a crucial field for catalysis, analysis, and energy storage. Recent technical advancements have enabled the successful application of electrochemical potentials to antennas, making plasmon-enhanced IR spectroelectrochemistry feasible. This perspective aims to summarize the latest strategies and offer insights into future improvements for better design of plasmon enhanced IR spectroelectrochemistry platforms and understanding of IR spectroelectrochemistry.
Collapse
Affiliation(s)
| | | | - Xing-Hua Xia
- State Key Lab of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Trindade FCS, de Souza Sobrinha IG, Pereira G, Pereira GAL, Raimundo IM, Pereira CF. A surface-enhanced infrared absorption spectroscopy (SEIRA) multivariate approach for atrazine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124867. [PMID: 39059263 DOI: 10.1016/j.saa.2024.124867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
A green, fast and effective multivariate method for the determination of atrazine (ATZ) was developed using conventional infrared equipment furnished with an attenuated total reflectance module (ATR-IR), providing limit of detection (LOD) and limit of quantification (LOQ) in the ranges from 1.9 to 4.6 µg/mL and from 5.6 to 14 µg/mL, respectively. Furthermore, the surface-enhanced infrared absorption (SEIRA) approach was investigated to improve the sensitivity of the measurements and detect ATZ at low concentrations, addressing the compatibility with reference methods. To this end, a substrate formed by silver selenide quantum dots stabilized with mercaptopropionic acid (Ag2Se/MPA), synthesized in aqueous medium by an one-pot synthesis, was used. The spectral data were investigated by univariate and multivariate calibrations, allowing to calculate the enhancement factor (EF) and the multivariate enhancement factor (MEF), respectively. The SEIRA strategy proved to be able to enhance the atrazine signal up to 86-fold, allowing the detection of ATZ at concentrations as low as 0.001 µg/mL.
Collapse
Affiliation(s)
- Felipe C S Trindade
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife, Pernambuco, Brazil 50740560
| | - Izabel G de Souza Sobrinha
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife, Pernambuco, Brazil 50740560
| | - Goreti Pereira
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife, Pernambuco, Brazil 50740560; Universidade de Aveiro, Departamento de Química & CESAM, Aveiro, Portugal 3810-193
| | - Giovannia A L Pereira
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife, Pernambuco, Brazil 50740560
| | - Ivo M Raimundo
- Universidade Estadual de Campinas, Instituto de Química, Campinas, São Paulo, Brazil 13083-970
| | - Claudete F Pereira
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife, Pernambuco, Brazil 50740560.
| |
Collapse
|
10
|
Piccirilli F, Vondracek H, Silvestrini L, Parisse P, Spinozzi F, Vaccari L, Toma A, Aglieri V, Casalis L, Piccionello AP, Mariani P, Birarda G, Ortore MG. Dimeric and monomeric conformation of SARS-CoV-2 main protease: New technical approaches based on IR radiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124772. [PMID: 39003826 DOI: 10.1016/j.saa.2024.124772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
The main proteases Mpro are a group of highly conserved cysteine hydrolases in β-coronaviruses. They have been demonstrated to play an unavoidable role in viral replication, and consequently they have been suggested as key targets for treating coronavirus-caused infectious diseases, mainly from the COVID-19 epidemic. Since the most functional form for Mpro enzymatic activity is associated to its homodimer, compounds inhibiting dimerization should also inhibit catalytic activity. We show how PIR-SEIRA (Plasmonic Internal Reflection-Surface Enhanced InfraRed Absorption) spectroscopy can be a noteworthy technique to study proteins subtle structural variations associated to inhibitor binding. Nanoantennas arrays can selectively confine and enhance electromagnetic field via localized plasmonic resonances, thus promoting ultrasensitive detection of biomolecules in close proximity of nanoantenna arrays and enabling the effective investigation of protein monolayers. By adopting this approach, reflection measurements conducted under back illumination of nanoantennas allow to probe anchored protein monolayers, with minimum contribution of environmental buffer molecules. PIR-SEIRA spectroscopy on Mpro was carried out by ad hoc designed devices, resonating in the spectral region of Amide I and Amide II bands. We evaluated here the structure of anchored monomers and dimers in different buffered environment and in presence of a newly designed Mpro inhibitor. Experimental results show that dimerization is not associated to relevant backbone rearrangements of the protein at secondary structure level, and even if the compound inhibits the dimerization, it is not effective at breaking preformed dimers.
Collapse
Affiliation(s)
| | - Hendrik Vondracek
- Elettra-Synchrotron Trieste S.C.p.A., Strada Statale 14, Basovizza, Trieste, I-34149, Italy
| | - Lucia Silvestrini
- Department of Life and Environmental Sciences, Marche Polytechnic University, via brecce bianche, Ancona, I-60131, Italy
| | - Pietro Parisse
- Elettra-Synchrotron Trieste S.C.p.A., Strada Statale 14, Basovizza, Trieste, I-34149, Italy; CNR - Istituto Officina dei Materiali, s.s. 14 km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Francesco Spinozzi
- Department of Life and Environmental Sciences, Marche Polytechnic University, via brecce bianche, Ancona, I-60131, Italy
| | - Lisa Vaccari
- Elettra-Synchrotron Trieste S.C.p.A., Strada Statale 14, Basovizza, Trieste, I-34149, Italy
| | - Andrea Toma
- Fondazione Istituto Italiano di Tecnologia, via Morego 30, Genova, I- 16163, Italy
| | - Vincenzo Aglieri
- Fondazione Istituto Italiano di Tecnologia, via Morego 30, Genova, I- 16163, Italy
| | - Loredana Casalis
- Elettra-Synchrotron Trieste S.C.p.A., Strada Statale 14, Basovizza, Trieste, I-34149, Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, viale delle scienze, Palermo, I-90133, Italy
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Marche Polytechnic University, via brecce bianche, Ancona, I-60131, Italy
| | - Giovanni Birarda
- Elettra-Synchrotron Trieste S.C.p.A., Strada Statale 14, Basovizza, Trieste, I-34149, Italy.
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, via brecce bianche, Ancona, I-60131, Italy.
| |
Collapse
|
11
|
Li D, Zhou H, Ren Z, Xu C, Lee C. Tailoring Light-Matter Interactions in Overcoupled Resonator for Biomolecule Recognition and Detection. NANO-MICRO LETTERS 2024; 17:10. [PMID: 39325238 PMCID: PMC11427657 DOI: 10.1007/s40820-024-01520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024]
Abstract
Plasmonic nanoantennas provide unique opportunities for precise control of light-matter coupling in surface-enhanced infrared absorption (SEIRA) spectroscopy, but most of the resonant systems realized so far suffer from the obstacles of low sensitivity, narrow bandwidth, and asymmetric Fano resonance perturbations. Here, we demonstrated an overcoupled resonator with a high plasmon-molecule coupling coefficient (μ) (OC-Hμ resonator) by precisely controlling the radiation loss channel, the resonator-oscillator coupling channel, and the frequency detuning channel. We observed a strong dependence of the sensing performance on the coupling state, and demonstrated that OC-Hμ resonator has excellent sensing properties of ultra-sensitive (7.25% nm-1), ultra-broadband (3-10 μm), and immune asymmetric Fano lineshapes. These characteristics represent a breakthrough in SEIRA technology and lay the foundation for specific recognition of biomolecules, trace detection, and protein secondary structure analysis using a single array (array size is 100 × 100 µm2). In addition, with the assistance of machine learning, mixture classification, concentration prediction and spectral reconstruction were achieved with the highest accuracy of 100%. Finally, we demonstrated the potential of OC-Hμ resonator for SARS-CoV-2 detection. These findings will promote the wider application of SEIRA technology, while providing new ideas for other enhanced spectroscopy technologies, quantum photonics and studying light-matter interactions.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore.
| |
Collapse
|
12
|
Laudadio E, Piccirilli F, Vondracek H, Mobbili G, Semrau MS, Storici P, Galeazzi R, Romagnoli E, Sorci L, Toma A, Aglieri V, Birarda G, Minnelli C. Probing conformational dynamics of EGFR mutants via SEIRA spectroscopy: potential implications for tyrosine kinase inhibitor design. Phys Chem Chem Phys 2024; 26:22853-22857. [PMID: 39177248 DOI: 10.1039/d4cp02232g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Missense mutations in EGFR's catalytic domain alter its function, promoting cancer. SEIRA spectroscopy, supported by MD simulations, reveals structural differences in the compactness and hydration of helical motifs between active and inactive EGFR conformations models. These findings provide novel insights into the biophysical mechanisms driving EGFR activation and drug resistance, offering a robust method for studying emerging EGFR mutations and their structural impacts on TKIs' efficacy.
