1
|
Ou YC, Peng XY, Yang JX, Chen BY, Chen PF, Liu M. Efficacy of catheter-based ultrasound renal denervation in the treatment of hypertension. World J Clin Cases 2025; 13:102853. [DOI: 10.12998/wjcc.v13.i16.102853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/25/2024] [Accepted: 01/18/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Hypertension (HTN) is a prevalent chronic health condition that significantly increases the risk of cardiovascular diseases-associated mortalities. Despite the use of antihypertensive medications, numerous patients fail to achieve guideline-recommended blood pressure (BP) targets.
AIM To evaluates the efficacy of catheter-based ultrasound renal denervation (uRDN) for the treatment of HTN.
METHODS Relevant studies were identified through searches in PubMed, Embase, the Cochrane Library, Web of Science, and China National Knowledge Infrastructure, with a cut-off date at April 1, 2024. A random-effects model was employed in this study to mitigate potential biases. The risk of bias for included studies was assessed using the Cochrane Risk of Bias assessment tool. Statistical analyses were conducted using Review Manager version 5.3. This meta-analysis incorporated four studies encompassing a total of 627 patients. The reporting bias of this study was deemed acceptable.
RESULTS Compared to the Sham group, the uRDN group demonstrated a significant reduction in daytime ambulatory systolic BP (SBP) [mean difference (MD) -3.87 mmHg, 95% confidence interval (CI): -7.02 to -0.73, P = 0.02], office SBP (MD -4.13 mmHg, 95%CI: -7.15 to -1.12, P = 0.007), and home SBP (MD -5.51 mmHg, 95%CI: -8.47 to -2.55, P < 0.001). However, there was no statistically significant reduction observed in either 24-hour or nighttime ambulatory SBP levels. Subgroup analysis shows that uRDN can significantly reduce the SBP in patients with non-resistant HTN (MD -6.19 mmHg, MD -6.00 mmHg, MD -7.72 mmHg, MD -5.02 mmHg, MD -3.61 mmHg).
CONCLUSION The current evidence suggests that uRDN may effectively reduce home, office, and daytime SBP in patients with HTN, particularly in those with non-resistant HTN.
Collapse
Affiliation(s)
- Yi-Chao Ou
- Department of Cardiology, Cardiovascular Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xin-Yuan Peng
- Department of Cardiology, Cardiovascular Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Jing-Xi Yang
- Department of Cardiology, Cardiovascular Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Bo-Yu Chen
- Department of Cardiology, Cardiovascular Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Peng-Fei Chen
- Department of Cardiology, Cardiovascular Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Mao Liu
- Department of Cardiology, Cardiovascular Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
2
|
Hinton T, Hope K, Adams Z, Simpson LL, Paton JFR, Kendrick A, Abdala AP, Blythe H, Nightingale AK, Hart EC. Carotid chemoreflex control of blood pressure at rest and during exercise in young-onset hypertension. J Physiol 2025; 603:2313-2332. [PMID: 40159372 DOI: 10.1113/jp287743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/07/2025] [Indexed: 04/02/2025] Open
Abstract
Despite reports of amplified carotid chemoreflex sensitivity to hypoxia in young adults with hypertension (<40 years), it is unclear whether this equates to a direct role of this reflex in maintaining high resting and exercise blood pressures (BP). The aim of this study was to examine whether tonic carotid chemoreflex activity contributes to high resting and exercise BP in young people with untreated hypertension compared to normotensives (NTN). In 14 NTN and 14 untreated hypertensives (HTN) (aged 27 ± 6 and 28 ± 5 years, respectively) the ventilatory and haemodynamic responses to hypoxia were measured using the transient hypoxic test at rest and during submaximal steady-state upright cycle exercise (40%-50%V ̇ O 2 peak ${\dot V_{{{\mathrm{O}}_2}{\mathrm{peak}}}}$ ). A double-blinded placebo-controlled systemic infusion of low-dose dopamine (2 mcg/kg/min) was used to inhibit the carotid chemoreflex and assess its tonic contribution to ventilation and BP at rest and submaximal exercise (mixed-model ANOVA). The hypoxic ventilatory response (HVR) at rest and submaximal cycle exercise were comparable between groups and were similarly blunted by dopamine infusion in both groups. However, at rest, there was a greater decrease in resting systolic BP (SBP) during carotid chemoreflex inhibition in the HTN group. Notably, during submaximal exercise, SBP was reduced during dopamine versus that during saline, but the decrease was similar between groups. The carotid chemoreflex appears to contribute to resting SBP in young people with untreated HTN but does not play a role in exaggerated exercise BP responses in this group. KEY POINTS: The role of the carotid chemoreflex in maintaining high resting and exercise blood pressures in young adults with untreated hypertension is unclear. Carotid chemoreflex sensitivity, assessed by the ventilatory response to hypoxia was similar between untreated young adults with hypertension (n = 14, age < 40 years) and age-matched normotensives (n = 14). During normoxic rest, there was a reduction in SBP during carotid chemoreflex inhibition with low-dose dopamine (2 mcg/kg/min; vs. saline) in people with hypertension which was not observed in the normotensive group. During submaximal cycle exercise, SBP was reduced during carotid chemoreflex inhibition, but this was similar between groups. These results suggest the carotid chemoreflex influences resting SBP in hypertensives but does not affect the exaggerated exercise BP response in this group.
Collapse
Affiliation(s)
- Thomas Hinton
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Katrina Hope
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Zoe Adams
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Lydia L Simpson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Julian F R Paton
- Manaaki Manawa, The Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Adrian Kendrick
- School of Applied Sciences, University of Western England, Bristol, UK
| | - Ana P Abdala
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hazel Blythe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Angus K Nightingale
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Emma C Hart
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Alba E, García-Mesa Y, Cobo R, Cuendias P, Martín-Cruces J, Suazo I, Martínez-Barbero G, Vega JA, García-Suárez O, Cobo T. Immunohistochemical Detection of PIEZO Ion Channels in the Human Carotid Sinus and Carotid Body. Biomolecules 2025; 15:386. [PMID: 40149922 PMCID: PMC11940333 DOI: 10.3390/biom15030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
The carotid sinus and the carotid body are major peripheral chemo- and baro(mechano)receptors that sense changes in arterial wall pressure and in oxygen, carbon dioxide, and pH in arterial blood. Recently, it was demonstrated that the PIEZO1 and PIEZO2 mechanoreceptor/mechanotransducers are responsible for the baroreflex in the murine aortic arch (aortic sinus). Furthermore, some experimental evidence suggests that the carotid body could participate in mechanosensing. In this study, we used immunohistochemistry and immunofluorescence in conjunction with laser confocal microscopy to study the distribution of PIEZO1 and PIEZO2 in the human carotid sinus and carotid body as well as in the petrosal ganglion of the glossopharyngeal nerve and the superior cervical sympathetic ganglion. PIEZO1 and PIEZO2 were detected in different morphotypes of sensory nerve formations in the walls of the carotid sinus and carotid artery walls. In the carotid body, PIEZO1 was present in a small population of type I glomus cells and absent in nerves, whereas PIEZO2 was present in both clusters of type I glomus cells and nerves. The most prominent expression of PIEZO1 and PIEZO2 in the carotid body was found in type II glomus cells. On the other hand, in the petrosal ganglion, around 25% of neurons were PIEZO1-positive, and around 85% were PIEZO2-positive; regarding the superior cervical sympathetic ganglion, around 71% and 86% displayed PIEZO1 and PIEZO2, respectively. The results of this study suggest that PIEZO1 and PIEZO2 could be involved in the detection and/or mechanotransduction of the human carotid sinus, whereas the role of the carotid body is more doubtful since PIEZO1 and PIEZO2 were only detected in some nerves and PIEZO2 was present in a small population of type I glomus cells, with PIEZO1 being absent in these cells. However, since immunoreactivity for PIEZO2 was detected in type II glomus cells, researchers should investigate whether these cells play a role in the detection of mechanical stimuli and/or participate in mechanotransduction.
Collapse
Affiliation(s)
- Elda Alba
- Instituto de Neurociencias Vithas, 28010 Madrid, Spain;
- Servicio de Neurología, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Yolanda García-Mesa
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (P.C.); (J.M.-C.); (I.S.); (G.M.-B.); (O.G.-S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ramón Cobo
- Servicio de Otorrinolaringología, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain;
| | - Patricia Cuendias
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (P.C.); (J.M.-C.); (I.S.); (G.M.-B.); (O.G.-S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - José Martín-Cruces
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (P.C.); (J.M.-C.); (I.S.); (G.M.-B.); (O.G.-S.)
| | - Iván Suazo
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (P.C.); (J.M.-C.); (I.S.); (G.M.-B.); (O.G.-S.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8330015, Chile
| | - Graciela Martínez-Barbero
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (P.C.); (J.M.-C.); (I.S.); (G.M.-B.); (O.G.-S.)
| | - José A. Vega
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (P.C.); (J.M.-C.); (I.S.); (G.M.-B.); (O.G.-S.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8330015, Chile
| | - Olivia García-Suárez
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (P.C.); (J.M.-C.); (I.S.); (G.M.-B.); (O.G.-S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33003 Oviedo, Spain;
- Instituto Asturiano de Odontología, 33006 Oviedo, Spain
| |
Collapse
|
4
|
Pereyra K, Diaz-Jara E, Bernal-Santander I, Vicencio S, Del Rio R, Iturriaga R. Carotid bodies mediate glial cell activation and neuroinflammation in the NTS following long-term intermittent hypoxia: role in cardiorespiratory dysfunction. Am J Physiol Lung Cell Mol Physiol 2025; 328:L357-L371. [PMID: 39772911 DOI: 10.1152/ajplung.00280.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea, heightened chemosensory discharges of the carotid body (CB), which contributes to potentiate the ventilatory hypoxic response and elicits hypertension. We aimed to determine 1) whether the persistence of cardiorespiratory alterations found in long-term CIH depends on the inputs from the CB and 2) in what extension the activation of glial cells and neuroinflammation in the caudal region of the nucleus of the solitary tract (NTS) require functional CB chemosensory activity. To evaluate these hypotheses, we exposed male mice to CIH for 60 days. At 50 days of CIH, CBs were denervated and animals were kept in CIH for 10 additional days. At the end of the experiments, we measured arterial blood pressure, breathing regularity, and hypoxic ventilatory response (HVR) and assessed astrocyte and microglia cell activation. Compared to sham treatment, CIH induced hypertension [mean arterial blood pressure (MABP): 83.47 ± 1.39 vs. 95.00 ± 2.18 mmHg] and disordered breathing [irregularity score (IS): 7.77 ± 0.49 vs. 12.56 ± 1.66], increased the HVR [1.69 ± 0.17 vs. 4.31 ± 0.87 change in minute ventilation (ΔV̇e)/min], and produced an early transient activation of astrocytes followed by a late and persistent activation of microglia in the NTS. In addition, CIH increased IL-1β, IL-6, and TNF-α levels in the NTS. Bilateral CB denervation after 50 days of CIH results in the restoration of normal glial cell activation in the NTS, lower levels of IL-6 and TNF-α, and reductions in arterial blood pressure (83.47 ± 1.38 mmHg) and HVR (1.63 ± 0.43 ΔV̇e/min). The present results suggest that CB inputs to the NTS during long-term CIH contribute to maintain the cardiorespiratory alterations and the formation of a neuroinflammatory niche at the NTS by modifying glial cell activity.NEW & NOTEWORTHY Chronic intermittent hypoxia (CIH), a feature of obstructive sleep apnea, causes cardiorespiratory alterations (i.e. hypertension) linked to oxidative stress, inflammation, and sympathoexcitation. In the present study, we highlight the role of enhanced carotid body (CB) chemosensory afferent discharges to the nucleus of the solitary tract (NTS) in long-term CIH-induced cardiorespiratory disorders. Indeed, we provide evidence that supports the notion that increased CB afferent activity contributes to persistent CIH-induced hypertension, likely triggering neuroinflammation in the NTS.
