1
|
Jiang W, Yu P, Yang Y, Cai MT, Gan L, Qu K, Cheng YY, Dong M. PI3K-mediated Kif1a DNA methylation contributes to neuropathic pain: an in vivo study. Pain 2025:00006396-990000000-00817. [PMID: 39907503 DOI: 10.1097/j.pain.0000000000003536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/25/2024] [Indexed: 02/06/2025]
Abstract
ABSTRACT Neuropathic pain (NP) is a chronic condition caused by nerve injuries, such as nerve compression. Understanding its underlying neurobiological mechanisms is critical for developing effective treatments. Previous studies have shown that Kinesin family member 1A (Kif1a) heterozygous deficient mice display sensory deficits in response to nociceptive stimuli. PI3K has been found to mitigate these sensory deficits by enhancing Kif1a transcription, highlighting KIF1A's key role in sensory pain. However, the exact mechanism through which PI3K regulates KIF1A expression in relation to pain remains unclear. In this study, we observed a significant increase in PI3K/AKT/CREB (cyclic AMP response element-binding protein) protein levels in the dorsal root ganglia and spinal cord after chronic constriction injury in both male and female C57BL/6 mice. Notably, elevated levels of TET1, as well as Kif1a mRNA and protein, were detected in both male and female mice. Activated (phosphorylated-CREB) p-CREB recruited the DNA demethylase TET1, which interacted with the Kif1a promoter, reducing methylation and increasing Kif1a mRNA and protein expression. PI3K inhibition using wortmannin reversed the demethylation of Kif1a and decreased its expression in male mice. Furthermore, TET1 knockdown or overexpression significantly affected pain-related behaviors, as well as Kif1a methylation and transcription. Female mice given intrathecal injections of PI3K inhibitors exhibited similar molecular and behavioral outcomes as male mice. These findings offer new insights into NP mechanisms, suggesting that targeting the PI3K/KIF1A axis could be a promising therapeutic approach for NP treatment.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Peng Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meng-Tan Cai
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Lin Gan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Kang Qu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Ying-Ying Cheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Kim HY, Jang HJ, Muthamil S, Shin UC, Lyu JH, Kim SW, Go Y, Park SH, Lee HG, Park JH. Novel insights into regulators and functional modulators of adipogenesis. Biomed Pharmacother 2024; 177:117073. [PMID: 38981239 DOI: 10.1016/j.biopha.2024.117073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
Adipogenesis is a process that differentiates new adipocytes from precursor cells and is tightly regulated by several factors, including many transcription factors and various post-translational modifications. Recently, new roles of adipogenesis have been suggested in various diseases. However, the molecular mechanisms and functional modulation of these adipogenic genes remain poorly understood. This review summarizes the regulatory factors and modulators of adipogenesis and discusses future research directions to identify novel mechanisms regulating adipogenesis and the effects of adipogenic regulators in pathological conditions. The master adipogenic transcriptional factors PPARγ and C/EBPα were identified along with other crucial regulatory factors such as SREBP, Kroxs, STAT5, Wnt, FOXO1, SWI/SNF, KLFs, and PARPs. These transcriptional factors regulate adipogenesis through specific mechanisms, depending on the adipogenic stage. However, further studies related to the in vivo role of newly discovered adipogenic regulators and their function in various diseases are needed to develop new potent therapeutic strategies for metabolic diseases and cancer.
Collapse
Affiliation(s)
- Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea.
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| | - Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Seon-Wook Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
3
|
Occean JR, Yang N, Sun Y, Dawkins MS, Munk R, Belair C, Dar S, Anerillas C, Wang L, Shi C, Dunn C, Bernier M, Price NL, Kim JS, Cui CY, Fan J, Bhattacharyya M, De S, Maragkakis M, de Cabo R, Sidoli S, Sen P. Gene body DNA hydroxymethylation restricts the magnitude of transcriptional changes during aging. Nat Commun 2024; 15:6357. [PMID: 39069555 PMCID: PMC11284234 DOI: 10.1038/s41467-024-50725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
DNA hydroxymethylation (5hmC), the most abundant oxidative derivative of DNA methylation, is typically enriched at enhancers and gene bodies of transcriptionally active and tissue-specific genes. Although aberrant genomic 5hmC has been implicated in age-related diseases, its functional role in aging remains unknown. Here, using mouse liver and cerebellum as model organs, we show that 5hmC accumulates in gene bodies associated with tissue-specific function and restricts the magnitude of gene expression changes with age. Mechanistically, 5hmC decreases the binding of splicing associated factors and correlates with age-related alternative splicing events. We found that various age-related contexts, such as prolonged quiescence and senescence, drive the accumulation of 5hmC with age. We provide evidence that this age-related transcriptionally restrictive function is conserved in mouse and human tissues. Our findings reveal that 5hmC regulates tissue-specific function and may play a role in longevity.
Collapse
Affiliation(s)
- James R Occean
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Yan Sun
- Department of Biochemistry, Albert Einstein School of Medicine, Bronx, NY, USA
| | - Marshall S Dawkins
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Showkat Dar
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Lin Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Christopher Dunn
- Flow Cytometry Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Nathan L Price
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Julie S Kim
- Department of Biochemistry, Albert Einstein School of Medicine, Bronx, NY, USA
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | | | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein School of Medicine, Bronx, NY, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
4
|
Occean JR, Yang N, Sun Y, Dawkins MS, Munk R, Belair C, Dar S, Anerillas C, Wang L, Shi C, Dunn C, Bernier M, Price NL, Kim JS, Cui CY, Fan J, Bhattacharyya M, De S, Maragkakis M, deCabo R, Sidoli S, Sen P. Gene body DNA hydroxymethylation restricts the magnitude of transcriptional changes during aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.15.528714. [PMID: 36824863 PMCID: PMC9949049 DOI: 10.1101/2023.02.15.528714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
DNA hydroxymethylation (5hmC), the most abundant oxidative derivative of DNA methylation, is typically enriched at enhancers and gene bodies of transcriptionally active and tissue-specific genes. Although aberrant genomic 5hmC has been implicated in age-related diseases, its functional role in aging remains unknown. Here, using mouse liver and cerebellum as model organs, we show that 5hmC accumulates in gene bodies associated with tissue-specific function and restricts the magnitude of gene expression changes with age. Mechanistically, 5hmC decreases the binding of splicing associated factors and correlates with age-related alternative splicing events. We found that various age-related contexts, such as prolonged quiescence and senescence, drive the accumulation of 5hmC with age. We provide evidence that this age-related transcriptionally restrictive function is conserved in mouse and human tissues. Our findings reveal that 5hmC regulates tissue-specific function and may play a role in longevity.
Collapse
|
5
|
Wang X, Gan M, Wang Y, Wang S, Lei Y, Wang K, Zhang X, Chen L, Zhao Y, Niu L, Zhang S, Zhu L, Shen L. Comprehensive review on lipid metabolism and RNA methylation: Biological mechanisms, perspectives and challenges. Int J Biol Macromol 2024; 270:132057. [PMID: 38710243 DOI: 10.1016/j.ijbiomac.2024.132057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Adipose tissue plays a crucial role in maintaining energy balance, regulating hormones, and promoting metabolic health. To address disorders related to obesity and develop effective therapies, it is essential to have a deep understanding of adipose tissue biology. In recent years, RNA methylation has emerged as a significant epigenetic modification involved in various cellular functions and metabolic pathways. Particularly in the realm of adipogenesis and lipid metabolism, extensive research is ongoing to uncover the mechanisms and functional importance of RNA methylation. Increasing evidence suggests that RNA methylation plays a regulatory role in adipocyte development, metabolism, and lipid utilization across different organs. This comprehensive review aims to provide an overview of common RNA methylation modifications, their occurrences, and regulatory mechanisms, focusing specifically on their intricate connections to fat metabolism. Additionally, we discuss the research methodologies used in studying RNA methylation and highlight relevant databases that can aid researchers in this rapidly advancing field.
Collapse
Affiliation(s)
- Xingyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Saihao Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Kai Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
6
|
Bittel AJ, Chen YW. DNA Methylation in the Adaptive Response to Exercise. Sports Med 2024; 54:1419-1458. [PMID: 38561436 DOI: 10.1007/s40279-024-02011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Emerging evidence published over the past decade has highlighted the role of DNA methylation in skeletal muscle function and health, including as an epigenetic transducer of the adaptive response to exercise. In this review, we aim to synthesize the latest findings in this field to highlight: (1) the shifting understanding of the genomic localization of altered DNA methylation in response to acute and chronic aerobic and resistance exercise in skeletal muscle (e.g., promoter, gene bodies, enhancers, intergenic regions, un-annotated regions, and genome-wide methylation); (2) how these global/regional methylation changes relate to transcriptional activity following exercise; and (3) the factors (e.g., individual demographic or genetic features, dietary, training history, exercise parameters, local epigenetic characteristics, circulating hormones) demonstrated to alter both the pattern of DNA methylation after exercise, and the relationship between DNA methylation and gene expression. Finally, we discuss the changes in non-CpG methylation and 5-hydroxymethylation after exercise, as well as the importance of emerging single-cell analyses to future studies-areas of increasing focus in the field of epigenetics. We anticipate that this review will help generate a framework for clinicians and researchers to begin developing and testing exercise interventions designed to generate targeted changes in DNA methylation as part of a personalized exercise regimen.
Collapse
Affiliation(s)
- Adam J Bittel
- Research Center for Genetic Medicine, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Yi-Wen Chen
- Research Center for Genetic Medicine, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Science, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Department of Integrative Systems Biology, Institute for Biomedical Sciences, The George Washington University, 2121 I St NW, Washington, DC, 20052, USA
| |
Collapse
|
7
|
Nadiger N, Veed JK, Chinya Nataraj P, Mukhopadhyay A. DNA methylation and type 2 diabetes: a systematic review. Clin Epigenetics 2024; 16:67. [PMID: 38755631 PMCID: PMC11100087 DOI: 10.1186/s13148-024-01670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE DNA methylation influences gene expression and function in the pathophysiology of type 2 diabetes mellitus (T2DM). Mapping of T2DM-associated DNA methylation could aid early detection and/or therapeutic treatment options for diabetics. DESIGN A systematic literature search for associations between T2DM and DNA methylation was performed. Prospero registration ID: CRD42020140436. METHODS PubMed and ScienceDirect databases were searched (till October 19, 2023). Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and New Castle Ottawa scale were used for reporting the selection and quality of the studies, respectively. RESULT Thirty-two articles were selected. Four of 130 differentially methylated genes in blood, adipose, liver or pancreatic islets (TXNIP, ABCG1, PPARGC1A, PTPRN2) were reported in > 1 study. TXNIP was hypomethylated in diabetic blood across ethnicities. Gene enrichment analysis of the differentially methylated genes highlighted relevant disease pathways (T2DM, type 1 diabetes and adipocytokine signaling). Three prospective studies reported association of methylation in IGFBP2, MSI2, FTO, TXNIP, SREBF1, PHOSPHO1, SOCS3 and ABCG1 in blood at baseline with incident T2DM/hyperglycemia. Sex-specific differential methylation was reported only for HOOK2 in visceral adipose tissue (female diabetics: hypermethylated, male diabetics: hypomethylated). Gene expression was inversely associated with methylation status in 8 studies, in genes including ABCG1 (blood), S100A4 (adipose tissue), PER2 (pancreatic islets), PDGFA (liver) and PPARGC1A (skeletal muscle). CONCLUSION This review summarizes available evidence for using DNA methylation patterns to unravel T2DM pathophysiology. Further validation studies in diverse populations will set the stage for utilizing this knowledge for identifying early diagnostic markers and novel druggable pathways.