Collapse
Affiliation(s)
- Emiliano Laudadio
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131, Ancona, Italy
| | - Federica Piccirilli
- Elettra Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
- Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Henrick Vondracek
- Elettra Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Giovanna Mobbili
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy.
| | - Marta S Semrau
- Elettra Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - Paola Storici
- Elettra Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy.
| | - Elena Romagnoli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy.
| | - Leonardo Sorci
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131, Ancona, Italy
| | - Andrea Toma
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Vincenzo Aglieri
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giovanni Birarda
- Elettra Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy.
| |
Collapse
|
13
|
Di Santo R, Verdelli F, Niccolini B, Varca S, Gaudio AD, Di Giacinto F, De Spirito M, Pea M, Giovine E, Notargiacomo A, Ortolani M, Di Gaspare A, Baldi A, Pizzolante F, Ciasca G. Exploring novel circulating biomarkers for liver cancer through extracellular vesicle characterization with infrared spectroscopy and plasmonics. Anal Chim Acta 2024; 1319:342959. [PMID: 39122286 DOI: 10.1016/j.aca.2024.342959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/16/2024] [Accepted: 07/07/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common form of liver cancer, with cirrhosis being a major risk factor. Traditional blood markers like alpha-fetoprotein (AFP) demonstrate limited efficacy in distinguishing between HCC and cirrhosis, underscoring the need for more effective diagnostic methodologies. In this context, extracellular vesicles (EVs) have emerged as promising candidates; however, their practical diagnostic application is restricted by the current lack of label-free methods to accurately profile their molecular content. To address this gap, our study explores the potential of mid-infrared (mid-IR) spectroscopy, both alone and in combination with plasmonic nanostructures, to detect and characterize circulating EVs. RESULTS EVs were extracted from HCC and cirrhotic patients. Mid-IR spectroscopy in the Attenuated Total Reflection (ATR) mode was utilized to identify potential signatures for patient classification, highlighting significant changes in the Amide I-II region (1475-1700 cm-1). This signature demonstrated diagnostic performance comparable to AFP and surpassed it when the two markers were combined. Further investigations utilized a plasmonic metasurface suitable for ultrasensitive spectroscopy within this spectral range. This device consists of two sets of parallel rod-shaped gold nanoantennas (NAs); the longer NAs produced an intense near-field amplification in the Amide I-II bands, while the shorter NAs were utilized to provide a sharp reflectivity edge at 1800-2200 cm-1 for EV mass-sensing. A clinically relevant subpopulation of EVs was targeted by conjugating NAs with an antibody specific to Epithelial Cell Adhesion Molecule (EpCAM). This methodology enabled the detection of variations in the quantity of EpCAM-presenting EVs and revealed changes in the Amide I-II lineshape. SIGNIFICANCE The presented results can positively impact the development of novel laboratory methods for the label-free characterization of EVs, based on the combination between mid-IR spectroscopy and plasmonics. Additionally, data obtained by using HCC and cirrhotic subjects as a model system, suggest that this approach could be adapted for monitoring these conditions.
Collapse
Affiliation(s)
- R Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy; Dipartimento di Scienze della Vita, della salute e delle Professioni sanitarie, Link Campus University, Rome, Italy
| | - F Verdelli
- Dutch Institute for Fundamental Energy Research (DIFFER), Eindhoven 5600 HH, The Netherlands
| | - B Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - S Varca
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Del Gaudio
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - F Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - M De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| | - M Pea
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - E Giovine
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - A Notargiacomo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - M Ortolani
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Rome, Italy
| | - A Di Gaspare
- NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - A Baldi
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - F Pizzolante
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| |
Collapse
|
14
|
Baden N, Watanabe H, Aoyagi M, Ujii H, Fujita Y. Surface-enhanced optical-mid-infrared photothermal microscopy using shortened colloidal silver nanowires: a noble approach for mid-infrared surface sensing. NANOSCALE HORIZONS 2024; 9:1311-1317. [PMID: 38808389 DOI: 10.1039/d4nh00106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We propose surface-enhanced optical-mid-infrared photothermal (MIP) microscopy using highly crystalline silver nanowires, acting as a Fabry-Perot resonator, and demonstrate its applicability to enhanced mid-infrared surface sensing of thin polymer layers as thin as 20 nm.
Collapse
Affiliation(s)
- Naoki Baden
- Nihon Thermal Consulting, Co., Ltd, 3-9-2 Nishishinjuku, Sinjuku-ku, Tokyo 160-0023, Japan
| | - Hirohmi Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan.
| | - Masaru Aoyagi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan.
| | - Hiroshi Ujii
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuhiko Fujita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan.
| |
Collapse
|
15
|
Esfidani SM, Tadjer MJ, Folland TG. Lifetime and Molecular Coupling in Surface Phonon Polariton Resonators. ACS OMEGA 2024; 9:21136-21143. [PMID: 38764696 PMCID: PMC11097381 DOI: 10.1021/acsomega.4c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Surface phonon polariton (SPhP) modes in polar semiconductors offer a low-loss platform for infrared nanophotonics and sensing. However, the efficient design of polariton-enhanced sensors requires a quantitative understanding of how to engineer the frequency and lifetime of SPhPs in nanophotonic structures. Here, we study organ-pipe resonances in 4H-SiC trenches as a prototype system for infrared sensing. We use a transmission line framework that accounts for the field distribution within the trench, accurately predicting mode frequency and lifetime when compared against finite element method (FEM) electromagnetic calculations. Accounting for the electric field profile across the gap is critical in our model to accurately predict mode frequencies, quality factor (Q factor), and reflectance, outperforming previous circuit models developed in the literature. Beyond structural simulation, our model can provide insights into the frequency ranges in the Reststrahlen band where enhanced sensor activity should be present. The radiative lifetime is significantly enlarged close to the longitudinal optic phonon, restricting sensor efficiency at this wavelength range. This pushes the optimal frequency for sensing closer to the center of the Reststrahlen band than might be naively expected. This model ultimately demonstrates the primary challenge of designing SPhP-based sensors: only a relatively narrow region of the Reststrahlen band offers efficient sensing, guiding future designs for infrared spectroscopy.
Collapse
Affiliation(s)
| | - Marko J. Tadjer
- U.S.
Naval Research Laboratory,4555 Overlook Ave SW, Washington, District of Columbia20375,United States
| | - Thomas G. Folland
- Department
of Physics and Astronomy, The University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
16
|
Li J, Wu D, Li J, Zhou Y, Yan Z, Liang J, Zhang QY, Xia XH. Ultrasensitive Plasmon-Enhanced Infrared Spectroelectrochemistry. Angew Chem Int Ed Engl 2024; 63:e202319246. [PMID: 38191762 DOI: 10.1002/anie.202319246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
IR spectroelectrochemistry (EC-IR) is a cutting-edge operando method for exploring electrochemical reaction mechanisms. However, detection of interfacial molecules is challenged by the limited sensitivity of existing EC-IR platforms due to the lack of high-enhancement substrates. Here, we propose an innovative plasmon-enhanced infrared spectroelectrochemistry (EC-PEIRS) platform to overcome this sensitivity limitation. Plasmonic antennae with ultrahigh IR signal enhancement are electrically connected via monolayer graphene while preserving optical path integrity, serving as both the electrode and IR substrate. The [Fe(CN)6 ]3- /[Fe(CN)6 ]4- redox reaction and electrochemical CO2 reduction reaction (CO2 RR) are investigated on the EC-PEIRS platform with a remarkable signal enhancement. Notably, the enhanced IR signals enable a reconstruction of the electrochemical curve of the redox reactions and unveil the CO2 RR mechanism. This study presents a promising technique for boosting the in-depth understanding of interfacial events across diverse applications.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jian Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Zhou
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 210017, China
| | - Zhendong Yan
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Jing Liang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qing-Ying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
17
|
Izquierdo-López R, Fandan R, Boscá A, Calle F, Pedrós J. Surface-acoustic-wave-driven graphene plasmonic sensor for fingerprinting ultrathin biolayers down to the monolayer limit. Biosens Bioelectron 2023; 237:115498. [PMID: 37423065 DOI: 10.1016/j.bios.2023.115498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/14/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Surface plasmon polaritons in graphene can enhance the performance of mid-infrared spectroscopy, which is key for the study of both the composition and the conformation of organic molecules via their vibrational resonances. In this paper, a plasmonic biosensor using a graphene-based van der Waals heterostructure on a piezoelectric substrate is theoretically demonstrated, where far-field light is coupled to surface plasmon-phonon polaritons (SPPPs) through a surface acoustic wave (SAW). The SAW creates an electrically-controlled virtual diffraction grating, suppressing the need for patterning the 2D materials, that limits the polariton lifetime, and enabling differential measurement schemes, which increase the signal-to-noise ratio and allow a quick commutation between reference and sample signals. A transfer matrix method has been used for simulating the SPPPs propagating in the system, which are electrically tuned to interact with the vibrational resonances of the analytes. Furthermore, the analysis of the sensor response with a coupled oscillators model has proven its capability of fingerprinting ultrathin biolayers, even when the interaction is too weak to induce a Fano interference pattern, with a sensitivity down to the monolayer limit, as tested with a protein bilayer or a peptide monolayer. The proposed device paves the way for the development of advanced SAW-assisted lab-on-chip systems combining the existing SAW-mediated physical sensing and microfluidic functionalities with the chemical fingerprinting capability of this novel SAW-driven plasmonic approach.