Collapse
Affiliation(s)
- Katherin Pereyra
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Diaz-Jara
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Bernal-Santander
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sinay Vicencio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Cell Biology and Physiology, Kansas University Medical Center, Kansas City, Kansas, United States
| | - Rodrigo Iturriaga
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
5
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2025; 603:1729-1779. [PMID: 39340173 PMCID: PMC11955874 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N. Herring
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - O. A. Ajijola
- UCLA Neurocardiology Research Center of ExcellenceDavid Geffen School of MedicineLos AngelesCAUSA
| | - R. D. Foreman
- Department of Biochemistry and PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - A. V. Gourine
- Centre for Cardiovascular and Metabolic NeuroscienceUniversity College LondonLondonUK
| | - A. L. Green
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - J. Osborn
- Department of SurgeryUniversity of MinnesotaMinneapolisMNUSA
| | - D. J. Paterson
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - J. F. R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - C. M. Ripplinger
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - C. Smith
- Department of Physiology and BiophysicsCase Western Reserve UniversityClevelandOHUSA
| | - T. L. Vrabec
- Department of Physical Medicine and Rehabilitation, School of MedicineCase Western Reserve UniversityClevelandOHUSA
| | - H. J. Wang
- Department of AnesthesiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - I. H. Zucker
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - J. L. Ardell
- UCLA Neurocardiology Research Center of ExcellenceDavid Geffen School of MedicineLos AngelesCAUSA
| |
Collapse
|
6
|
Atanasova DY, Rashev PI, Mourdjeva MS, Pupaki DV, Hristova A, Dandov AD, Lazarov NE. Altered Expression Levels of Angiogenic Peptides in the Carotid Body of Spontaneously Hypertensive Rats. Int J Mol Sci 2025; 26:1620. [PMID: 40004084 PMCID: PMC11855809 DOI: 10.3390/ijms26041620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The carotid body (CB), the main peripheral arterial chemoreceptor, exhibits considerable structural and neurochemical plasticity in response to pathological conditions such as high blood pressure. Previous studies have shown that morphological alterations in the hypertensive CB are characterized by enlarged parenchyma due to cellular hypertrophy and hyperplasia, and vasodilation. To test whether hypertension can also induce neoangiogenesis and modulate its chemosensory function, we examined the immunohistochemical expression of two angiogenic factors, vascular endothelial growth factor (VEGF) and endothelin-1 (ET), and their corresponding receptors in the CB of adult spontaneously hypertensive rats (SHRs), and compared their expression patterns to that of age-matched normotensive Wistar rats (NWR). We found an increased VEGF-A and B, and VEGFR-2 expression in glomus and endothelial cells in the enlarged CB glomeruli of SHRs compared with that in NWR. Conversely, weaker immunoreactivity to VEGFR-1 was detected in cell clusters of the hypertensive CB. The expression of endothelin-converting enzyme 1 and its receptor ETA was higher in a subset of glomus cells in the normotensive CB, while the immunoreactivity to the ETB receptor was enhanced in endothelial cells of CB blood vessels in SHRs. The elevated endothelial expression of VEGF and ET-1 suggests their role as local vascular remodeling factors in the adaptation to hypertension, though their involvement in the cellular rearrangement and modulation of chemosensory function could also be implied.
Collapse
Affiliation(s)
- Dimitrinka Y. Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
- Department of Anatomy, Faculty of Medicine, Trakia University, 6003 Stara Zagora, Bulgaria
| | - Pavel I. Rashev
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
- Institute of Biology and Immunology of Reproduction “Acad. Kiril Bratanov”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.S.M.); (D.V.P.)
| | - Milena S. Mourdjeva
- Institute of Biology and Immunology of Reproduction “Acad. Kiril Bratanov”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.S.M.); (D.V.P.)
| | - Despina V. Pupaki
- Institute of Biology and Immunology of Reproduction “Acad. Kiril Bratanov”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.S.M.); (D.V.P.)
| | - Anita Hristova
- Faculty of Medicine, Trakia University, 6003 Stara Zagora, Bulgaria;
| | - Angel D. Dandov
- Department of Anatomy and Histology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Nikolai E. Lazarov
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
- Department of Anatomy and Histology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| |
Collapse
|
7
|
Zhu F, Wang Z, Davis K, McSwiggin H, Zyuzin J, Liu J, Yan W, Rehan VK, Jendzjowsky N. Epigenetic Upregulation of Carotid Body Angiotensin Signaling Increases Blood Pressure. Hypertension 2025; 82:293-305. [PMID: 39633580 PMCID: PMC11732265 DOI: 10.1161/hypertensionaha.124.23349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Epigenetic changes can be shaped by a wide array of environmental cues, maternal health, and behaviors. One of the most detrimental behaviors to the developing fetus is nicotine exposure. Perinatal nicotine exposure remains a significant risk factor for cardiovascular health and, in particular, hypertension. Increased basal carotid body (CB) activity and excitation are significant contributors to hypertension. This study investigated the epigenetic changes to CB activity induced by perinatal nicotine exposure resulting in CB-mediated hypertension. METHODS We used a rodent model of perinatal nicotine exposure and cell culture methods. RESULTS We show that the AgtR1 (angiotensin II type 1 receptor) is upregulated in the carotid bodies of nicotine-exposed offspring. These changes were attributed to an upregulation of genetic promotion as DNA methylation of AgtR1 occurred within intron regions, exemplifying an upregulation of genetic transcription for this gene. Nicotine increased angiotensin signaling in vitro. CB reactivity to angiotensin was increased in perinatal nicotine-exposed offspring compared with control offspring. Furthermore, CB denervation reduced arterial pressure because of suppressed efferent sympathetic activity in perinatal nicotine-exposed offspring. CONCLUSIONS Our data demonstrate that perinatal nicotine exposure adversely affects CB afferent sensing, which augments efferent sympathetic activity to increase vasoconstrictor signaling and induce hypertension. Targeting angiotensin signaling in the carotid bodies may provide a way to alleviate hypertension acquired by adverse maternal uterine environments in general and perinatal nicotine exposure in particular.
Collapse
Affiliation(s)
- Fengli Zhu
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
| | - Zhuqing Wang
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
| | - Kayla Davis
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
| | - Hayden McSwiggin
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
| | - Jekaterina Zyuzin
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
| | - Jie Liu
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
- Division of Metabolic Diseases and Translational Genomics (W.Y.), Harbor-UCLA Medical Center, Torrance
- David Geffen School of Medicine, University of California, Los Angeles (W.Y., V.K.R., N.J.)
| | - Virender K. Rehan
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
- Division of Neonatology (V.K.R.), Harbor-UCLA Medical Center, Torrance
- David Geffen School of Medicine, University of California, Los Angeles (W.Y., V.K.R., N.J.)
| | - Nicholas Jendzjowsky
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
- Division of Respiratory and Critical Care Medicine and Physiology (N.J.), Harbor-UCLA Medical Center, Torrance
- David Geffen School of Medicine, University of California, Los Angeles (W.Y., V.K.R., N.J.)
| |
Collapse
|
8
|
Jordan J, Tank J, Heusser K, Reuter H. Baroreflex activation therapy through electrical carotid sinus stimulation. Auton Neurosci 2024; 256:103219. [PMID: 39549378 DOI: 10.1016/j.autneu.2024.103219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
An imbalance between cardiovascular parasympathetic and sympathetic activity towards sympathetic predominance has been implicated in the pathogenesis of treatment-resistant arterial hypertension and heart failure. Arterial baroreceptors control efferent cardiovascular autonomic activity and have, therefore, been recognized as potential treatment targets. Baroreflex activation therapy through electrical carotid sinus stimulation is a device-based approach to modulate cardiovascular autonomic activity. Electrical carotid sinus stimulation lowered blood pressure in various hypertensive animal models and improved cardiac remodeling and survival in preclinical models of heart failure. In human mechanistic profiling studies, electrical carotid sinus stimulation lowered blood pressure through sympathetic inhibition with substantial inter-individual variability. The first-generation device reduced blood pressure in controlled and uncontrolled clinical trials. Controlled clinical trials proving efficacy in blood pressure reduction in patients with hypertension do not exist for the currently available second-generation carotid sinus stimulator. Investigations in heart failure patients showed improved symptoms, quality of life, and natriuretic peptide biomarkers. Electrical carotid sinus stimulation is an interesting technology to modulate cardiovascular autonomic control. However, controlled trials with hard clinical endpoints are required.
Collapse
Affiliation(s)
- Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany.
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Karsten Heusser
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hannes Reuter
- Department for Cardiology, Angiology, Pneumology and Intensive Care Medicine, University of Cologne, Germany; Department of Cardiology and Intensive Care Medicine, Ev. Krankenhaus Köln-Weyertal, Cologne, Germany
| |
Collapse
|
9
|
Jiang X, Yu W, Chen Z, Li C, Li X, Xu Y, Li F, Gao H, Qian J, Xiong B, Rong S, Chen G, She Q, Huang J. Low-intensity focused ultrasound combined with microbubbles for non-invasive downregulation of rabbit carotid body activity in the treatment of hypertension. Hypertens Res 2024; 47:3182-3192. [PMID: 39300302 DOI: 10.1038/s41440-024-01904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Targeting the carotid body (CB) is a new approach in treating hypertension. This study investigates the efficacy and safety of ultrasound combined with microbubbles in targeting CB to treat hypertension. Twenty-seven hypertensive rabbits were randomly assigned to three groups: microbubbles only (sham group, n = 11), ultrasound plus microbubbles (LIFU group, n = 11), and bilateral carotid sinus nerve denervation (CSND group, n = 5). Four weeks post-intervention, blood pressure, hypoxic ventilatory response (HVR), blood pressure variability (BPV), heart rate variability (HRV), biochemical indicators, neurohormones, and histopathology were assessed in all groups. The results indicated significant reductions in systolic and diastolic blood pressure in the LIFU and CSND groups post-intervention, along with decreases in BPV, HRV, and catecholamines. HVR results showed a 35.10% reduction in CB activity in the LIFU group compared to the sham group, which was significantly lower than the reduction in the CSND group compared to the sham group (73.85%). Histopathology and transmission electron microscopy confirmed CB damage and cell apoptosis, with immunofluorescence showing a reduction in type I and II cells. In conclusion, LIFU combined with microbubbles can reduce blood pressure by lowering CB and sympathetic nerve activity.