Collapse
Affiliation(s)
- Nikhil Nadiger
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India
| | - Jyothisha Kana Veed
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India
| | - Priyanka Chinya Nataraj
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India
- Vedantu, Bangalore, India
| | - Arpita Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India.
| |
Collapse
|
8
|
Zeng Q, Song J, Sun X, Wang D, Liao X, Ding Y, Hu W, Jiao Y, Mai W, Aini W, Wang F, Zhou H, Xie L, Mei Y, Tang Y, Xie Z, Wu H, Liu W, Deng T. A negative feedback loop between TET2 and leptin in adipocyte regulates body weight. Nat Commun 2024; 15:2825. [PMID: 38561362 PMCID: PMC10985112 DOI: 10.1038/s41467-024-46783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Ten-eleven translocation (TET) 2 is an enzyme that catalyzes DNA demethylation to regulate gene expression by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine, functioning as an essential epigenetic regulator in various biological processes. However, the regulation and function of TET2 in adipocytes during obesity are poorly understood. In this study, we demonstrate that leptin, a key adipokine in mammalian energy homeostasis regulation, suppresses adipocyte TET2 levels via JAK2-STAT3 signaling. Adipocyte Tet2 deficiency protects against high-fat diet-induced weight gain by reducing leptin levels and further improving leptin sensitivity in obese male mice. By interacting with C/EBPα, adipocyte TET2 increases the hydroxymethylcytosine levels of the leptin gene promoter, thereby promoting leptin gene expression. A decrease in adipose TET2 is associated with obesity-related hyperleptinemia in humans. Inhibition of TET2 suppresses the production of leptin in mature human adipocytes. Our findings support the existence of a negative feedback loop between TET2 and leptin in adipocytes and reveal a compensatory mechanism for the body to counteract the metabolic dysfunction caused by obesity.
Collapse
Affiliation(s)
- Qin Zeng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jianfeng Song
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Dandan Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiyan Liao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yujin Ding
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wanyu Hu
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yayi Jiao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wuqian Mai
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wufuer Aini
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fanqi Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hui Zhou
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Limin Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ying Mei
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yuan Tang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wei Liu
- Department of Biliopancreatic Surgery and Bariatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
9
|
Liu Y, He T, Li Z, Sun Z, Wang S, Shen H, Hou L, Li S, Wei Y, Zhuo B, Li S, Zhou C, Guo H, Zhang R, Li B. TET2 is recruited by CREB to promote Cebpb, Cebpa, and Pparg transcription by facilitating hydroxymethylation during adipocyte differentiation. iScience 2023; 26:108312. [PMID: 38026190 PMCID: PMC10663734 DOI: 10.1016/j.isci.2023.108312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Ten-eleven translocation proteins (TETs) are dioxygenases that convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), an important epigenetic mark that regulates gene expression during development and differentiation. Here, we found that the TET2 expression was positively associated with adipogenesis. Further, in vitro and in vivo experiments showed that TET2 deficiency blocked adipogenesis by inhibiting the expression of the key transcription factors CCAAT/enhancer-binding protein beta (C/EBPβ), C/EBPα and peroxisome proliferator-activated receptor gamma (PPARγ). In addition, TET2 promoted 5hmC on the CpG islands (CGIs) of Cebpb, Cebpa and Pparg at the initial time point of their transcription, which requires the cAMP-responsive element-binding protein (CREB). At last, specific knockout of Tet2 in preadipocytes enabled mice to resist obesity and attenuated the obesity-associated insulin resistance. Together, TET2 is recruited by CREB to promote the expression of Cebpb, Cebpa and Pparg via 5hmC during adipogenesis and may be a potential therapeutic target for obesity and insulin resistance.
Collapse
Affiliation(s)
- Yunjia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Ting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Zhuofang Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Zhen Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shuai Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huanming Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Lingfeng Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shengnan Li
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Yixin Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Bingzhao Zhuo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shanni Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Can Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Rui Zhang
- Xiamen Cell Therapy Research Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| |
Collapse
|
10
|
Jung BC, You D, Lee I, Li D, Schill RL, Ma K, Pi A, Song Z, Mu WC, Wang T, MacDougald OA, Banks AS, Kang S. TET3 plays a critical role in white adipose development and diet-induced remodeling. Cell Rep 2023; 42:113196. [PMID: 37777963 PMCID: PMC10763978 DOI: 10.1016/j.celrep.2023.113196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/28/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
Maintaining healthy adipose tissue is crucial for metabolic health, requiring a deeper understanding of adipocyte development and response to high-calorie diets. This study highlights the importance of TET3 during white adipose tissue (WAT) development and expansion. Selective depletion of Tet3 in adipose precursor cells (APCs) reduces adipogenesis, protects against diet-induced adipose expansion, and enhances whole-body metabolism. Transcriptomic analysis of wild-type and Tet3 knockout (KO) APCs unveiled TET3 target genes, including Pparg and several genes linked to the extracellular matrix, pivotal for adipogenesis and remodeling. DNA methylation profiling and functional studies underscore the importance of DNA demethylation in gene regulation. Remarkably, targeted DNA demethylation at the Pparg promoter restored its transcription. In conclusion, TET3 significantly governs adipogenesis and diet-induced adipose expansion by regulating key target genes in APCs.
Collapse
Affiliation(s)
- Byung Chul Jung
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Dongjoo You
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Ikjun Lee
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca L Schill
- Department of Molecular & Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MO, USA
| | - Katherine Ma
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Anna Pi
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Zehan Song
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Wei-Chieh Mu
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MO, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
11
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
12
|
Wang Z, An X, Yang Y, Zhang L, Jiao T, Zhao S. Comprehensive Analysis of the Longissimus Dorsi Transcriptome and Metabolome Reveals the Regulatory Mechanism of Different Varieties of Meat Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1234-1245. [PMID: 36601774 DOI: 10.1021/acs.jafc.2c07043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The beef quality significantly varies between breeds. Pingliang Red Cattle resembles Wagyu in fat deposition and flavor. To screen key factors affecting beef quality, we performed meat quality trait testing, RNA-seq, and metabolomics on the longissimus dorsi of Pingliang Red Cattle, Wagyu cross F1 generation, and Simmental cattle. The gene and metabolite expression profiles were similar between Pingliang Red Cattle and Wagyu cross F1 generation. Genes such as FASN, ACACA, PLIN1, and FABP4 were significantly upregulated in the Pingliang Red Cattle and Wagyu cross F1 generation (P < 0.05). Similarly, numerous metabolites, such as 3-iodo-l-tyrosine, arachidonic acid, and cis-aconitate, which may improve the beef quality such as fat deposition and tenderness, were found in higher levels in the Pingliang Red Cattle and Wagyu cross F1 generation. This study revealed differences in the transcriptional and metabolic levels between Pingliang Red Cattle and premium beef breeds, suggesting that Pingliang Red Cattle harbors the genetic potential for breeding high-grade beef cattle.
Collapse
Affiliation(s)
- Zhengwen Wang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuejiao An
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China
| | - Yonghui Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lingyun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ting Jiao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou 730070, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
13
|
Epigenetic Insights on PARP-1 Activity in Cancer Therapy. Cancers (Basel) 2022; 15:cancers15010006. [PMID: 36612003 PMCID: PMC9817704 DOI: 10.3390/cancers15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
The regulation of chromatin state and histone protein eviction have been proven essential during transcription and DNA repair. Poly(ADP-ribose) (PAR) polymerase 1 (PARP-1) and poly(ADP-ribosyl)ation (PARylation) are crucial mediators of these processes by affecting DNA/histone epigenetic events. DNA methylation/hydroxymethylation patterns and histone modifications are established by mutual coordination between all epigenetic modifiers. This review will focus on histones and DNA/histone epigenetic machinery that are direct targets of PARP-1 activity by covalent and non-covalent PARylation. The effects of these modifications on the activity/recruitment of epigenetic enzymes at DNA damage sites or gene regulatory regions will be outlined. Furthermore, based on the achievements made to the present, we will discuss the potential application of epigenetic-based therapy as a novel strategy for boosting the success of PARP inhibitors, improving cell sensitivity or overcoming drug resistance.
Collapse
|
14
|
Li X, Xing J, Wang F, Li J, Li J, Hou R, Zhang K. The mRNA Expression Profile of Psoriatic Lesion Distinct from Non-Lesion. Clin Cosmet Investig Dermatol 2022; 15:2035-2043. [PMID: 36193053 PMCID: PMC9526433 DOI: 10.2147/ccid.s385894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
Abstract
Purpose Psoriasis is a chronic recurring autoimmune skin disease with a complex etiology and chronic progression; however, its molecular mechanisms remain unclear. Patients and Methods We performed transcriptomic analysis to profile the mRNA expression of psoriatic lesions (PL) and non-lesion (NL) tissues from psoriasis patients along with normal skin from healthy donors. RT-qPCR was used to validate the mRNA expression profiles. Results A total of 237 differentially expressed genes were screened and identified by RNA sequencing. GO and KEGG analysis indicated that these DEGs were enriched in the PPAR signaling pathway and intermediate filament cytoskeleton. For PPAR signaling pathway, the expression of five genes, including ADIPOQ, AQP7, PLIN1, FABP4 and LPL, were all significantly decreased in psoriatic lesions compared to normal skin by RT-qPCR. There is a clear difference between psoriatic lesions and non-lesion in the expression of ADIPOQ, AQP7 and LPL. For intermediate filament cytoskeleton, including KRT27, KRT25, KRT71, KRT86 and KRT85 were significantly decreased in the psoriasis lesions, showing agreement with the RNA-seq data. Conclusion This study revealed a significant difference between the mRNA expression profiles of PL, NL tissue and normal skin.