Collapse
Affiliation(s)
- Raúl Izquierdo-López
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain.
| | - Rajveer Fandan
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain
| | - Alberto Boscá
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain
| | - Fernando Calle
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain
| | - Jorge Pedrós
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain.
| |
Collapse
|
18
|
Chen Z, Li D, Zhou H, Liu T, Mu X. A hybrid graphene metamaterial absorber for enhanced modulation and molecular fingerprint retrieval. NANOSCALE 2023; 15:14100-14108. [PMID: 37581407 DOI: 10.1039/d3nr02830e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Surface-enhanced infrared absorption (SEIRA) has proven its ability to improve the detection performance of traditional infrared spectroscopy at unprecedented levels. However, the resonant frequency of the metamaterial absorber (MA) lacks tunability once the structure is fabricated, which poses a challenge for broadband fingerprint retrieval of molecules. Here, we propose a pixelated and electric tunable hybrid graphene MA with a broadband response for molecular fingerprint retrieval. Loss engineering is employed to optimize the sensing sensitivity of MA. The resonant frequency of MA is approximately linearly modulated with a change in the graphene Fermi level. This design allows a meta-pixel to match multiple characteristic absorption spectra, thereby establishing a one-to-many mapping relationship between spatial and spectral information. The one-to-many mapping relationship greatly reduces the number of meta-pixels. As a concept demonstration, we integrate 9 meta-pixels to achieve full spectral coverage from 1000 cm-1 to 2000 cm-1. Based on the broadband spectral properties of the sensor, we demonstrate its potential for multi-fingerprint detection, quantitative detection, chemical identification, and compositional analysis. Our proposed hybrid graphene MA can be easily integrated with other on-chip devices, providing a potential platform for optical sensing, infrared spectroscopy, and photodetection.
Collapse
Affiliation(s)
- Ziwei Chen
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China.
| | - Dongxiao Li
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China.
| | - Hong Zhou
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China.
| | - Tao Liu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China.
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
19
|
Li D, Xu C, Xie J, Lee C. Research Progress in Surface-Enhanced Infrared Absorption Spectroscopy: From Performance Optimization, Sensing Applications, to System Integration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2377. [PMID: 37630962 PMCID: PMC10458771 DOI: 10.3390/nano13162377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Infrared absorption spectroscopy is an effective tool for the detection and identification of molecules. However, its application is limited by the low infrared absorption cross-section of the molecule, resulting in low sensitivity and a poor signal-to-noise ratio. Surface-Enhanced Infrared Absorption (SEIRA) spectroscopy is a breakthrough technique that exploits the field-enhancing properties of periodic nanostructures to amplify the vibrational signals of trace molecules. The fascinating properties of SEIRA technology have aroused great interest, driving diverse sensing applications. In this review, we first discuss three ways for SEIRA performance optimization, including material selection, sensitivity enhancement, and bandwidth improvement. Subsequently, we discuss the potential applications of SEIRA technology in fields such as biomedicine and environmental monitoring. In recent years, we have ushered in a new era characterized by the Internet of Things, sensor networks, and wearable devices. These new demands spurred the pursuit of miniaturized and consolidated infrared spectroscopy systems and chips. In addition, the rise of machine learning has injected new vitality into SEIRA, bringing smart device design and data analysis to the foreground. The final section of this review explores the anticipated trajectory that SEIRA technology might take, highlighting future trends and possibilities.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Junsheng Xie
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China
| |
Collapse
|
20
|
Jia N, Daignault-Bouchard A, Deng T, Mayerhöfer TG, Bégin-Drolet A, Greener J. SpectIR-fluidics: completely customizable microfluidic cartridges for high sensitivity on-chip infrared spectroscopy with point-of-application studies on bacterial biofilms. LAB ON A CHIP 2023; 23:3561-3570. [PMID: 37403603 DOI: 10.1039/d3lc00388d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
We present a generalizable fabrication method for a new class of analytical devices that merges virtually any microfluidic design with high-sensitivity on-chip attenuated total reflection (ATR) sampling using any standard Fourier transform infrared (FTIR) spectrometer. Termed "spectIR-fluidics", a major design feature is the integration of a multi-groove silicon ATR crystal into a microfluidic device, compared with previous approaches in which the ATR surface served as a structural support for the entire device. This was accomplished by the design, fabrication, and aligned bonding of a highly engineered ATR sensing layer, which con```tains a seamlessly embedded ATR crystal on the channel side and an optical access port that matched the spectrometer light path characteristics at the device exterior. The refocused role of the ATR crystal as a dedicated analytical element, combined with optimized light coupling to the spectrometer, results in limits of detection as low as 540 nM for a D-glucose solution, arbitrarily complex channel features that are fully enclosed, and up to 18 world-to-chip connections. Three purpose-built spectIR-fluidic cartridges are used in a series of validation experiments followed by several point-of-application studies on biofilms from the gut microbiota of plastic-consuming insects using a small portable spectrometer.
Collapse
Affiliation(s)
- Nan Jia
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Arthur Daignault-Bouchard
- Département de génie mécanique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Tianyang Deng
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Thomas G Mayerhöfer
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, Jena, 07745, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, Jena, 07743, Germany
| | - André Bégin-Drolet
- Département de génie mécanique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Jesse Greener
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada.
- CHU de Québec, Centre de recherche du CHU de Québec, Université Laval, Québec, QC G1L 3L5, Canada
| |
Collapse
|
21
|
Li D, Zhou H, Chen Z, Ren Z, Xu C, He X, Liu T, Chen X, Huang H, Lee C, Mu X. Ultrasensitive Molecular Fingerprint Retrieval Using Strongly Detuned Overcoupled Plasmonic Nanoantennas. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301787. [PMID: 37204145 DOI: 10.1002/adma.202301787] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Tailoring light-matter interactions via plasmonic nanoantennas (PNAs) has emerged as a breakthrough technology for spectroscopic applications. The detuning between molecular vibrations and plasmonic resonances, as a fundamental and inevitable optical phenomenon in light-matter interactions, reduces the interaction efficiency, resulting in a weak molecule sensing signal at the strong detuning state. Here, it is demonstrated that the low interaction efficiency from detuning can be tackled by overcoupled PNAs (OC-PNAs) with a high ratio of the radiative to intrinsic loss rates, which can be used for ultrasensitive spectroscopy at strong plasmonic-molecular detuning. In OC-PNAs, the ultrasensitive molecule signals are achieved within a wavelength detuning range of 248 cm-1 , which is 173 cm-1 wider than previous works. Meanwhile, the OC-PNAs are immune to the distortion of molecular signals and maintain a lineshape consistent with the molecular signature fingerprint. This strategy allows a single device to enhance and capture the full and complex fingerprint vibrations in the mid-infrared range. In the proof-of-concept demonstration, 13 kinds of molecules with some vibration fingerprints strongly detuning by the OC-PNAs are identified with 100% accuracy with the assistance of machine-learning algorithms. This work gains new insights into detuning-state nanophotonics for potential applications including spectroscopy and sensors.
Collapse
Affiliation(s)
- Dongxiao Li
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Ziwei Chen
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Xianming He
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Tao Liu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Xin Chen
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - He Huang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
22
|
John-Herpin A, Tittl A, Kühner L, Richter F, Huang SH, Shvets G, Oh SH, Altug H. Metasurface-Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2110163. [PMID: 35638248 DOI: 10.1002/adma.202110163] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Infrared spectroscopy provides unique information on the composition and dynamics of biochemical systems by resolving the characteristic absorption fingerprints of their constituent molecules. Based on this inherent chemical specificity and the capability for label-free, noninvasive, and real-time detection, infrared spectroscopy approaches have unlocked a plethora of breakthrough applications for fields ranging from environmental monitoring and defense to chemical analysis and medical diagnostics. Nanophotonics has played a crucial role for pushing the sensitivity limits of traditional far-field spectroscopy by using resonant nanostructures to focus the incident light into nanoscale hot-spots of the electromagnetic field, greatly enhancing light-matter interaction. Metasurfaces composed of regular arrangements of such resonators further increase the design space for tailoring this nanoscale light control both spectrally and spatially, which has established them as an invaluable toolkit for surface-enhanced spectroscopy. Starting from the fundamental concepts of metasurface-enhanced infrared spectroscopy, a broad palette of resonator geometries, materials, and arrangements for realizing highly sensitive metadevices is showcased, with a special focus on emerging systems such as phononic and 2D van der Waals materials, and integration with waveguides for lab-on-a-chip devices. Furthermore, advanced sensor functionalities of metasurface-based infrared spectroscopy, including multiresonance, tunability, dielectrophoresis, live cell sensing, and machine-learning-aided analysis are highlighted.
Collapse
Affiliation(s)
- Aurelian John-Herpin
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Lucca Kühner
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Felix Richter
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Steven H Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
23
|
Kavungal D, Magalhães P, Kumar ST, Kolla R, Lashuel HA, Altug H. Artificial intelligence-coupled plasmonic infrared sensor for detection of structural protein biomarkers in neurodegenerative diseases. SCIENCE ADVANCES 2023; 9:eadg9644. [PMID: 37436975 PMCID: PMC10337894 DOI: 10.1126/sciadv.adg9644] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Diagnosis of neurodegenerative disorders (NDDs) including Parkinson's disease and Alzheimer's disease is challenging owing to the lack of tools to detect preclinical biomarkers. The misfolding of proteins into oligomeric and fibrillar aggregates plays an important role in the development and progression of NDDs, thus underscoring the need for structural biomarker-based diagnostics. We developed an immunoassay-coupled nanoplasmonic infrared metasurface sensor that detects proteins linked to NDDs, such as alpha-synuclein, with specificity and differentiates the distinct structural species using their unique absorption signatures. We augmented the sensor with an artificial neural network enabling unprecedented quantitative prediction of oligomeric and fibrillar protein aggregates in their mixture. The microfluidic integrated sensor can retrieve time-resolved absorbance fingerprints in the presence of a complex biomatrix and is capable of multiplexing for the simultaneous monitoring of multiple pathology-associated biomarkers. Thus, our sensor is a promising candidate for the clinical diagnosis of NDDs, disease monitoring, and evaluation of novel therapies.