Collapse
Affiliation(s)
- Xiujuan Jiang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Ultrasound Imaging, Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, People's Hospital of Santai County, Santai County, Sichuan, China
| | - Wei Yu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Ultrasound Imaging, Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Chaohong Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Xu
- Department of Cardiology, People's Hospital of Santai County, Santai County, Sichuan, China
| | - Fugui Li
- Department of Cardiology, People's Hospital of Santai County, Santai County, Sichuan, China
| | - Hongli Gao
- Department of Cardiology, The Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Qian
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guozhu Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Institute of Ultrasound Imaging, Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Struthoff H, Lauder L, Federspiel JM, Hohl M, Böhm M, Tschernig T, Mahfoud F. Human nerve distribution and density around the carotid artery bifurcation. Clin Res Cardiol 2024; 113:1508-1513. [PMID: 38407582 PMCID: PMC11420301 DOI: 10.1007/s00392-024-02419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Affiliation(s)
- Helge Struthoff
- Internal Medicine, Saarland University Medical Center, Kirrberger Straße, 66421, Homburg, Saar, Germany
| | - Lucas Lauder
- Internal Medicine, Saarland University Medical Center, Kirrberger Straße, 66421, Homburg, Saar, Germany
| | - Jan M Federspiel
- Institute of Legal Medicine, Saarland University Medical Center, Kirrberger Straße, 66421, Homburg, Saar, Germany
| | - Mathias Hohl
- Internal Medicine, Saarland University Medical Center, Kirrberger Straße, 66421, Homburg, Saar, Germany
| | - Michael Böhm
- Internal Medicine, Saarland University Medical Center, Kirrberger Straße, 66421, Homburg, Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University Medical Center, Kirrberger Straße, 66421, Homburg, Saar, Germany.
| | - Felix Mahfoud
- Internal Medicine, Saarland University Medical Center, Kirrberger Straße, 66421, Homburg, Saar, Germany
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
11
|
Conde SV, Martins FO, Sacramento JF. Carotid body interoception in health and disease. Auton Neurosci 2024; 255:103207. [PMID: 39121687 DOI: 10.1016/j.autneu.2024.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Interoception entails perceiving or being aware of the internal state of the body, playing a pivotal role in regulating processes such as heartbeat, digestion, glucose metabolism, and respiration. The carotid body (CB) serves as an interoceptive organ, transmitting information to the brain via its sensitive nerve, the carotid sinus nerve, to maintain homeostasis. While traditionally known for sensing oxygen, carbon dioxide, and pH levels, the CB is now recognized to possess additional interoceptive properties, detecting various mediators involved in blood pressure regulation, inflammation, and glucose homeostasis, among other physiological functions. Furthermore, in the last decades CB dysfunction has been linked to diseases like sleep apnea, essential hypertension, and diabetes. In this review manuscript, we make a concise overview of the traditional interoceptive functions of the CB, acting as a sensor for oxygen levels, carbon dioxide levels, and pH, and introduce the novel interoceptive properties of the CB related to vascular, glucose and energy regulation. Additionally, we revise the contribution of the CB to the onset and progression of metabolic diseases, delving into the potential dysfunction of its interoceptive metabolic functions as a contributing factor to pathophysiology. Finally, we postulate the use of therapeutic interventions targeting the metabolic interoceptive properties of the CB as a potential avenue for addressing metabolic diseases.
Collapse
Affiliation(s)
- Silvia V Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Fatima O Martins
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Joana F Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
12
|
Zhu F, Wang Z, Davis K, McSwiggin H, Zyuzin J, Liu J, Yan W, Rehan VK, Jendzjowsky N. Epigenetic upregulation of carotid body angiotensin signaling increases blood pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593589. [PMID: 38798667 PMCID: PMC11118542 DOI: 10.1101/2024.05.10.593589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epigenetic changes can be shaped by a wide array of environmental cues as well as maternal health and behaviors. One of the most detrimental behaviors to the developing fetus is nicotine exposure. Perinatal nicotine exposure remains a significant risk factor for cardiovascular health and in particular, hypertension. Increased basal carotid body activity and excitation are significant contributors to hypertension. This study investigated the epigenetic changes to carotid body activity induced by perinatal nicotine exposure resulting in carotid body-mediated hypertension. Using a rodent model of perinatal nicotine exposure, we show that angiotensin II type 1 receptor is upregulated in the carotid bodies of nicotine-exposed offspring. These changes were attributed to an upregulation of genetic promotion as DNA methylation of angiotensin II type 1 receptor occurred within intron regions, exemplifying an upregulation of genetic transcription for these genes. Nicotine increased angiotensin signaling in vitro . Carotid body reactivity to angiotensin was increased in perinatal nicotine-exposed offspring compared to control offspring. Further, carotid body denervation reduced arterial pressure as a result of suppressed efferent sympathetic activity in perinatal nicotine-exposed offspring. Our data demonstrate that perinatal nicotine exposure adversely affects carotid body afferent sensing, which augments efferent sympathetic activity to increase vasoconstrictor signaling and induce hypertension. Targeting angiotensin signaling in the carotid bodies may provide a way to alleviate hypertension acquired by adverse maternal uterine environments in general and perinatal nicotine exposure in particular.
Collapse
|
13
|
Sayegh ALC, Plunkett MJ, Babbage T, Dawes M, Paton JFR, Fisher JP. Peripheral chemoreflex restrains skeletal muscle blood flow during exercise in participants with treated hypertension. J Physiol 2024. [PMID: 39276118 DOI: 10.1113/jp286998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/01/2024] [Indexed: 09/16/2024] Open
Abstract
We tested the hypothesis that in human hypertension, an increased tonicity/sensitivity of the peripheral chemoreflex causes a sympathetically mediated restraint of nutritive blood flow to the exercising muscles. Fourteen patients with treated hypertension (age 69 ± 11 years, 136 ± 12/80 ± 11 mmHg; mean ± SD) were studied under conditions of intravenous 0.9% saline (control) and low-dose dopamine (2 µg kg-1 min-1) to inhibit the peripheral chemoreflex, at baseline, during isocapnic hypoxic rebreathing and during rhythmic handgrip exercise (3 min, 50% maximum voluntary contraction). At baseline, dopamine did not change mean blood pressure (95 ± 10 vs. 98 ± 10 mmHg, P = 0.155) but increased brachial artery blood flow (59 ± 20 vs. 48 ± 16 ml min-1, P = 0.030) and vascular conductance (0.565 ± 0.246 vs. 0.483 ± 0.160 ml min-1 mmHg-1; P = 0.039). Dopamine attenuated the increase in mean blood pressure (∆3 ± 4 vs. ∆8 ± 6 mmHg, P = 0.007) to isocapnic hypoxic rebreathing and reduced peripheral chemoreflex sensitivity by 28 ± 37% (P = 0.044). Rhythmic handgrip exercise induced increases in brachial artery blood flow and vascular conductance (both P < 0.05 vs. rest after 45 s) that were greater with dopamine than saline (e.g. Δ76 ± 54 vs. Δ60 ± 43 ml min-1 and Δ0.730 ± 0.440 vs. Δ0.570 ± 0.424 ml min-1 mmHg-1, respectively, at 60 s; main effect of condition both P < 0.0001). Our results indicate that the peripheral chemoreflex is tonically active at rest and restrains the blood flow and vascular conductance increases to exercise in treated human hypertension. KEY POINTS: It was hypothesised that in human hypertension, an increased tonicity/sensitivity of the peripheral chemoreflex causes a sympathetically mediated restraint of nutritive blood flow to the exercising muscles. Treated patients with hypertension (n = 14) were studied under conditions of intravenous 0.9% saline (control) and low-dose dopamine (2 µg kg-1 min-1) to inhibit the peripheral chemoreflex. Low-dose dopamine reduced resting ventilation and peripheral chemoreflex sensitivity, and while mean blood pressure was unchanged, brachial artery blood flow and vascular conductance were increased. Low-dose dopamine augmented the brachial artery blood flow and vascular conductance responses to rhythmic handgrip. These findings indicate that the peripheral chemoreflex is tonically active at rest and restrains the blood flow, and vascular conductance increases to exercise in treated human hypertension.
Collapse
Affiliation(s)
- Ana Luiza C Sayegh
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Michael J Plunkett
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thalia Babbage
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mathew Dawes
- Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Julian F R Paton
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - James P Fisher
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Emans TW, Moraes DJA, Ben-Tal A, Barrett CJ, Paton JFR, McBryde FD. Forgotten Circulation: Reduced Mesenteric Venous Capacitance in Hypertensive Rats Is Improved by Decreasing Sympathetic Activity. Hypertension 2024; 81:823-835. [PMID: 38380519 DOI: 10.1161/hypertensionaha.123.21878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND The mesenteric venous reservoir plays a vital role in mediating blood volume and pressure changes and is richly innervated by sympathetic nerves; however, the precise nature of venous sympathetic regulation and its role during hypertension remains unclear. We hypothesized that sympathetic drive to mesenteric veins in spontaneously hypertensive (SH) rats is raised, increasing mean circulatory filling pressure (MCFP), and impairing mesenteric capacitance. METHODS Arterial pressure, central venous pressure, mesenteric arterial, and venous blood flow were measured simultaneously in conscious male Wistar and SH rats. MCFP was assessed using an intraatrial balloon. Hemodynamic responses to volume changes (±20%) were measured before and after ganglionic blockade and carotid body denervation. Sympathetic venoconstrictor activity was measured in situ. RESULTS MCFP in vivo (10.8±1.6 versus 8.0±2.1 mm Hg; P=0.0005) and sympathetic venoconstrictor drive in situ (18±1 versus 10±2 µV; P<0.0001) were higher in SH rats; MCFP decreased in SH rats after hexamethonium and carotid body denervation (7.6±1.4; P<0.0001 and 8.5±1.0 mm Hg; P=0.0045). During volume changes, arterial pressure remained stable. With blood loss, net efflux of blood from the mesenteric bed was measured in both strains. However, during volume infusion, we observed net influx in Wistar (+2.3±2.6 mL/min) but efflux in SH rats (-1.0±1.0 mL/min; P=0.0032); this counterintuitive efflux was abolished by hexamethonium and carotid body denervation (+0.3±1.7 and 0.5±1.6 mL/min, respectively). CONCLUSIONS In SH rats, excessive sympathetic venoconstriction elevates MCFP and reduces capacitance, impairing volume buffering by mesenteric veins. We propose selective targeting of mesenteric veins through sympathetic drive reduction as a novel therapeutic opportunity for hypertension.
Collapse
Affiliation(s)
- Tonja W Emans
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand (T.W.E., A.B.-T., C.J.B., J.F.R.P., F.D.M.)
| | - Davi J A Moraes
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, Brazil (D.J.A.M.)
| | - Alona Ben-Tal
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand (T.W.E., A.B.-T., C.J.B., J.F.R.P., F.D.M.)
- Insightful Modelling Limited, Auckland, New Zealand (A.B.-T.)
| | - Carolyn J Barrett
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand (T.W.E., A.B.-T., C.J.B., J.F.R.P., F.D.M.)
| | - Julian F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand (T.W.E., A.B.-T., C.J.B., J.F.R.P., F.D.M.)
| | - Fiona D McBryde
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand (T.W.E., A.B.-T., C.J.B., J.F.R.P., F.D.M.)
| |
Collapse
|
15
|
Aitken AV, Minassa VS, Batista TJ, Oliveira JKDS, Sant'Anna KDO, Felippe ISA, Paton JFR, Coitinho JB, Bissoli NS, Sampaio KN. Acute poisoning by chlorpyrifos differentially impacts survival and cardiorespiratory function in normotensive and hypertensive rats. Chem Biol Interact 2024; 387:110821. [PMID: 38042398 DOI: 10.1016/j.cbi.2023.110821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Hypertension is the most important and well-known risk factor for cardiovascular disease (CVD). Recently, acute organophosphate (OP) poisoning has also been pointed as a CVD risk factor. Despite this evidence, no studies have contrasted the acute toxicosis and cardiovascular (CV) effects of OP poisoning under conditions of normotension and hypertension. In this work, adult male normotensive Wistar and Spontaneously Hypertensive rats (SHR) were intraperitoneally injected with saline or chlorpyrifos (CPF), an OP compound, monitored for acute toxicosis signs and 24-h survival. After poisoning, blood pressure, heart rate and ventilation were recorded, the Bezold-Jarisch Reflex (BJR), the Chemoreflex (CR) were chemically activated, as well as the cardiac autonomic tone (AUT) was assessed. Erythrocyte and brainstem acetylcholinesterase and plasmatic butyrylcholinesterase (BuChE) activities were measured as well as lipid peroxidation, advanced oxidation protein products (AOPP), nitrite/nitrate levels, expression of catalase, TNFα and angiotensin-I converting enzyme (ACE-1) within the brainstem. CPF induced a much more pronounced acute toxicosis and 33 % lethality in SHR. CPF poisoning impaired ventilation in SHR, the BJR reflex responses in Wistar rats, and the chemoreflex tachypneic response in both strains. CPF inhibited activity of cholinesterases in both strains, increased AOPP and nitrite/nitrate levels and expression of TNFα and ACE-1 in the brainstem of Wistar rats. Interestingly, SHR presented a reduced intrinsic BuChE activity, an important bioscavenger. Our findings show that, CPF at sublethal doses in normotensive rats lead to lethality and much more pronounced acute toxicity signs in the SHR. We also showed that cardiorespiratory reflexes were differentially impacted after CPF poisoning in both strains and that the cardiorespiratory disfunction seems to be associated with interference in cholinergic transmission, oxidative stress and inflammation. These results points to an increased susceptibility to acute toxicosis in hypertension, which may impose a significant risk to vulnerable populations.
