1
|
Liang M, Wang L, Tian X, Wang K, Zhu X, Huang L, Li Q, Ye W, Chen C, Yang H, Wu W, Chen X, Zhu X, Xue Y, Wan W, Wu Y, Lu L, Wang J, Zou H, Ying T, Zhou F. Identification and validation of anti-protein arginine methyltransferase 5 (PRMT5) antibody as a novel biomarker for systemic sclerosis (SSc). Ann Rheum Dis 2024; 83:1144-1155. [PMID: 38684324 PMCID: PMC11420721 DOI: 10.1136/ard-2024-225596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVES In the complex panorama of autoimmune diseases, the characterisation of pivotal contributing autoantibodies that are involved in disease progression remains challenging. This study aimed to employ a global antibody profiling strategy to identify novel antibodies and investigate their association with systemic sclerosis (SSc). METHODS We implemented this strategy by conducting immunoprecipitation (IP) following on-bead digestion with the sera of patients with SSc or healthy donors, using antigen pools derived from cell lysates. The enriched antigen-antibody complex was proceeded with mass spectrometry (MS)-based quantitative proteomics and over-represented by bioinformatics analysis. The candidate antibodies were then orthogonally validated in two independent groups of patients with SSc. Mice were immunised with the target antigen, which was subsequently evaluated by histological examination and RNA sequencing. RESULTS The IP-MS analysis, followed by validation in patients with SSc, revealed a significant elevation in anti-PRMT5 antibodies among patients with SSc. These antibodies exhibited robust diagnostic accuracy in distinguishing SSc from healthy controls and other autoimmune conditions, including systemic lupus erythematosus and Sjögren's syndrome, with an area under the curve ranging from 0.900 to 0.988. The elevation of anti-PRMT5 antibodies was verified in a subsequent independent group with SSc using an additional method, microarray. Notably, 31.11% of patients with SSc exhibited seropositivity for anti-PRMT5 antibodies. Furthermore, the titres of anti-PRMT5 antibodies demonstrated a correlation with the progression or regression trajectory in SSc. PRMT5 immunisation displayed significant inflammation and fibrosis in both the skin and lungs of mice. This was concomitant with the upregulation of multiple proinflammatory and profibrotic pathways, thereby underscoring a potentially pivotal role of anti-PRMT5 antibodies in SSc. CONCLUSIONS This study has identified anti-PRMT5 antibodies as a novel biomarker for SSc.
Collapse
Affiliation(s)
- Minrui Liang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingbiao Wang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaolong Tian
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kun Wang
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyi Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Huang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Li
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjing Ye
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haihua Yang
- Department of Respiratory and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanqing Wu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Zhu
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiguo Wan
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanling Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liwei Lu
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Feng Zhou
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Horvath A, Janapala Y, Woodward K, Mahmud S, Cleynen A, Gardiner E, Hannan R, Eyras E, Preiss T, Shirokikh N. Comprehensive translational profiling and STE AI uncover rapid control of protein biosynthesis during cell stress. Nucleic Acids Res 2024; 52:7925-7946. [PMID: 38721779 PMCID: PMC11260467 DOI: 10.1093/nar/gkae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 07/23/2024] Open
Abstract
Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics.
Collapse
Affiliation(s)
- Attila Horvath
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Yoshika Janapala
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Katrina Woodward
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Shafi Mahmud
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Alice Cleynen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, CNRS, Montpellier, France
| | - Elizabeth E Gardiner
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The National Platelet Research and Referral Centre, The Australian National University, Canberra, ACT 2601, Australia
| | - Ross D Hannan
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3010, Australia
- Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
- School of Biomedical Sciences, University of Queensland, St Lucia 4067, Australia
| | - Eduardo Eyras
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Centre for Computational Biomedical Sciences, The Australian National University, Canberra, ACT 2601, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Preiss
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Zeng J, Sun K, Chen S, Zhang X, Wang X, Zhang B. A Microfluidic-Fabricated Rod Sprayer for Nanoelectrospray Mass Spectrometry. Anal Chem 2024; 96:3989-3993. [PMID: 38315070 DOI: 10.1021/acs.analchem.3c05695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The nanoelectrosprayer is a key device in the hyphenation of nanoLC-ESI-MS, and its development plays a crucial role in pushing forward the mining depth of biological discovery and industrialization of omics science. In this work, a new type of nanoelectrospray emitter, a rod sprayer, was developed based on microfluidic manufacture. Due to its porous silica structure, the rod sprayer in effect worked as a multinozzle sprayer, which is composed of a bunch of micrometer sized spray channels. Without the need for sophisticated microfabrication equipment, a superclean environment, or a complicated assembling process, such sprayer rods can be facilely fabricated in a mass production style: 3,600 rods with excellent monodispersity have been fabricated in 1 h, and rod sprayers thus made have demonstrated excellent intraday, interday, and interbatch reproducibilities: RSD = 1.9, 4.9, and 6.1%, respectively. The rod sprayer can generate stable electrospray in a wide voltage range from 2.6 to 3.2 kV and flow rates from 50 to 1000 nL/min, covering typical flow rates of subnanoLC, nanoLC, to microLC, and work steadily even under complex matrix environments (e.g., Hank's balanced salt solution containing sodium, magnesium, and calcium ions) without clogging. Meanwhile, the rod sprayers exhibited 200-1800% ionization efficiency enhancement in comparison with commonly used tapered tip emitters, for small molecule drugs, peptides, and proteins, respectively, and provided a broadened linear dynamic range of 4 orders of magnitude. The excellent characteristics of the rod sprayer, together with its small size and mass production capacity, should provide a high quality, high durability, high consistency, and disposable use-supported nanoelectrospray solution for MS-based bioanalyses.
Collapse
Affiliation(s)
- Juxing Zeng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kaiyue Sun
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiyi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Zhang
- Anhui Wanyi Science and Technology Co. Ltd, Hefei 230088, China
| | | | - Bo Zhang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Perez-Perri JI, Ferring-Appel D, Huppertz I, Schwarzl T, Sahadevan S, Stein F, Rettel M, Galy B, Hentze MW. The RNA-binding protein landscapes differ between mammalian organs and cultured cells. Nat Commun 2023; 14:2074. [PMID: 37045843 PMCID: PMC10097726 DOI: 10.1038/s41467-023-37494-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
System-wide approaches have unveiled an unexpected breadth of the RNA-bound proteomes of cultured cells. Corresponding information regarding RNA-binding proteins (RBPs) of mammalian organs is still missing, largely due to technical challenges. Here, we describe ex vivo enhanced RNA interactome capture (eRIC) to characterize the RNA-bound proteomes of three different mouse organs. The resulting organ atlases encompass more than 1300 RBPs active in brain, kidney or liver. Nearly a quarter (291) of these had formerly not been identified in cultured cells, with more than 100 being metabolic enzymes. Remarkably, RBP activity differs between organs independent of RBP abundance, suggesting organ-specific levels of control. Similarly, we identify systematic differences in RNA binding between animal organs and cultured cells. The pervasive RNA binding of enzymes of intermediary metabolism in organs points to tightly knit connections between gene expression and metabolism, and displays a particular enrichment for enzymes that use nucleotide cofactors. We describe a generically applicable refinement of the eRIC technology and provide an instructive resource of RBPs active in intact mammalian organs, including the brain.
Collapse
Affiliation(s)
- Joel I Perez-Perri
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Dunja Ferring-Appel
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Ina Huppertz
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - Thomas Schwarzl
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Sudeep Sahadevan
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-associated Carcinogenesis, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| |
Collapse
|
5
|
Amin R, Alam F, Dey BK, Mandhadi JR, Bin Emran T, Khandaker MU, Safi SZ. Multidimensional Chromatography and Its Applications in Food Products, Biological Samples and Toxin Products: A Comprehensive Review. SEPARATIONS 2022; 9:326. [DOI: 10.3390/separations9110326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Food, drugs, dyes, extracts, and minerals are all made up of complex elements, and utilizing unidimensional chromatography to separate them is inefficient and insensitive. This has sparked the invention of several linked chromatography methods, each of them with distinct separation principles and affinity for the analyte of interest. Multidimensional chromatography consists of the combination of multiple chromatography techniques, with great benefits at the level of efficiency, peak capacity, precision, and accuracy of the analysis, while reducing the time required for the analysis. Various coupled chromatography techniques have recently emerged, including liquid chromatography–gas chromatography (LC–GC), gas chromatography–gas chromatography (GC–GC), liquid chromatography–liquid chromatography (LC–LC), GCMS–MS, LCMS–MS, supercritical fluid techniques with chromatography techniques, and electro-driven multidimensional separation techniques. In this paper, the different coupled chromatography techniques will be discussed, along with their wide spectrum of applications for food, flavor, and environmental analysis, as well as their usefulness for the pharmaceutical, color, and dyes industries.
Collapse
Affiliation(s)
- Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati 781026, Assam, India
| | - Faruk Alam
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati 781026, Assam, India
| | - Biplab Kumar Dey
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati 781026, Assam, India
| | - Jithendar Reddy Mandhadi
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati 781026, Assam, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Malaysia
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
6
|
Llimos G, Gardeux V, Koch U, Kribelbauer JF, Hafner A, Alpern D, Pezoldt J, Litovchenko M, Russeil J, Dainese R, Moia R, Mahmoud AM, Rossi D, Gaidano G, Plass C, Lutsik P, Gerhauser C, Waszak SM, Boettiger A, Radtke F, Deplancke B. A leukemia-protective germline variant mediates chromatin module formation via transcription factor nucleation. Nat Commun 2022; 13:2042. [PMID: 35440565 PMCID: PMC9018852 DOI: 10.1038/s41467-022-29625-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Non-coding variants coordinate transcription factor (TF) binding and chromatin mark enrichment changes over regions spanning >100 kb. These molecularly coordinated regions are named "variable chromatin modules" (VCMs), providing a conceptual framework of how regulatory variation might shape complex traits. To better understand the molecular mechanisms underlying VCM formation, here, we mechanistically dissect a VCM-modulating noncoding variant that is associated with reduced chronic lymphocytic leukemia (CLL) predisposition and disease progression. This common, germline variant constitutes a 5-bp indel that controls the activity of an AXIN2 gene-linked VCM by creating a MEF2 binding site, which, upon binding, activates a super-enhancer-like regulatory element. This triggers a large change in TF binding activity and chromatin state at an enhancer cluster spanning >150 kb, coinciding with subtle, long-range chromatin compaction and robust AXIN2 up-regulation. Our results support a model in which the indel acts as an AXIN2 VCM-activating TF nucleation event, which modulates CLL pathology.