Collapse
Affiliation(s)
- Xinhua Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Fangdi Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital, Taiyuan, Shanxi Province, 030009, People's Republic of China
| |
Collapse
|
15
|
Jiang W, Tan XY, Li JM, Yu P, Dong M. DNA Methylation: A Target in Neuropathic Pain. Front Med (Lausanne) 2022; 9:879902. [PMID: 35872752 PMCID: PMC9301322 DOI: 10.3389/fmed.2022.879902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain (NP), caused by an injury or a disease affecting the somatosensory nervous system of the central and peripheral nervous systems, has become a global health concern. Recent studies have demonstrated that epigenetic mechanisms are among those that underlie NP; thus, elucidating the molecular mechanism of DNA methylation is crucial to discovering new therapeutic methods for NP. In this review, we first briefly discuss DNA methylation, demethylation, and the associated key enzymes, such as methylases and demethylases. We then discuss the relationship between NP and DNA methylation, focusing on DNA methyltransferases including methyl-CpG-binding domain (MBD) family proteins and ten-eleven translocation (TET) enzymes. Based on experimental results of neuralgia in animal models, the mechanism of DNA methylation-related neuralgia is summarized, and useful targets for early drug intervention in NP are discussed.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xuan-Yu Tan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Jia-Ming Li
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Peng Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Peng Yu
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Ming Dong
| |
Collapse
|
16
|
Park J, Lee DH, Ham S, Oh J, Noh JR, Lee YK, Park YJ, Lee G, Han SM, Han JS, Kim YY, Jeon YG, Nahmgoong H, Shin KC, Kim SM, Choi SH, Lee CH, Park J, Roh TY, Kim S, Kim JB. Targeted erasure of DNA methylation by TET3 drives adipogenic reprogramming and differentiation. Nat Metab 2022; 4:918-931. [PMID: 35788760 DOI: 10.1038/s42255-022-00597-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/24/2022] [Indexed: 01/10/2023]
Abstract
DNA methylation is a crucial epigenetic modification in the establishment of cell-type-specific characteristics. However, how DNA methylation is selectively reprogrammed at adipocyte-specific loci during adipogenesis remains unclear. Here, we show that the transcription factor, C/EBPδ, and the DNA methylation eraser, TET3, cooperatively control adipocyte differentiation. We perform whole-genome bisulfite sequencing to explore the dynamics and regulatory mechanisms of DNA methylation in adipocyte differentiation. During adipogenesis, DNA methylation selectively decreases at adipocyte-specific loci carrying the C/EBP binding motif, which correlates with the activity of adipogenic promoters and enhancers. Mechanistically, we find that C/EBPδ recruits a DNA methylation eraser, TET3, to catalyse DNA demethylation at the C/EBP binding motif and stimulate the expression of key adipogenic genes. Ectopic expression of TET3 potentiates in vitro and in vivo adipocyte differentiation and recovers downregulated adipogenic potential, which is observed in aged mice and humans. Taken together, our study highlights how targeted reprogramming of DNA methylation through cooperative action of the transcription factor C/EBPδ, and the DNA methylation eraser TET3, controls adipocyte differentiation.
Collapse
Affiliation(s)
- Jeu Park
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Do Hoon Lee
- Bioinformatics Institute, Seoul National University, Seoul, South Korea
| | - Seokjin Ham
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Jiyoung Oh
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Yun Kyung Lee
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, South Korea
| | - Yoon Jeong Park
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sang Mun Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji Seul Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Han Nahmgoong
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Cheul Shin
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung Min Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung Hee Choi
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, South Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Tae Young Roh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
17
|
Loss of adipose TET proteins enhances β-adrenergic responses and protects against obesity by epigenetic regulation of β3-AR expression. Proc Natl Acad Sci U S A 2022; 119:e2205626119. [PMID: 35737830 PMCID: PMC9245707 DOI: 10.1073/pnas.2205626119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
β-adrenergic receptor (β-AR) signaling plays predominant roles in modulating energy expenditure by triggering lipolysis and thermogenesis in adipose tissue, thereby conferring obesity resistance. Obesity is associated with diminished β3-adrenergic receptor (β3-AR) expression and decreased β-adrenergic responses, but the molecular mechanism coupling nutrient overload to catecholamine resistance remains poorly defined. Ten-eleven translocation (TET) proteins are dioxygenases that alter the methylation status of DNA by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine and further oxidized derivatives. Here, we show that TET proteins are pivotal epigenetic suppressors of β3-AR expression in adipocytes, thereby attenuating the responsiveness to β-adrenergic stimulation. Deletion of all three Tet genes in adipocytes led to increased β3-AR expression and thereby enhanced the downstream β-adrenergic responses, including lipolysis, thermogenic gene induction, oxidative metabolism, and fat browning in vitro and in vivo. In mouse adipose tissues, Tet expression was elevated after mice ate a high-fat diet. Mice with adipose-specific ablation of all TET proteins maintained higher levels of β3-AR in both white and brown adipose tissues and remained sensitive to β-AR stimuli under high-fat diet challenge, leading to augmented energy expenditure and decreased fat accumulation. Consequently, they exhibited improved cold tolerance and were substantially protected from diet-induced obesity, inflammation, and metabolic complications, including insulin resistance and hyperlipidemia. Mechanistically, TET proteins directly repressed β3-AR transcription, mainly in an enzymatic activity-independent manner, and involved the recruitment of histone deacetylases to increase deacetylation of its promoter. Thus, the TET-histone deacetylase-β3-AR axis could be targeted to treat obesity and related metabolic diseases.
Collapse
|
18
|
Joshi K, Liu S, Breslin S J P, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 2022; 79:363. [PMID: 35705880 DOI: 10.1007/s00018-022-04396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.
Collapse
Affiliation(s)
- Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Shanhui Liu
- School of Life Sciences, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
19
|
Ye X, Wu Y, Xu J, Liu H, Wang H, Li Q, Li Q, Xuan A. PPARβ mediates mangiferin-induced neuronal differentiation of neural stem cells through DNA demethylation. Pharmacol Res 2022; 179:106235. [PMID: 35472635 DOI: 10.1016/j.phrs.2022.106235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022]
Abstract
Adult hippocampal neurogenesis (AHN) is heavily implicated in the pathogenesis of various neuropsychiatric disorders. The mangiferin (MGF), a bioactive compound of the mango, reportedly produces biological effects on a variety of neuropsychiatric disorders. However, the function and underlying mechanisms of MGF in regulating hippocampal neurogenesis remain unknown. Here we discovered that the transcriptome and methylome of MGF-induced neural stem cells (NSCs) are distinct from the control. RNA-seq analysis revealed that the diferentially expressed genes (DEGs) were signifcantly enriched in the PPARs. Furthermore, we found that MGF enhanced neuronal differentiation and proliferation of neural stem cells (NSCs) via PPARβ but not PPARα and PPARγ. The combination of WGBS and RNA-seq analysis showed that the expression of some neurogenesis genes was negatively correlated with the DNA methylation level generally. We further found that PPARβ increased demethylation of Mash1 promoter by modulating the expressions of active and passive DNA demethylation enzymes in MGF-treated NSCs. Importantly, genetic deficiency of PPARβ decreased hippocampal neurogenesis in the adult mice, whereas the defective neurogenesis was notably rescued by Mash1 overexpression. Our findings uncover a model that PPARβ-mediated DNA demethylation of Mash1 contributes to MGF-induced neuronal genesis, and advance the concept that targeting PPARβ-TET1/DNMT3a-Mash1 axis regulation of neurogenesis might serve as a novel neurotherapeutic strategy.
Collapse
Affiliation(s)
- Xiujuan Ye
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Yuanfei Wu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Jiamin Xu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Hui Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Huan Wang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Qingfeng Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Qingqing Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Aiguo Xuan
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China.
| |
Collapse
|
20
|
Tolić A, Ravichandran M, Rajić J, Đorđević M, Đorđević M, Dinić S, Grdović N, Jovanović JA, Mihailović M, Nestorović N, Jurkowski TP, Uskoković AS, Vidaković MS. TET-mediated DNA hydroxymethylation is negatively influenced by the PARP-dependent PARylation. Epigenetics Chromatin 2022; 15:11. [PMID: 35382873 PMCID: PMC8985375 DOI: 10.1186/s13072-022-00445-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Poly(ADP-ribosyl)ation (PARylation), a posttranslational modification introduced by PARP-1 and PARP-2, has first been implicated in DNA demethylation due to its role in base excision repair. Recent evidence indicates a direct influence of PARP-dependent PARylation on TET enzymes which catalyse hydroxymethylation of DNA-the first step in DNA demethylation. However, the exact nature of influence that PARylation exerts on TET activity is still ambiguous. In our recent study, we have observed a negative influence of PARP-1 on local TET-mediated DNA demethylation of a single gene and in this study, we further explore PARP-TET interplay. RESULTS Expanding on our previous work, we show that both TET1 and TET2 can be in vitro PARylated by PARP-1 and PARP-2 enzymes and that TET1 PARylation negatively affects the TET1 catalytic activity in vitro. Furthermore, we show that PARylation inhibits TET-mediated DNA demethylation at the global genome level in cellulo. CONCLUSIONS According to our findings, PARP inhibition can positively influence TET activity and therefore affect global levels of DNA methylation and hydroxymethylation. This gives a strong rationale for future examination of PARP inhibitors' potential use in the therapy of cancers characterised by loss of 5-hydroxymethylcytosine.
Collapse
Affiliation(s)
- Anja Tolić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Mirunalini Ravichandran
- Institute of Biochemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany.,Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 1301, San Francisco, CA, 94143, USA
| | - Jovana Rajić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Marija Đorđević
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Miloš Đorđević
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Jelena Arambašić Jovanović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Nataša Nestorović
- Department of Cytology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Tomasz P Jurkowski
- Institute of Biochemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany. .,School of Biosciences, Cardiff University, Cardiff, Wales, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK.
| | - Aleksandra S Uskoković
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Melita S Vidaković
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
21
|
Miyajima Y, Noguchi S, Tanaka Y, Li JR, Nishimura H, Kishima M, Lim J, Furuhata E, Suzuki T, Kasukawa T, Suzuki H. Prediction of transcription factors associated with DNA demethylation during human cellular development. Chromosome Res 2022; 30:109-121. [PMID: 35142952 PMCID: PMC8942926 DOI: 10.1007/s10577-022-09685-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
Abstract
DNA methylation of CpG dinucleotides is an important epigenetic modification involved in the regulation of mammalian gene expression, with each type of cell developing a specific methylation profile during its differentiation. Recently, it has been shown that a small subgroup of transcription factors (TFs) might promote DNA demethylation at their binding sites. We developed a bioinformatics pipeline to predict from genome-wide DNA methylation data TFs that promote DNA demethylation at their binding site. We applied the pipeline to International Human Epigenome Consortium methylome data and selected 393 candidate transcription factor binding motifs and associated 383 TFs that are likely associated with DNA demethylation. Validation of a subset of the candidate TFs using an in vitro assay suggested that 28 of 49 TFs from various TF families had DNA-demethylation-promoting activity; TF families, such as bHLH and ETS, contained both TFs with and without the activity. The identified TFs showed large demethylated/methylated CpG ratios and their demethylated CpGs showed significant bias toward hypermethylation in original cells. Furthermore, the identified TFs promoted demethylation of distinct sets of CpGs, with slight overlap of the targeted CpGs among TF family members, which was consistent with the results of a gene ontology (GO) term analysis of the identified TFs. Gene expression analysis of the identified TFs revealed that multiple TFs from various families are specifically expressed in human cells and tissues. Together, our results suggest that a large number of TFs from various TF families are associated with cell-type-specific DNA demethylation during human cellular development.