Collapse
Affiliation(s)
- Deepthy Kavungal
- Bionanophotonic Systems Laboratory, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Pedro Magalhães
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Senthil T. Kumar
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Rajasekhar Kolla
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Hatice Altug
- Bionanophotonic Systems Laboratory, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| |
Collapse
|
24
|
Petit T, Lounasvuori M, Chemin A, Bärmann P. Nanointerfaces: Concepts and Strategies for Optical and X-ray Spectroscopic Characterization. ACS PHYSICAL CHEMISTRY AU 2023; 3:263-278. [PMID: 37249937 PMCID: PMC10214513 DOI: 10.1021/acsphyschemau.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 05/31/2023]
Abstract
Interfaces at the nanoscale, also called nanointerfaces, play a fundamental role in physics and chemistry. Probing the chemical and electronic environment at nanointerfaces is essential in order to elucidate chemical processes relevant for applications in a variety of fields. Many spectroscopic techniques have been applied for this purpose, although some approaches are more appropriate than others depending on the type of the nanointerface and the physical properties of the different phases. In this Perspective, we introduce the major concepts to be considered when characterizing nanointerfaces. In particular, the interplay between the characteristic length of the nanointerfaces, and the probing and information depths of different spectroscopy techniques is discussed. Differences between nano- and bulk interfaces are explained and illustrated with chosen examples from optical and X-ray spectroscopies, focusing on solid-liquid nanointerfaces. We hope that this Perspective will help to prepare spectroscopic characterization of nanointerfaces and stimulate interest in the development of new spectroscopic techniques adapted to the nanointerfaces.
Collapse
|
25
|
Huang SH, Sartorello G, Shen PT, Xu C, Elemento O, Shvets G. Metasurface-enhanced infrared spectroscopy in multiwell format for real-time assaying of live cells. LAB ON A CHIP 2023; 23:2228-2240. [PMID: 37010356 PMCID: PMC10159923 DOI: 10.1039/d3lc00017f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is a popular technique for the analysis of biological samples, yet its application in characterizing live cells is limited due to the strong attenuation of mid-IR light in water. Special thin flow cells and attenuated total reflection (ATR) FTIR spectroscopy have been used to mitigate this problem, but these techniques are difficult to integrate into a standard cell culture workflow. In this work, we demonstrate that the use of a plasmonic metasurface fabricated on planar substrates and the probing of cellular IR spectra through metasurface-enhanced infrared spectroscopy (MEIRS) can be an effective technique to characterize the IR spectra of live cells in a high-throughput manner. Cells are cultured on metasurfaces integrated with multiwell cell culture chambers and are probed from the bottom using an inverted FTIR micro-spectrometer. To demonstrate the use of MEIRS as a cellular assay, cellular adhesion on metasurfaces with different surface coatings and cellular response to the activation of the protease-activated receptor (PAR) signaling pathway were characterized through the changes in cellular IR spectra.
Collapse
Affiliation(s)
- Steven H Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853, USA.
| | - Giovanni Sartorello
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853, USA.
| | - Po-Ting Shen
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853, USA.
| | - Chengqi Xu
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
26
|
Zhou H, Xu L, Ren Z, Zhu J, Lee C. Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics. NANOSCALE ADVANCES 2023; 5:538-570. [PMID: 36756499 PMCID: PMC9890940 DOI: 10.1039/d2na00608a] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
The world today is witnessing the significant role and huge demand for molecular detection and screening in healthcare and medical diagnosis, especially during the outbreak of COVID-19. Surface-enhanced spectroscopy techniques, including Surface-Enhanced Raman Scattering (SERS) and Infrared Absorption (SEIRA), provide lattice and molecular vibrational fingerprint information which is directly linked to the molecular constituents, chemical bonds, and configuration. These properties make them an unambiguous, nondestructive, and label-free toolkit for molecular diagnostics and screening. However, new issues in molecular diagnostics, such as increasing molecular species, faster spread of viruses, and higher requirements for detection accuracy and sensitivity, have brought great challenges to detection technology. Advancements in artificial intelligence and machine learning (ML) techniques show promising potential in empowering SERS and SEIRA with rapid analysis and automatic data processing to jointly tackle the challenge. This review introduces the combination of ML and SERS/SEIRA by investigating how ML algorithms can be beneficial to SERS/SEIRA, discussing the general process of combining ML and SEIRA/SERS, highlighting the molecular diagnostics and screening applications based on ML-combined SEIRA/SERS, and providing perspectives on the future development of ML-integrated SEIRA/SERS. In general, this review offers comprehensive knowledge about the recent advances and the future outlook regarding ML-integrated SEIRA/SERS for molecular diagnostics and screening.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore Singapore 117608
| | - Liangge Xu
- Department of Electrical and Computer Engineering, National University of Singapore Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore Singapore 117608
- National Key Laboratory of Special Environment Composite Technology, Harbin Institute of Technology Harbin 150001 China
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore Singapore 117608
| | - Jiaqi Zhu
- National Key Laboratory of Special Environment Composite Technology, Harbin Institute of Technology Harbin 150001 China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore Singapore 117608
- NUS Suzhou Research Institute (NUSRI) Suzhou 215123 China
| |
Collapse
|
27
|
Temperini ME, Di Giacinto F, Romanò S, Di Santo R, Augello A, Polito R, Baldassarre L, Giliberti V, Papi M, Basile U, Niccolini B, Krasnowska EK, Serafino A, De Spirito M, Di Gaspare A, Ortolani M, Ciasca G. Antenna-enhanced mid-infrared detection of extracellular vesicles derived from human cancer cell cultures. J Nanobiotechnology 2022; 20:530. [PMID: 36514065 PMCID: PMC9746222 DOI: 10.1186/s12951-022-01693-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Extracellular Vesicles (EVs) are sub-micrometer lipid-bound particles released by most cell types. They are considered a promising source of cancer biomarkers for liquid biopsy and personalized medicine due to their specific molecular cargo, which provides biochemical information on the state of parent cells. Despite this potential, EVs translation process in the diagnostic practice is still at its birth, and the development of novel medical devices for their detection and characterization is highly required. RESULTS In this study, we demonstrate mid-infrared plasmonic nanoantenna arrays designed to detect, in the liquid and dry phase, the specific vibrational absorption signal of EVs simultaneously with the unspecific refractive index sensing signal. For this purpose, EVs are immobilized on the gold nanoantenna surface by immunocapture, allowing us to select specific EV sub-populations and get rid of contaminants. A wet sample-handling technique relying on hydrophobicity contrast enables effortless reflectance measurements with a Fourier-transform infrared (FTIR) spectro-microscope in the wavelength range between 10 and 3 µm. In a proof-of-principle experiment carried out on EVs released from human colorectal adenocarcinoma (CRC) cells, the protein absorption bands (amide-I and amide-II between 5.9 and 6.4 µm) increase sharply within minutes when the EV solution is introduced in the fluidic chamber, indicating sensitivity to the EV proteins. A refractive index sensing curve is simultaneously provided by our sensor in the form of the redshift of a sharp spectral edge at wavelengths around 5 µm, where no vibrational absorption of organic molecules takes place: this permits to extract of the dynamics of EV capture by antibodies from the overall molecular layer deposition dynamics, which is typically measured by commercial surface plasmon resonance sensors. Additionally, the described metasurface is exploited to compare the spectral response of EVs derived from cancer cells with increasing invasiveness and metastatic potential, suggesting that the average secondary structure content in EVs can be correlated with cell malignancy. CONCLUSIONS Thanks to the high protein sensitivity and the possibility to work with small sample volumes-two key features for ultrasensitive detection of extracellular vesicles- our lab-on-chip can positively impact the development of novel laboratory medicine methods for the molecular characterization of EVs.
Collapse
Affiliation(s)
- Maria Eleonora Temperini
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Rome, Italy
- Center for Life Neuro and Nano Sciences IIT@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Flavio Di Giacinto
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sabrina Romanò
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Santo
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Alberto Augello
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Raffaella Polito
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Rome, Italy
| | - Leonetta Baldassarre
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Rome, Italy
| | - Valeria Giliberti
- Center for Life Neuro and Nano Sciences IIT@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Basile
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168, Rome, Italy
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ewa K Krasnowska
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandra Di Gaspare
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- NEST, CNR-Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Michele Ortolani
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Rome, Italy.
- Center for Life Neuro and Nano Sciences IIT@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
28
|
Kharratian S, Conteduca D, Procacci B, Shaw DJ, Hunt NT, Krauss TF. Metasurface-enhanced mid-infrared spectroscopy in the liquid phase. Chem Sci 2022; 13:12858-12864. [PMID: 36519033 PMCID: PMC9645393 DOI: 10.1039/d2sc03927c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/20/2022] [Indexed: 02/12/2024] Open
Abstract
Vibrational spectroscopy is an important tool in chemical and biological analysis. A key issue when applying vibrational spectroscopy to dilute liquid samples is the inherently low sensitivity caused by short interaction lengths and small extinction coefficients, combined with low target molecule concentrations. Here, we introduce a novel type of surface-enhanced infrared absorption spectroscopy based on the resonance of a dielectric metasurface. We demonstrate that the method is suitable for probing vibrational bands of dilute analytes with a range of spectral linewidths. We observe that the absorption signal is enhanced by 1-2 orders of magnitude and show that this enhancement leads to a lower limit of detection compared to attenuated total reflection (ATR). Overall, the technique provides an important addition to the spectroscopist's toolkit especially for probing dilute samples.