Collapse
Affiliation(s)
- Gerard Llimos
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vincent Gardeux
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ute Koch
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Judith F Kribelbauer
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Antonina Hafner
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Daniel Alpern
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joern Pezoldt
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Maria Litovchenko
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Cancer Research UK Lung Cancer Centre of Excellence, University College London (UCL) Cancer Institute, Cancer Genome Evolution Research Group, London, UK
| | - Julie Russeil
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Riccardo Dainese
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Abdurraouf Mokhtar Mahmoud
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Rossi
- Oncology Institute of Southern Switzerland, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clarissa Gerhauser
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Alistair Boettiger
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Freddy Radtke
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
7
|
Ficarro SB, Max Alexander W, Tavares I, Marto JA. Open source fraction collector/MALDI spotter for proteomics. HARDWAREX 2022; 11:e00305. [PMID: 35518277 PMCID: PMC9062586 DOI: 10.1016/j.ohx.2022.e00305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
We describe a complete open-source hardware/software solution for high performance thermostatted peptide fraction collection to support mass spectrometry experiments with complex proteomes. The instrument is easy to assemble using parts readily available through retail channels at a fraction of the cost compared to typical commercial systems. Control software is written in Python allowing for rapid customization. We demonstrate several useful applications, including the automated deposition of LC separated peptides for matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) as well as collection and concatenation of peptide fractions from nanoflow HPLC separations.
Collapse
Affiliation(s)
- Scott B. Ficarro
- Department of Cancer Biology, Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 360 Longwood Avenue, LC 2208, Boston, MA 02215-5450, USA
| | - William Max Alexander
- Department of Cancer Biology, Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 360 Longwood Avenue, LC 2208, Boston, MA 02215-5450, USA
| | - Isidoro Tavares
- Department of Cancer Biology, Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 360 Longwood Avenue, LC 2208, Boston, MA 02215-5450, USA
| | - Jarrod A. Marto
- Department of Cancer Biology, Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 360 Longwood Avenue, LC 2208, Boston, MA 02215-5450, USA
| |
Collapse
|
8
|
Dey KK, Sun H, Wang Z, Niu M, Wang H, Jiao Y, Sun X, Li Y, Peng J. Proteomic Profiling of Cerebrospinal Fluid by 16-Plex TMT-Based Mass Spectrometry. Methods Mol Biol 2022; 2420:21-37. [PMID: 34905163 PMCID: PMC8890903 DOI: 10.1007/978-1-0716-1936-0_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mass spectrometry (MS) has become a mainstream platform for comprehensive profiling of proteome, especially with the improvement of multiplexed tandem mass tag labeling coupled with two-dimensional liquid chromatography and tandem mass spectrometry (TMT-LC/LC-MS/MS). Recently, we have established a robust method for direct profiling of undepleted cerebrospinal fluid (CSF) proteome with the 16-plex TMTpro method, in which we optimized parameters in experimental steps of sample preparation, TMT labeling, LC/LC fractionation, tandem mass spectrometry, and computational data processing. The extensive LC fractionation not only enhances proteome coverage of the CSF but also alleviates ratio distortion of TMT quantification. The crucial quality control steps and improvements specific for the TMT16 analysis are highlighted. More than 3000 proteins can be quantified in a single experiment from 16 different CSF samples. This multiplexed method offers a powerful tool for profiling a variety of complex biofluids samples such as CSF, serum/plasma, and other clinical specimens.
Collapse
|
9
|
Varca AC, Casalena D, Chan WC, Hu B, Magin RS, Roberts RM, Liu X, Zhu H, Seo HS, Dhe-Paganon S, Marto JA, Auld D, Buhrlage SJ. Identification and validation of selective deubiquitinase inhibitors. Cell Chem Biol 2021; 28:1758-1771.e13. [PMID: 34129829 PMCID: PMC9473745 DOI: 10.1016/j.chembiol.2021.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/11/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
Deubiquitinating enzymes (DUBs) are a class of isopeptidases that regulate ubiquitin dynamics through catalytic cleavage of ubiquitin from protein substrates and ubiquitin precursors. Despite growing interest in DUB biological function and potential as therapeutic targets, few selective small-molecule inhibitors and no approved drugs currently exist. To identify chemical scaffolds targeting specific DUBs and establish a broader framework for future inhibitor development across the gene family, we performed high-throughput screening of a chemically diverse small-molecule library against eight different DUBs, spanning three well-characterized DUB families. Promising hit compounds were validated in a series of counter-screens and orthogonal assays, as well as further assessed for selectivity across expanded panels of DUBs. Through these efforts, we have identified multiple highly selective DUB inhibitors and developed a roadmap for rapidly identifying and validating selective inhibitors of related enzymes.
Collapse
Affiliation(s)
- Anthony C Varca
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Dominick Casalena
- FAST Lab, Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Wai Cheung Chan
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bin Hu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert S Magin
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Rebekka M Roberts
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoxi Liu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - He Zhu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jarrod A Marto
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Douglas Auld
- FAST Lab, Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Sara J Buhrlage
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Zhu H, Ficarro SB, Alexander WM, Fleming LE, Adelmant G, Zhang T, Willetts M, Decker J, Brehmer S, Krause M, East MP, Gray NS, Johnson GL, Kruppa G, Marto JA. PRM-LIVE with Trapped Ion Mobility Spectrometry and Its Application in Selectivity Profiling of Kinase Inhibitors. Anal Chem 2021; 93:13791-13799. [PMID: 34606255 DOI: 10.1021/acs.analchem.1c02349] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parallel reaction monitoring (PRM) has emerged as a popular approach for targeted protein quantification. With high ion utilization efficiency and first-in-class acquisition speed, the timsTOF Pro provides a powerful platform for PRM analysis. However, sporadic chromatographic drift in peptide retention time represents a fundamental limitation for the reproducible multiplexing of targets across PRM acquisitions. Here, we present PRM-LIVE, an extensible, Python-based acquisition engine for the timsTOF Pro, which dynamically adjusts detection windows for reproducible target scheduling. In this initial implementation, we used iRT peptides as retention time standards and demonstrated reproducible detection and quantification of 1857 tryptic peptides from the cell lysate in a 60 min PRM-LIVE acquisition. As an application in functional proteomics, we use PRM-LIVE in an activity-based protein profiling platform to assess binding selectivity of small-molecule inhibitors against 220 endogenous human kinases.
Collapse
Affiliation(s)
- He Zhu
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Scott B Ficarro
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - William M Alexander
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Laura E Fleming
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Guillaume Adelmant
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tinghu Zhang
- Department of Chemical & Systems Biology and ChEM-H, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matthew Willetts
- Bruker Daltonics Inc, Billerica, Massachusetts 01821, United States
| | - Jens Decker
- Bruker Daltonics GmbH & Co. KG, Bremen 28359, Germany
| | - Sven Brehmer
- Bruker Daltonics GmbH & Co. KG, Bremen 28359, Germany
| | | | - Michael P East
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Nathanael S Gray
- Department of Chemical & Systems Biology and ChEM-H, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Gary L Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gary Kruppa
- Bruker S.R.O., District Brno-City 61900, Czech Republic
| | - Jarrod A Marto
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| |
Collapse
|
11
|
Xing S, Pai A, Wu R, Lu Y. NHS-Ester Tandem Labeling in One Pot Enables 48-Plex Quantitative Proteomics. Anal Chem 2021; 93:12827-12832. [PMID: 34529408 DOI: 10.1021/acs.analchem.1c01314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stable-isotope labeling strategies are extensively used for multiplex quantitative proteomics. Hybrid-isotope labeling strategies that combine the use of isotopic mass difference labeling and isobaric tags can greatly increase sample multiplexity. In this work, we present a novel hybrid-isotope labeling approach that we termed NHS-ester tandem labeling in one pot (NETLOP). We first optimized 16-plex isobaric TMTpro labeling of lysine residues followed by 2-plex or 3-plex isotopic mTRAQ labeling of peptide N-termini, both of which with commercially available NHS-ester reactive reagents. We then demonstrated the utility of the NETLOP approach by labeling HeLa cell samples and performing proof-of-principle quantitative 32-plex and 48-plex proteomic analyses, each in a single LC-MS/MS experiment. Compared to current hybrid-isotope labeling methods, our NETLOP approach requires no sample cleanup between different labeling steps to minimize sample loss, induces no retention time shifts that compromise quantification accuracy, can be adapted to other NHS-ester isotopic labeling reagents to further increase multiplexity, and is compatible with samples from any origin in a wide array of biological and clinical proteomics applications.
Collapse
Affiliation(s)
- Sansi Xing
- Department of Biochemistry and Biomedical Sciences, McMaster University, Michael G. DeGroote Centre for Learning and Centre, Room 5033, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Akshat Pai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Michael G. DeGroote Centre for Learning and Centre, Room 5033, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Ruilin Wu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Michael G. DeGroote Centre for Learning and Centre, Room 5033, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Yu Lu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Michael G. DeGroote Centre for Learning and Centre, Room 5033, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
12
|
Cifani P, Li Z, Luo D, Grivainis M, Intlekofer AM, Fenyö D, Kentsis A. Discovery of Protein Modifications Using Differential Tandem Mass Spectrometry Proteomics. J Proteome Res 2021; 20:1835-1848. [PMID: 33749263 PMCID: PMC8341206 DOI: 10.1021/acs.jproteome.0c00638] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent studies have revealed diverse amino acid, post-translational, and noncanonical modifications of proteins in diverse organisms and tissues. However, their unbiased detection and analysis remain hindered by technical limitations. Here, we present a spectral alignment method for the identification of protein modifications using high-resolution mass spectrometry proteomics. Termed SAMPEI for spectral alignment-based modified peptide identification, this open-source algorithm is designed for the discovery of functional protein and peptide signaling modifications, without prior knowledge of their identities. Using synthetic standards and controlled chemical labeling experiments, we demonstrate its high specificity and sensitivity for the discovery of substoichiometric protein modifications in complex cellular extracts. SAMPEI mapping of mouse macrophage differentiation revealed diverse post-translational protein modifications, including distinct forms of cysteine itaconatylation. SAMPEI's robust parametrization and versatility are expected to facilitate the discovery of biological modifications of diverse macromolecules. SAMPEI is implemented as a Python package and is available open-source from BioConda and GitHub (https://github.com/FenyoLab/SAMPEI).