Collapse
Affiliation(s)
- Yurina Miyajima
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Shuhei Noguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuki Tanaka
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Jing-Ru Li
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hajime Nishimura
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Mami Kishima
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Joanne Lim
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Erina Furuhata
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Takahiro Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
22
|
Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol 2021; 18:809-823. [PMID: 34127848 DOI: 10.1038/s41569-021-00569-6] [Citation(s) in RCA: 480] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation. PPARα increases cellular fatty acid uptake, esterification and trafficking, and regulates lipoprotein metabolism genes. PPARδ stimulates lipid and glucose utilization by increasing mitochondrial function and fatty acid desaturation pathways. By contrast, PPARγ promotes fatty acid uptake, triglyceride formation and storage in lipid droplets, thereby increasing insulin sensitivity and glucose metabolism. PPARs also exert antiatherogenic and anti-inflammatory effects on the vascular wall and immune cells. Clinically, PPARγ activation by glitazones and PPARα activation by fibrates reduce insulin resistance and dyslipidaemia, respectively. PPARs are also physiological master switches in the heart, steering cardiac energy metabolism in cardiomyocytes, thereby affecting pathological heart failure and diabetic cardiomyopathy. Novel PPAR agonists in clinical development are providing new opportunities in the management of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- David Montaigne
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
23
|
Zhu C, Cai Y, Mo S, Zhu J, Wang W, Peng B, Guo J, Zhang Z, Chen X. NF-κB-mediated TET2-dependent TNF promoter demethylation drives Mtb-upregulation TNF expression in macrophages. Tuberculosis (Edinb) 2021; 129:102108. [PMID: 34274886 DOI: 10.1016/j.tube.2021.102108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022]
Abstract
Tumor necrosis factor (TNF) is essential for the host defense against tuberculosis (TB). However, scarcity or excessive TNF production in macrophages can also increase susceptibility to TB. The precise mechanisms underlying how Mycobacterium tuberculosis (Mtb) induces TNF over-expression are unclear. Here, we show that Mtb infection significantly increases 5-hydroxylmethylocytosine (5hmC) levels in the TNF promoter. Luciferase reporter assays identify the precise methylated CpG sites that are essential to regulating TNF promoter activity. Infection simultaneously promotes the expression of the TET2 demethylase in macrophages. After inhibiting NF-κB or knocking down TET2, we found that TNF promoter demethylation levels is increased while Mtb-induced TNF expression decrease. Here, NF-κB binds to TET2 and mediates its recruitment to the TNF promoter to induce TNF demethylation. Finally, we show that TLR2 activation during Mtb infection promotes NF-κB translocation into the nucleus which is important for NF-κB-mediated TET2-dependent TNF promoter demethylation thus helps drive Mtb-induced TNF expression. Targeting this axis might be a novel strategy for host-directed therapy against TB.
Collapse
Affiliation(s)
- Chuanzhi Zhu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China; Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yi Cai
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China
| | - Siwei Mo
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China
| | - Jialou Zhu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China
| | - Wenfei Wang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China; Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Jiubiao Guo
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China
| | - Zongde Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| | - Xinchun Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
24
|
Yuan Y, Liu C, Chen X, Sun Y, Xiong M, Fan Y, Petersen RB, Chen H, Huang K, Zheng L. Vitamin C Inhibits the Metabolic Changes Induced by Tet1 Insufficiency Under High Fat Diet Stress. Mol Nutr Food Res 2021; 65:e2100417. [PMID: 34129274 DOI: 10.1002/mnfr.202100417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Indexed: 12/19/2022]
Abstract
SCOPE DNA methylation contributes to obesity, but the role of the DNA demethylase ten-eleven translocation protein 1 (Tet1) in obesity remains unclear. Vitamin C is a cofactor for the Tet family of proteins, but whether vitamin C can be used to treat obesity via Tet1 awaits clarification. METHODS AND RESULTS Tet1+/+ and Tet1+/- mice are fed a high fat diet (HFD). Higher weight gain and more severe hepatic steatosis, accompanied by reduced 5-hydromethylcytosine (5hmC) levels, are found in the white adipose tissue and liver of Tet1+/- mice. Accumulated lipids are observed in palmitic acid or oleic acid treated primary hepatocytes derived from Tet1+/- mice, which are rescued by Tet1 overexpression or vitamin C treatment. Bisulfite sequencing reveals higher DNA methylation levels on lipolysis related genes in the liver of Tet1+/- mice. Notably, oral intake of vitamin C normalizes DNA methylation levels, promotes lipolysis, and decreases obesity in HFD-fed Tet1+/- mice. CONCLUSIONS The results reveal a novel function of Tet1 in obesity and provide a new mechanism for the beneficial role of vitamin C in metabolic diseases through enhanced Tet1 activity.
Collapse
Affiliation(s)
- Yangmian Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xingrui Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuyan Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingrui Xiong
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI, 48858, USA
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
25
|
Qian H, Zhao J, Yang X, Wu S, An Y, Qu Y, Li Z, Ge H, Li E, Qi W. TET1 promotes RXRα expression and adipogenesis through DNA demethylation. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158919. [PMID: 33684567 DOI: 10.1016/j.bbalip.2021.158919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 11/24/2022]
Abstract
Adipose tissue is important for systemic metabolic homeostasis in response to environmental changes, and adipogenesis involves dynamic transcriptional regulation. Ten-eleven translocation (TET) enzymes (TET1, 2 and 3) oxidize the 5-methylcytosine (5mC) in DNA to 5-hydroxylmethylcytosine (5hmC), which associates with transcriptional activation. Step by step, 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) are further generated by TETs and the cytosine can be restored through base-excision repair. It is still unclear how DNA demethylation is involved in adipogenesis. Through a phenotypic screen, we found TET inhibition decreased adipocyte differentiation from mesenchymal stem cells (MSCs). Comparing with the undifferentiated MSCs, the differentiated adipocytes exhibited much higher levels of 5hmC and slightly increased 5fC and 5caC. Higher 5hmC was associated with better differentiation at single-cell level by image analysis. TET1 is upregulated in differentiation and depletion of it significantly impaired the gain of 5hmC. Furthermore, Tet1 depletion significantly hampered the adipocyte differentiation. Using RNA-seq, 5mC and 5hmC-DNA immunoprecipitation, we found that Tet1 knockout led to lower expression of genes associated with lipid metabolism and fat cell differentiation. Genes with loss of 5mC or gain of 5hmC in adipocytes include Lipe, Bmp4 and Rxra, etc. RXRα agonist partially rescued the inhibitory effect of Tet1 knockout for adipogenesis. So, Rxra is one of the critical TET1 modulated genes. Together, TET1-mediated active DNA demethylation plays an important role in adipogenesis.
Collapse
Affiliation(s)
- Hui Qian
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China; China Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Jiaqi Zhao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xinyi Yang
- China Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Sujuan Wu
- China Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Yang An
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yuxiu Qu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Zhen Li
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Hui Ge
- China Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - En Li
- China Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Wei Qi
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| |
Collapse
|
26
|
Bjørklund G, Tippairote T, Dadar M, Lizcano F, Aaseth J, Borisova O. The Roles of Dietary, Nutritional and Lifestyle Interventions in Adipose Tissue Adaptation and Obesity. Curr Med Chem 2021; 28:1683-1702. [PMID: 32368968 DOI: 10.2174/0929867327666200505090449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 03/28/2020] [Indexed: 11/22/2022]
Abstract
The obesity and the associated non-communicable diseases (NCDs) are globally increasing in their prevalence. While the modern-day lifestyle required less ventilation of metabolic energy through muscular activities, this lifestyle transition also provided the unlimited accession to foods around the clock, which prolong the daily eating period of foods that contained high calorie and high glycemic load. These situations promote the high continuous flux of carbon substrate availability in mitochondria and induce the indecisive bioenergetic switches. The disrupted bioenergetic milieu increases the uncoupling respiration due to the excess flow of the substrate-derived reducing equivalents and reduces ubiquinones into the respiratory chain. The diversion of the uncoupling proton gradient through adipocyte thermogenesis will then alleviate the damaging effects of free radicals to mitochondria and other organelles. The adaptive induction of white adipose tissues (WAT) to beige adipose tissues (beAT) has shown beneficial effects on glucose oxidation, ROS protection and mitochondrial function preservation through the uncoupling protein 1 (UCP1)-independent thermogenesis of beAT. However, the maladaptive stage can eventually initiate with the persistent unhealthy lifestyles. Under this metabolic gridlock, the low oxygen and pro-inflammatory environments promote the adipose breakdown with sequential metabolic dysregulation, including insulin resistance, systemic inflammation and clinical NCDs progression. It is unlikely that a single intervention can reverse all these complex interactions. A comprehensive protocol that includes dietary, nutritional and all modifiable lifestyle interventions, can be the preferable choice to decelerate, stop, or reverse the NCDs pathophysiologic processes.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Torsak Tippairote
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Olga Borisova
- Odesa I. I. Mechnikov National University, Odessa, Ukraine
| |
Collapse
|
27
|
Zampieri M, Bacalini MG, Barchetta I, Scalea S, Cimini FA, Bertoccini L, Tagliatesta S, De Matteis G, Zardo G, Cavallo MG, Reale A. Increased PARylation impacts the DNA methylation process in type 2 diabetes mellitus. Clin Epigenetics 2021; 13:114. [PMID: 34001206 PMCID: PMC8130175 DOI: 10.1186/s13148-021-01099-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
Background Epigenetic modifications, such as DNA methylation, can influence the genetic susceptibility to type 2 diabetes mellitus (T2DM) and the progression of the disease. Our previous studies demonstrated that the regulation of the DNA methylation pattern involves the poly(ADP-ribosyl)ation (PARylation) process, a post-translational modification of proteins catalysed by the poly(ADP-ribose) polymerase (PARP) enzymes. Experimental data showed that the hyperactivation of PARylation is associated with impaired glucose metabolism and the development of T2DM. Aims of this case–control study were to investigate the association between PARylation and global and site-specific DNA methylation in T2DM and to evaluate metabolic correlates. Results Data were collected from 61 subjects affected by T2DM and 48 healthy individuals, recruited as controls. Global levels of poly(ADP-ribose) (PAR, a surrogate of PARP activity), cytosine methylation (5-methylcytosine, 5mC) and de-methylation intermediates 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) were determined in peripheral blood cells by ELISA-based methodologies. Site-specific DNA methylation profiling of SOCS3, SREBF1 and TXNIP candidate genes was performed by mass spectrometry-based bisulfite sequencing, methyl-sensitive endonucleases digestion and by DNA immuno-precipitation. T2DM subjects presented higher PAR levels than controls. In T2DM individuals, increased PAR levels were significantly associated with higher HbA1c levels and the accumulation of the de-methylation intermediates 5hmC and 5fC in the genome. In addition, T2DM patients with higher PAR levels showed reduced methylation with increased 5hmC and 5fC levels in specific SOCS3 sites, up-regulated SOCS3 expression compared to both T2DM subjects with low PAR levels and controls. Conclusions This study demonstrates the activation of PARylation processes in patients with T2DM, particularly in those with poor glycaemic control. PARylation is linked to dysregulation of DNA methylation pattern via activation of the DNA de-methylation cascade and may be at the basis of the differential gene expression observed in presence of diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01099-1.