Collapse
Affiliation(s)
- Andrew Vieira Aitken
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil; Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Vítor Sampaio Minassa
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil; Postgraduate Program in Physiological Sciences, Department of Physiology, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Thatiany Jardim Batista
- Postgraduate Program in Physiological Sciences, Department of Physiology, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Janne Ketly da Silva Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Karoline de Oliveira Sant'Anna
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Igor Simões Assunção Felippe
- The Centre for Heart Research - Manaaki Mānawa, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton Campus, Auckland, 1023, New Zealand
| | - Julian Francis Richmond Paton
- The Centre for Heart Research - Manaaki Mānawa, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton Campus, Auckland, 1023, New Zealand
| | - Juliana Barbosa Coitinho
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil; Postgraduate Program in Biochemistry, Department of Physiology, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Nazaré Souza Bissoli
- Postgraduate Program in Physiological Sciences, Department of Physiology, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Karla Nívea Sampaio
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil.
| |
Collapse
|
16
|
Hering D, Narkiewicz K. Novel approaches: targeting sympathetic outflow in the carotid sinus. Blood Press 2023; 32:2232873. [PMID: 37470450 DOI: 10.1080/08037051.2023.2232873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/31/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023]
Abstract
Uncontrolled hypertension drives the global burden of increased cardiovascular disease (CVD) morbidity and mortality. Although high blood pressure (BP) is treatable and preventable, only half of the patients with hypertension undergoing treatment have their BP controlled. The failure of polypharmacy to attain adequate BP control may be due to a lack of physiological response, however, medication non-adherence and clinician inertia to increase treatment intensity are critical factors associated with poor hypertension management. The long-time medication titration, lifelong drug therapy, and often multi-drug treatment strategy are frustrating when the BP goal is not achieved, leading to increased CVD risk and a substantial burden on the healthcare system. Growing evidence indicates that neurohumoral activation is critical in initiating and maintaining elevated BP and its adverse consequences. Over the past decades, device-based therapies targeting the mechanisms underlying hypertension pathophysiology have been extensively studied. Among these, robust clinical experience for hypertension management exists for renal denervation (RDN) and baroreflex activation therapy (BAT), carotid body denervation (CBD), central arteriovenous anastomosis, and to a lesser extent, deep brain stimulation. Future studies are warranted to define the role of device-based approaches as an alternative or adjunctive treatment option to treat hypertension.
Collapse
Affiliation(s)
- Dagmara Hering
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
17
|
Felippe ISA, Río RD, Schultz H, Machado BH, Paton JFR. Commonalities and differences in carotid body dysfunction in hypertension and heart failure. J Physiol 2023; 601:5527-5551. [PMID: 37747109 PMCID: PMC10873039 DOI: 10.1113/jp284114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Carotid body pathophysiology is associated with many cardiovascular-respiratory-metabolic diseases. This pathophysiology reflects both hyper-sensitivity and hyper-tonicity. From both animal models and human patients, evidence indicates that amelioration of this pathophysiological signalling improves disease states such as a lowering of blood pressure in hypertension, a reduction of breathing disturbances with improved cardiac function in heart failure (HF) and a re-balancing of autonomic activity with lowered sympathetic discharge. Given this, we have reviewed the mechanisms of carotid body hyper-sensitivity and hyper-tonicity across disease models asking whether there is uniqueness related to specific disease states. Our analysis indicates some commonalities and some potential differences, although not all mechanisms have been fully explored across all disease models. One potential commonality is that of hypoperfusion of the carotid body across hypertension and HF, where the excessive sympathetic drive may reduce blood flow in both models and, in addition, lowered cardiac output in HF may potentiate the hypoperfusion state of the carotid body. Other mechanisms are explored that focus on neurotransmitter and signalling pathways intrinsic to the carotid body (e.g. ATP, carbon monoxide) as well as extrinsic molecules carried in the blood (e.g. leptin); there are also transcription factors found in the carotid body endothelium that modulate its activity (Krüppel-like factor 2). The evidence to date fully supports that a better understanding of the mechanisms of carotid body pathophysiology is a fruitful strategy for informing potential new treatment strategies for many cardiovascular, respiratory and metabolic diseases, and this is highly relevant clinically.
Collapse
Affiliation(s)
- Igor S. A. Felippe
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - Rodrigo Del Río
- Department of Physiology, Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Harold Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benedito H. Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian F. R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
18
|
Iturriaga R. Carotid body contribution to the physio-pathological consequences of intermittent hypoxia: role of nitro-oxidative stress and inflammation. J Physiol 2023; 601:5495-5507. [PMID: 37119020 DOI: 10.1113/jp284112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
Obstructive sleep apnoea (OSA), characterized by chronic intermittent hypoxia (CIH), is considered to be an independent risk for hypertension. The pathological cardiorespiratory consequences of OSA have been attributed to systemic oxidative stress, inflammation and sympathetic overflow induced by CIH, but an emerging body of evidence indicates that a nitro-oxidative and pro-inflammatory milieu within the carotid body (CB) is involved in the potentiation of CB chemosensory responses to hypoxia, which contribute to enhance the sympathetic activity. Accordingly, autonomic and cardiovascular alterations induced by CIH are critically dependent on an abnormally heightened CB chemosensory input to the nucleus of tractus solitarius (NTS), where second-order neurons project onto the rostral ventrolateral medulla (RVLM), activating pre-sympathetic neurons that control pre-ganglionic sympathetic neurons. CIH produces oxidative stress and neuroinflammation in the NTS and RVLM, which may contribute to the long-term irreversibility of the CIH-induced alterations. This brief review is mainly focused on the contribution of nitro-oxidative stress and pro-inflammatory molecules on the hyperactivation of the hypoxic chemoreflex pathway including the CB and the brainstem centres, and whether the persistence of autonomic and cardiorespiratory alterations may depend on the glial-related neuroinflammation induced by the enhanced CB chemosensory afferent input.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
19
|
Atanasova DY, Dandov AD, Lazarov NE. Neurochemical plasticity of the carotid body in hypertension. Anat Rec (Hoboken) 2023; 306:2366-2377. [PMID: 37561329 DOI: 10.1002/ar.24997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/11/2022]
Abstract
The carotid body (CB), a main peripheral arterial chemoreceptor, has lately been implicated in the pathophysiology of various cardiovascular disorders. Emerging experimental evidence supports a causal relationship between CB dysfunction and augmented sympathetic outflow which is the common hallmark of human sympathetic-related diseases, including essential hypertension. To gain insight into the neurotransmitter profile of chemosensory cells in the hypertensive CB, we examined the expression and cellular localization of some classical neurotransmitters, neuropeptides, and gaseous signaling molecules as well as neurotrophic factors and their receptors in the CB of spontaneously hypertensive rats, a common animal model of hypertension. Our immunohistochemical experiments revealed an elevated catecholamine and serotonin content in the hypertensive CB compared to normotensive controls. GABA immunostaining was seen in some peripherally located glomus cells in the CB of SHR and it was significantly lower than in control animals. The density of substance P and vasoactive intestinal peptide-immunoreactive fibers was diminished whereas that of neuropeptide Y-immunostained nerve fibers was increased and that of calcitonin gene-related peptide-containing fibers remained almost unchanged in the hypertensive CB. We have further demonstrated that in the hypertensive state the production of nitric oxide is impaired and that the components of the neurotrophin signaling system display an abnormal enhanced expression. Our results provide immunohistochemical evidence that the altered transmitter phenotype of CB chemoreceptor cells and the elevated production of neurotrophic factors modulate the chemosensory processing in hypertensive animals which contributes to autonomic dysfunction and elicits sympathetic hyperactivity, consequently leading to elevated blood pressure.
Collapse
Affiliation(s)
- Dimitrinka Y Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Angel D Dandov
- Department of Anatomy and Histology, Medical University of Sofia, Sofia, Bulgaria
| | - Nikolai E Lazarov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Anatomy and Histology, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
20
|
Giannoni A, Borrelli C, Gentile F, Sciarrone P, Spießhöfer J, Piepoli M, Richerson GB, Floras JS, Coats AJS, Javaheri S, Emdin M, Passino C. Autonomic and respiratory consequences of altered chemoreflex function: clinical and therapeutic implications in cardiovascular diseases. Eur J Heart Fail 2023; 25:642-656. [PMID: 36907827 PMCID: PMC10989193 DOI: 10.1002/ejhf.2819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
The importance of chemoreflex function for cardiovascular health is increasingly recognized in clinical practice. The physiological function of the chemoreflex is to constantly adjust ventilation and circulatory control to match respiratory gases to metabolism. This is achieved in a highly integrated fashion with the baroreflex and the ergoreflex. The functionality of chemoreceptors is altered in cardiovascular diseases, causing unstable ventilation and apnoeas and promoting sympathovagal imbalance, and it is associated with arrhythmias and fatal cardiorespiratory events. In the last few years, opportunities to desensitize hyperactive chemoreceptors have emerged as potential options for treatment of hypertension and heart failure. This review summarizes up to date evidence of chemoreflex physiology/pathophysiology, highlighting the clinical significance of chemoreflex dysfunction, and lists the latest proof of concept studies based on modulation of the chemoreflex as a novel target in cardiovascular diseases.