Collapse
Affiliation(s)
- Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10021, United States
| | - Zhi Li
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, New York 10016, United States
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York 10016, United States
| | - Danmeng Luo
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10021, United States
| | - Mark Grivainis
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, New York 10016, United States
| | - Andrew M Intlekofer
- Human Oncology & Pathogenesis Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, United States
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, New York 10016, United States
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York 10016, United States
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10021, United States
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, and Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, New York 10021, United States
| |
Collapse
|
13
|
Liu D, Yang S, Kavdia K, Sifford JM, Wu Z, Xie B, Wang Z, Pagala VR, Wang H, Yu K, Dey KK, High AA, Serrano GE, Beach TG, Peng J. Deep Profiling of Microgram-Scale Proteome by Tandem Mass Tag Mass Spectrometry. J Proteome Res 2020; 20:337-345. [PMID: 33175545 DOI: 10.1021/acs.jproteome.0c00426] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tandem mass tag (TMT)-based mass spectrometry (MS) enables deep proteomic profiling of more than 10,000 proteins in complex biological samples but requires up to 100 μg protein in starting materials during a standard analysis. Here, we present a streamlined protocol to quantify more than 9000 proteins with 0.5 μg protein per sample by 16-plex TMT coupled with two-dimensional liquid chromatography and tandem mass spectrometry (LC/LC-MS/MS). In this protocol, we optimized multiple conditions to reduce sample loss, including processing each sample in a single tube to minimize surface adsorption, increasing digestion enzymes to shorten proteolysis and function as carriers, eliminating a desalting step between digestion and TMT labeling, and developing miniaturized basic pH LC for prefractionation. By profiling 16 identical human brain tissue samples of Alzheimer's disease (AD), vascular dementia (VaD), and non-dementia controls, we directly compared this new microgram-scale protocol to the standard-scale protocol, quantifying 9116 and 10,869 proteins, respectively. Importantly, bioinformatics analysis indicated that the microgram-scale protocol had adequate sensitivity and reproducibility to detect differentially expressed proteins in disease-related pathways. Thus, this newly developed protocol is of general application for deep proteomics analysis of biological and clinical samples at sub-microgram levels.
Collapse
Affiliation(s)
- Danting Liu
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Shu Yang
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Jeffrey M Sifford
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Boer Xie
- Center for Proteomics and Metabolomics, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Vishwajeeth R Pagala
- Center for Proteomics and Metabolomics, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Hong Wang
- Center for Proteomics and Metabolomics, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Kaiwen Yu
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Kaushik Kumar Dey
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Anthony A High
- Center for Proteomics and Metabolomics, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, Arizona 85351, United States
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona 85351, United States
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States.,Center for Proteomics and Metabolomics, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| |
Collapse
|
14
|
Kuznetsova KG, Levitsky LI, Pyatnitskiy MA, Ilina IY, Bubis JA, Solovyeva EM, Zgoda VG, Gorshkov MV, Moshkovskii SA. Cysteine alkylation methods in shotgun proteomics and their possible effects on methionine residues. J Proteomics 2020; 231:104022. [PMID: 33096305 DOI: 10.1016/j.jprot.2020.104022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 01/06/2023]
Abstract
In order to optimize sample preparation for shotgun proteomics, we compared four cysteine alkylating agents: iodoacetamide, chloroacetamide, 4-vinylpyridine and methyl methanethiosulfonate, and estimated their effects on the results of proteome analysis. Because alkylation may result in methionine modification in vitro, proteomics data were searched for methionine to isothreonine conversions, which may mimic genomic methionine to threonine substitutions found in proteogenomic analyses. We found that chloroacetamide was superior to the other reagents in terms of the number of identified peptides and undesirable off-site reactions. Among the reagents evaluated, iodoacetamide increased the rate of methionine-to-isothreonine conversion, especially if the sample was prepared in gel. The presence of proline following methionine in a protein sequence increased the modification rate as well. Generally, the methionine-to-isothreonine conversion events were relatively rare, but should be taken into account in proteogenomic studies when searching for single nucleotide polymorphism events at the protein level. Additionally, we have evaluated other methionine modifications, such as oxidation and carbamidomethylation. We found that carbamidomethylation may affect up to 80% of peptides containing methionine under the condition of iodoacetamide alkylation. In this case, carbamidomethylation of methionine is more common than oxidation and should be accounted for as a variable modification during proteomic search. SIGNIFICANCE: One of the most trending questions in bottom-up proteomics is the depth of proteome profiling, in other words, the coverage of proteins by identified tryptic peptides. In proteogenomics, where the identification of a single peptide, e.g. bearing an amino acid substitution, may be of interest, high sequence coverage is especially important. Chemical modifications during sample preparation may mimic biologically significant coding mutations at the proteome level. A typical example of such modification is methionine to isothreonine conversion during alkylation, which mimics methionine to threonine substitution in protein sequences due to respective genomic mutations. Therefore, the studies on the proper selection of alkylating reagents which balance the cysteine alkylation efficiency and the extent of methionine conversion upon conventional proteomic sample preparation workflow are crucial for the outcome of proteogenomic analyses and should present a general interest for the proteomic community.
Collapse
Affiliation(s)
- Ksenia G Kuznetsova
- Federal Research and Clinical Center of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow 119435, Russia.
| | - Lev I Levitsky
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 38, bld. 1, Leninsky Prospect, Moscow 119334, Russia
| | - Mikhail A Pyatnitskiy
- Federal Research and Clinical Center of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow 119435, Russia; Institute of Biomedical Chemistry, 10, Pogodinskaya, Moscow 119121, Russia
| | - Irina Y Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow 119435, Russia
| | - Julia A Bubis
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 38, bld. 1, Leninsky Prospect, Moscow 119334, Russia
| | - Elizaveta M Solovyeva
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 38, bld. 1, Leninsky Prospect, Moscow 119334, Russia
| | - Victor G Zgoda
- Institute of Biomedical Chemistry, 10, Pogodinskaya, Moscow 119121, Russia; Skolkovo Institute of Science and Technology, 30, bld. 1, Bolshoy Boulevard, Moscow 121205, Russia
| | - Mikhail V Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 38, bld. 1, Leninsky Prospect, Moscow 119334, Russia
| | - Sergei A Moshkovskii
- Federal Research and Clinical Center of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow 119435, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova, Moscow 117997, Russia.
| |
Collapse
|
15
|
Jayathirtha M, Dupree EJ, Manzoor Z, Larose B, Sechrist Z, Neagu AN, Petre BA, Darie CC. Mass Spectrometric (MS) Analysis of Proteins and Peptides. Curr Protein Pept Sci 2020; 22:92-120. [PMID: 32713333 DOI: 10.2174/1389203721666200726223336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
The human genome is sequenced and comprised of ~30,000 genes, making humans just a little bit more complicated than worms or flies. However, complexity of humans is given by proteins that these genes code for because one gene can produce many proteins mostly through alternative splicing and tissue-dependent expression of particular proteins. In addition, post-translational modifications (PTMs) in proteins greatly increase the number of gene products or protein isoforms. Furthermore, stable and transient interactions between proteins, protein isoforms/proteoforms and PTM-ed proteins (protein-protein interactions, PPI) add yet another level of complexity in humans and other organisms. In the past, all of these proteins were analyzed one at the time. Currently, they are analyzed by a less tedious method: mass spectrometry (MS) for two reasons: 1) because of the complexity of proteins, protein PTMs and PPIs and 2) because MS is the only method that can keep up with such a complex array of features. Here, we discuss the applications of mass spectrometry in protein analysis.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Emmalyn J Dupree
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zaen Manzoor
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Brianna Larose
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zach Sechrist
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| | - Brindusa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, Al. I. Cuza University of Iasi, Iasi, Romania, Center for Fundamental Research and Experimental Development in Translation Medicine - TRANSCEND, Regional Institute of Oncology, Iasi, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| |
Collapse
|
16
|
Proteomic Profiling of Emiliania huxleyi Using a Three-Dimensional Separation Method Combined with Tandem Mass Spectrometry. Molecules 2020; 25:molecules25133028. [PMID: 32630776 PMCID: PMC7411631 DOI: 10.3390/molecules25133028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
Emiliania huxleyi is one of the most abundant marine planktons, and it has a crucial feature in the carbon cycle. However, proteomic analyses of Emiliania huxleyi have not been done extensively. In this study, a three-dimensional liquid chromatography (3D-LC) system consisting of strong cation exchange, high- and low-pH reversed-phase liquid chromatography was established for in-depth proteomic profiling of Emiliania huxleyi. From tryptic proteome digest, 70 fractions were generated and analyzed using liquid chromatography-tandem mass spectrometry. In total, more than 84,000 unique peptides and 10,000 proteins groups were identified with a false discovery rate of ≤0.01. The physicochemical properties of the identified peptides were evaluated. Using ClueGO, approximately 700 gene ontology terms and 15 pathways were defined from the identified protein groups with p-value ≤0.05, covering a wide range of biological processes, cellular components, and molecular functions. Many biological processes associated with CO2 fixation, photosynthesis, biosynthesis, and metabolic process were identified. Various molecular functions relating to protein binding and enzyme activities were also found. The 3D-LC strategy is a powerful approach for comparative proteomic studies on Emiliania huxleyi to reveal changes in its protein level and related mechanism.
Collapse
|
17
|
van Steenoven I, Koel-Simmelink MJA, Vergouw LJM, Tijms BM, Piersma SR, Pham TV, Bridel C, Ferri GL, Cocco C, Noli B, Worley PF, Xiao MF, Xu D, Oeckl P, Otto M, van der Flier WM, de Jong FJ, Jimenez CR, Lemstra AW, Teunissen CE. Identification of novel cerebrospinal fluid biomarker candidates for dementia with Lewy bodies: a proteomic approach. Mol Neurodegener 2020; 15:36. [PMID: 32552841 PMCID: PMC7301448 DOI: 10.1186/s13024-020-00388-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diagnosis of dementia with Lewy bodies (DLB) is challenging, largely due to a lack of diagnostic tools. Cerebrospinal fluid (CSF) biomarkers have been proven useful in Alzheimer's disease (AD) diagnosis. Here, we aimed to identify novel CSF biomarkers for DLB using a high-throughput proteomic approach. METHODS We applied liquid chromatography/tandem mass spectrometry with label-free quantification to identify biomarker candidates to individual CSF samples from a well-characterized cohort comprising patients with DLB (n = 20) and controls (n = 20). Validation was performed using (1) the identical proteomic workflow in an independent cohort (n = 30), (2) proteomic data from patients with related neurodegenerative diseases (n = 149) and (3) orthogonal techniques in an extended cohort consisting of DLB patients and controls (n = 76). Additionally, we utilized random forest analysis to identify the subset of candidate markers that best distinguished DLB from all other groups. RESULTS In total, we identified 1995 proteins. In the discovery cohort, 69 proteins were differentially expressed in DLB compared to controls (p < 0.05). Independent cohort replication confirmed VGF, SCG2, NPTX2, NPTXR, PDYN and PCSK1N as candidate biomarkers for DLB. The downregulation of the candidate biomarkers was somewhat more pronounced in DLB in comparison with related neurodegenerative diseases. Using random forest analysis, we identified a panel of VGF, SCG2 and PDYN to best differentiate between DLB and other clinical groups (accuracy: 0.82 (95%CI: 0.75-0.89)). Moreover, we confirmed the decrease of VGF and NPTX2 in DLB by ELISA and SRM methods. Low CSF levels of all biomarker candidates, except PCSK1N, were associated with more pronounced cognitive decline (0.37 < r < 0.56, all p < 0.01). CONCLUSION We identified and validated six novel CSF biomarkers for DLB. These biomarkers, particularly when used as a panel, show promise to improve diagnostic accuracy and strengthen the importance of synaptic dysfunction in the pathophysiology of DLB.