Collapse
Affiliation(s)
- Michele Zampieri
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | | | - Ilaria Barchetta
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Stefania Scalea
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Stefano Tagliatesta
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Giovanna De Matteis
- Research Centre for Animal Production and Aquaculture, Consiglio Per La Ricerca in Agricoltura E L'Analisi Dell'Economia Agraria (CREA), 00015, Monterotondo, Italy
| | - Giuseppe Zardo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Anna Reale
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
28
|
赵 健, 李 东, 安 阳. [Roles of ten eleven translocation proteins family and 5-hydroxymethylcytosine in epigenetic regulation of stem cells and regenerative medicine]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53:420-424. [PMID: 33879920 PMCID: PMC8072413 DOI: 10.19723/j.issn.1671-167x.2021.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 06/12/2023]
Abstract
The methylation of cytosine is one of the most fundamental epigenetic modifications in mammalian genomes, and is involved in multiple crucial processes including gene expression, cell differentiation, embryo development and oncogenesis. In the past, DNA methylation was thought to be an irreversible process, which could only be diluted passively through DNA replication. It is now becoming increa-singly obvious that DNA demethylation can be an active process and plays a crucial role in biological processes. Ten eleven translocation (TET) proteins are the key factors modulating DNA demethylation. This family contains three members: TET1, TET2 and TET3. Although three TET proteins have relatively conserved catalytic domains, their roles in organisms are not repeated, and their expression has significant cell/organ specificity. TET1 is mainly expressed in embryonic stem cells, TET2 is mainly expressed in hematopoietic system, and TET3 is widely expressed in cerebellum, cortex and hippocampus. This family catalyzes 5-methylcytosine to 5-hydroxymethylcytosine and other oxidative products, reactivates silenced-gene expression, in turn maintains stem cell pluripotency and regulates lineage specification. With the development of tissue engineering, organ transplantation, autologous tissue transplantation and artificial prosthesis have been widely used in clinical treatment, but these technologies have limitations. Regenerative medicine, which uses stem cells and stem cell related factors for treatment, may provide alternative therapeutic strategies for multiple diseases. Among all kinds of human stem cells, adipose-derived stem cells (ADSCs) are the most prospective stem cell lineage since they have no ethical issues and can be easily obtained with large quantities. To date, ADSCs have been shown to have strong proli-feration capacity, secrete numerous soluble factors and have multipotent differentiation ability. However, the underlying mechanism of the proliferation, secretion, acquired pluripotency, and lineage specific differentiation of ADSCs are still largely unknown. Some studies have explored the role of epigenetic regulation and TET protein in embryonic stem cells, but little is known about its role in ADSCs. By studying the roles of TET proteins and 5-hydroxymethylcytosine in ADSCs, we could provide new theoretical foundation for the clinical application of ADSCs and the stem cell-based therapy. In the future, combined with bioprinting technology, ADSCs may be used in tissue and organ regeneration, plastic surgery reconstruction and other broader fields.
Collapse
Affiliation(s)
- 健芳 赵
- 北京大学第三医院成形外科,北京 100191Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
- 北京大学第一医院整形烧伤外科,北京 100034Department of Plastic Surgery and Burns, Peking University First Hospital, Beijing 100034, China
| | - 东 李
- 北京大学第三医院成形外科,北京 100191Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - 阳 安
- 北京大学第三医院成形外科,北京 100191Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
29
|
Wang M, Ngo V, Wang W. Deciphering the genetic code of DNA methylation. Brief Bioinform 2021; 22:6082840. [PMID: 33432324 DOI: 10.1093/bib/bbaa424] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/03/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
DNA methylation plays crucial roles in many biological processes and abnormal DNA methylation patterns are often observed in diseases. Recent studies have shed light on cis-acting DNA elements that regulate locus-specific DNA methylation, which involves transcription factors, histone modification and DNA secondary structures. In addition, several recent studies have surveyed DNA motifs that regulate DNA methylation and suggest potential applications in diagnosis and prognosis. Here, we discuss the current biological foundation for the cis-acting genetic code that regulates DNA methylation. We review the computational models that predict DNA methylation with genetic features and discuss the biological insights revealed from these models. We also provide an in-depth discussion on how to leverage such knowledge in clinical applications, particularly in the context of liquid biopsy for early cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Mengchi Wang
- Bioinformatics and Systems Biology at University of California, USA
| | - Vu Ngo
- Bioinformatics and Systems Biology at University of California, USA
| | - Wei Wang
- Bioinformatics and Systems Biology, Department of Chemistry and Biochemistry, and Department of Cellular and Molecular Medicine at University of California, USA
| |
Collapse
|
30
|
Wang Y, Wu J, Chen H, Yang Y, Xiao C, Yi X, Shi C, Zhong K, He H, Li Y, Wu Z, Zhou G, Rao Q, Wang X, Zhou X, Lomberk G, Liu B, Zhao J, Ge J, Zhou W, Chu X, Chen C, Zhou X, Wang L, Guan K, Qu L. Genome-wide CRISPR-Cas9 screen identified KLF11 as a druggable suppressor for sarcoma cancer stem cells. SCIENCE ADVANCES 2021; 7:7/5/eabe3445. [PMID: 33571129 PMCID: PMC7840125 DOI: 10.1126/sciadv.abe3445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/09/2020] [Indexed: 05/14/2023]
Abstract
Cancer stem cells (CSCs) are involved in tumorigenesis, recurrence, and therapy resistance. To identify critical regulators of sarcoma CSCs, we performed a reporter-based genome-wide CRISPR-Cas9 screen and uncovered Kruppel-like factor 11 (KLF11) as top candidate. In vitro and in vivo functional annotation defined a negative role of KLF11 in CSCs. Mechanistically, KLF11 and YAP/TEAD bound to adjacent DNA sites along with direct interaction. KLF11 recruited SIN3A/HDAC to suppress the transcriptional output of YAP/TEAD, which, in turn, promoted KLF11 transcription, forming a negative feedback loop. However, in CSCs, this negative feedback was lost because of epigenetic silence of KLF11, causing sustained YAP activation. Low KLF11 was associated with poor prognosis and chemotherapy response in patients with sarcoma. Pharmacological activation of KLF11 by thiazolidinedione effectively restored chemotherapy response. Collectively, our study identifies KLF11 as a negative regulator in sarcoma CSCs and potential therapeutic target.
Collapse
Affiliation(s)
- Yicun Wang
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Jinhui Wu
- Department of Orthopedic, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Hui Chen
- Department of Pathology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Yang Yang
- Institute of Clinical Laboratory Medicine, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Chengwu Xiao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiaoming Yi
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Changjie Shi
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Ke Zhong
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Haowei He
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Yaoming Li
- Department of Urology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zhenjie Wu
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guangxin Zhou
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Qiu Rao
- Department of Pathology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Xiaoxia Wang
- Department of Pathology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Xiaodie Zhou
- Department of Pathology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Gwen Lomberk
- Department of Surgery, Medical College of Wisconsin Milwaukee, WI 53226, USA
| | - Bing Liu
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jianning Zhao
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China
| | - Jingping Ge
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China.
| | - Wenquan Zhou
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China.
| | - Cheng Chen
- Department of Medical Oncology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China.
| | - Xuhui Zhou
- Department of Orthopedic, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Linhui Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Kunliang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Le Qu
- Department of Urology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002, China.
| |
Collapse
|
31
|
Neier K, Montrose L, Chen K, Malloy MA, Jones TR, Svoboda LK, Harris C, Song PXK, Pennathur S, Sartor MA, Dolinoy DC. Short- and long-term effects of perinatal phthalate exposures on metabolic pathways in the mouse liver. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa017. [PMID: 33391822 PMCID: PMC7757125 DOI: 10.1093/eep/dvaa017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Phthalates have been demonstrated to interfere with metabolism, presumably by interacting with peroxisome proliferator-activated receptors (PPARs). However, mechanisms linking developmental phthalate exposures to long-term metabolic effects have not yet been elucidated. We investigated the hypothesis that developmental phthalate exposure has long-lasting impacts on PPAR target gene expression and DNA methylation to influence hepatic metabolic profiles across the life course. We utilized an established longitudinal mouse model of perinatal exposures to diethylhexyl phthalate and diisononyl phthalate, and a mixture of diethylhexyl phthalate+diisononyl phthalate. Exposure was through the diet and spanned from 2 weeks before mating until weaning at postnatal day 21 (PND21). Liver tissue was analyzed from the offspring of exposed and control mice at PND21 and in another cohort of exposed and control mice at 10 months of age. RNA-seq and pathway enrichment analyses indicated that acetyl-CoA metabolic processes were altered in diisononyl phthalate-exposed female livers at both PND21 and 10 months (FDR = 0.0018). Within the pathway, all 13 significant genes were potential PPAR target genes. Promoter DNA methylation was altered at three candidate genes, but persistent effects were only observed for Fasn. Targeted metabolomics indicated that phthalate-exposed females had decreased acetyl-CoA at PND21 and increased acetyl-CoA and acylcarnitines at 10 months. Together, our data suggested that perinatal phthalate exposures were associated with short- and long-term activation of PPAR target genes, which manifested as increased fatty acid production in early postnatal life and increased fatty acid oxidation in adulthood. This presents a novel molecular pathway linking developmental phthalate exposures and metabolic health outcomes.
Collapse
Affiliation(s)
- Kari Neier
- Environmental Health Sciences, University of Michigan, Ann Arbor, 1415 Washington Heights 48109 MI, USA
| | - Luke Montrose
- Environmental Health Sciences, University of Michigan, Ann Arbor, 1415 Washington Heights 48109 MI, USA
| | - Kathleen Chen
- Environmental Health Sciences, University of Michigan, Ann Arbor, 1415 Washington Heights 48109 MI, USA
| | - Maureen A Malloy
- Environmental Health Sciences, University of Michigan, Ann Arbor, 1415 Washington Heights 48109 MI, USA
| | - Tamara R Jones
- Environmental Health Sciences, University of Michigan, Ann Arbor, 1415 Washington Heights 48109 MI, USA
| | - Laurie K Svoboda
- Environmental Health Sciences, University of Michigan, Ann Arbor, 1415 Washington Heights 48109 MI, USA
| | - Craig Harris
- Environmental Health Sciences, University of Michigan, Ann Arbor, 1415 Washington Heights 48109 MI, USA
| | - Peter X K Song
- Biostatistics, University of Michigan, Ann Arbor, 1415 Washington Heights 48109 MI, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, 1500 East Medical Center Drive 48109 MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, 1137 E. Catherine St. 48109 MI, USA
| | - Maureen A Sartor
- Biostatistics, University of Michigan, Ann Arbor, 1415 Washington Heights 48109 MI, USA
- Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 100 Washtenaw Avenue 48109 MI, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, Ann Arbor, 1415 Washington Heights 48109 MI, USA
- Nutritional Sciences, University of Michigan, Ann Arbor, 1415 Washington Heights 48109 MI, USA
| |
Collapse
|
32
|
Okabe K, Nawaz A, Nishida Y, Yaku K, Usui I, Tobe K, Nakagawa T. NAD+ Metabolism Regulates Preadipocyte Differentiation by Enhancing α-Ketoglutarate-Mediated Histone H3K9 Demethylation at the PPARγ Promoter. Front Cell Dev Biol 2020; 8:586179. [PMID: 33330464 PMCID: PMC7732485 DOI: 10.3389/fcell.2020.586179] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
Obesity has become a serious problem in public health worldwide, causing numerous metabolic diseases. Once the differentiation to mature adipocytes is disrupted, adipocyte hypertrophy and ectopic lipid accumulation leads to the inflammation in adipose tissue and systemic metabolic disorders. Intracellular metabolic state is known to change during cell differentiation and it affects the cell fate or the differentiation through epigenetic mechanism. Although the mechanism of preadipocyte differentiation has been well established, it is unknown how metabolic state changes and how it affects the differentiation in predipocyte differentiation. Nicotinamide adenine dinucleotide (NAD+) plays crucial roles in energy metabolism as a coenzyme in multiple redox reactions in major catabolic pathways and as a substrate of sirtuins or poly(ADP-ribose)polymerases. NAD+ is mainly synthesized from salvage pathway mediated by two enzymes, Nampt and Nmnat. The manipulation to NAD+ metabolism causes metabolic change in each tissue and changes in systemic metabolism. However, the role of NAD+ and Nampt in adipocyte differentiation remains unknown. In this study, we employed liquid chromatography-mass spectrometry (LC-MS)- and gas chromatography-mass spectrometry (GC-MS)-based targeted metabolomics to elucidate the metabolic reprogramming events that occur during 3T3-L1 preadipocyte differentiation. We found that the tricarboxylic acid (TCA) cycle was enhanced, which correlated with upregulated NAD+ synthesis. Additionally, increased alpha-ketoglutarate (αKG) contributed to histone H3K9 demethylation in the promoter region of PPARγ, leading to its transcriptional activation. Thus, we concluded that NAD+-centered metabolic reprogramming is necessary for the differentiation of 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Keisuke Okabe
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Allah Nawaz
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yasuhiro Nishida
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Isao Usui
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan.,Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan.,Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| |
Collapse
|
33
|
TET2/IDH1/2/WT1 and NPM1 Mutations Influence the RUNX1 Expression Correlations in Acute Myeloid Leukemia. ACTA ACUST UNITED AC 2020; 56:medicina56120637. [PMID: 33255417 PMCID: PMC7760270 DOI: 10.3390/medicina56120637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/04/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
Background and objectives: Mutational analysis has led to a better understanding of acute myeloid leukemia (AML) biology and to an improvement in clinical management. Some of the most important mutations that affect AML biology are represented by mutations in genes related to methylation, more specifically: TET2, IDH1, IDH2 and WT1. Because it has been shown in numerous studies that mutations in these genes lead to similar expression profiles and phenotypes in AML, we decided to assess if mutations in any of those genes interact with other genes important for AML. Materials and Methods: We downloaded the clinical data, mutational profile and expression profile from the TCGA LAML dataset via cBioPortal. Data were analyzed using classical statistical methods and functional enrichment analysis software represented by STRING and GOrilla. Results: The first step we took was to assess the 196 AML cases that had a mutational profile available and observe the mutations that overlapped with TET2/IDH1/2/WT1 mutations. We observed that RUNX1 mutations significantly overlap with TET2/IDH1/2/WT1 mutations. Because of this, we decided to further investigate the role of RUNX1 mutations in modulating the level of RUNX1 mRNA and observed that RUNX1 mutant cases presented higher levels of RUNX1 mRNA. Because there were only 16 cases of RUNX1 mutant samples and that mutations in this gene determined a change in mRNA expression, we further observed the correlation between RUNX1 and other mRNAs in subgroups regarding the presence of hypermethylating mutations and NPM1. Here, we observed that both TET2/IDH1/2/WT1 and NPM1 mutations increase the number of genes negatively correlated with RUNX1 and that these genes were significantly linked to myeloid activation. Conclusions: In the current study, we have shown that NPM1 and TET2/IDH1/2/WT1 mutations increase the number of negative correlations of RUNX1 with other transcripts involved in myeloid differentiation.