Collapse
Affiliation(s)
- Alberto Giannoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| | | | - Francesco Gentile
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Jens Spießhöfer
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- University of Aachen, Aachen, Germany
| | | | | | - John S Floras
- Division of Cardiology, Mount Sinai Hospital, University of Toronto, Ontario, Canada
| | | | - Shahrokh Javaheri
- Division of Pulmonary and Sleep Medicine, Bethesda North Hospital, Cincinnati, Ohio, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio, and Division of Cardiology, The Ohio State University, Columbus, Ohio USA
| | - Michele Emdin
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Claudio Passino
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
21
|
Thakkar P, Pauza AG, Murphy D, Paton JFR. Carotid body: an emerging target for cardiometabolic co-morbidities. Exp Physiol 2023; 108:661-671. [PMID: 36999224 PMCID: PMC10988524 DOI: 10.1113/ep090090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/03/2023] [Indexed: 04/01/2023]
Abstract
NEW FINDINGS What is the topic of this review? Regarding the global metabolic syndrome crisis, this review focuses on common mechanisms for high blood sugar and high blood pressure. Connections are made between the homeostatic regulation of blood pressure and blood sugar and their dysregulation to reveal signalling mechanisms converging on the carotid body. What advances does it highlight? The carotid body plays a major part in the generation of excessive sympathetic activity in diabetes and also underpins diabetic hypertension. As treatment of diabetic hypertension is notoriously difficult, we propose that novel receptors within the carotid body may provide a novel treatment strategy. ABSTRACT The maintenance of glucose homeostasis is obligatory for health and survival. It relies on peripheral glucose sensing and signalling between the brain and peripheral organs via hormonal and neural responses that restore euglycaemia. Failure of these mechanisms causes hyperglycaemia or diabetes. Current anti-diabetic medications control blood glucose but many patients remain with hyperglycemic condition. Diabetes is often associated with hypertension; the latter is more difficult to control in hyperglycaemic conditions. We ask whether a better understanding of the regulatory mechanisms of glucose control could improve treatment of both diabetes and hypertension when they co-exist. With the involvement of the carotid body (CB) in glucose sensing, metabolic regulation and control of sympathetic nerve activity, we consider the CB as a potential treatment target for both diabetes and hypertension. We provide an update on the role of the CB in glucose sensing and glucose homeostasis. Physiologically, hypoglycaemia stimulates the release of hormones such as glucagon and adrenaline, which mobilize or synthesize glucose; however, these counter-regulatory responses were markedly attenuated after denervation of the CBs in animals. Also, CB denervation prevents and reverses insulin resistance and glucose intolerance. We discuss the CB as a metabolic regulator (not just a sensor of blood gases) and consider recent evidence of novel 'metabolic' receptors within the CB and putative signalling peptides that may control glucose homeostasis via modulation of the sympathetic nervous system. The evidence presented may inform future clinical strategies in the treatment of patients with both diabetes and hypertension, which may include the CB.
Collapse
Affiliation(s)
- Pratik Thakkar
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Audrys G. Pauza
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health SciencesUniversity of BristolBristolUK
| | - Julian F. R. Paton
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
22
|
Felippe ISA, Zera T, da Silva MP, Moraes DJA, McBryde F, Paton JFR. The sympathetic nervous system exacerbates carotid body sensitivity in hypertension. Cardiovasc Res 2023; 119:316-331. [PMID: 35048948 PMCID: PMC10022867 DOI: 10.1093/cvr/cvac008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/24/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS The carotid bodies (CBs) of spontaneously hypertensive (SH) rats exhibit hypertonicity and hyperreflexia contributing to heightened peripheral sympathetic outflow. We hypothesized that CB hyperexcitability is driven by its own sympathetic innervation. METHODS AND RESULTS To test this, the chemoreflex was activated (NaCN 50-100 µL, 0.4 µg/µL) in SH and Wistar rats in situ before and after: (i) electrical stimulation (ES; 30 Hz, 2 ms, 10 V) of the superior cervical ganglion (SCG), which innervates the CB; (ii) unilateral resection of the SCG (SCGx); (iii) CB injections of an α1-adrenergic receptor agonist (phenylephrine, 50 µL, 1 mmol/L), and (iv) α1-adrenergic receptor antagonist prazosin (40 µL, 1 mmol/L) or tamsulosin (50 µL, 1 mmol/L). ES of the SCG enhanced CB-evoked sympathoexcitation by 40-50% (P < 0.05) with no difference between rat strains. Unilateral SCGx attenuated the CB-evoked sympathoexcitation in SH (62%; P < 0.01) but was without effect in Wistar rats; it also abolished the ongoing firing of chemoreceptive petrosal neurones of SH rats, which became hyperpolarized. In Wistar rats, CB injections of phenylephrine enhanced CB-evoked sympathoexcitation (33%; P < 0.05), which was prevented by prazosin (26%; P < 0.05) in SH rats. Tamsulosin alone reproduced the effects of prazosin in SH rats and prevented the sensitizing effect of the SCG following ES. Within the CB, α1A- and α1B-adrenoreceptors were co-localized on both glomus cells and blood vessels. In conscious SH rats instrumented for recording blood pressure (BP), the CB-evoked pressor response was attenuated after SCGx, and systolic BP fell by 16 ± 4.85 mmHg. CONCLUSIONS The sympathetic innervation of the CB is tonically activated and sensitizes the CB of SH but not Wistar rats. Furthermore, sensitization of CB-evoked reflex sympathoexcitation appears to be mediated by α1-adrenoceptors located either on the vasculature and/or glomus cells. The SCG is novel target for controlling CB pathophysiology in hypertension.
Collapse
Affiliation(s)
- Igor S A Felippe
- Department of Physiology, Faculty of Health & Medical Sciences, Manaaki Mānawa—The Centre for Heart Research, University of Auckland, 85 Park Road, Grafton Campus, Auckland 1023, New Zealand
| | - Tymoteusz Zera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Fiona McBryde
- Department of Physiology, Faculty of Health & Medical Sciences, Manaaki Mānawa—The Centre for Heart Research, University of Auckland, 85 Park Road, Grafton Campus, Auckland 1023, New Zealand
| | | |
Collapse
|
23
|
Cabral MD, Martins FO, Martins IB, Melo BF, Sacramento JF, Conde SV, Prieto-Lloret J. Effect of Carotid Body Denervation on Systemic Endothelial Function in a Diabetic Animal Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:115-125. [PMID: 37322342 DOI: 10.1007/978-3-031-32371-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Endothelial dysfunction is an essential intermediary for development of cardiovascular diseases associated with diabetes and hypertension (HT). The carotid body (CB) dysfunction contributes to dysmetabolic states, and the resection of carotid sinus nerve (CSN) prevents and reverts dysmetabolism and HT. Herein, we investigated if CSN denervation ameliorates systemic endothelial dysfunction in an animal model of type 2 diabetes mellitus (T2DM).We used Wistar male rats submitted to HFHSu diet during 25 weeks and the correspondent age-matched controls fed with a standard diet. CSN resection was performed in half of the groups after 14 weeks of diet. In vivo insulin sensitivity, glucose tolerance and blood pressure, ex vivo aortic artery contraction and relaxation and nitric oxide (NO) levels in plasma and aorta, aorta nitric oxide synthase (NOS) isoforms, and PGF2αR levels were evaluated.We demonstrated that, alongside to dysmetabolism and HT reversion, CSN resection restores endothelial function in the aorta and decreases the NO levels in plasma and aorta at the same time that restores normal levels of iNOS in aorta without changing eNOS or PGF2αR levels.These results suggest that the modulation of CB activity can be important for the treatment of HT and endothelial dysfunction related with T2DM.
Collapse
Affiliation(s)
- Marlene D Cabral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Fátima O Martins
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Inês B Martins
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Bernardete F Melo
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Joana F Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Silvia V Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
| | - Jesus Prieto-Lloret
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto de Biologia y Genetica Molecular (IBGM), Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- Departamento de Bioquimica, Biologia Molecular y Fisiologia, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
24
|
Lazarov NE, Atanasova DY. Carotid Body Dysfunction and Mechanisms of Disease. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:123-138. [PMID: 37946080 DOI: 10.1007/978-3-031-44757-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Emerging evidence shows that the carotid body (CB) dysfunction is implicated in various physiological and pathophysiological conditions. It has been revealed that the CB structure and neurochemical profile alter in certain human sympathetic-related and cardiometabolic diseases. Specifically, a tiny CB with a decrease of glomus cells and their dense-cored vesicles has been seen in subjects with sleep disordered breathing such as sudden infant death syndrome and obstructive sleep apnea patients and people with congenital central hypoventilation syndrome. Moreover, the CB degranulation is accompanied by significantly elevated levels of catecholamines and proinflammatory cytokines in such patients. The intermittent hypoxia stimulates the CB, eliciting augmented chemoreflex drive and enhanced cardiorespiratory and sympathetic responses. High CB excitability due to blood flow restrictions, oxidative stress, alterations in neurotransmitter gases and disruptions of local mediators is also observed in congestive heart failure conditions. On the other hand, the morpho-chemical changes in hypertension include an increase in the CB volume due to vasodilation, altered transmitter phenotype of chemoreceptor cells and elevated production of neurotrophic factors. Accordingly, in both humans and animal models CB denervation prevents the breathing instability and lowers blood pressure. Knowledge of the morphofunctional aspects of the CB, a better understanding of its role in disease and recent advances in human CB translational research would contribute to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
25
|
Lazarov NE, Atanasova DY. Carotid Body and Cell Therapy. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:155-159. [PMID: 37946082 DOI: 10.1007/978-3-031-44757-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
During the past decade, the carotid body (CB) has been considered an innovative therapeutic target for the treatment of certain cardiorespiratory and metabolic diseases most of which are sympathetically mediated. It has recently been revealed that CB stem cells provide new target sites for the development of promising cell-based therapies. Specifically, generation of CB progenitors in vitro which can differentiate into functionally active glomus cells may be a useful procedure to produce the cell mass required for replacement cell therapy. Due to their dopaminergic nature, adult glomus cells can be used for an intrastriatal grafting in neurodegenerative brain disorders including Parkinson's disease. The beneficial effect of throphic factors such as glial cell-derived neurotrophic factor synergistically released by the transplanted cells then enables the transplant to survive. Likewise, intracerebral administration of CB cell aggregates or dispersed cells has been tested for the treatment of an experimental model of stroke. The systematic clinical applicability of CB autotransplants following glomectomy in humans is under investigation. In such autotransplantation studies, cell aggregates from unilaterally resected CB might be used as autografts. In addition, stem cells could offer an opportunity for tissue expansion and might settle the issue of small number of glomus cells available for transplantation.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
26
|
Pardal R. The Adult Carotid Body: A Germinal Niche at the Service of Physiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:13-22. [PMID: 37322331 DOI: 10.1007/978-3-031-32371-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The carotid body is the most relevant oxygen sensor in mammalian organisms. This organ helps to detect acute changes in PO2, but it is also crucial for the organismal adaptation to a maintained hypoxemia. Profound angiogenic and neurogenic processes take place in the carotid body to facilitate this adaptation process. We have described a plethora of multipotent stem cells and restricted progenitors, from both vascular and neuronal lineages, existing in the quiescent normoxic carotid body, ready to contribute to organ growth and adaptation upon the arrival of the hypoxic stimulus. Our deep understanding of the functioning of this stunning germinal niche will very likely facilitate the management and treatment of an important group of diseases that course with carotid body over-activation and malfunction.
Collapse
Affiliation(s)
- Ricardo Pardal
- Dpto. de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
27
|
A Methodological Perspective on the Function and Assessment of Peripheral Chemoreceptors in Heart Failure: A Review of Data from Clinical Trials. Biomolecules 2022; 12:biom12121758. [PMID: 36551186 PMCID: PMC9775522 DOI: 10.3390/biom12121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Augmented peripheral chemoreceptor sensitivity (PChS) is a common feature of many sympathetically mediated diseases, among others, and it is an important mechanism of the pathophysiology of heart failure (HF). It is related not only to the greater severity of symptoms, especially to dyspnea and lower exercise tolerance but also to a greater prevalence of complications and poor prognosis. The causes, mechanisms, and impact of the enhanced activity of peripheral chemoreceptors (PChR) in the HF population are subject to intense research. Several methodologies have been established and utilized to assess the PChR function. Each of them presents certain advantages and limitations. Furthermore, numerous factors could influence and modulate the response from PChR in studied subjects. Nevertheless, even with the impressive number of studies conducted in this field, there are still some gaps in knowledge that require further research. We performed a review of all clinical trials in HF human patients, in which the function of PChR was evaluated. This review provides an extensive synthesis of studies evaluating PChR function in the HF human population, including methods used, factors potentially influencing the results, and predictors of increased PChS.