Collapse
Affiliation(s)
- Inger van Steenoven
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Marleen J. A. Koel-Simmelink
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Leonie J. M. Vergouw
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Betty M. Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Sander R. Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thang V. Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Claire Bridel
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gian-Luca Ferri
- NEF-laboratory, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Cristina Cocco
- NEF-laboratory, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Barbara Noli
- NEF-laboratory, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Paul F. Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mei-Fang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Desheng Xu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frank Jan de Jong
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Connie R. Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Afina W. Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Identification of a potent and selective covalent Pin1 inhibitor. Nat Chem Biol 2020; 16:979-987. [PMID: 32483379 PMCID: PMC7442691 DOI: 10.1038/s41589-020-0550-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) is commonly overexpressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). While Pin1 is dispensable for viability in mice, it is required for activated Ras to induce tumorigenesis, suggesting a role for Pin1 inhibitors in Ras-driven tumors, such as PDAC. We report the development of rationally designed peptide inhibitors that covalently target Cys113, a highly conserved cysteine located in the Pin1 active site. The inhibitors were iteratively optimized for potency, selectivity, and cell permeability to give BJP-06–005-3, a versatile tool compound with which to probe Pin1 biology and interrogate its role in cancer. In parallel to inhibitor development, we employed genetic and chemical-genetic strategies to assess the consequences of Pin1 loss in human PDAC cell lines. We demonstrate that Pin1 cooperates with mutant KRAS to promote transformation in PDAC, and that Pin1 inhibition impairs cell viability over time in PDAC cell lines.
Collapse
|
19
|
Fu A, Alvarez-Perez JC, Avizonis D, Kin T, Ficarro SB, Choi DW, Karakose E, Badur MG, Evans L, Rosselot C, Bridon G, Bird GH, Seo HS, Dhe-Paganon S, Kamphorst JJ, Stewart AF, James Shapiro AM, Marto JA, Walensky LD, Jones RG, Garcia-Ocana A, Danial NN. Glucose-dependent partitioning of arginine to the urea cycle protects β-cells from inflammation. Nat Metab 2020; 2:432-446. [PMID: 32694660 PMCID: PMC7568475 DOI: 10.1038/s42255-020-0199-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Chronic inflammation is linked to diverse disease processes, but the intrinsic mechanisms that determine cellular sensitivity to inflammation are incompletely understood. Here, we show the contribution of glucose metabolism to inflammation-induced changes in the survival of pancreatic islet β-cells. Using metabolomic, biochemical and functional analyses, we investigate the protective versus non-protective effects of glucose in the presence of pro-inflammatory cytokines. When protective, glucose metabolism augments anaplerotic input into the TCA cycle via pyruvate carboxylase (PC) activity, leading to increased aspartate levels. This metabolic mechanism supports the argininosuccinate shunt, which fuels ureagenesis from arginine and conversely diminishes arginine utilization for production of nitric oxide (NO), a chief mediator of inflammatory cytotoxicity. Activation of the PC-urea cycle axis is sufficient to suppress NO synthesis and shield cells from death in the context of inflammation and other stress paradigms. Overall, these studies uncover a previously unappreciated link between glucose metabolism and arginine-utilizing pathways via PC-directed ureagenesis as a protective mechanism.
Collapse
Affiliation(s)
- Accalia Fu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Juan Carlos Alvarez-Perez
- Diabetes, Obesity and Metabolism Institute, Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daina Avizonis
- Rosalind and Morris Goodman Cancer Center Metabolomics Core, Montreal, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, Department of Surgery, University of Alberta, Edmonton, Canada
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dong Wook Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Esra Karakose
- Diabetes, Obesity and Metabolism Institute, Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Lindsay Evans
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Carolina Rosselot
- Diabetes, Obesity and Metabolism Institute, Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gaelle Bridon
- Rosalind and Morris Goodman Cancer Center Metabolomics Core, Montreal, Canada
| | - Gregory H Bird
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute, Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A M James Shapiro
- Clinical Islet Transplant Program, Department of Surgery, University of Alberta, Edmonton, Canada
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Loren D Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Russell G Jones
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity and Metabolism Institute, Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Review of Three-Dimensional Liquid Chromatography Platforms for Bottom-Up Proteomics. Int J Mol Sci 2020; 21:ijms21041524. [PMID: 32102244 PMCID: PMC7073195 DOI: 10.3390/ijms21041524] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/30/2022] Open
Abstract
Proteomics is a large-scale study of proteins, aiming at the description and characterization of all expressed proteins in biological systems. The expressed proteins are typically highly complex and large in abundance range. To fulfill high accuracy and sensitivity of proteome analysis, the hybrid platforms of multidimensional (MD) separations and mass spectrometry have provided the most powerful solution. Multidimensional separations provide enhanced peak capacity and reduce sample complexity, which enables mass spectrometry to analyze more proteins with high sensitivity. Although two-dimensional (2D) separations have been widely used since the early period of proteomics, three-dimensional (3D) separation was barely used by low reproducibility of separation, increased analysis time in mass spectrometry. With developments of novel microscale techniques such as nano-UPLC and improvements of mass spectrometry, the 3D separation becomes a reliable and practical selection. This review summarizes existing offline and online 3D-LC platforms developed for proteomics and their applications. In detail, setups and implementation of those systems as well as their advances are outlined. The performance of those platforms is also discussed and compared with the state-of-the-art 2D-LC. In addition, we provide some perspectives on the future developments and applications of 3D-LC in proteomics.
Collapse
|
21
|
Storey AJ, Hardman RE, Byrum SD, Mackintosh SG, Edmondson RD, Wahls WP, Tackett AJ, Lewis JA. Accurate and Sensitive Quantitation of the Dynamic Heat Shock Proteome Using Tandem Mass Tags. J Proteome Res 2020; 19:1183-1195. [PMID: 32027144 DOI: 10.1021/acs.jproteome.9b00704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cells respond to environmental perturbations and insults through modulating protein abundance and function. However, the majority of studies have focused on changes in RNA abundance because quantitative transcriptomics has historically been more facile than quantitative proteomics. Modern Orbitrap mass spectrometers now provide sensitive and deep proteome coverage, allowing direct, global quantification of not only protein abundance but also post-translational modifications (PTMs) that regulate protein activity. We implemented and validated using the well-characterized heat shock response of budding yeast, a tandem mass tagging (TMT), triple-stage mass spectrometry (MS3) strategy to measure global changes in the proteome during the yeast heat shock response over nine time points. We report that basic-pH, ultra-high performance liquid chromatography (UPLC) fractionation of tryptic peptides yields superfractions of minimal redundancy, a crucial requirement for deep coverage and quantification by subsequent LC-MS3. We quantified 2275 proteins across three biological replicates and found that differential expression peaked near 90 min following heat shock (with 868 differentially expressed proteins at 5% false discovery rate). The sensitivity of the approach also allowed us to detect changes in the relative abundance of ubiquitination and phosphorylation PTMs over time. Remarkably, relative quantification of post-translationally modified peptides revealed striking evidence of regulation of the heat shock response by protein PTMs. These data demonstrate that the high precision of TMT-MS3 enables peptide-level quantification of samples, which can reveal important regulation of protein abundance and regulatory PTMs under various experimental conditions.
Collapse
Affiliation(s)
- Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Rebecca E Hardman
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States.,Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Rick D Edmondson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Jeffrey A Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
22
|
Yeung D, Mizero B, Gussakovsky D, Klaassen N, Lao Y, Spicer V, Krokhin OV. Separation Orthogonality in Liquid Chromatography–Mass Spectrometry for Proteomic Applications: Comparison of 16 Different Two-Dimensional Combinations. Anal Chem 2020; 92:3904-3912. [DOI: 10.1021/acs.analchem.9b05407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Darien Yeung
- Department of Biochemistry and Medical Genetics, University of Manitoba, 336 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
| | - Benilde Mizero
- Department of Chemistry, University of Manitoba, 360 Parker Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, 360 Parker Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Nicole Klaassen
- Department of Chemistry, University of Manitoba, 360 Parker Building, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | - Oleg V. Krokhin
- Department of Biochemistry and Medical Genetics, University of Manitoba, 336 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
- Department of Chemistry, University of Manitoba, 360 Parker Building, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
23
|
Wang H, Diaz AK, Shaw TI, Li Y, Niu M, Cho JH, Paugh BS, Zhang Y, Sifford J, Bai B, Wu Z, Tan H, Zhou S, Hover LD, Tillman HS, Shirinifard A, Thiagarajan S, Sablauer A, Pagala V, High AA, Wang X, Li C, Baker SJ, Peng J. Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes. Nat Commun 2019; 10:3718. [PMID: 31420543 PMCID: PMC6697699 DOI: 10.1038/s41467-019-11661-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
High throughput omics approaches provide an unprecedented opportunity for dissecting molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome, phosphoproteome and transcriptome in two high-grade glioma (HGG) mouse models driven by mutated RTK oncogenes, PDGFRA and NTRK1, analyzing 13,860 proteins and 30,431 phosphosites by mass spectrometry. Systems biology approaches identify numerous master regulators, including 41 kinases and 23 transcription factors. Pathway activity computation and mouse survival indicate the NTRK1 mutation induces a higher activation of AKT downstream targets including MYC and JUN, drives a positive feedback loop to up-regulate multiple other RTKs, and confers higher oncogenic potency than the PDGFRA mutation. A mini-gRNA library CRISPR-Cas9 validation screening shows 56% of tested master regulators are important for the viability of NTRK-driven HGG cells, including TFs (Myc and Jun) and metabolic kinases (AMPKa1 and AMPKa2), confirming the validity of the multiomics integrative approaches, and providing novel tumor vulnerabilities.