Collapse
Affiliation(s)
- Soheila Kharratian
- Department of Chemistry and York Biomedical Institute, University of York Heslington York YO10 5DD UK
- School of Physics, Engineering and Technology and York Biomedical Research Institute, University of York Heslington York YO10 5DD UK
| | - Donato Conteduca
- School of Physics, Engineering and Technology and York Biomedical Research Institute, University of York Heslington York YO10 5DD UK
| | - Barbara Procacci
- Department of Chemistry and York Biomedical Institute, University of York Heslington York YO10 5DD UK
| | - Daniel J Shaw
- Department of Chemistry and York Biomedical Institute, University of York Heslington York YO10 5DD UK
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Institute, University of York Heslington York YO10 5DD UK
| | - Thomas F Krauss
- School of Physics, Engineering and Technology and York Biomedical Research Institute, University of York Heslington York YO10 5DD UK
| |
Collapse
|
29
|
Wagner M, Seifert A, Liz-Marzán LM. Towards multi-molecular surface-enhanced infrared absorption using metal plasmonics. NANOSCALE HORIZONS 2022; 7:1259-1278. [PMID: 36047407 DOI: 10.1039/d2nh00276k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface-enhanced infrared absorption (SEIRA) leads to a largely improved detection of polar molecules, compared to standard infrared absorption. The enhancement principle is based on localized surface plasmon resonances of the substrate, which match the frequency of molecular vibrations in the analyte of interest. Therefore, in practical terms, the SEIRA sensor needs to be tailored to each specific analyte. We review SEIRA sensors based on metal plasmonics for the detection of biomolecules such as DNA, proteins, and lipids. We further focus this review on chemical SEIRA sensors, with potential applications in quality control, as well as on the improvement in sensor geometry that led to the development of multiresonant SEIRA substrates as sensors for multiple analytes. Finally, we give an introduction into the integration of SEIRA sensors with surface-enhanced Raman scattering (SERS).
Collapse
Affiliation(s)
- Marita Wagner
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain.
- CIC nanoGUNE, Basque Research and Technology Alliance (BRTA), 20018 Donostia-San Sebastián, Spain
| | - Andreas Seifert
- CIC nanoGUNE, Basque Research and Technology Alliance (BRTA), 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 43009 Bilbao, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 43009 Bilbao, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
30
|
Wang P, Krasavin AV, Liu L, Jiang Y, Li Z, Guo X, Tong L, Zayats AV. Molecular Plasmonics with Metamaterials. Chem Rev 2022; 122:15031-15081. [PMID: 36194441 PMCID: PMC9562285 DOI: 10.1021/acs.chemrev.2c00333] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Molecular plasmonics, the area which deals with the interactions between surface plasmons and molecules, has received enormous interest in fundamental research and found numerous technological applications. Plasmonic metamaterials, which offer rich opportunities to control the light intensity, field polarization, and local density of electromagnetic states on subwavelength scales, provide a versatile platform to enhance and tune light-molecule interactions. A variety of applications, including spontaneous emission enhancement, optical modulation, optical sensing, and photoactuated nanochemistry, have been reported by exploiting molecular interactions with plasmonic metamaterials. In this paper, we provide a comprehensive overview of the developments of molecular plasmonics with metamaterials. After a brief introduction to the optical properties of plasmonic metamaterials and relevant fabrication approaches, we discuss light-molecule interactions in plasmonic metamaterials in both weak and strong coupling regimes. We then highlight the exploitation of molecules in metamaterials for applications ranging from emission control and optical modulation to optical sensing. The role of hot carriers generated in metamaterials for nanochemistry is also discussed. Perspectives on the future development of molecular plasmonics with metamaterials conclude the review. The use of molecules in combination with designer metamaterials provides a rich playground both to actively control metamaterials using molecular interactions and, in turn, to use metamaterials to control molecular processes.
Collapse
Affiliation(s)
- Pan Wang
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Alexey V. Krasavin
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Lufang Liu
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yunlu Jiang
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Zhiyong Li
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Xin Guo
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Limin Tong
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Anatoly V. Zayats
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| |
Collapse
|
31
|
Occhicone A, Polito R, Michelotti F, Ortolani M, Baldassarre L, Pea M, Sinibaldi A, Notargiacomo A, Cibella S, Mattioli F, Roy P, Brubach JB, Calvani P, Nucara A. Low-Temperature Stability and Sensing Performance of Mid-Infrared Bloch Surface Waves on a One-Dimensional Photonic Crystal. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43853-43860. [PMID: 36106792 PMCID: PMC9523610 DOI: 10.1021/acsami.2c07894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/07/2022] [Indexed: 05/27/2023]
Abstract
The growing need for new and reliable surface sensing methods is arousing interest in the electromagnetic excitations of ultrathin films, i.e., to generate electromagnetic field distributions that resonantly interact with the most significant quasi-particles of condensed matter. In such a context, Bloch surface waves turned out to be a valid alternative to surface plasmon polaritons to implement high-sensitivity sensors in the visible spectral range. Only in the last few years, however, has their use been extended to infrared wavelengths, which represent a powerful tool for detecting and recognizing molecular species and crystalline structures. In this work, we demonstrate, by means of high-resolution reflectivity measurements, that a one-dimensional photonic crystal can sustain Bloch surface waves in the infrared spectral range from room temperature down to 10 K. To the best of our knowledge, this is the first demonstration of infrared Bloch surface waves at cryogenic temperatures. Furthermore, by exploiting the enhancement of the surface state and the high brilliance of infrared synchrotron radiation, we demonstrate that the proposed BSW-based sensor has a sensitivity on the order of 2.9 cm-1 for each nanometer-thick ice layer grown on its surface below 150 K. In conclusion, we believe that Bloch surface wave-based sensors are a valid new class of surface mode-based sensors for applications in materials science.
Collapse
Affiliation(s)
- Agostino Occhicone
- Department
of Basic and Applied Sciences for Engineering, Sapienza University of Rome, via A. Scarpa, 16, 00161 Roma, Italy
| | - Raffaella Polito
- Department
of Physics, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Roma, Italy
| | - Francesco Michelotti
- Department
of Basic and Applied Sciences for Engineering, Sapienza University of Rome, via A. Scarpa, 16, 00161 Roma, Italy
| | - Michele Ortolani
- Department
of Physics, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Roma, Italy
| | - Leonetta Baldassarre
- Department
of Physics, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Roma, Italy
| | - Marialilia Pea
- CNR-IFN, Via del Fosso
del Cavaliere, 100, 00133 Roma, Italy
| | - Alberto Sinibaldi
- Department
of Basic and Applied Sciences for Engineering, Sapienza University of Rome, via A. Scarpa, 16, 00161 Roma, Italy
| | | | - Sara Cibella
- CNR-IFN, Via del Fosso
del Cavaliere, 100, 00133 Roma, Italy
| | | | - Pascale Roy
- Synchrotron
SOLEIL, L’Orme des Merisiers,
Saint-Aubin, Gif-sur-Yvette Cedex F-91192, France
| | - Jean-Blaise Brubach
- Synchrotron
SOLEIL, L’Orme des Merisiers,
Saint-Aubin, Gif-sur-Yvette Cedex F-91192, France
| | - Paolo Calvani
- Department
of Physics, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Roma, Italy
| | - Alessandro Nucara
- CNR-SPIN
and Department of Physics, Sapienza University
of Rome, Piazzale A.
Moro, 5, 00185 Roma, Italy
| |
Collapse
|
32
|
Wang Z, Wang Q, Zhang H, Borri S, Galli I, Sampaolo A, Patimisco P, Spagnolo VL, De Natale P, Ren W. Doubly resonant sub-ppt photoacoustic gas detection with eight decades dynamic range. PHOTOACOUSTICS 2022; 27:100387. [PMID: 36068805 PMCID: PMC9441262 DOI: 10.1016/j.pacs.2022.100387] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 05/06/2023]
Abstract
Photoacoustic spectroscopy (PAS) based gas sensors with high sensitivity, wide dynamic range, low cost, and small footprint are desirable in energy, environment, safety, and public health. However, most works have focused on either acoustic resonator to enhance acoustic wave or optical resonator to enhance optical wave. Herein, we develop a gas sensor based on doubly resonant PAS in which the acoustic and optical waves are simultaneously enhanced using combined optical and acoustic resonators in a centimeter-long configuration. Not only the lower detection limit is enhanced by the double standing waves, but also the upper detection limit is expanded due to the short resonators. As an example, we developed a sensor by detecting acetylene (C2H2), achieving a noise equivalent absorption of 5.7 × 10-13 cm-1 and a dynamic range of eight orders. Compared to the state-of-the-art PAS gas sensors, the developed sensor achieves a record sensitivity and dynamic range.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Qiang Wang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author at: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
| | - Hui Zhang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Simone Borri
- CNR-INO – Istituto Nazionale di Ottica, and LENS – European Laboratory for Nonlinear Spectroscopy, 50019 Sesto Fiorentino, Italy
| | - Iacopo Galli
- CNR-INO – Istituto Nazionale di Ottica, and LENS – European Laboratory for Nonlinear Spectroscopy, 50019 Sesto Fiorentino, Italy
| | - Angelo Sampaolo
- PolySense Lab – Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola 173, Bari, Italy
| | - Pietro Patimisco
- PolySense Lab – Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola 173, Bari, Italy
| | - Vincenzo Luigi Spagnolo
- PolySense Lab – Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola 173, Bari, Italy
| | - Paolo De Natale
- CNR-INO – Istituto Nazionale di Ottica, and LENS – European Laboratory for Nonlinear Spectroscopy, 50019 Sesto Fiorentino, Italy
| | - Wei Ren
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- Corresponding author.