Collapse
|
28
|
Katayama PL, Leirão IP, Kanashiro A, Menani JV, Zoccal DB, Colombari DSA, Colombari E. The carotid body: A novel key player in neuroimmune interactions. Front Immunol 2022; 13:1033774. [PMID: 36389846 PMCID: PMC9644854 DOI: 10.3389/fimmu.2022.1033774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
The idea that the nervous system communicates with the immune system to regulate physiological and pathological processes is not new. However, there is still much to learn about how these interactions occur under different conditions. The carotid body (CB) is a sensory organ located in the neck, classically known as the primary sensor of the oxygen (O2) levels in the organism of mammals. When the partial pressure of O2 in the arterial blood falls, the CB alerts the brain which coordinates cardiorespiratory responses to ensure adequate O2 supply to all tissues and organs in the body. A growing body of evidence, however, has demonstrated that the CB is much more than an O2 sensor. Actually, the CB is a multimodal sensor with the extraordinary ability to detect a wide diversity of circulating molecules in the arterial blood, including inflammatory mediators. In this review, we introduce the literature supporting the role of the CB as a critical component of neuroimmune interactions. Based on ours and other studies, we propose a novel neuroimmune pathway in which the CB acts as a sensor of circulating inflammatory mediators and, in conditions of systemic inflammation, recruits a sympathetic-mediated counteracting mechanism that appears to be a protective response.
Collapse
Affiliation(s)
- Pedro L. Katayama
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Isabela P. Leirão
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José V. Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Daniel B. Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Débora S. A. Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| |
Collapse
|
29
|
Szczepańska-Sadowska E, Żera T. Vasopressin: a possible link between hypoxia and hypertension. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cardiovascular and respiratory diseases are frequently associated with transient and prolonged hypoxia, whereas hypoxia exerts pro-hypertensive effects, through stimulation of the sympathetic system and release of pressor endocrine factors. This review is focused on the role of arginine vasopressin (AVP) in dysregulation of the cardiovascular system during hypoxia associated with cardiovascular disorders. AVP is synthesized mainly in the neuroendocrine neurons of the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON), which send axons to the posterior pituitary and various regions of the central nervous system (CNS). Vasopressinergic neurons are innervated by multiple neuronal projections releasing several neurotransmitters and other regulatory molecules. AVP interacts with V1a, V1b and V2 receptors that are present in the brain and peripheral organs, including the heart, vessels, lungs, and kidneys. Release of vasopressin is intensified during hypernatremia, hypovolemia, inflammation, stress, pain, and hypoxia which frequently occur in cardiovascular patients, and blood AVP concentration is markedly elevated in cardiovascular diseases associated with hypoxemia. There is evidence that hypoxia stimulates AVP release through stimulation of chemoreceptors. It is suggested that acting in the carotid bodies, AVP may fine-tune respiratory and hemodynamic responses to hypoxia and that this effect is intensified in hypertension. There is also evidence that during hypoxia, augmentation of pro-hypertensive effects of vasopressin may result from inappropriate interaction of this hormone with other compounds regulating the cardiovascular system (catecholamines, angiotensins, natriuretic peptides, steroids, nitric oxide). In conclusion, current literature indicates that abnormal mutual interactions between hypoxia and vasopressin may significantly contribute to pathogenesis of hypertension.
Collapse
Affiliation(s)
- Ewa Szczepańska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
30
|
Gao L, Ortega-Sáenz P, Moreno-Domínguez A, López-Barneo J. Mitochondrial Redox Signaling in O 2-Sensing Chemoreceptor Cells. Antioxid Redox Signal 2022; 37:274-289. [PMID: 35044243 DOI: 10.1089/ars.2021.0255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Acute responses to hypoxia are essential for the survival of mammals. The carotid body (CB), the main arterial chemoreceptor, contains glomus cells with oxygen (O2)-sensitive K+ channels, which are inhibited during hypoxia to trigger adaptive cardiorespiratory reflexes. Recent Advances: In this review, recent advances in molecular mechanisms of acute O2 sensing in CB glomus cells are discussed, with a special focus on the signaling role of mitochondria through regulating cellular redox status. These advances have been achieved thanks to the use of genetically engineered redox-sensitive green fluorescent protein (roGFP) probes, which allowed us to monitor rapid changes in ROS production in real time in different subcellular compartments during hypoxia. This methodology was used in combination with conditional knockout mice models, pharmacological approaches, and transcriptomic studies. We have proposed a mitochondria-to-membrane signaling model of acute O2 sensing in which H2O2 released in the mitochondrial intermembrane space serves as a signaling molecule to inhibit K+ channels on the plasma membrane. Critical Issues: Changes in mitochondrial reactive oxygen species (ROS) production during acute hypoxia are highly compartmentalized in the submitochondrial regions. The use of redox-sensitive probes targeted to specific compartments is essential to fully understand the role of mitochondrial ROS in acute O2 sensing. Future Directions: Further studies are needed to specify the ROS and to characterize the target(s) of ROS in chemoreceptor cells during acute hypoxia. These data may also contribute to a more complete understanding of the implication of ROS in acute responses to hypoxia in O2-sensing cells in other organs. Antioxid. Redox Signal. 37, 274-289.
Collapse
Affiliation(s)
- Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
31
|
Chemogenetic inhibition of Phox2-expressing neurons in the commissural NTS decreases blood pressure in anesthetized spontaneously hypertensive rats. Neurosci Lett 2022; 787:136817. [PMID: 35905886 DOI: 10.1016/j.neulet.2022.136817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022]
Abstract
Interruption of the activity of neurons in the commissural portion of the nucleus of the solitary tract (cNTS) decreases blood pressure (BP) in experimental models of hypertension, such as the spontaneously hypertensive (SH) rat. To examine whether PHOX2B expressing cNTS neurons are involved in maintaining the elevated BP, we used replication-deficient viruses with a modified Phox2 binding site promoter to express the inhibitory chemogenetic allatostatin receptor or green fluorescent protein in the cNTS. Following administration of allatostatin, we observed a depressor and bradycardic response in anesthetized SH rats that expressed the allatostatin receptor. Injection of allatostatin did not affect BP or heart rate (HR) in control SH rats expressing green fluorescent protein in the cNTS. Immunohistochemistry showed that the majority of transduced cNTS neurons were PHOX2B-immunoreactive and some also expressed tyrosine hydroxylase. We conclude that in anesthetized SH rat, the Phox2B expressing cNTS neurons maintain elevated BP.
Collapse
|
32
|
Role of the angiotensin type 1 receptor in modulating the carotid chemoreflex in an ovine model of renovascular hypertension. J Hypertens 2022; 40:1421-1430. [PMID: 35762481 DOI: 10.1097/hjh.0000000000003173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The carotid body has been implicated as an important mediator and putative target for hypertension. Previous studies have indicated an important role for angiotensin II in mediating carotid body function via angiotensin type-1 receptors (AT1R); however, their role in modulating carotid body function during hypertension is unclear. METHODS Using a large preclinical ovine model of renovascular hypertension, we hypothesized that acute AT1R blockade would lower blood pressure and decrease carotid body-mediated increases in arterial pressure. Adult ewes underwent either unilateral renal artery clipping or sham surgery. Two weeks later, flow probes were placed around the contralateral renal and common carotid arteries. RESULTS In both hypertensive and sham animals, carotid body stimulation using potassium cyanide caused dose-dependent increases in mean arterial pressure but a reduction in renal vascular conductance. These responses were not different between groups. Infusion of angiotensin II led to an increase in arterial pressure and reduction in renal blood flow. The sensitivity of the renal vasculature to angiotensin II was significantly attenuated in hypertension compared with the sham animals. Systemic inhibition of the AT1R did not alter blood pressure in either group. Interestingly carotid body-evoked arterial pressure responses were attenuated by AT1R blockade in renovascular hypertension but not in shams. CONCLUSION Taken together, our findings indicate a decrease in vascular reactivity of the non-clipped kidney to angiotensin II in hypertension. The CB-evoked increase in blood pressure in hypertension is mediated in part, by the AT1R. These findings indicate a differential role of the AT1R in the carotid body versus the renal vasculature.
Collapse
|
33
|
Langner-Hetmańczuk A, Tubek S, Niewiński P, Ponikowski P. The Role of Pharmacological Treatment in the Chemoreflex Modulation. Front Physiol 2022; 13:912616. [PMID: 35774285 PMCID: PMC9237514 DOI: 10.3389/fphys.2022.912616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
From a physiological point of view, peripheral chemoreceptors (PCh) are the main sensors of hypoxia in mammals and are responsible for adaptation to hypoxic conditions. Their stimulation causes hyperventilation—to increase oxygen uptake and increases sympathetic output in order to counteract hypoxia-induced vasodilatation and redistribute the oxygenated blood to critical organs. While this reaction promotes survival in acute settings it may be devastating when long-lasting. The permanent overfunctionality of PCh is one of the etiologic factors and is responsible for the progression of sympathetically-mediated diseases. Thus, the deactivation of PCh has been proposed as a treatment method for these disorders. We review here physiological background and current knowledge regarding the influence of widely prescribed medications on PCh acute and tonic activities.
Collapse
Affiliation(s)
- Anna Langner-Hetmańczuk
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Stanisław Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
- *Correspondence: Stanisław Tubek,
| | - Piotr Niewiński
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| |
Collapse
|
34
|
Argent LP, Bose A, Paton JFR. Intra-carotid body inter-cellular communication. J R Soc N Z 2022; 53:332-361. [PMID: 39439480 PMCID: PMC11459819 DOI: 10.1080/03036758.2022.2079681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
The classic peripheral chemoreflex response is a critical homeostatic mechanism. In healthy individuals, appropriate chemoreflex responses are triggered by acute activation of the carotid body - the principal chemosensory organ in mammals. However, the aberrant chronic activation of the carotid body can drive the elevated sympathetic activity underlying cardio-respiratory diseases such as hypertension, diabetes and heart failure. Carotid body resection induces intolerable side effects and so understanding how to modulate carotid body output without removing it, and whilst maintaining the physiological chemoreflex response, represents the next logical next step in the development of effective clinical interventions. By definition, excessive carotid body output must result from altered intra-carotid body inter-cellular communication. Alongside the canonical synaptic transmission from glomus cells to petrosal afferents, many other modes of information exchange in the carotid body have been identified, for example bidirectional signalling between type I and type II cells via ATP-induced ATP release, as well as electrical communication via gap junctions. Thus, herein we review the carotid body as an integrated circuit, discussing a variety of different inter-cellular signalling mechanisms and highlighting those that are potentially relevant to its pathological hyperactivity in disease with the aim of identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Liam P. Argent
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Aabharika Bose
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Julian F. R. Paton
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Katayama PL, Leirão IP, Kanashiro A, Luiz JPM, Cunha FQ, Navegantes LCC, Menani JV, Zoccal DB, Colombari DSA, Colombari E. The carotid body detects circulating tumor necrosis factor-alpha to activate a sympathetic anti-inflammatory reflex. Brain Behav Immun 2022; 102:370-386. [PMID: 35339628 DOI: 10.1016/j.bbi.2022.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Recent evidence has suggested that the carotid bodies might act as immunological sensors, detecting pro-inflammatory mediators and signalling to the central nervous system, which, in turn, orchestrates autonomic responses. Here, we confirmed that the TNF-α receptor type I is expressed in the carotid bodies of rats. The systemic administration of TNF-α increased carotid body afferent discharge and activated glutamatergic neurons in the nucleus tractus solitarius (NTS) that project to the rostral ventrolateral medulla (RVLM), where many pre-sympathetic neurons reside. The activation of these neurons was accompanied by an increase in splanchnic sympathetic nerve activity. Carotid body ablation blunted the TNF-α-induced activation of RVLM-projecting NTS neurons and the increase in splanchnic sympathetic nerve activity. Finally, plasma and spleen levels of cytokines after TNF-α administration were higher in rats subjected to either carotid body ablation or splanchnic sympathetic denervation. Collectively, our findings indicate that the carotid body detects circulating TNF-α to activate a counteracting sympathetic anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Pedro L Katayama
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil.