Collapse
Affiliation(s)
- Hong Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Alexander K Diaz
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Timothy I Shaw
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yuxin Li
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Barbara S Paugh
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Sifford
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bing Bai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suiping Zhou
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Laura D Hover
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Heather S Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suresh Thiagarajan
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Andras Sablauer
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
24
|
MAP: model-based analysis of proteomic data to detect proteins with significant abundance changes. Cell Discov 2019; 5:40. [PMID: 31636953 PMCID: PMC6796874 DOI: 10.1038/s41421-019-0107-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/14/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Isotope-labeling-based mass spectrometry (MS) is widely used in quantitative proteomic studies. With this technique, the relative abundance of thousands of proteins can be efficiently profiled in parallel, greatly facilitating the detection of proteins differentially expressed across samples. However, this task remains computationally challenging. Here we present a new approach, termed Model-based Analysis of Proteomic data (MAP), for this task. Unlike many existing methods, MAP does not require technical replicates to model technical and systematic errors, and instead utilizes a novel step-by-step regression analysis to directly assess the significance of observed protein abundance changes. We applied MAP to compare the proteomic profiles of undifferentiated and differentiated mouse embryonic stem cells (mESCs), and found it has superior performance compared with existing tools in detecting proteins differentially expressed during mESC differentiation. A web-based application of MAP is provided for online data processing at http://bioinfo.sibs.ac.cn/shaolab/MAP.
Collapse
|
25
|
Rao S, Gurbani D, Du G, Everley RA, Browne CM, Chaikuad A, Tan L, Schröder M, Gondi S, Ficarro SB, Sim T, Kim ND, Berberich MJ, Knapp S, Marto JA, Westover KD, Sorger PK, Gray NS. Leveraging Compound Promiscuity to Identify Targetable Cysteines within the Kinome. Cell Chem Biol 2019; 26:818-829.e9. [PMID: 30982749 PMCID: PMC6634314 DOI: 10.1016/j.chembiol.2019.02.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/18/2018] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
Abstract
Covalent kinase inhibitors, which typically target cysteine residues, represent an important class of clinically relevant compounds. Approximately 215 kinases are known to have potentially targetable cysteines distributed across 18 spatially distinct locations proximal to the ATP-binding pocket. However, only 40 kinases have been covalently targeted, with certain cysteine sites being the primary focus. To address this disparity, we have developed a strategy that combines the use of a multi-targeted acrylamide-modified inhibitor, SM1-71, with a suite of complementary chemoproteomic and cellular approaches to identify additional targetable cysteines. Using this single multi-targeted compound, we successfully identified 23 kinases that are amenable to covalent inhibition including MKNK2, MAP2K1/2/3/4/6/7, GAK, AAK1, BMP2K, MAP3K7, MAPKAPK5, GSK3A/B, MAPK1/3, SRC, YES1, FGFR1, ZAK (MLTK), MAP3K1, LIMK1, and RSK2. The identification of nine of these kinases previously not targeted by a covalent inhibitor increases the number of targetable kinases and highlights opportunities for covalent kinase inhibitor development.
Collapse
Affiliation(s)
- Suman Rao
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Deepak Gurbani
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Guangyan Du
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert A Everley
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher M Browne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max von Lauestr. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Life Sciences (BMLS) and Structural Genomics Consortium Goethe-University Frankfurt, Max von Lauestr. 9, 60438 Frankfurt am Main, Germany
| | - Li Tan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Schröder
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max von Lauestr. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Life Sciences (BMLS) and Structural Genomics Consortium Goethe-University Frankfurt, Max von Lauestr. 9, 60438 Frankfurt am Main, Germany
| | - Sudershan Gondi
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Taebo Sim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Nam Doo Kim
- NDBio Therapeutics Inc., Incheon 21984, Republic of Korea
| | - Matthew J Berberich
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max von Lauestr. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Life Sciences (BMLS) and Structural Genomics Consortium Goethe-University Frankfurt, Max von Lauestr. 9, 60438 Frankfurt am Main, Germany; German Cancer Network (DKTK), Frankfurt Site, 60438 Frankfurt am Main, Germany
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Qiu W, Xu Z, Zhang M, Zhang D, Fan H, Li T, Wang Q, Liu P, Zhu Z, Du D, Tan M, Wen B, Liu Y. Determination of local chromatin interactions using a combined CRISPR and peroxidase APEX2 system. Nucleic Acids Res 2019; 47:e52. [PMID: 30805613 PMCID: PMC6511869 DOI: 10.1093/nar/gkz134] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/15/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023] Open
Abstract
The architecture and function of chromatin are largely regulated by local interacting molecules, such as transcription factors and noncoding RNAs. However, our understanding of these regulatory molecules at a given locus is limited because of technical difficulties. Here, we describe the use of Clustered Regularly Interspaced Short Palindromic Repeats and an engineered ascorbate peroxidase 2 (APEX2) system to investigate local chromatin interactions (CAPLOCUS). We showed that with specific small-guide RNA targets, CAPLOCUS could efficiently identify both repetitive genomic regions and single-copy genomic locus with high resolution. Genome-wide sequencing revealed known and potential long-range chromatin interactions for a specific single-copy locus. CAPLOCUS also identified telomere-associated RNAs. CAPLOCUS, followed by mass spectrometry, identified both known and novel telomere-associated proteins in their native states. Thus, CAPLOCUS may be a useful approach for studying local interacting molecules at any given chromosomal location.
Collapse
Affiliation(s)
- Wenqing Qiu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Zhijiao Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Min Zhang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China, 201203
| | - Dandan Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Hui Fan
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China, 200032
| | - Taotao Li
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Qianfeng Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China, 200032
| | - Peiru Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Zaihua Zhu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Duo Du
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China, 201203
| | - Bo Wen
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China, 200032
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| |
Collapse
|
27
|
Lombard-Banek C, Moody SA, Manzini MC, Nemes P. Microsampling Capillary Electrophoresis Mass Spectrometry Enables Single-Cell Proteomics in Complex Tissues: Developing Cell Clones in Live Xenopus laevis and Zebrafish Embryos. Anal Chem 2019; 91:4797-4805. [PMID: 30827088 PMCID: PMC6688183 DOI: 10.1021/acs.analchem.9b00345] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Label-free single-cell proteomics by mass spectrometry (MS) is currently incompatible with complex tissues without requiring cell culturing, single-cell dissection, or tissue dissociation. We here report the first example of label-free single-cell MS-based proteomics directly in single cells in live vertebrate embryos. Our approach integrates optically guided in situ subcellular capillary microsampling, one-pot extraction-digestion of the collected proteins, peptide separation by capillary electrophoresis, ionization by an ultrasensitive electrokinetically pumped nanoelectrospray, and detection by high-resolution MS (Orbitrap). With a 700 zmol (420 000 copies) lower limit of detection, this trace-sensitive technology confidently identified and quantified ∼750-800 protein groups (<1% false-discovery rate) by analyzing just ∼5 ng of protein digest, viz. <0.05% of the total protein content from individual cells in a 16-cell Xenopus laevis (frog) embryo. After validating the approach by recovering animal-vegetal-pole proteomic asymmetry in the frog zygote, the technology was applied to uncover proteomic reorganization as the animal-dorsal (D11) cell of the 16-cell embryo gave rise to its neural-tissue-fated clone in the embryo developing to the 32-, 64-, and 128-cell stages. In addition to enabling proteomics on smaller cells in X. laevis, we also demonstrated this technology to be scalable to single cells in live zebrafish embryos. Microsampling single-cell MS-based proteomics raises exciting opportunities to study cell and developmental processes directly in complex tissues and whole organisms at the level of the building block of life: the cell.
Collapse
Affiliation(s)
- Camille Lombard-Banek
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742
| | - Sally A. Moody
- Department of Anatomy & Regenerative Biology, The George Washington University, Washington, DC 20052
| | - M. Chiara Manzini
- Department of Pharmacology & Physiology, The George Washington University, Washington, DC 20052
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742
- Department of Anatomy & Regenerative Biology, The George Washington University, Washington, DC 20052
| |
Collapse
|
28
|
Liu Y, Fu Y, Wang Q, Li M, Zhou Z, Dabbagh D, Fu C, Zhang H, Li S, Zhang T, Gong J, Kong X, Zhai W, Su J, Sun J, Zhang Y, Yu XF, Shao Z, Zhou F, Wu Y, Tan X. Proteomic profiling of HIV-1 infection of human CD4 + T cells identifies PSGL-1 as an HIV restriction factor. Nat Microbiol 2019; 4:813-825. [PMID: 30833724 DOI: 10.1038/s41564-019-0372-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/16/2019] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) actively modulates the protein stability of host cells to optimize viral replication. To systematically examine this modulation in HIV infection, we used isobaric tag-based mass spectrometry to quantify changes in the abundance of over 14,000 proteins during HIV-1 infection of human primary CD4+ T cells. We identified P-selectin glycoprotein ligand 1 (PSGL-1) as an HIV-1 restriction factor downregulated by HIV-1 Vpu, which binds to PSGL-1 and induces its ubiquitination and degradation through the ubiquitin ligase SCFβ-TrCP2. PSGL-1 is induced by interferon-γ in activated CD4+ T cells to inhibit HIV-1 reverse transcription and potently block viral infectivity by incorporating in progeny virions. This infectivity block is antagonized by Vpu via PSGL-1 degradation. We further show that PSGL-1 knockdown can significantly abolish the anti-HIV activity of interferon-γ in primary CD4+ T cells. Our study identifies an HIV restriction factor and a key mediator of interferon-γ's anti-HIV activity.
Collapse
Affiliation(s)
- Ying Liu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yajing Fu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,School of System Biology, George Mason University, Manassas, VA, USA
| | - Qian Wang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mushan Li
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zheng Zhou
- School of System Biology, George Mason University, Manassas, VA, USA
| | - Deemah Dabbagh
- School of System Biology, George Mason University, Manassas, VA, USA
| | - Chunyan Fu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Hang Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shuo Li
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Tengjiang Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jing Gong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohui Kong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Sun
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Yonghong Zhang
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Shao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feng Zhou
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yuntao Wu
- School of System Biology, George Mason University, Manassas, VA, USA.
| | - Xu Tan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
29
|
Browne CM, Jiang B, Ficarro SB, Doctor ZM, Johnson JL, Card JD, Sivakumaren SC, Alexander WM, Yaron TM, Murphy CJ, Kwiatkowski NP, Zhang T, Cantley LC, Gray NS, Marto JA. A Chemoproteomic Strategy for Direct and Proteome-Wide Covalent Inhibitor Target-Site Identification. J Am Chem Soc 2018; 141:191-203. [PMID: 30518210 DOI: 10.1021/jacs.8b07911] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite recent clinical successes for irreversible drugs, potential toxicities mediated by unpredictable modification of off-target cysteines represents a major hurdle for expansion of covalent drug programs. Understanding the proteome-wide binding profile of covalent inhibitors can significantly accelerate their development; however, current mass spectrometry strategies typically do not provide a direct, amino acid level readout of covalent activity for complex, selective inhibitors. Here we report the development of CITe-Id, a novel chemoproteomic approach that employs covalent pharmacologic inhibitors as enrichment reagents in combination with an optimized proteomic platform to directly quantify dose-dependent binding at cysteine-thiols across the proteome. CITe-Id analysis of our irreversible CDK inhibitor THZ1 identified dose-dependent covalent modification of several unexpected kinases, including a previously unannotated cysteine (C840) on the understudied kinase PKN3. These data streamlined our development of JZ128 as a new selective covalent inhibitor of PKN3. Using JZ128 as a probe compound, we identified novel potential PKN3 substrates, thus offering an initial molecular view of PKN3 cellular activity. CITe-Id provides a powerful complement to current chemoproteomic platforms to characterize the selectivity of covalent inhibitors, identify new, pharmacologically addressable cysteine-thiols, and inform structure-based drug design programs.