| |
Collapse
|
33
|
Predicting Concentrations of Mixed Sugar Solutions with a Combination of Resonant Plasmon-Enhanced SEIRA and Principal Component Analysis. SENSORS 2022; 22:s22155567. [PMID: 35898072 PMCID: PMC9329749 DOI: 10.3390/s22155567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
The detection and quantification of glucose concentrations in human blood or in the ocular fluid gain importance due to the increasing number of diabetes patients. A reliable determination of these low concentrations is hindered by the complex aqueous environments in which various biomolecules are present. In this study, we push the detection limit as well as the discriminative power of plasmonic nanoantenna-based sensors towards the physiological limit. We utilize plasmonic surface-enhanced infrared absorption spectroscopy (SEIRA) to study aqueous solutions of mixtures of up to five different physiologically relevant saccharides, namely the monosaccharides glucose, fructose, and galactose, as well as the disaccharides maltose and lactose. Resonantly tuned plasmonic nanoantennas in a reflection flow cell geometry allow us to enhance the specific vibrational fingerprints of the mono- and disaccharides. The obtained spectra are analyzed via principal component analysis (PCA) using a machine learning algorithm. The high performance of the sensor together with the strength of PCA allows us to detect concentrations of aqueous mono- and disaccharides solutions down to the physiological levels of 1 g/L. Furthermore, we demonstrate the reliable discrimination of the saccharide concentrations, as well as compositions in mixed solutions, which contain all five mono- and disaccharides simultaneously. These results underline the excellent discriminative power of plasmonic SEIRA spectroscopy in combination with the PCA. This unique combination and the insights gained will improve the detection of biomolecules in different complex environments.
Collapse
|
34
|
Ren Z, Zhang Z, Wei J, Dong B, Lee C. Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy. Nat Commun 2022; 13:3859. [PMID: 35790752 PMCID: PMC9256719 DOI: 10.1038/s41467-022-31520-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 06/03/2022] [Indexed: 12/19/2022] Open
Abstract
Infrared (IR) plasmonic nanoantennas (PNAs) are powerful tools to identify molecules by the IR fingerprint absorption from plasmon-molecules interaction. However, the sensitivity and bandwidth of PNAs are limited by the small overlap between molecules and sensing hotspots and the sharp plasmonic resonance peaks. In addition to intuitive methods like enhancement of electric field of PNAs and enrichment of molecules on PNAs surfaces, we propose a loss engineering method to optimize damping rate by reducing radiative loss using hook nanoantennas (HNAs). Furthermore, with the spectral multiplexing of the HNAs from gradient dimension, the wavelength-multiplexed HNAs (WMHNAs) serve as ultrasensitive vibrational probes in a continuous ultra-broadband region (wavelengths from 6 μm to 9 μm). Leveraging the multi-dimensional features captured by WMHNA, we develop a machine learning method to extract complementary physical and chemical information from molecules. The proof-of-concept demonstration of molecular recognition from mixed alcohols (methanol, ethanol, and isopropanol) shows 100% identification accuracy from the microfluidic integrated WMHNAs. Our work brings another degree of freedom to optimize PNAs towards small-volume, real-time, label-free molecular recognition from various species in low concentrations for chemical and biological diagnostics. Infrared spectroscopy with plasmonic nanoantennas is limited by small overlap between molecules and hot spots, and sharp resonance peaks. The authors demonstrate spectral multiplexing of hook nanoantennas with gradient dimensions as ultrasensitive vibrational probes in a continuous ultra-broadband region and utilize machine learning for enhanced sensing performance.
Collapse
|
35
|
Wu C, Guo X, Duan Y, Lyu W, Hu H, Hu D, Chen K, Sun Z, Gao T, Yang X, Dai Q. Ultrasensitive Mid-Infrared Biosensing in Aqueous Solutions with Graphene Plasmons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110525. [PMID: 35460109 DOI: 10.1002/adma.202110525] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Identifying nanoscale biomolecules in aqueous solutions by Fourier transform infrared spectroscopy (FTIR) provides an in situ and noninvasive method for exploring the structure, reactions, and transport of biologically active molecules. However, this remains a challenge due to the strong and broad IR absorption of water which overwhelms the respective vibrational fingerprints of the biomolecules. In this work, a tunable IR transparent microfluidic system with graphene plasmons is exploited to identify ≈2 nm-thick proteins in physiological conditions. The acquired in situ tunability makes it possible to eliminate the IR absorption of water outside the graphene plasmonic hotspots by background subtraction. Most importantly, the ultrahigh confinement of graphene plasmons (confined to ≈15 nm) permits the implementation of nanoscale sensitivity. Then, the deuterium effects on monolayer proteins are characterized within an aqueous solution. The tunable graphene-plasmon-enhanced FTIR technology provides a novel platform for studying biological processes in an aqueous solution at the nanoscale.
Collapse
Affiliation(s)
- Chenchen Wu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Guo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Duan
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wei Lyu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hai Hu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Debo Hu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering and QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| | - Teng Gao
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaoxia Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
36
|
Ma Y, Li Q, Wang S, Wang Y, Liu H, Wang X, Zhao B, Jiang Z, Ruan W. Observation of tunable surface plasmon resonances and surface enhanced infrared absorption (SEIRA) based on indium tin oxide (ITO) nanoparticle substrates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120914. [PMID: 35074675 DOI: 10.1016/j.saa.2022.120914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The application of surface enhanced infrared absorption (SEIRA) is severely restricted in many fields due to the SEIRA substrates are constructed mainly from expensive noble metals. Therefore, the development of new SEIRA substrates other than the noble metallic ones is very valuable. Here we introduced a new semiconductor SEIRA substrate, the indium tin oxide (ITO) nanoparticles (NPs), to study the SEIRA property. The results demonstrate that the ITO NPs show the SEIRA property and the enhancement is dependent to the doping ratio of the heteroatoms of tin. The ITO NPs with the 5% atomic doping ratio show the highest SEIRA enhancement factor (EF), which is about 24. The limit of detection (LOD) of the 1,1'-dicarboxyferrocene (dcFc) molecule was as low as 10-5 mol/L. The present study proves that the tin-doped indium oxide can be used as a new and inexpensive semiconductor SEIRA substrate. It also proves that the doped semiconductor NPs have strong potentials for being used as emerging SEIRA substrates.
Collapse
Affiliation(s)
- Yan Ma
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qianwen Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Siyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yanan Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongye Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China.
| | - Weidong Ruan
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
37
|
Open-channel microfluidics via resonant wireless power transfer. Nat Commun 2022; 13:1869. [PMID: 35387995 PMCID: PMC8987052 DOI: 10.1038/s41467-022-29405-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/11/2022] [Indexed: 11/14/2022] Open
Abstract
Open-channel microfluidics enables precise positioning and confinement of liquid volume to interface with tightly integrated optics, sensors, and circuit elements. Active actuation via electric fields can offer a reduced footprint compared to passive microfluidic ensembles and removes the burden of intricate mechanical assembly of enclosed systems. Typical systems actuate via manipulating surface wettability (i.e., electrowetting), which can render low-voltage but forfeits open-microchannel confinement. The dielectric polarization force is an alternative which can generate open liquid microchannels (sub-100 µm) but requires large operating voltages (50–200 VRMS) and low conductivity solutions. Here we show actuation of microchannels as narrow as 1 µm using voltages as low as 0.5 VRMS for both deionized water and physiological buffer. This was achieved using resonant, nanoscale focusing of radio frequency power and an electrode geometry designed to abate surface tension. We demonstrate practical fluidic applications including open mixing, lateral-flow protein labeling, filtration, and viral transport for infrared biosensing—known to suffer strong absorption losses from enclosed channel material and water. This tube-free system is coupled with resonant wireless power transfer to remove all obstructing hardware — ideal for high-numerical-aperture microscopy. Wireless, smartphone-driven fluidics is presented to fully showcase the practical application of this technology. Open microfluidics enables precise positioning of liquid sample with direct channel access. Here, authors demonstrate a geometrical solution for actively manipulating open microchannels using a wireless radio frequency signal.
Collapse
|
38
|
Lee G, Yu ES, Ryu YS, Seo M. The perspectives of broadband metasurfaces and photo-electric tweezer applications. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1783-1808. [PMID: 39633930 PMCID: PMC11501245 DOI: 10.1515/nanoph-2021-0711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/07/2024]
Abstract
With strong demands of real-time monitoring of biomolecules or environmental pollutants, overcoming technical hurdles on control and detection of freely diffusive nanoscale objects become a question of issue to solve in a variety of research fields. Most existing optical techniques inevitably require labeling to the target material, which sometimes denature the measuring biomaterials. For highly efficient real-time monitoring without complicated pretreatment or labeling, many successes in development of label-free or non-destructive detection techniques via increased sensitivity were accomplished by the additional structures. Metasurface-based two-dimensional photonic/electric devices have recently represented extraordinary performances in both manipulation and sensing for various small particles and biochemical species, repeatedly overcoming the limit of detection achieved right before. In parallel, various metasurface-based devices were also introduced promoting transportation of targets into optical hotspot sites, overcoming diffusion limits. We noted this point, therefore, reviewed two major research fields such as metasurface-assisted material sensing and transportation technologies that have contributed to present prospective sensing technologies, then showed perspective views on how great synergy can be created when two technologies are cleverly integrated. Recently, a trend of conceptual merging of optical detection and transporting schemes beyond both diffraction limit and diffusion limit leads to a creation of exceptional performance in molecular detections. In this review, the trends of the latest technologies accomplishing this purpose by hybridization of various composite materials and functional metasurfaces will be introduced.