| | - Isabela P Leirão
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João P M Luiz
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz C C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jose V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil.
| |
Collapse
|
36
|
Pen D, Shanks J, Barrett C, Abukar Y, Paton JFR, Ramchandra R. Aortic Body Chemoreceptors Regulate Coronary Blood Flow in Conscious Control and Hypertensive Sheep. Hypertension 2022; 79:1275-1285. [PMID: 35382553 DOI: 10.1161/hypertensionaha.121.18767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Peripheral arterial chemoreceptors monitor the chemical composition of arterial blood and include both the carotid and aortic bodies (ABs). While the role of the carotid bodies has been extensively studied, the physiological role of the ABs remains relatively under-studied, and its role in hypertension is unexplored. We hypothesized that activation of the ABs would increase coronary blood flow in the normotensive state and that this would be mediated by the parasympathetic nerves to the heart. In addition, we determined whether the coronary blood flow response to stimulation of the ABs was altered in an ovine model of renovascular hypertension. METHODS Experiments were conducted in conscious and anesthetized ewes instrumented to record arterial pressure, coronary blood flow, and cardiac output. Two groups of animals were studied, one made hypertensive using a 2 kidney one clip model (n=6) and a sham-clipped normotensive group (n=6). RESULTS Activation of the ABs in the normotensive animals resulted in a significant increase in coronary blood flow, mediated, in part by a cholinergic mechanism since it was attenuated by atropine infusion. Activation of the ABs in the hypertensive animals also increased coronary blood flow (P<0.05), which was not different from the normotensive group. Interestingly, the coronary vasodilation in the hypertensive animals was not altered by blockade of muscarinic receptors but was attenuated after propranolol infusion. CONCLUSIONS Taken together, these data suggest that the ABs play an important role in modulating coronary blood flow and that their effector mechanism is altered in hypertension.
Collapse
Affiliation(s)
- Dylan Pen
- Manaaki Manawa - The Centre for Heart Research and the Department of Physiology, University of Auckland, New Zealand
| | - Julia Shanks
- Manaaki Manawa - The Centre for Heart Research and the Department of Physiology, University of Auckland, New Zealand
| | - Carolyn Barrett
- Manaaki Manawa - The Centre for Heart Research and the Department of Physiology, University of Auckland, New Zealand
| | - Yonis Abukar
- Manaaki Manawa - The Centre for Heart Research and the Department of Physiology, University of Auckland, New Zealand
| | - Julian F R Paton
- Manaaki Manawa - The Centre for Heart Research and the Department of Physiology, University of Auckland, New Zealand
| | - Rohit Ramchandra
- Manaaki Manawa - The Centre for Heart Research and the Department of Physiology, University of Auckland, New Zealand
| |
Collapse
|
37
|
O'Callaghan E, McBryde F, Patel N, Paton J. Examination of the periaqueductal gray as a site for controlling arterial pressure in the conscious spontaneously hypertensive rat. Auton Neurosci 2022; 240:102984. [DOI: 10.1016/j.autneu.2022.102984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022]
|
38
|
Paton JFR, Machado BH, Moraes DJA, Zoccal DB, Abdala AP, Smith JC, Antunes VR, Murphy D, Dutschmann M, Dhingra RR, McAllen R, Pickering AE, Wilson RJA, Day TA, Barioni NO, Allen AM, Menuet C, Donnelly J, Felippe I, St-John WM. Advancing respiratory-cardiovascular physiology with the working heart-brainstem preparation over 25 years. J Physiol 2022; 600:2049-2075. [PMID: 35294064 PMCID: PMC9322470 DOI: 10.1113/jp281953] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Twenty‐five years ago, a new physiological preparation called the working heart–brainstem preparation (WHBP) was introduced with the claim it would provide a new platform allowing studies not possible before in cardiovascular, neuroendocrine, autonomic and respiratory research. Herein, we review some of the progress made with the WHBP, some advantages and disadvantages along with potential future applications, and provide photographs and technical drawings of all the customised equipment used for the preparation. Using mice or rats, the WHBP is an in situ experimental model that is perfused via an extracorporeal circuit benefitting from unprecedented surgical access, mechanical stability of the brain for whole cell recording and an uncompromised use of pharmacological agents akin to in vitro approaches. The preparation has revealed novel mechanistic insights into, for example, the generation of distinct respiratory rhythms, the neurogenesis of sympathetic activity, coupling between respiration and the heart and circulation, hypothalamic and spinal control mechanisms, and peripheral and central chemoreceptor mechanisms. Insights have been gleaned into diseases such as hypertension, heart failure and sleep apnoea. Findings from the in situ preparation have been ratified in conscious in vivo animals and when tested have translated to humans. We conclude by discussing potential future applications of the WHBP including two‐photon imaging of peripheral and central nervous systems and adoption of pharmacogenetic tools that will improve our understanding of physiological mechanisms and reveal novel mechanisms that may guide new treatment strategies for cardiorespiratory diseases.
![]()
Collapse
Affiliation(s)
- Julian F R Paton
- Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Science, University of Auckland, Park Road, Grafton, Auckland, 1142, New Zealand
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Ana P Abdala
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, England, BS8 1TD, UK
| | - Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Vagner R Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Mathias Dutschmann
- Florey institute of Neuroscience and Mental Health, University of Melbourne, 30, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Rishi R Dhingra
- Florey institute of Neuroscience and Mental Health, University of Melbourne, 30, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Robin McAllen
- Florey institute of Neuroscience and Mental Health, University of Melbourne, 30, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, England, BS8 1TD, UK
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Trevor A Day
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Nicole O Barioni
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew M Allen
- Department of Anatomy & Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Clément Menuet
- Institut de Neurobiologie de la Méditerranée, INMED UMR1249, INSERM, Aix-Marseille Université, Marseille, France
| | - Joseph Donnelly
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Igor Felippe
- Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Science, University of Auckland, Park Road, Grafton, Auckland, 1142, New Zealand
| | - Walter M St-John
- Emeritus Professor, Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Dartmouth, New Hampshire, USA
| |
Collapse
|
39
|
Pauza AG, Thakkar P, Tasic T, Felippe I, Bishop P, Greenwood MP, Rysevaite-Kyguoliene K, Ast J, Broichhagen J, Hodson DJ, Salgado HC, Pauza DH, Japundzic-Zigon N, Paton JFR, Murphy D. GLP1R Attenuates Sympathetic Response to High Glucose via Carotid Body Inhibition. Circ Res 2022; 130:694-707. [PMID: 35100822 PMCID: PMC8893134 DOI: 10.1161/circresaha.121.319874] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Aberrant sympathetic nerve activity exacerbates cardiovascular risk in hypertension and diabetes, which are common comorbidities, yet clinically sympathetic nerve activity remains poorly controlled. The hypertensive diabetic state is associated with increased reflex sensitivity and tonic drive from the peripheral chemoreceptors, the cause of which is unknown. We have previously shown hypertension to be critically dependent on the carotid body (CB) input in spontaneously hypertensive rat, a model that also exhibits a number of diabetic traits. CB overstimulation by insulin and leptin has been similarly implicated in the development of increased sympathetic nerve activity in metabolic syndrome and obesity. Thus, we hypothesized that in hypertensive diabetic state (spontaneously hypertensive rat), the CB is sensitized by altered metabolic signaling causing excessive sympathetic activity levels and dysfunctional reflex regulation.
Collapse
Affiliation(s)
- Audrys G Pauza
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| | - Pratik Thakkar
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand (P.T., I.F., J.F.R.P.)
| | - Tatjana Tasic
- School of Dental Medicine, University of Belgrade, Serbia (T.T.)
| | - Igor Felippe
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand (P.T., I.F., J.F.R.P.)
| | - Paul Bishop
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| | - Michael P Greenwood
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| | | | - Julia Ast
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, United Kingdom (J.A., D.J.H.)
| | | | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, United Kingdom (D.A., D.J.H.).,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, United Kingdom (J.A., D.J.H.)
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Brazil (H.C.S.)
| | - Dainius H Pauza
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas (K.R.-K., D.H.P.)
| | - Nina Japundzic-Zigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia (N.J.-Z.)
| | - Julian F R Paton
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand (P.T., I.F., J.F.R.P.)
| | - David Murphy
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| |
Collapse
|
40
|
Conde SV, Sacramento JF, Melo BF, Fonseca-Pinto R, Romero-Ortega MI, Guarino MP. Blood Pressure Regulation by the Carotid Sinus Nerve: Clinical Implications for Carotid Body Neuromodulation. Front Neurosci 2022; 15:725751. [PMID: 35082593 PMCID: PMC8784865 DOI: 10.3389/fnins.2021.725751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic carotid sinus nerve (CSN) electrical modulation through kilohertz frequency alternating current improves metabolic control in rat models of type 2 diabetes, underpinning the potential of bioelectronic modulation of the CSN as a therapeutic modality for metabolic diseases in humans. The CSN carries sensory information from the carotid bodies, peripheral chemoreceptor organs that respond to changes in blood biochemical modifications such as hypoxia, hypercapnia, acidosis, and hyperinsulinemia. In addition, the CSN also delivers information from carotid sinus baroreceptors—mechanoreceptor sensory neurons directly involved in the control of blood pressure—to the central nervous system. The interaction between these powerful reflex systems—chemoreflex and baroreflex—whose sensory receptors are in anatomical proximity, may be regarded as a drawback to the development of selective bioelectronic tools to modulate the CSN. Herein we aimed to disclose CSN influence on cardiovascular regulation, particularly under hypoxic conditions, and we tested the hypothesis that neuromodulation of the CSN, either by electrical stimuli or surgical means, does not significantly impact blood pressure. Experiments were performed in Wistar rats aged 10–12 weeks. No significant effects of acute hypoxia were observed in systolic or diastolic blood pressure or heart rate although there was a significant activation of the cardiac sympathetic nervous system. We conclude that chemoreceptor activation by hypoxia leads to an expected increase in sympathetic activity accompanied by compensatory regional mechanisms that assure blood flow to regional beds and maintenance of hemodynamic homeostasis. Upon surgical denervation or electrical block of the CSN, the increase in cardiac sympathetic nervous system activity in response to hypoxia was lost, and there were no significant changes in blood pressure in comparison to control animals. We conclude that the responses to hypoxia and vasomotor control short-term regulation of blood pressure are dissociated in terms of hypoxic response but integrated to generate an effector response to a given change in arterial pressure.