Collapse
Affiliation(s)
- Christopher M Browne
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Baishan Jiang
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Scott B Ficarro
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States
| | - Zainab M Doctor
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jared L Johnson
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Joseph D Card
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States
| | - Sindhu Carmen Sivakumaren
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - William M Alexander
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States
| | - Tomer M Yaron
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Charles J Murphy
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States.,Whitehead Institute for Biomedical Research , Cambridge , Massachusetts 02142 , United States
| | - Tinghu Zhang
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Lewis C Cantley
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Nathanael S Gray
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jarrod A Marto
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Pathology , Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
30
|
Westphal KR, Wollenberg RD, Herbst FA, Sørensen JL, Sondergaard TE, Wimmer R. Enhancing the Production of the Fungal Pigment Aurofusarin in Fusarium graminearum. Toxins (Basel) 2018; 10:toxins10110485. [PMID: 30469367 PMCID: PMC6266765 DOI: 10.3390/toxins10110485] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 12/19/2022] Open
Abstract
There is an increasing demand for products from natural sources, which includes a growing market for naturally-produced colorants. Filamentous fungi produce a vast number of chemically diverse pigments and are therefore explored as an easily accessible source. In this study we examine the positive regulatory effect of the transcription factor AurR1 on the aurofusarin gene cluster in Fusarium graminearum. Proteomic analyses showed that overexpression of AurR1 resulted in a significant increase of five of the eleven proteins belonging to the aurofusarin biosynthetic pathway. Further, the production of aurofusarin was increased more than threefold in the overexpression mutant compared to the wild type, reaching levels of 270 mg/L. In addition to biosynthesis of aurofusarin, several yet undescribed putative naphthoquinone/anthraquinone analogue compounds were observed in the overexpression mutant. Our results suggest that it is possible to enhance the aurofusarin production through genetic engineering.
Collapse
Affiliation(s)
| | | | | | | | | | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
31
|
Chen LL, Lin HP, Zhou WJ, He CX, Zhang ZY, Cheng ZL, Song JB, Liu P, Chen XY, Xia YK, Chen XF, Sun RQ, Zhang JY, Sun YP, Song L, Liu BJ, Du RK, Ding C, Lan F, Huang SL, Zhou F, Liu S, Xiong Y, Ye D, Guan KL. SNIP1 Recruits TET2 to Regulate c-MYC Target Genes and Cellular DNA Damage Response. Cell Rep 2018; 25:1485-1500.e4. [PMID: 30404004 PMCID: PMC6317994 DOI: 10.1016/j.celrep.2018.10.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 09/21/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
The TET2 DNA dioxygenase regulates gene expression by catalyzing demethylation of 5-methylcytosine, thus epigenetically modulating the genome. TET2 does not contain a sequence-specific DNA-binding domain, and how it is recruited to specific genomic sites is not fully understood. Here we carried out a mammalian two-hybrid screen and identified multiple transcriptional regulators potentially interacting with TET2. The SMAD nuclear interacting protein 1 (SNIP1) physically interacts with TET2 and bridges TET2 to bind several transcription factors, including c-MYC. SNIP1 recruits TET2 to the promoters of c-MYC target genes, including those involved in DNA damage response and cell viability. TET2 protects cells from DNA damage-induced apoptosis dependending on SNIP1. Our observations uncover a mechanism for targeting TET2 to specific promoters through a ternary interaction with a co-activator and many sequence-specific DNA-binding factors. This study also reveals a TET2-SNIP1-c-MYC pathway in mediating DNA damage response, thereby connecting epigenetic control to maintenance of genome stability.
Collapse
Affiliation(s)
- Lei-Lei Chen
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huai-Peng Lin
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Medical College of Xiamen University, Xiamen 361102, China
| | - Wen-Jie Zhou
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chen-Xi He
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Yong Zhang
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhou-Li Cheng
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jun-Bin Song
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Peng Liu
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin-Yu Chen
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Kun Xia
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiu-Fei Chen
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ren-Qiang Sun
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing-Ye Zhang
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Ping Sun
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for National Center for Protein Science (The PHOENIX Center), Beijing, China
| | - Bing-Jie Liu
- Fudan University Shanghai Cancer Center, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai, China
| | - Rui-Kai Du
- Fudan University Shanghai Cancer Center, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai, China
| | - Chen Ding
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for National Center for Protein Science (The PHOENIX Center), Beijing, China
| | - Fei Lan
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sheng-Lin Huang
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feng Zhou
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai, China
| | - Yue Xiong
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Dan Ye
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Kun-Liang Guan
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Huang T, Armbruster MR, Coulton JB, Edwards JL. Chemical Tagging in Mass Spectrometry for Systems Biology. Anal Chem 2018; 91:109-125. [DOI: 10.1021/acs.analchem.8b04951] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tianjiao Huang
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Michael R. Armbruster
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - John B. Coulton
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - James L. Edwards
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
33
|
Wolf-Levy H, Javitt A, Eisenberg-Lerner A, Kacen A, Ulman A, Sheban D, Dassa B, Fishbain-Yoskovitz V, Carmona-Rivera C, Kramer MP, Nudel N, Regev I, Zahavi L, Elinger D, Kaplan MJ, Morgenstern D, Levin Y, Merbl Y. Revealing the cellular degradome by mass spectrometry analysis of proteasome-cleaved peptides. Nat Biotechnol 2018; 36:nbt.4279. [PMID: 30346940 PMCID: PMC8897557 DOI: 10.1038/nbt.4279] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/21/2018] [Indexed: 12/18/2022]
Abstract
Cellular function is critically regulated through degradation of substrates by the proteasome. To enable direct analysis of naturally cleaved proteasomal peptides under physiological conditions, we developed mass spectrometry analysis of proteolytic peptides (MAPP), a method for proteasomal footprinting that allows for capture, isolation and analysis of proteasome-cleaved peptides. Application of MAPP to cancer cell lines as well as primary immune cells revealed dynamic modulation of the cellular degradome in response to various stimuli, such as proinflammatory signals. Further, we performed analysis of minute amounts of clinical samples by studying cells from the peripheral blood of patients with systemic lupus erythematosus (SLE). We found increased degradation of histones in patient immune cells, thereby suggesting a role of aberrant proteasomal degradation in the pathophysiology of SLE. Thus, MAPP offers a broadly applicable method to facilitate the study of the cellular-degradation landscape in various cellular conditions and diseases involving changes in proteasomal degradation, including protein aggregation diseases, autoimmunity and cancer.
Collapse
Affiliation(s)
- Hila Wolf-Levy
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Aaron Javitt
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Assaf Kacen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Ulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Matthias P. Kramer
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Nudel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ifat Regev
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Zahavi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Dalia Elinger
- De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - David Morgenstern
- De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
34
|
Cifani P, Dhabaria A, Chen Z, Yoshimi A, Kawaler E, Abdel-Wahab O, Poirier JT, Kentsis A. ProteomeGenerator: A Framework for Comprehensive Proteomics Based on de Novo Transcriptome Assembly and High-Accuracy Peptide Mass Spectral Matching. J Proteome Res 2018; 17:3681-3692. [PMID: 30295032 DOI: 10.1021/acs.jproteome.8b00295] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modern mass spectrometry now permits genome-scale and quantitative measurements of biological proteomes. However, analysis of specific specimens is currently hindered by the incomplete representation of biological variability of protein sequences in canonical reference proteomes and the technical demands for their construction. Here, we report ProteomeGenerator, a framework for de novo and reference-assisted proteogenomic database construction and analysis based on sample-specific transcriptome sequencing and high-accuracy mass spectrometry proteomics. This enables the assembly of proteomes encoded by actively transcribed genes, including sample-specific protein isoforms resulting from non-canonical mRNA transcription, splicing, or editing. To improve the accuracy of protein isoform identification in non-canonical proteomes, ProteomeGenerator relies on statistical target-decoy database matching calibrated using sample-specific controls. Its current implementation includes automatic integration with MaxQuant mass spectrometry proteomics algorithms. We applied this method for the proteogenomic analysis of splicing factor SRSF2 mutant leukemia cells, demonstrating high-confidence identification of non-canonical protein isoforms arising from alternative transcriptional start sites, intron retention, and cryptic exon splicing as well as improved accuracy of genome-scale proteome discovery. Additionally, we report proteogenomic performance metrics for current state-of-the-art implementations of SEQUEST HT, MaxQuant, Byonic, and PEAKS mass spectral analysis algorithms. Finally, ProteomeGenerator is implemented as a Snakemake workflow within a Singularity container for one-step installation in diverse computing environments, thereby enabling open, scalable, and facile discovery of sample-specific, non-canonical, and neomorphic biological proteomes.