Collapse
Affiliation(s)
- Geon Lee
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul08826, Republic of Korea
| | - Eui-Sang Yu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
| | - Yong-Sang Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea
| | - Minah Seo
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea
| |
Collapse
|
39
|
Sharafeldin M, Davis JJ. Characterising the biosensing interface. Anal Chim Acta 2022; 1216:339759. [DOI: 10.1016/j.aca.2022.339759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/08/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
|
40
|
Gao Y, Aspnes DE, Franzen S. Classical Model of Surface Enhanced Infrared Absorption (SEIRA) Spectroscopy. J Phys Chem A 2022; 126:341-351. [PMID: 35005959 DOI: 10.1021/acs.jpca.1c08463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecule-plasmon interaction is the key to the mechanisms of surface enhanced infrared absorption (SEIRA) and surface enhanced Raman scattering (SERS). Since plasmons are well described by Maxwell's equations, one fundamental treatment involves the classical interpretation of infrared absorption and resonance Raman spectroscopies. We can understand the molecule-plasmon interaction using electromagnetic theory if the classical field effect on a transition dipole moment or transition polarizability is properly described. In previous work, we derived the Raman excitation profile of a model molecule using a classical driven spring attached to a charged mass with a perturbative force constant due to vibrational oscillations. In this study we generalize the interactions of plasmons with molecules by considering the N2O asymmetric stretch SEIRA signal on a Dy doped CdO (CdO:Dy) film. This semiconductor has tunable plasmon dispersion curves throughout the near-and mid-infrared that can interact directly with vibrational absorption transitions. We have demonstrated this using the Kretschmann configuration with a CaF2 prism and a MgO substrate. The model predicts the phase behavior of SEIRA. The calculated enhancement factor relative to an Au control is 6.2, in good agreement with the value of 6.8 ± 0.5 measured under the same conditions.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695-8204, United States
| | - D E Aspnes
- Department of Physics, NC State University, Raleigh, North Carolina 27695-8202, United States
| | - Stefan Franzen
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
41
|
Hajji M, Cariello M, Gilroy C, Kartau M, Syme CD, Karimullah A, Gadegaard N, Malfait A, Woisel P, Cooke G, Peveler WJ, Kadodwala M. Chiral Quantum Metamaterial for Hypersensitive Biomolecule Detection. ACS NANO 2021; 15:19905-19916. [PMID: 34846858 DOI: 10.1021/acsnano.1c07408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiral biological and pharmaceutical molecules are analyzed with phenomena that monitor their very weak differential interaction with circularly polarized light. This inherent weakness results in detection levels for chiral molecules that are inferior, by at least six orders of magnitude, to the single molecule level achieved by state-of-the-art chirally insensitive spectroscopic measurements. Here, we show a phenomenon based on chiral quantum metamaterials (CQMs) that overcomes these intrinsic limits. Specifically, the emission from a quantum emitter, a semiconductor quantum dot (QD), selectively placed in a chiral nanocavity is strongly perturbed when individual biomolecules (here, antibodies) are introduced into the cavity. The effect is extremely sensitive, with six molecules per nanocavity being easily detected. The phenomenon is attributed to the CQM being responsive to significant local changes in the optical density of states caused by the introduction of the biomolecule into the cavity. These local changes in the metamaterial electromagnetic environment, and hence the biomolecules, are invisible to "classical" light-scattering-based measurements. Given the extremely large effects reported, our work presages next generation technologies for rapid hypersensitive measurements with applications in nanometrology and biodetection.
Collapse
Affiliation(s)
- Maryam Hajji
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michele Cariello
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Cameron Gilroy
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Martin Kartau
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Christopher D Syme
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Affar Karimullah
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Nikolaj Gadegaard
- School of Engineering, Rankine Building, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Aurélie Malfait
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Patrice Woisel
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Graeme Cooke
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - William J Peveler
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Malcolm Kadodwala
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
42
|
Corcione E, Pfezer D, Hentschel M, Giessen H, Tarín C. Machine Learning Methods of Regression for Plasmonic Nanoantenna Glucose Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 22:s22010007. [PMID: 35009555 PMCID: PMC8747440 DOI: 10.3390/s22010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 05/11/2023]
Abstract
The measurement and quantification of glucose concentrations is a field of major interest, whether motivated by potential clinical applications or as a prime example of biosensing in basic research. In recent years, optical sensing methods have emerged as promising glucose measurement techniques in the literature, with surface-enhanced infrared absorption (SEIRA) spectroscopy combining the sensitivity of plasmonic systems and the specificity of standard infrared spectroscopy. The challenge addressed in this paper is to determine the best method to estimate the glucose concentration in aqueous solutions in the presence of fructose from the measured reflectance spectra. This is referred to as the inverse problem of sensing and usually solved via linear regression. Here, instead, several advanced machine learning regression algorithms are proposed and compared, while the sensor data are subject to a pre-processing routine aiming to isolate key patterns from which to extract the relevant information. The most accurate and reliable predictions were finally made by a Gaussian process regression model which improves by more than 60% on previous approaches. Our findings give insight into the applicability of machine learning methods of regression for sensor calibration and explore the limitations of SEIRA glucose sensing.
Collapse
Affiliation(s)
- Emilio Corcione
- Research Center SCoPE, Institute for System Dynamics, University of Stuttgart, 70563 Stuttgart, Germany;
- Correspondence:
| | - Diana Pfezer
- Research Center SCoPE, 4th Physics Institute, University of Stuttgart, 70569 Stuttgart, Germany; (D.P.); (M.H.); (H.G.)
| | - Mario Hentschel
- Research Center SCoPE, 4th Physics Institute, University of Stuttgart, 70569 Stuttgart, Germany; (D.P.); (M.H.); (H.G.)
| | - Harald Giessen
- Research Center SCoPE, 4th Physics Institute, University of Stuttgart, 70569 Stuttgart, Germany; (D.P.); (M.H.); (H.G.)
| | - Cristina Tarín
- Research Center SCoPE, Institute for System Dynamics, University of Stuttgart, 70563 Stuttgart, Germany;
| |
Collapse
|
43
|
Ultrasensitive SEIRA detection using gold nanobipyramids: Toward efficient multimodal immunosensor. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Li J, Li J, Yan Z, Ding XL, Xia XH. Revealing the Hydrogen Bonding Interaction of DNA with Unnatural Bases via Plasmonic Antenna Enhanced Infrared Spectroscopy. J Phys Chem Lett 2021; 12:10255-10261. [PMID: 34652166 DOI: 10.1021/acs.jpclett.1c02901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The incorporation of unnatural bases in DNA programming can break through the limits of Watson-Crick and Hoogsteen base pairing to expand the diversity of DNA structures. Thus, understanding the interaction between DNA and unnatural bases is of great importance in DNA nanotechnology. Here, we propose an approach of plasmonic antenna enhanced infrared spectroscopy to study the hydrogen bonding interaction between poly(thymine) DNA (poly T DNA) and melamine. The formation of multiple hydrogen bonds between melamine and thymine of poly T DNA is revealed by the appearance of a new infrared (IR) feature of the NH2 deformation vibration at 1680 cm-1. The binding rate constant (kb) and the dissociation rate constant (kd) of the affinity reaction reach 39.70 M-1·s-1 and 4.49 × 10-5 s-1, respectively. This work offers a valuable IR technique to study DNA nanostructures at the molecular level, providing unique physicochemical views of the interaction mechanism between DNA and unnatural bases in DNA programming.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhendong Yan
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
45
|
Huang SH, Li J, Fan Z, Delgado R, Shvets G. Monitoring the effects of chemical stimuli on live cells with metasurface-enhanced infrared reflection spectroscopy. LAB ON A CHIP 2021; 21:3991-4004. [PMID: 34474459 PMCID: PMC8511245 DOI: 10.1039/d1lc00580d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Infrared spectroscopy has found wide applications in the analysis of biological materials. A more recent development is the use of engineered nanostructures - plasmonic metasurfaces - as substrates for metasurface-enhanced infrared reflection spectroscopy (MEIRS). Here, we demonstrate that strong field enhancement from plasmonic metasurfaces enables the use of MEIRS as a highly informative analytic technique for real-time monitoring of cells. By exposing live cells cultured on a plasmonic metasurface to chemical compounds, we show that MEIRS can be used as a label-free phenotypic assay for detecting multiple cellular responses to external stimuli: changes in cell morphology, adhesion, and lipid composition of the cellular membrane, as well as intracellular signaling. Using a focal plane array detection system, we show that MEIRS also enables spectro-chemical imaging at the single-cell level. The described metasurface-based all-optical sensor opens the way to a scalable, high-throughput spectroscopic assay for live cells.