Collapse
|
34
|
Baryshev M, Petrov N, Ryabov V, Popov B. Transient expression of inactive RB in mesenchymal stem cells impairs their adipogenic potential and is associated with hypermethylation of the PPARγ2 promoter. Genes Dis 2020; 9:165-175. [PMID: 35005116 PMCID: PMC8720652 DOI: 10.1016/j.gendis.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/28/2022] Open
Abstract
The retinoblastoma gene product (pRb) is a chromatin-associated protein that can either suppress or promote activity of key regulators of tissue-specific differentiation. We found that twelve weeks after transfection of the exogenous active (ΔB/X and Δр34) or inactive (ΔS/N) forms of RB into the 10T1/2 mesenchymal stem cells and clonal selection not a single cell line did contain exogenous RB, despite being G-418 resistant. However, the consequences of the transient production of exogenous RB had different effects on the cell fate. The ΔB/X and Δр34 cells transfected with active form of RB showed elevated levels of inducible adipocyte differentiation (AD). On the contrary, the ΔS/N cells transfected with inactive RB mutant were insensitive to induction of AD associated with abolishing of expression of the PPARγ2. Additionally, the PPARγ2 promoter in undifferentiated ΔS/N cells was hypermethylated, but all except −60 position CpG became mostly demethylated after cells exposure to AD. We conclude that while transient expression of inactive exogenous RB induces long term epigenetic alterations that prevent adipogenesis, production of active exogenous RBs results in an AD-promoting epigenetic state. These results indicate that pRb is involved in the establishment of hereditary epigenetic memory at least by creating a methylation pattern of PPARγ2.
Collapse
Affiliation(s)
- Mikhail Baryshev
- Institute of Microbiology and Virology, Riga Stradins University, Ratsupites 5, LV-1067, Riga, Latvia
| | - Nikolai Petrov
- Institute of Cytology Russian Academy of Sciences, St.Petersburg, 4, Tikhoretsky Av., 194064, St. Petersburg, Russia
| | - Vladimir Ryabov
- Institute of Cytology Russian Academy of Sciences, St.Petersburg, 4, Tikhoretsky Av., 194064, St. Petersburg, Russia
| | - Boris Popov
- Institute of Cytology Russian Academy of Sciences, St.Petersburg, 4, Tikhoretsky Av., 194064, St. Petersburg, Russia
| |
Collapse
|
35
|
Zhao Z, Zhang Z, Li J, Dong Q, Xiong J, Li Y, Lan M, Li G, Zhu B. Sustained TNF-α stimulation leads to transcriptional memory that greatly enhances signal sensitivity and robustness. eLife 2020; 9:61965. [PMID: 33155547 PMCID: PMC7704108 DOI: 10.7554/elife.61965] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Transcriptional memory allows certain genes to respond to previously experienced signals more robustly. However, whether and how the key proinflammatory cytokine TNF-α mediates transcriptional memory are poorly understood. Using HEK293F cells as a model system, we report that sustained TNF-α stimulation induces transcriptional memory dependent on TET enzymes. The hypomethylated status of transcriptional regulatory regions can be inherited, facilitating NF-κB binding and more robust subsequent activation. A high initial methylation level and CpG density around κB sites are correlated with the functional potential of transcriptional memory modules. Interestingly, the CALCB gene, encoding the proven migraine therapeutic target CGRP, exhibits the best transcriptional memory. A neighboring primate-specific endogenous retrovirus stimulates more rapid, more strong, and at least 100-fold more sensitive CALCB induction in subsequent TNF-α stimulation. Our study reveals that TNF-α-mediated transcriptional memory is governed by active DNA demethylation and greatly sensitizes memory genes to much lower doses of inflammatory cues. Genes are the instruction manuals of life and contain the information needed to build the building blocks that keep cells alive. To read these instructions, cells use specific signals that activate genes. The process, known as gene expression, is tightly controlled and for the most part, fairly stable. But gene expression can be modified in various ways. Epigenetics is a broad term for describing reversible changes made to genes to switch them on and off. Sometimes, certain genes even develop a kind of ‘transcriptional memory’ where over time, their expression is enhanced and speeds up with repeated activation signals. But this may also have harmful effects. For example, the signalling molecule called tumour necrosis factor α (TNF-α) is an essential part of the immune system. But it is also implicated in chronic inflammatory diseases, such as rheumatoid arthritis. In these conditions, cell signalling pathways triggering inflammation are overactive. One possibility is that TNF-α could be inducing the transcriptional memory of certain genes, amplifying their expression. But little is known about which fraction of genes exhibits transcriptional memory, and what differentiates memory genes from genes with stable expression. Here, Zhao et al. treated cells grown in the laboratory with TNF-α to investigate its role in transcriptional memory and find out what epigenetic features might govern the process. The experiments showed that mimicking a sustained inflammation by stimulating TNF-α, triggered a transcriptional memory in some genes, and enabled them to respond to much lower levels of TNF-α on subsequent exposure. Zhao et al. also discovered that genes tagged with methyl groups are more likely to show transcriptional memory when stimulated by TNF-α. However, they also found that these groups must be removed to consolidate any transcriptional memory. This work shows how TNF-α influences can alter the expression of certain genes. It also suggests that transcriptional memory, stimulated by TNF-α, may be a possible mechanism underlying chronic inflammatory conditions. This could help future research in identifying more genes with transcriptional memory.
Collapse
Affiliation(s)
- Zuodong Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mengying Lan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Martin-Trujillo A, Patel N, Richter F, Jadhav B, Garg P, Morton SU, McKean DM, DePalma SR, Goldmuntz E, Gruber D, Kim R, Newburger JW, Porter GA, Giardini A, Bernstein D, Tristani-Firouzi M, Seidman JG, Seidman CE, Chung WK, Gelb BD, Sharp AJ. Rare genetic variation at transcription factor binding sites modulates local DNA methylation profiles. PLoS Genet 2020; 16:e1009189. [PMID: 33216750 PMCID: PMC7679001 DOI: 10.1371/journal.pgen.1009189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/11/2020] [Indexed: 12/20/2022] Open
Abstract
Although DNA methylation is the best characterized epigenetic mark, the mechanism by which it is targeted to specific regions in the genome remains unclear. Recent studies have revealed that local DNA methylation profiles might be dictated by cis-regulatory DNA sequences that mainly operate via DNA-binding factors. Consistent with this finding, we have recently shown that disruption of CTCF-binding sites by rare single nucleotide variants (SNVs) can underlie cis-linked DNA methylation changes in patients with congenital anomalies. These data raise the hypothesis that rare genetic variation at transcription factor binding sites (TFBSs) might contribute to local DNA methylation patterning. In this work, by combining blood genome-wide DNA methylation profiles, whole genome sequencing-derived SNVs from 247 unrelated individuals along with 133 predicted TFBS motifs derived from ENCODE ChIP-Seq data, we observed an association between the disruption of binding sites for multiple TFs by rare SNVs and extreme DNA methylation values at both local and, to a lesser extent, distant CpGs. While the majority of these changes affected only single CpGs, 24% were associated with multiple outlier CpGs within ±1kb of the disrupted TFBS. Interestingly, disruption of functionally constrained sites within TF motifs lead to larger DNA methylation changes at nearby CpG sites. Altogether, these findings suggest that rare SNVs at TFBS negatively influence TF-DNA binding, which can lead to an altered local DNA methylation profile. Furthermore, subsequent integration of DNA methylation and RNA-Seq profiles from cardiac tissues enabled us to observe an association between rare SNV-directed DNA methylation and outlier expression of nearby genes. In conclusion, our findings not only provide insights into the effect of rare genetic variation at TFBS on shaping local DNA methylation and its consequences on genome regulation, but also provide a rationale to incorporate DNA methylation data to interpret the functional role of rare variants.