Collapse
Affiliation(s)
- Paolo Cifani
- Molecular Pharmacology Program , Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center , New York City , New York 10065 , United States
| | - Avantika Dhabaria
- Molecular Pharmacology Program , Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center , New York City , New York 10065 , United States
| | - Zining Chen
- Molecular Pharmacology Program , Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center , New York City , New York 10065 , United States
| | | | | | - Omar Abdel-Wahab
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology , New York University Langone Health , New York City , New York 10016 , United States
| | - John T Poirier
- Molecular Pharmacology Program , Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center , New York City , New York 10065 , United States.,Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology , New York University Langone Health , New York City , New York 10016 , United States
| | - Alex Kentsis
- Molecular Pharmacology Program , Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center , New York City , New York 10065 , United States.,Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Cornell Medical College , Cornell University , New York , New York 10065 , United States
| |
Collapse
|
35
|
Gao F, Liu X, Shen Z, Jia X, He H, Gao J, Wu J, Jiang C, Zhou H, Wang Y. Andrographolide Sulfonate Attenuates Acute Lung Injury by Reducing Expression of Myeloperoxidase and Neutrophil-Derived Proteases in Mice. Front Physiol 2018; 9:939. [PMID: 30174607 PMCID: PMC6107831 DOI: 10.3389/fphys.2018.00939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Andrographolide sulfonate (Andro-S), a sulfonation derivative of andrographolide, is known to be effective in treating inflammation-related diseases, while the underlying mechanisms and global protein alterations in response to Andro-S remain unknown. This study aimed to investigate the pharmacological effects and potential targets of Andro-S in a murine model of acute lung injury (ALI). ALI was induced by aerosolized lipopolysaccharide (LPS) exposure before treatment with Andro-S. Inflammatory state of each treatment group was determined by histological analysis and quantification of inflammatory markers. Differentially expressed proteins in lung tissues were identified by an iTRAQ-based quantitative proteomic approach and further confirmed by immunohistochemistry analysis. Administration of Andro-S alleviated LPS-induced histological changes in the lung and reduced the expression of inflammatory markers in serum, bronchoalveolar fluid and lung tissues. Proteomic analysis identified 31 differentially expressed proteins from a total of 2,234 quantified proteins in the lung. According to bioinformatics analysis, neutrophil elastase (ELANE), cathepsin G (CTSG) and myeloperoxidase (MPO), three neutrophil-derived proteases related to immune system process and defense responses to fungi were chosen as potential targets of Andro-S. Further immunohistochemistry analysis confirmed the inhibitory effects of Andro-S on LPS-induced ELANE, CTSG and MPO up-regulation. These results indicate that Andro-S suppressed the severity of LPS-induced ALI, possibly by attenuating the expression of and neutrophil-derived proteases.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Xing Liu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Ziying Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaohui Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Han He
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Jianhong Wu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Chunhong Jiang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Ganzhou, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Yiping Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
36
|
Xiong Y, Zhang Y, Yao J, Yan G, Lu H. A Streamlined Sample Preparation Method for Mass Spectrometric Analysis. ACTA ACUST UNITED AC 2018; 78:5.8.1-5.8.8. [PMID: 30040186 DOI: 10.1002/cpcb.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mass spectrometry-based proteomic technology experienced remarkable advancement in the past decades. However, their application was still hampered by the complexity of sample preparation. Conventional strategies for sample preparation incorporate multiple time-consuming steps, including cell lysis, protein extraction, protease cleavage, and desalting. Thus, we explored a simplified method (the cell-absorb method) during which living cells were absorbed into vacuum-dried polyacrylamide gel and directly digested in gel into peptides for subsequent LC-MS/MS analysis. As a consequence, both of the steps for cell lysis and protein extraction involved in traditional protocol were skipped. In addition to the decrease in time, more proteins were identified. Indeed, 3022 proteins were identified by the cell-absorb method. Meanwhile, only 2642 and 2420 proteins were identified by the classical SDS-PAGE based method and the reported gel absorption-based method, respectively. The cell-absorb method exhibited apparent advantage in terms of the depth of proteome coverage. Furthermore, the number of proteins identified show excellent reproducibility with a CV (coefficient of variation) of 0.03 among three replicates using the cell-absorb method. These advantages suggest that cell-absorb method is a promising choice for mapping the whole proteome of cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yun Xiong
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Ying Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Yao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guoquan Yan
- Department of Chemistry, Fudan University, Shanghai, China
| | - Haojie Lu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Hepatic Dysfunction Caused by Consumption of a High-Fat Diet. Cell Rep 2018; 21:3317-3328. [PMID: 29241556 DOI: 10.1016/j.celrep.2017.11.059] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
Abstract
Obesity is a major human health crisis that promotes insulin resistance and, ultimately, type 2 diabetes. The molecular mechanisms that mediate this response occur across many highly complex biological regulatory levels that are incompletely understood. Here, we present a comprehensive molecular systems biology study of hepatic responses to high-fat feeding in mice. We interrogated diet-induced epigenomic, transcriptomic, proteomic, and metabolomic alterations using high-throughput omic methods and used a network modeling approach to integrate these diverse molecular signals. Our model indicated that disruption of hepatic architecture and enhanced hepatocyte apoptosis are among the numerous biological processes that contribute to early liver dysfunction and low-grade inflammation during the development of diet-induced metabolic syndrome. We validated these model findings with additional experiments on mouse liver sections. In total, we present an integrative systems biology study of diet-induced hepatic insulin resistance that uncovered molecular features promoting the development and maintenance of metabolic disease.
Collapse
|
38
|
Eddhif B, Allavena A, Liu S, Ribette T, Abou Mrad N, Chiavassa T, d’Hendecourt LLS, Sternberg R, Danger G, Geffroy-Rodier C, Poinot P. Development of liquid chromatography high resolution mass spectrometry strategies for the screening of complex organic matter: Application to astrophysical simulated materials. Talanta 2018; 179:238-245. [DOI: 10.1016/j.talanta.2017.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 02/03/2023]
|
39
|
Gao Y, Liu X, Tang B, Li C, Kou Z, Li L, Liu W, Wu Y, Kou X, Li J, Zhao Y, Yin J, Wang H, Chen S, Liao L, Gao S. Protein Expression Landscape of Mouse Embryos during Pre-implantation Development. Cell Rep 2017; 21:3957-3969. [DOI: 10.1016/j.celrep.2017.11.111] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/08/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022] Open
|
40
|
High AA, Tan H, Pagala VR, Niu M, Cho JH, Wang X, Bai B, Peng J. Deep Proteome Profiling by Isobaric Labeling, Extensive Liquid Chromatography, Mass Spectrometry, and Software-assisted Quantification. J Vis Exp 2017. [PMID: 29286450 DOI: 10.3791/56474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many exceptional advances have been made in mass spectrometry (MS)-based proteomics, with particular technical progress in liquid chromatography (LC) coupled to tandem mass spectrometry (LC-MS/MS) and isobaric labeling multiplexing capacity. Here, we introduce a deep-proteomics profiling protocol that combines 10-plex tandem mass tag (TMT) labeling with an extensive LC/LC-MS/MS platform, and post-MS computational interference correction to accurately quantitate whole proteomes. This protocol includes the following main steps: protein extraction and digestion, TMT labeling, 2-dimensional (2D) LC, high-resolution mass spectrometry, and computational data processing. Quality control steps are included for troubleshooting and evaluating experimental variation. More than 10,000 proteins in mammalian samples can be confidently quantitated with this protocol. This protocol can also be applied to the quantitation of post translational modifications with minor changes. This multiplexed, robust method provides a powerful tool for proteomic analysis in a variety of complex samples, including cell culture, animal tissues, and human clinical specimens.
Collapse
Affiliation(s)
- Anthony A High
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital;
| | - Haiyan Tan
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital
| | | | - Mingming Niu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital; Heilongjiang University of Chinese Medicine
| | - Ji-Hoon Cho
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital
| | - Xusheng Wang
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital
| | - Bing Bai
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Junmin Peng
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital; Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital;
| |
Collapse
|
41
|
Wang S, Xiao C, Jiang L, Ling L, Chen X, Guo X. A high sensitive and contaminant tolerant matrix for facile detection of membrane proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chim Acta 2017; 999:114-122. [PMID: 29254561 DOI: 10.1016/j.aca.2017.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Despite the significance of membrane proteins (MPs) in biological system is indisputable, their specific natures make them notoriously difficult to be analyzed. Particularly, the widely used Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) prefers analyses of hydrophilic cytosolic proteins and has a limited ionization efficiency towards hydrophobic MPs. Herein, a hydrophobic compound (E)-propyl α-Cyano-4-Hydroxyl Cinnamylate (CHCA-C3), a propyl-esterified derivative of α-cyano-4-hydroxycinnamic acid (CHCA), was applied as a contaminant tolerant matrix for high sensitivity MALDI-MS analyses of MPs. With CHCA-C3, the detection limits of hydrophobic peptides were 10- to 100-fold better than those using CHCA. Furthermore, high quality of spectra could be achieved in the presence of high concentration of chaotropes, salts and detergents, as well as human urinary and serum environment. Also, CHCA-C3 could generate uniform sample distribution even in the presence of contaminants. This high contaminant-resistance was revealed to be ascribed to the enhanced hydrophobicity of CHCA-C3 with a lower affinity towards hydrophilic contaminants. The application of CHCA-C3 is further demonstrated by the analysis of trypsin/CNBr digests of bacteriorhodopsin containing seven transmembrane domains (TMDs), which dramatically increased numbers of identified hydrophobic peptides in TMDs and sequence coverage (∼100%). Besides, a combined method by using CHCA-C3 with fluoride solvent and a patterned paraffin plate was established for analysis of integral MPs. We achieved a low detection limit of 10 fmol for integral bacteriorhodopsin, which could not be detected using traditional matrices such as 3,5-dimethoxy-4-hydroxycinamic acid, 2,5-dihydroxyacetophenone even at sample concentration of 10 pmol.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Liyan Jiang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| | - Ling Ling
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China.
| |
Collapse
|
42
|
Yi L, Piehowski PD, Shi T, Smith RD, Qian WJ. Advances in microscale separations towards nanoproteomics applications. J Chromatogr A 2017; 1523:40-48. [PMID: 28765000 PMCID: PMC6042839 DOI: 10.1016/j.chroma.2017.07.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/22/2023]
Abstract
Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. However, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1μg total proteins (e.g., cellular heterogeneity in tissue pathologies). Herein, we review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, and their contributions towards nanoproteomics applications.
Collapse
Affiliation(s)
- Lian Yi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Paul D Piehowski
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| |
Collapse
|
43
|
A new panel of pancreatic cancer biomarkers discovered using a mass spectrometry-based pipeline. Br J Cancer 2017; 117:1846-1854. [PMID: 29123261 PMCID: PMC5729477 DOI: 10.1038/bjc.2017.365] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022] Open
Abstract
Background: Pancreatic carcinoma (PC) is an aggressive malignancy that lacks strategies for early detection. This study aimed to develop a coherent, high-throughput and non-discriminatory pipeline for the novel clinical biomarker discovery of PC. Methods: We combined mass spectrometry (MS)-intensive methods such as isobaric tags for relative and absolute quantitation with two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS), 1D-targeted LC-MS/MS, prime MRM (P-MRM) and stable isotope dilution-based MRM (SID-MRM) to analyse serum samples from healthy people (normal control, NC), patients with benign diseases (BD) and PC patients to identify novel biomarkers of PC. Results: On the basis of the newly developed pipeline, we identified >1000 proteins, verified 142 differentially expressed proteins and finally targeted four proteins for absolute quantitation in 100 serum samples. The novel biomarker panel of apolipoprotein E (APOE), inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3), apolipoprotein A-I (APOA1), apolipoprotein L1 (APOL1), combining with CA19-9, statistically-significantly improved the sensitivity (95%) and specificity (94.1%), outperforming CA19-9 alone, for the diagnosis of PC. Conclusions: We developed a highly efficient pipeline for biomarker discovery, verification and validation, with each step systematically informing the next. A panel of proteins that might be clinically relevant biomarkers for PC was found.