Collapse
Affiliation(s)
- Steven H Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Jiaruo Li
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Zhiyuan Fan
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Robert Delgado
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| |
Collapse
|
46
|
Leitis A, Tseng ML, John‐Herpin A, Kivshar YS, Altug H. Wafer-Scale Functional Metasurfaces for Mid-Infrared Photonics and Biosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102232. [PMID: 34494318 PMCID: PMC11468586 DOI: 10.1002/adma.202102232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/23/2021] [Indexed: 05/24/2023]
Abstract
Metasurfaces have emerged as a breakthrough platform for manipulating light at the nanoscale and enabling on-demand optical functionalities for next-generation biosensing, imaging, and light-generating photonic devices. However, translating this technology to practical applications requires low-cost and high-throughput fabrication methods. Due to the limited choice of materials with suitable optical properties, it is particularly challenging to produce metasurfaces for the technologically relevant mid-infrared spectral range. These constraints are overcome by realizing functional metasurfaces on almost completely transparent free-standing metal-oxide membranes. A versatile nanofabrication process is developed and implemented for highly efficient dielectric and plasmonic mid-infrared metasurfaces with wafer-scale and complementary metal-oxide-semiconductor (CMOS)-compatible manufacturing techniques. The advantages of this method are revealed by demonstrating highly uniform and functional metasurfaces, including high-Q structures enabling fine spectral selectivity, large-area metalenses with diffraction-limited focusing capabilities, and birefringent metasurfaces providing polarization control at record-high conversion efficiencies. Aluminum plasmonic devices and their integration into microfluidics for real-time and label-free mid-infrared biosensing of proteins and lipid vesicles are further demonstrated. The versatility of this approach and its compatibility with mass-production processes bring infrared metasurfaces markedly closer to commercial applications, such as thermal imaging, spectroscopy, and biosensing.
Collapse
Affiliation(s)
- Aleksandrs Leitis
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Ming Lun Tseng
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Aurelian John‐Herpin
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Yuri S. Kivshar
- Nonlinear Physics CentreResearch School of PhysicsAustralian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Hatice Altug
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| |
Collapse
|
47
|
Li D, Zhou H, Hui X, He X, Huang H, Zhang J, Mu X, Lee C, Yang Y. Multifunctional Chemical Sensing Platform Based on Dual-Resonant Infrared Plasmonic Perfect Absorber for On-Chip Detection of Poly(ethyl cyanoacrylate). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101879. [PMID: 34423591 PMCID: PMC8529490 DOI: 10.1002/advs.202101879] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Indexed: 05/05/2023]
Abstract
Multifunctional chemical sensing is highly desirable in industry, agriculture, and environmental sciences, but remains challenging due to the diversity of chemical substances and reactions. Surface-enhanced infrared absorption (SEIRA) spectroscopy can potentially address the above problems by ultra-sensitive detection of molecular fingerprint vibrations. Here, a multifunctional chemical sensing platform based on dual-resonant SEIRA device for sensitive and multifunctional on-chip detection of poly(ethyl cyanoacrylate) (PECA) is reported. It is experimentally demonstrated that the SEIRA sensing platform achieves multiple functions required by the PECA glue industry, including vibrational detection, thickness measurement, and in situ observation of polymerization and curing, which are usually realized by separately using a spectrometer, a viscometer, and an ellipsometer in the past. Specifically, the all-in-one sensor offers a dual-band fingerprint vibration identification, sub-nm level detection limit, and ultrahigh sensitivity of 0.76%/nm in thickness measurement, and second-level resolution in real-time observation of polymerization and curing. This work not only provides a valuable toolkit for ultra-sensitive and multifunctional on-chip detection of PECA, but also gives new insights into the SEIRA technology for multi-band, multi-functional, and on-chip chemical sensing.
Collapse
Affiliation(s)
- Dongxiao Li
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
| | - Hong Zhou
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
- Department of Electrical and Computer EngineeringCenter for Intelligent Sensors and MEMS (CISM)and NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore117576Singapore
| | - Xindan Hui
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Xianming He
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - He Huang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Jiajia Zhang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R & D center of Micro‐nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Chengkuo Lee
- Department of Electrical and Computer EngineeringCenter for Intelligent Sensors and MEMS (CISM)and NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore117576Singapore
| | - Ya Yang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
48
|
Zhang QW, Baig MMFA, Zhang TQ, Zhai TT, Qin X, Xia XH. RETRACTED: Liposomal valinomycin mediated cellular K + leak promoting apoptosis of liver cancer cells. J Control Release 2021; 337:317-328. [PMID: 34311027 DOI: 10.1016/j.jconrel.2021.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the corresponding author. It has been found that Fig 2B contains manipulated components, and Fig 5A partially overlaps with Fig 6 of a published paper authored by Mirza Muhammad Faran Ashraf Baig, et, al., The effective transfection of a low dose of negatively charged drug-loaded DNA-nanocarriers into cancer cells via scavenger receptors, J. Pharm. Anal. 11 (2021) 174-182, https://doi.org/10.1016/j.jpha.2020.10.003. The corresponding author indicated that they cannot guarantee the integrity of the images in the manuscript, as well as the conclusions of the paper. As a result, the Editor-in-Chief has decided to retract the paper. The corresponding author deeply regrets the circumstances and apologizes to the scientific community for not having detected this prior to publication.
Collapse
Affiliation(s)
- Qian-Wen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian-Qi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ting-Ting Zhai
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiang Qin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
49
|
Osanloo N, Ahmadi V, Naser-Moghaddasi M, Darabi E. Engineered nano-sphere array of gold-DNA core-shells and junctions as opto-plasmonic sensors for biodetection. RSC Adv 2021; 11:27215-27225. [PMID: 35480674 PMCID: PMC9037639 DOI: 10.1039/d1ra03079e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
In this paper, we design opto-plasmonic sensors by the engineered arrangement of gold-nanospheres. We use DNA-gold nanoparticle (GNP) core-shells and DNA rods as junctions between GNPs with a fishnet ground layer for controlling and improving the absorbance and reflection in the range of 100-300 THz. Based on available data, we check the effects of healthy and cancerous cells on the reflection parameter. Here, we demonstrate how the DNA junctions and distance between the nanospheres can be considered to modify the reflection. These structures can be utilized as opto-plasmonic sensors with high sensitivity to distinguish materials in terms of refractive indices. We can use an array of these sensors for both spectroscopy and optical imaging on a real scale. The proposed structures with different topologies are analyzed and their figure of merits (FOM) and sensitivities are obtained. The structure based on the DNA rods as junctions between GNPs shows the best FOM value of 340 RIU-1 and the core-shell heptamer structure has the best sensitivity of about 1287 nm RIU-1.
Collapse
Affiliation(s)
- Nahid Osanloo
- Faculty of Engineering, Science and Research Branch, Islamic Azad University Tehran Iran
| | - Vahid Ahmadi
- Department of Electrical and Computer Engineering, Tarbiat Modares University Tehran Iran
| | | | - Elham Darabi
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University Tehran Iran
| |
Collapse
|
50
|
Hui X, Yang C, Li D, He X, Huang H, Zhou H, Chen M, Lee C, Mu X. Infrared Plasmonic Biosensor with Tetrahedral DNA Nanostructure as Carriers for Label-Free and Ultrasensitive Detection of miR-155. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100583. [PMID: 34155822 PMCID: PMC8373097 DOI: 10.1002/advs.202100583] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/19/2021] [Indexed: 05/27/2023]
Abstract
MicroRNAs play an important role in early development, cell proliferation, apoptosis, and cell death, and are aberrantly expressed in many types of cancers. To understand their function and diagnose cancer at an early stage, it is crucial to quantitatively detect microRNA without invasive labels. Here, a plasmonic biosensor based on surface-enhanced infrared absorption (SEIRA) for rapid, label-free, and ultrasensitive detection of miR-155 is reported. This technology leverages metamaterial perfect absorbers stimulating the SEIRA effect to provide up to 1000-fold near-field intensity enhancement over the microRNA fingerprint spectral bands. Additionally, it is discovered that the limit of detection (LOD) of the biosensor can be greatly improved by using tetrahedral DNA nanostructure (TDN) as carriers. By using near-field enhancement of SEIRA and specific binding of TDN, the biosensor achieves label-free detection of miR-155 with a high sensitivity of 1.162% pm-1 and an excellent LOD of 100 × 10-15 m. The LOD is about 5000 times lower than that using DNA single strand as probes and about 100 times lower than that of the fluorescence detection method. This work can not only provide a powerful diagnosis tool for the microRNAs detection but also gain new insights into the field of label-free and ultrasensitive SEIRA-based biosensing.
Collapse
Affiliation(s)
- Xindan Hui
- Key Laboratory of Optoelectronic Technology and SystemsMinistry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Cheng Yang
- Department of Clinical LaboratorySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Dongxiao Li
- Key Laboratory of Optoelectronic Technology and SystemsMinistry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Xianming He
- Key Laboratory of Optoelectronic Technology and SystemsMinistry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - He Huang
- Key Laboratory of Optoelectronic Technology and SystemsMinistry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| | - Hong Zhou
- Key Laboratory of Optoelectronic Technology and SystemsMinistry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
- Department of Electrical and Computer EngineeringCenter for Intelligent Sensors and MEMS (CISM)NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore117576Singapore
| | - Ming Chen
- Department of Clinical LaboratorySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Chengkuo Lee
- Department of Electrical and Computer EngineeringCenter for Intelligent Sensors and MEMS (CISM)NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore117576Singapore
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology and SystemsMinistry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044P. R. China
| |
Collapse
|