Collapse
Affiliation(s)
- Alejandro Martin-Trujillo
- The Mindich Child Health and Development Institute and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nihir Patel
- The Mindich Child Health and Development Institute and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Felix Richter
- The Mindich Child Health and Development Institute and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Bharati Jadhav
- The Mindich Child Health and Development Institute and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Paras Garg
- The Mindich Child Health and Development Institute and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Sarah U. Morton
- Department of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - David M. McKean
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Steven R. DePalma
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts, United States of America
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Pediatrics, University of Pennsylvania Perlman School of Medicine, Philadelphia, PA, United States of America
| | - Dorota Gruber
- Department of Pediatrics, Cohen Children’s Medical Center, Northwell Health, New Hyde Park, NY, Unites States of America
| | - Richard Kim
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jane W. Newburger
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - George A. Porter
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States of America
| | | | - Daniel Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Martin Tristani-Firouzi
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Jonathan G. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christine E. Seidman
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts, United States of America
| | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, United States of America
| | - Bruce D. Gelb
- The Mindich Child Health and Development Institute and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Andrew J. Sharp
- The Mindich Child Health and Development Institute and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
37
|
Zhao X, Hu H, Lin H, Wang C, Wang Y, Wang J. Muscle Transcriptome Analysis Reveals Potential Candidate Genes and Pathways Affecting Intramuscular Fat Content in Pigs. Front Genet 2020; 11:877. [PMID: 32849841 PMCID: PMC7431984 DOI: 10.3389/fgene.2020.00877] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022] Open
Abstract
Intramuscular fat (IMF) content plays an essential role in meat quality. For identifying potential candidate genes and pathways regulating IMF content, the IMF content and the longissimus dorsi transcriptomes of 28 purebred Duroc pigs were measured. As a result, the transcriptome analysis of four high- and four low-IMF individuals revealed a total of 309 differentially expressed genes (DEGs) using edgeR and DESeq2 (p < 0.05, |log2(fold change)| ≥ 1). Functional enrichment analysis of the DEGs revealed 19 hub genes significantly enriched in the Gene Ontology (GO) terms and pathways (q < 0.05) related to lipid metabolism and fat cell differentiation. The weighted gene coexpression network analysis (WGCNA) of the 28 pigs identified the most relevant module with 43 hub genes. The combined results of DEGs, WGCNA, and protein-protein interactions revealed ADIPOQ, PPARG, LIPE, CIDEC, PLIN1, CIDEA, and FABP4 to be potential candidate genes affecting IMF. Furthermore, the regulation of lipolysis in adipocytes and the peroxisome proliferator-activated receptor (PPAR) signaling pathway were significantly enriched for both the DEGs and genes in the most relevant module. Some DEGs and pathways detected in our study play essential roles and are potential candidate genes and pathways that affect IMF content in pigs. This study provides crucial information for understanding the molecular mechanism of IMF content and would be helpful in improving pork quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiying Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
38
|
Lecoutre S, Kwok KHM, Petrus P, Lambert M, Breton C. Epigenetic Programming of Adipose Tissue in the Progeny of Obese Dams. Curr Genomics 2020; 20:428-437. [PMID: 32477000 PMCID: PMC7235387 DOI: 10.2174/1389202920666191118092852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 01/13/2023] Open
Abstract
According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and the resulting accelerated growth in neonates predispose offspring to obesity and associated metabolic diseases that may persist across generations. In this context, the adipose tissue has emerged as an important player due to its involvement in metabolic health, and its high potential for plasticity and adaptation to environmental cues. Recent years have seen a growing interest in how maternal obesity induces long-lasting adipose tissue remodeling in offspring and how these modifications could be transmitted to subsequent generations in an inter- or transgenerational manner. In particular, epigenetic mechanisms are thought to be key players in the developmental programming of adipose tissue, which may partially mediate parts of the transgenerational inheritance of obesity. This review presents data supporting the role of maternal obesity in the developmental programming of adipose tissue through epigenetic mechanisms. Inter- and transgenerational effects on adipose tissue expansion are also discussed in this review.
Collapse
Affiliation(s)
- Simon Lecoutre
- University of Lille, EA4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France.,Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Kelvin H M Kwok
- Department of Biosciences and Nutrition, Karolinska Insitutet, 141 86 Stockholm, Sweden
| | - Paul Petrus
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Mélanie Lambert
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Christophe Breton
- University of Lille, EA4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| |
Collapse
|
39
|
Sutcu HH, Matta E, Ishchenko AA. Role of PARP-catalyzed ADP-ribosylation in the Crosstalk Between DNA Strand Breaks and Epigenetic Regulation. J Mol Biol 2019:S0022-2836(19)30719-3. [PMID: 31866292 DOI: 10.1016/j.jmb.2019.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Covalent linkage of ADP-ribose units to proteins catalyzed by poly(ADP-ribose) polymerases (PARPs) plays important signaling functions in a plethora of cellular processes including DNA damage response, chromatin organization, and gene transcription. Poly- and mono-ADP-ribosylation of target macromolecules are often responsible both for the initiation and for coordination of these processes in mammalian cells. Currently, the number of cellular targets for ADP-ribosylation is rapidly expanding, and the molecular mechanisms underlying the broad substrate specificity of PARPs present enormous interest. In this review, the roles of PARP-mediated modifications of protein and nucleic acids, the readers of ADP-ribosylated structures, and the origin and function of programmed DNA strand breaks in PARP activation, transcription regulation, and DNA demethylation are discussed.
Collapse
Affiliation(s)
- Haser H Sutcu
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Elie Matta
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France.
| |
Collapse
|
40
|
Marousez L, Lesage J, Eberlé D. Epigenetics: Linking Early Postnatal Nutrition to Obesity Programming? Nutrients 2019; 11:E2966. [PMID: 31817318 PMCID: PMC6950532 DOI: 10.3390/nu11122966] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/16/2019] [Indexed: 12/22/2022] Open
Abstract
Despite constant research and public policy efforts, the obesity epidemic continues to be a major public health threat, and new approaches are urgently needed. It has been shown that nutrient imbalance in early life, from conception to infancy, influences later obesity risk, suggesting that obesity could result from "developmental programming". In this review, we evaluate the possibility that early postnatal nutrition programs obesity risk via epigenetic mechanisms, especially DNA methylation, focusing on four main topics: (1) the dynamics of epigenetic processes in key metabolic organs during the early postnatal period; (2) the epigenetic effects of alterations in early postnatal nutrition in animal models or breastfeeding in humans; (3) current limitations and remaining outstanding questions in the field of epigenetic programming; (4) candidate pathways by which early postnatal nutrition could epigenetically program adult body weight set point. A particular focus will be given to the potential roles of breast milk fatty acids, neonatal metabolic and hormonal milieu, and gut microbiota. Understanding the mechanisms by which early postnatal nutrition can promote lifelong metabolic modifications is essential to design adequate recommendations and interventions to "de-program" the obesity epidemic.
Collapse
Affiliation(s)
| | | | - Delphine Eberlé
- University Lille, EA4489 Environnement Périnatal et Santé, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| |
Collapse
|
41
|
Ostrakhovitch EA, Akakura S, Sanokawa-Akakura R, Tabibzadeh S. 3-Mercaptopyruvate sulfurtransferase disruption in dermal fibroblasts facilitates adipogenic trans-differentiation. Exp Cell Res 2019; 385:111683. [DOI: 10.1016/j.yexcr.2019.111683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/13/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
|
42
|
Kribelbauer JF, Lu XJ, Rohs R, Mann RS, Bussemaker HJ. Toward a Mechanistic Understanding of DNA Methylation Readout by Transcription Factors. J Mol Biol 2019:S0022-2836(19)30617-5. [PMID: 31689433 DOI: 10.1016/j.jmb.2019.10.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/09/2023]
Abstract
Epigenetic DNA modification impacts gene expression, but the underlying molecular mechanisms are only partly understood. Adding a methyl group to a cytosine base locally modifies the structural features of DNA in multiple ways, which may change the interaction with DNA-binding transcription factors (TFs) and trigger a cascade of downstream molecular events. Cells can be probed using various functional genomics assays, but it is difficult to disentangle the confounded effects of DNA modification on TF binding, chromatin accessibility, intranuclear variation in local TF concentration, and rate of transcription. Here we discuss how high-throughput in vitro profiling of protein-DNA interactions has enabled comprehensive characterization and quantification of the methylation sensitivity of TFs. Despite the limited structural data for DNA containing methylated cytosine, automated analysis of structural information in the Protein Data Bank (PDB) shows how 5-methylcytosine (5mC) can be recognized in various ways by amino acid side chains. We discuss how a context-dependent effect of methylation on DNA groove geometry can affect DNA binding by homeodomain proteins and how principled modeling of ChIP-seq data can overcome the confounding that makes the interpretation of in vivo data challenging. The emerging picture is that epigenetic modifications affect TF binding in a highly context-specific manner, with a direction and effect size that depend critically on their position within the TF binding site and the amino acid sequence of the TF. With this improved mechanistic knowledge, we have come closer to understanding how cells use DNA modification to acquire, retain, and change their identity.
Collapse
Affiliation(s)
- Judith F Kribelbauer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Remo Rohs
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Department of Physics & Astronomy, University of Southern California, Los Angeles, CA 90089, USA; Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Richard S Mann
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Harmen J Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
43
|
Schlosberg CE, Wu DY, Gabel HW, Edwards JR. ME-Class2 reveals context dependent regulatory roles for 5-hydroxymethylcytosine. Nucleic Acids Res 2019; 47:e28. [PMID: 30649543 PMCID: PMC6412249 DOI: 10.1093/nar/gkz001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of 5-hydroxymethylcytosine (5hmC) as a prominent DNA modification found in mammalian genomes, an emergent question has been what role this mark plays in gene regulation. 5hmC is hypothesized to function as an intermediate in the demethylation of 5-methylcytosine (5mC) and in the reactivation of silenced promoters and enhancers. Further, weak positive correlations are observed between gene body 5hmC and gene expression. We previously demonstrated that ME-Class is an effective tool to understand relationships between whole-genome bisulfite sequencing data and expression. In this work, we present ME-Class2, a machine-learning based tool to perform integrative 5mCG, 5hmCG and expression analysis. Using ME-Class2 we analyze whole-genome single-base resolution 5mCG and 5hmCG datasets from 20 primary tissue and cell samples to reveal relationships between 5hmCG and expression. Our analysis indicates that conversion of 5mCG to 5hmCG within 2 kb of the transcription start site associates with distinct functions depending on the summed level of 5mCG + 5hmCG. Unchanged levels of 5mCG + 5hmCG (conversion from 5mCG to stable 5hmCG) associate with repression. Meanwhile, decreases in 5mCG + 5hmCG (5hmCG-mediated demethylation) associate with gene activation. Our results demonstrate that ME-Class2 will prove invaluable to interpret genome-wide 5mC and 5hmC datasets and guide mechanistic studies into the function of 5hmCG.
Collapse
Affiliation(s)
- Christopher E Schlosberg
- Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Dennis Y Wu
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - John R Edwards
- Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
44
|
Thakur A, Wong JCH, Wang EY, Lotto J, Kim D, Cheng JC, Mingay M, Cullum R, Moudgil V, Ahmed N, Tsai SH, Wei W, Walsh CP, Stephan T, Bilenky M, Fuglerud BM, Karimi MM, Gonzalez FJ, Hirst M, Hoodless PA. Hepatocyte Nuclear Factor 4-Alpha Is Essential for the Active Epigenetic State at Enhancers in Mouse Liver. Hepatology 2019; 70:1360-1376. [PMID: 30933372 PMCID: PMC6773525 DOI: 10.1002/hep.30631] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022]
Abstract
Cell-fate determination is influenced by interactions between master transcription factors (TFs) and cis-regulatory elements. Hepatocyte nuclear factor 4 alpha (HNF4A), a liver-enriched TF, acts as a master controller in specification of hepatic progenitor cells by regulating a network of TFs to control onset of hepatocyte cell fate. Using analysis of genome-wide histone modifications, DNA methylation, and hydroxymethylation in mouse hepatocytes, we show that HNF4A occupies active enhancers in hepatocytes and is essential for active histone and DNA signatures, especially acetylation of lysine 27 of histone 3 (H3K27ac) and 5-hydroxymethylcytosine (5hmC). In mice lacking HNF4A protein in hepatocytes, we observed a decrease in both H3K27ac and hydroxymethylation at regions bound by HNF4A. Mechanistically, HNF4A-associated hydroxymethylation (5hmC) requires its interaction with ten-eleven translocation methylcytosine dioxygenase 3 (TET3), a protein responsible for oxidation from 5mC to 5hmC. Furthermore, HNF4A regulates TET3 expression in liver by directly binding to an enhancer region. Conclusion: In conclusion, we identified that HNF4A is required for the active epigenetic state at enhancers that amplifies transcription of genes in hepatocytes.