Collapse
|
44
|
Liu X, Zhang Y, Chen Y, Li M, Zhou F, Li K, Cao H, Ni M, Liu Y, Gu Z, Dickerson KE, Xie S, Hon GC, Xuan Z, Zhang MQ, Shao Z, Xu J. In Situ Capture of Chromatin Interactions by Biotinylated dCas9. Cell 2017; 170:1028-1043.e19. [PMID: 28841410 PMCID: PMC6857456 DOI: 10.1016/j.cell.2017.08.003] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/23/2017] [Accepted: 08/01/2017] [Indexed: 11/26/2022]
Abstract
Cis-regulatory elements (CREs) are commonly recognized by correlative chromatin features, yet the molecular composition of the vast majority of CREs in chromatin remains unknown. Here, we describe a CRISPR affinity purification in situ of regulatory elements (CAPTURE) approach to unbiasedly identify locus-specific chromatin-regulating protein complexes and long-range DNA interactions. Using an in vivo biotinylated nuclease-deficient Cas9 protein and sequence-specific guide RNAs, we show high-resolution and selective isolation of chromatin interactions at a single-copy genomic locus. Purification of human telomeres using CAPTURE identifies known and new telomeric factors. In situ capture of individual constituents of the enhancer cluster controlling human β-globin genes establishes evidence for composition-based hierarchical organization. Furthermore, unbiased analysis of chromatin interactions at disease-associated cis-elements and developmentally regulated super-enhancers reveals spatial features that causally control gene transcription. Thus, comprehensive and unbiased analysis of locus-specific regulatory composition provides mechanistic insight into genome structure and function in development and disease.
Collapse
Affiliation(s)
- Xin Liu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yong Chen
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mushan Li
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Feng Zhou
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Minister of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Kailong Li
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Cao
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Ni
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuxuan Liu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhimin Gu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathryn E Dickerson
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA; MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, TNLIST; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Zhen Shao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Xu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
45
|
Alexander WM, Ficarro SB, Adelmant G, Marto JA. multiplierz
v2.0: A Python-based ecosystem for shared access and analysis of native mass spectrometry data. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700091] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022]
Affiliation(s)
- William M. Alexander
- Department of Cancer Biology and Blais Proteomics Center; Dana-Farber Cancer Institute; Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston MA USA
| | - Scott B. Ficarro
- Department of Cancer Biology and Blais Proteomics Center; Dana-Farber Cancer Institute; Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston MA USA
| | - Guillaume Adelmant
- Department of Cancer Biology and Blais Proteomics Center; Dana-Farber Cancer Institute; Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston MA USA
| | - Jarrod A. Marto
- Department of Cancer Biology and Blais Proteomics Center; Dana-Farber Cancer Institute; Boston MA USA
- Department of Oncologic Pathology; Dana-Farber Cancer Institute; Boston MA USA
- Department of Pathology; Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
| |
Collapse
|
46
|
Cifani P, Kentsis A. High Sensitivity Quantitative Proteomics Using Automated Multidimensional Nano-flow Chromatography and Accumulated Ion Monitoring on Quadrupole-Orbitrap-Linear Ion Trap Mass Spectrometer. Mol Cell Proteomics 2017; 16:2006-2016. [PMID: 28821601 DOI: 10.1074/mcp.ra117.000023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 01/18/2023] Open
Abstract
Quantitative proteomics using high-resolution and accuracy mass spectrometry promises to transform our understanding of biological systems and disease. Recent development of parallel reaction monitoring (PRM) using hybrid instruments substantially improved the specificity of targeted mass spectrometry. Combined with high-efficiency ion trapping, this approach also provided significant improvements in sensitivity. Here, we investigated the effects of ion isolation and accumulation on the sensitivity and quantitative accuracy of targeted proteomics using the recently developed hybrid quadrupole-Orbitrap-linear ion trap mass spectrometer. We leveraged ultrahigh efficiency nano-electrospray ionization under optimized conditions to achieve yoctomolar sensitivity with more than seven orders of linear quantitative accuracy. To enable sensitive and specific targeted mass spectrometry, we implemented an automated, two-dimensional (2D) ion exchange-reversed phase nanoscale chromatography system. We found that automated 2D chromatography improved the sensitivity and accuracy of both PRM and an intact precursor scanning mass spectrometry method, termed accumulated ion monitoring (AIM), by more than 100-fold. Combined with automated 2D nano-scale chromatography, AIM achieved subattomolar limits of detection of endogenous proteins in complex biological proteomes. This allowed quantitation of absolute abundance of the human transcription factor MEF2C at ∼100 molecules/cell, and determination of its phosphorylation stoichiometry from as little as 1 μg of extracts isolated from 10,000 human cells. The combination of automated multidimensional nano-scale chromatography and targeted mass spectrometry should enable ultrasensitive high-accuracy quantitative proteomics of complex biological systems and diseases.
Collapse
Affiliation(s)
- Paolo Cifani
- From the ‡Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Alex Kentsis
- From the ‡Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065; .,§Department of Pediatrics, Weill Medical College of Cornell University and Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
47
|
Hsu JHR, Hubbell-Engler B, Adelmant G, Huang J, Joyce CE, Vazquez F, Weir BA, Montgomery P, Tsherniak A, Giacomelli AO, Perry JA, Trowbridge J, Fujiwara Y, Cowley GS, Xie H, Kim W, Novina CD, Hahn WC, Marto JA, Orkin SH. PRMT1-Mediated Translation Regulation Is a Crucial Vulnerability of Cancer. Cancer Res 2017; 77:4613-4625. [PMID: 28655788 DOI: 10.1158/0008-5472.can-17-0216] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/10/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
Through an shRNA screen, we identified the protein arginine methyltransferase Prmt1 as a vulnerable intervention point in murine p53/Rb-null osteosarcomas, the human counterpart of which lacks effective therapeutic options. Depletion of Prmt1 in p53-deficient cells impaired tumor initiation and maintenance in vitro and in vivo Mechanistic studies reveal that translation-associated pathways were enriched for Prmt1 downstream targets, implicating Prmt1 in translation control. In particular, loss of Prmt1 led to a decrease in arginine methylation of the translation initiation complex, thereby disrupting its assembly and inhibiting translation. p53/Rb-null cells were sensitive to p53-induced translation stress, and analysis of human cancer cell line data from Project Achilles further revealed that Prmt1 and translation-associated pathways converged on the same functional networks. We propose that targeted therapy against Prmt1 and its associated translation-related pathways offer a mechanistic rationale for treatment of osteosarcomas and other cancers that exhibit dependencies on translation stress response. Cancer Res; 77(17); 4613-25. ©2017 AACR.
Collapse
Affiliation(s)
- Jessie Hao-Ru Hsu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Hubbell-Engler
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Guillaume Adelmant
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Jialiang Huang
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts
| | - Cailin E Joyce
- Department of Cancer Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Barbara A Weir
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Aviad Tsherniak
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Andrew O Giacomelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jennifer A Perry
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Yuko Fujiwara
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Glenn S Cowley
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Huafeng Xie
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Woojin Kim
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Carl D Novina
- Department of Cancer Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - William C Hahn
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jarrod A Marto
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts. .,Howard Hughes Medical Institute, Boston, Massachusetts
| |
Collapse
|
48
|
Liu X, Zhang Y, Ni M, Cao H, Signer RA, Li D, Li M, Gu Z, Hu Z, Dickerson KE, Weinberg SE, Chandel NS, DeBerardinis RJ, Zhou F, Shao Z, Xu J. Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated protein translation. Nat Cell Biol 2017; 19:626-638. [PMID: 28504707 PMCID: PMC5771482 DOI: 10.1038/ncb3527] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/06/2017] [Indexed: 12/15/2022]
Abstract
Advances in genomic profiling present new challenges of explaining how changes in DNA and RNA are translated into proteins linking genotype to phenotype. Here we compare the genome-scale proteomic and transcriptomic changes in human primary haematopoietic stem/progenitor cells and erythroid progenitors, and uncover pathways related to mitochondrial biogenesis enhanced through post-transcriptional regulation. Mitochondrial factors including TFAM and PHB2 are selectively regulated through protein translation during erythroid specification. Depletion of TFAM in erythroid cells alters intracellular metabolism, leading to elevated histone acetylation, deregulated gene expression, and defective mitochondria and erythropoiesis. Mechanistically, mTORC1 signalling is enhanced to promote translation of mitochondria-associated transcripts through TOP-like motifs. Genetic and pharmacological perturbation of mitochondria or mTORC1 specifically impairs erythropoiesis in vitro and in vivo. Our studies support a mechanism for post-transcriptional control of erythroid mitochondria and may have direct relevance to haematologic defects associated with mitochondrial diseases and ageing.
Collapse
Affiliation(s)
- Xin Liu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Key Laboratory of Computational Biology, Collaborative Innovation Center for Genetics and Developmental Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Ni
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Cao
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert A.J. Signer
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Dan Li
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mushan Li
- Key Laboratory of Computational Biology, Collaborative Innovation Center for Genetics and Developmental Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhimin Gu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zeping Hu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathryn E. Dickerson
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel E. Weinberg
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S. Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ralph J. DeBerardinis
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Zhou
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhen Shao
- Key Laboratory of Computational Biology, Collaborative Innovation Center for Genetics and Developmental Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Xu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
49
|
Quan Q, Feng J, Lui LT, Shi T, Chu IK. Phosphoproteome of crab-eating macaque cerebral cortex characterized through multidimensional reversed-phase liquid chromatography/mass spectrometry with tandem anion/cation exchange columns. J Chromatogr A 2017; 1498:196-206. [DOI: 10.1016/j.chroma.2017.01.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/13/2017] [Accepted: 01/21/2017] [Indexed: 02/06/2023]
|
50
|
Zhao Q, Fang F, Shan Y, Sui Z, Zhao B, Liang Z, Zhang L, Zhang Y. In-Depth Proteome Coverage by Improving Efficiency for Membrane Proteome Analysis. Anal Chem 2017; 89:5179-5185. [DOI: 10.1021/acs.analchem.6b04232] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qun Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Fei Fang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yichu Shan
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Zhigang Sui
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Baofeng Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Zhen Liang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Yukui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| |
Collapse
|