Collapse
Affiliation(s)
- Avinash Thakur
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3,Department of Medical Genetics, University of British Columbia, Vancouver, Canada, V6T 1Z4
| | - Jasper C. H. Wong
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Y. Wang
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Donghwan Kim
- Center of Cancer Research, National Cancer Institute, Bethesda MD 2089
| | - Jung-Chien Cheng
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Matthew Mingay
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Vaishali Moudgil
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Nafeel Ahmed
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Shu-Huei Tsai
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Wei Wei
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Colum P. Walsh
- Genomic Medicine Research Group, Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, UK
| | - Tabea Stephan
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Misha Bilenky
- Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Bettina M. Fuglerud
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3,Department of Biosciences, University of Oslo, Oslo, Norway, 0316
| | | | - Frank J. Gonzalez
- Center of Cancer Research, National Cancer Institute, Bethesda MD 2089
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada,Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Pamela A. Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3,Department of Medical Genetics, University of British Columbia, Vancouver, Canada, V6T 1Z4,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada, V6T 1Z4
| |
Collapse
|
45
|
Abstract
The two types of thermogenic fat cells, beige and brown adipocytes, play a significant role in regulating energy homeostasis. Their development and thermogenesis are tightly regulated by dynamic epigenetic mechanisms, which could potentially be targeted to treat metabolic disorders such as obesity. However, we are just beginning to catalog and understand these dynamic changes. In this review, we will discuss the current understanding of the role of DNA (de)methylation events in beige and brown adipose biology in order to highlight the holes in our knowledge and to point the way forward for future studies.
Collapse
Affiliation(s)
- Han Xiao
- a Department of Nutritional Sciences and Toxicology, UC Berkeley , Berkeley , CA , USA
| | - Sona Kang
- a Department of Nutritional Sciences and Toxicology, UC Berkeley , Berkeley , CA , USA
| |
Collapse
|
46
|
Abstract
The twin epidemics of obesity and type 2 diabetes (T2D) are a serious health, social, and economic issue. The dysregulation of adipose tissue biology is central to the development of these two metabolic disorders, as adipose tissue plays a pivotal role in regulating whole-body metabolism and energy homeostasis (1). Accumulating evidence indicates that multiple aspects of adipose biology are regulated, in part, by epigenetic mechanisms. The precise and comprehensive understanding of the epigenetic control of adipose tissue biology is crucial to identifying novel therapeutic interventions that target epigenetic issues. Here, we review the recent findings on DNA methylation events and machinery in regulating the developmental processes and metabolic function of adipocytes. We highlight the following points: 1) DNA methylation is a key epigenetic regulator of adipose development and gene regulation, 2) emerging evidence suggests that DNA methylation is involved in the transgenerational passage of obesity and other metabolic disorders, 3) DNA methylation is involved in regulating the altered transcriptional landscape of dysfunctional adipose tissue, 4) genome-wide studies reveal specific DNA methylation events that associate with obesity and T2D, and 5) the enzymatic effectors of DNA methylation have physiological functions in adipose development and metabolic function.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Sona Kang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
47
|
Zhao Z, Lan M, Li J, Dong Q, Li X, Liu B, Li G, Wang H, Zhang Z, Zhu B. The proinflammatory cytokine TNFα induces DNA demethylation-dependent and -independent activation of interleukin-32 expression. J Biol Chem 2019; 294:6785-6795. [PMID: 30824537 PMCID: PMC6497958 DOI: 10.1074/jbc.ra118.006255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
IL-32 is a cytokine involved in proinflammatory immune responses to bacterial and viral infections. However, the role of epigenetic events in the regulation of IL-32 gene expression is understudied. Here we show that IL-32 is repressed by DNA methylation in HEK293 cells. Using ChIP sequencing, locus-specific methylation analysis, CRISPR/Cas9-mediated genome editing, and RT-qPCR (quantitative RT-PCR) and immunoblot assays, we found that short-term treatment (a few hours) with the proinflammatory cytokine tumor necrosis factor α (TNFα) activates IL-32 in a DNA demethylation-independent manner. In contrast, prolonged TNFα treatment (several days) induced DNA demethylation at the promoter and a CpG island in the IL-32 gene in a TET (ten-eleven translocation) family enzyme- and NF-κB-dependent manner. Notably, the hypomethylation status of transcriptional regulatory elements in IL-32 was maintained for a long time (several weeks), causing elevated IL-32 expression even in the absence of TNFα. Considering that IL-32 can, in turn, induce TNFα expression, we speculate that such feedforward events may contribute to the transition from an acute inflammatory response to chronic inflammation.
Collapse
Affiliation(s)
- Zuodong Zhao
- From the Tsinghua University-Peking University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- the National Institute of Biological Sciences, Beijing 102206, China
| | - Mengying Lan
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- the College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China, and
| | - Jingjing Li
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- the College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China, and
| | - Qiang Dong
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Li
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Baodong Liu
- the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Gang Li
- the Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Hailin Wang
- the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhuqiang Zhang
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China,
| | - Bing Zhu
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China,
- the College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China, and
| |
Collapse
|
48
|
Butruille L, Marousez L, Pourpe C, Oger F, Lecoutre S, Catheline D, Görs S, Metges CC, Guinez C, Laborie C, Deruelle P, Eeckhoute J, Breton C, Legrand P, Lesage J, Eberlé D. Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. Int J Obes (Lond) 2019; 43:2381-2393. [PMID: 30622312 DOI: 10.1038/s41366-018-0310-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The lactation-suckling period is critical for white adipose tissue (WAT) development. Early postnatal nutrition influences later obesity risk but underlying mechanisms remain elusive. Here, we tested whether altered postnatal nutrition specifically during suckling impacts epigenetic regulation of key metabolic genes in WAT and alter long-term adiposity set point. METHODS We analyzed the effects of maternal high-fat (HF) feeding in rats exclusively during lactation-suckling on breast milk composition and its impact on male offspring visceral epidydimal (eWAT) and subcutaneous inguinal (iWAT) depots during suckling and in adulthood. RESULTS Maternal HF feeding during lactation had no effect on mothers' body weight (BW) or global breast milk composition, but induced qualitative changes in breast milk fatty acid (FA) composition (high n-6/n-3 polyunsaturated FA ratio and low medium-chain FA content). During suckling, HF neonates showed increased BW and mass of both eWAT and iWAT depot but only eWAT displayed an enhanced adipogenic transcriptional signature. In adulthood, HF offspring were predisposed to weight gain and showed increased hyperplastic growth only in eWAT. This specific eWAT expansion was associated with increased expression and activity of stearoyl-CoA desaturase-1 (SCD1), a key enzyme of FA metabolism. SCD1 converts saturated FAs, e.g. palmitate and stearate, to monounsaturated FAs, palmitoleate and oleate, which are the predominant substrates for triglyceride synthesis. Scd1 upregulation in eWAT was associated with reduced DNA methylation in Scd1 promoter surrounding a PPARγ-binding region. Conversely, changes in SCD1 levels and methylation were not observed in iWAT, coherent with a depot-specific programming. CONCLUSIONS Our data reveal that maternal HF feeding during suckling programs long-term eWAT expansion in part by SCD1 epigenetic reprogramming. This programming events occurred with drastic changes in breast milk FA composition, suggesting that dietary FAs are key metabolic programming factors in the early postnatal period.
Collapse
Affiliation(s)
- Laura Butruille
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Lucie Marousez
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Charlène Pourpe
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Frédérik Oger
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Simon Lecoutre
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Daniel Catheline
- Laboratoire de Biochimie et Nutrition Humaine INRA 1378, Agrocampus Ouest, 65 rue de Saint Brieuc, 35042, Rennes cedex, France
| | - Solvig Görs
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, D-18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, D-18196, Dummerstorf, Germany
| | - Céline Guinez
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Christine Laborie
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Philippe Deruelle
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Christophe Breton
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Philippe Legrand
- Laboratoire de Biochimie et Nutrition Humaine INRA 1378, Agrocampus Ouest, 65 rue de Saint Brieuc, 35042, Rennes cedex, France
| | - Jean Lesage
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France
| | - Delphine Eberlé
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000, Lille, France.
| |
Collapse
|
49
|
Bian F, Ma X, Villivalam SD, You D, Choy LR, Paladugu A, Fung S, Kang S. TET2 facilitates PPARγ agonist-mediated gene regulation and insulin sensitization in adipocytes. Metabolism 2018; 89:39-47. [PMID: 30193945 PMCID: PMC6221917 DOI: 10.1016/j.metabol.2018.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Abstract
UNLABELLED Emerging evidence indicates that epigenetic mechanisms like DNA methylation directly contribute to metabolic regulation. For example, we previously demonstrated that de novo DNA methyltransferase Dnmt3a plays a causal role in the development of adipocyte insulin resistance. Recent studies suggest that DNA demethylation plays an important role in the developmental process of adipocytes. However, little is known about whether DNA demethylase ten-eleven translocation (TET) proteins regulate the metabolic functions of adipocytes. METHODS The expression of Tet genes was assessed in the fractionated adipocytes of chow- and high fat diet-fed C57/Bl6 mice using qPCR and western blotting. The effect of Tet2 gain- or loss-of-function in fully mature 3T3-L1 adipocytes in the presence/absence of Rosiglitazone (Rosi) and TNF-α on insulin sensitivity was using the insulin-stimulated glucose uptake and insulin signaling assays. Gene expression and DNA methylation analyses of PPARγ target genes was performed in the same setting. In addition, PPARγ reporter assays, co-immunoprecipitation assays, PPARγ ChIP-PCR analyses were performed. RESULTS We found that adipose expression of TET2, alone among its family members, was significantly reduced in diet-induced insulin resistance. TET2 gain-of-function was sufficient to promote insulin sensitivity while loss-of-function was necessary to facilitate insulin sensitization in response to the PPARγ agonist Rosiglitazone (Rosi) in cultured adipocytes. Consistent with this, TET2 was required for Rosi-dependent gene activation of certain PPARγ targets accompanied by changes in DNA demethylation at the promoter regions. Furthermore, TET2 was necessary to sustain PPARγ binding to target loci upon activation with Rosi via physical interaction with PPARγ. CONCLUSIONS Our data demonstrate that TET2 works as an epigenetic regulator of Rosi-mediated insulin sensitization and transcriptional regulation in adipocytes.
Collapse
Affiliation(s)
- Fuyun Bian
- Key Laboratory of Aquaculture Nutrition, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiang Ma
- Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, CA 94720, USA
| | | | - Dongjoo You
- Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, CA 94720, USA
| | - Lauren Raquel Choy
- Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, CA 94720, USA
| | - Anushka Paladugu
- Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, CA 94720, USA
| | - Sarah Fung
- Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, CA 94720, USA
| | - Sona Kang
- Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
50
|
DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev 2018; 174:3-17. [DOI: 10.1016/j.mad.2017.12.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 02/07/2023]
|