Collapse
Affiliation(s)
- Silvia V. Conde
- Faculdade de Ciências Médicas, Chronic Disease Research Center (CEDOC), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- *Correspondence: Silvia V. Conde,
| | - Joana F. Sacramento
- Faculdade de Ciências Médicas, Chronic Disease Research Center (CEDOC), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Bernardete F. Melo
- Faculdade de Ciências Médicas, Chronic Disease Research Center (CEDOC), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Rui Fonseca-Pinto
- ciTechCare, School of Health Sciences, Polytechnic of Leiria, Leiria, Portugal
| | | | - Maria P. Guarino
- Faculdade de Ciências Médicas, Chronic Disease Research Center (CEDOC), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- ciTechCare, School of Health Sciences, Polytechnic of Leiria, Leiria, Portugal
- Maria P. Guarino,
| |
Collapse
|
41
|
Abstract
The carotid body (CB) is a bilateral arterial chemoreceptor located in the carotid artery bifurcation with an essential role in cardiorespiratory homeostasis. It is composed of highly perfused cell clusters, or glomeruli, innervated by sensory fibers. Glomus cells, the most abundant in each glomerulus, are neuron-like multimodal sensory elements able to detect and integrate changes in several physical and chemical parameters of the blood, in particular O2 tension, CO2 and pH, as well as glucose, lactate, or blood flow. Activation of glomus cells (e.g., during hypoxia or hypercapnia) stimulates the afferent fibers which impinge on brainstem neurons to elicit rapid compensatory responses (hyperventilation and sympathetic activation). This chapter presents an updated view of the structural organization of the CB and the mechanisms underlying the chemosensory responses of glomus cells, with special emphasis on the molecular processes responsible for acute O2 sensing. The properties of the glomus cell-sensory fiber synapse as well as the organization of CB output are discussed. The chapter includes the description of recently discovered CB stem cells and progenitor cells, and their role in CB growth during acclimatization to hypoxemia. Finally, the participation of the CB in the mechanisms of disease is briefly discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain; Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
42
|
xu C, Yu J. Pathophysiological Mechanisms of Hypertension Development Induced by Fructose Consumption. Food Funct 2022; 13:1702-1717. [DOI: 10.1039/d1fo03381f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the past several decades, there has been a dramatic increase in fructose consumption worldwide in parallel with epidemics of metabolic diseases. Accumulating evidence has suggested that excessive fructose consumption...
Collapse
|
43
|
Jendzjowsky NG, Roy A, Wilson RJA. Asthmatic allergen inhalation sensitises carotid bodies to lysophosphatidic acid. J Neuroinflammation 2021; 18:191. [PMID: 34465362 PMCID: PMC8408927 DOI: 10.1186/s12974-021-02241-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/17/2021] [Indexed: 11/10/2022] Open
Abstract
The carotid bodies are multimodal sensors that regulate various autonomic reflexes. Recent evidence demonstrates their role in immune reflex regulation. Our previous studies using the allergen (ovalbumin) sensitised and exposed Brown Norway rat model of asthma suggest that carotid bodies mediate asthmatic bronchoconstriction through a lysophosphatidic acid (LPA) receptor (LPAr)-protein kinase C epsilon (PKCε)-transient receptor potential vanilloid one channel (TRPV1) pathway. Whilst naïve carotid bodies respond to LPA, whether their response to LPA is enhanced in asthma is unknown. Here, we show that asthmatic sensitisation of Brown Norway rats involving repeated aerosolised allergen challenges over 6 days, results in an augmentation of the carotid bodies' acute sensitivity to LPA. Increased expression of LPAr in the carotid bodies and petrosal ganglia likely contributed to this sensitivity. Importantly, allergen sensitisation of the carotid bodies to LPA did not alter their hypoxic response, nor did hypoxia augment LPA sensitivity acutely. Our data demonstrate the ability of allergens to sensitise the carotid bodies, highlighting the likely role of the carotid bodies and blood-borne inflammatory mediators in asthma.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Department of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Rm 209 Martin Research Building, 1124 West Carson Street, Torrance, CA, 90502, USA.
| | - Arijit Roy
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Rm 203 Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Rm 203 Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
44
|
Griffiths PR, Lolait SJ, Paton JFR, O'Carroll AM. Circumventricular Organ Apelin Receptor Knockdown Decreases Blood Pressure and Sympathetic Drive Responses in the Spontaneously Hypertensive Rat. Front Physiol 2021; 12:711041. [PMID: 34421653 PMCID: PMC8373520 DOI: 10.3389/fphys.2021.711041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
The central site(s) mediating the cardiovascular actions of the apelin-apelin receptor (APJ) system remains a major question. We hypothesized that the sensory circumventricular organs (CVOs), interfacing between the circulation and deeper brain structures, are sites where circulating apelin acts as a signal in the central nervous system to decrease blood pressure (BP). We show that APJ gene (aplnr) expression was elevated in the CVOs of spontaneously hypertensive rats (SHRs) compared to normotensive Wistar Kyoto (WKY) controls, and that there was a greater mean arterial BP (MABP) decrease following microinjection of [Pyr1]apelin-13 to the CVOs of SHRs compared to WKY rats. Lentiviral APJ-specific-shRNA (LV-APJ-shRNA) was used to knockdown aplnr expression, both collectively in three CVOs and discretely in individual CVOs, of rats implanted with radiotelemeters to measure arterial pressure. LV-APJ-shRNA-injection decreased aplnr expression in the CVOs and abolished MABP responses to microinjection of [Pyr1]apelin-13. Chronic knockdown of aplnr in any of the CVOs, collectively or individually, did not affect basal MABP in SHR or WKY rats. Moreover, knockdown of aplnr in any of the CVOs individually did not affect the depressor response to systemic [Pyr1]apelin-13. By contrast, multiple knockdown of aplnr in the three CVOs reduced acute cardiovascular responses to peripheral [Pyr1]apelin-13 administration in SHR but not WKY rats. These results suggest that endogenous APJ activity in the CVOs has no effect on basal BP but that functional APJ in the CVOs is required for an intact cardiovascular response to peripherally administered apelin in the SHR.
Collapse
Affiliation(s)
- Philip R Griffiths
- Faculty of Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Stephen J Lolait
- Faculty of Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Faculty of Biomedical Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Anne-Marie O'Carroll
- Faculty of Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
45
|
Jama HA, Muralitharan RR, Xu C, O'Donnell JA, Bertagnolli M, Broughton BRS, Head GA, Marques FZ. Rodent models of hypertension. Br J Pharmacol 2021; 179:918-937. [PMID: 34363610 DOI: 10.1111/bph.15650] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
Abstract
Elevated blood pressure (BP), or hypertension, is the main risk factor for cardiovascular disease. As a multifactorial and systemic disease that involves multiple organs and systems, hypertension remains a challenging disease to study. Models of hypertension are invaluable to support the discovery of the specific genetic, cellular and molecular mechanisms underlying essential hypertension, as well as to test new possible treatments to lower BP. Rodent models have proven to be an invaluable tool for advancing the field. In this review, we discuss the strengths and weaknesses of rodent models of hypertension through a systems approach. We highlight the ways how target organs and systems including the kidneys, vasculature, the sympathetic nervous system (SNS), immune system and the gut microbiota influence BP in each rodent model. We also discuss often overlooked hypertensive conditions such as pulmonary hypertension and hypertensive-pregnancy disorders, providing an important resource for researchers.
Collapse
Affiliation(s)
- Hamdi A Jama
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia.,Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia.,Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Chudan Xu
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia
| | - Mariane Bertagnolli
- Laboratory of Maternal-child Health, Hospital Sacre-Coeur Research Center, CIUSSS Nord-de-l'Île-de-Montréal, Montreal, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Canada
| | - Bradley R S Broughton
- Department of Pharmacology, Biomedicine Discovery Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Geoffrey A Head
- Department of Pharmacology, Biomedicine Discovery Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia.,Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia.,Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
46
|
Kim LJ, Shin MK, Pho H, Otvos L, Tufik S, Andersen ML, Pham LV, Polotsky VY. Leptin Receptor Blockade Attenuates Hypertension, but Does Not Affect Ventilatory Response to Hypoxia in a Model of Polygenic Obesity. Front Physiol 2021; 12:688375. [PMID: 34276408 PMCID: PMC8283021 DOI: 10.3389/fphys.2021.688375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background Obesity can cause hypertension and exacerbates sleep-disordered breathing (SDB). Leptin is an adipocyte-produced hormone, which increases metabolic rate, suppresses appetite, modulates control of breathing, and increases blood pressure. Obese individuals with high circulating levels of leptin are resistant to metabolic and respiratory effects of leptin, but they appear to be sensitive to hypertensive effects of this hormone. Obesity-induced hypertension has been associated with hyperleptinemia. New Zealand obese (NZO) mice, a model of polygenic obesity, have high levels of circulating leptin and hypertension, and are prone to develop SDB, similarly to human obesity. We hypothesize that systemic leptin receptor blocker Allo-aca will treat hypertension in NZO mice without any effect on body weight, food intake, or breathing. Methods Male NZO mice, 12–13 weeks of age, were treated with Allo-aca (n = 6) or a control peptide Gly11 (n = 12) for 8 consecutive days. Doses of 0.2 mg/kg were administered subcutaneously 2×/day, at 10 AM and 6 PM. Blood pressure was measured by telemetry for 48 h before and during peptide infusion. Ventilation was assessed by whole-body barometric plethysmography, control of breathing was examined by assessing the hypoxic ventilatory response (HVR), and polysomnography was performed during light-phase at baseline and during treatment. Heart rate variability analyses were performed to estimate the cardiac autonomic balance. Results Systemic leptin receptor blockade with Allo-aca did not affect body weight, body temperature, and food intake in NZO mice. Plasma levels of leptin did not change after the treatment with either Allo-aca or the control peptide Gy11. NZO mice were hypertensive at baseline and leptin receptor blocker Allo-aca significantly reduced the mean arterial pressure from 134.9 ± 3.1 to 124.9 ± 5.7 mmHg during the light phase (P < 0.05), whereas the control peptide had no effect. Leptin receptor blockade did not change the heart rate or cardiac autonomic balance. Allo-aca did not affect minute ventilation under normoxic or hypoxic conditions and HVR. Ventilation, apnea index, and oxygen desaturation during NREM and REM sleep did not change with leptin receptor blockade. Conclusion Systemic leptin receptor blockade attenuates hypertension in NZO mice, but does not exacerbate obesity and SDB. Thus, leptin receptor blockade represents a potential pharmacotherapy for obesity-associated hypertension.
Collapse
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laszlo Otvos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary.,Arrevus, Inc., Raleigh, NC, United States.,OLPE, LLC, Audubon, PA, United States
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
47
|
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 2021; 101:1177-1235. [PMID: 33570461 PMCID: PMC8526340 DOI: 10.1152/physrev.00039.2019] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, and Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mark W Chapleau
- Department of Internal Medicine, University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
48
|
Mitochondrial Succinate Metabolism and Reactive Oxygen Species Are Important but Not Essential for Eliciting Carotid Body and Ventilatory Responses to Hypoxia in the Rat. Antioxidants (Basel) 2021; 10:antiox10060840. [PMID: 34070267 PMCID: PMC8225218 DOI: 10.3390/antiox10060840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 01/31/2023] Open
Abstract
Reflex increases in breathing in response to acute hypoxia are dependent on activation of the carotid body (CB)—A specialised peripheral chemoreceptor. Central to CB O2-sensing is their unique mitochondria but the link between mitochondrial inhibition and cellular stimulation is unresolved. The objective of this study was to evaluate if ex vivo intact CB nerve activity and in vivo whole body ventilatory responses to hypoxia were modified by alterations in succinate metabolism and mitochondrial ROS (mitoROS) generation in the rat. Application of diethyl succinate (DESucc) caused concentration-dependent increases in chemoafferent frequency measuring approximately 10–30% of that induced by severe hypoxia. Inhibition of mitochondrial succinate metabolism by dimethyl malonate (DMM) evoked basal excitation and attenuated the rise in chemoafferent activity in hypoxia. However, approximately 50% of the response to hypoxia was preserved. MitoTEMPO (MitoT) and 10-(6′-plastoquinonyl) decyltriphenylphosphonium (SKQ1) (mitochondrial antioxidants) decreased chemoafferent activity in hypoxia by approximately 20–50%. In awake animals, MitoT and SKQ1 attenuated the rise in respiratory frequency during hypoxia, and SKQ1 also significantly blunted the overall hypoxic ventilatory response (HVR) by approximately 20%. Thus, whilst the data support a role for succinate and mitoROS in CB and whole body O2-sensing in the rat, they are not the sole mediators. Treatment of the CB with mitochondrial selective antioxidants may offer a new approach for treating CB-related cardiovascular–respiratory disorders.
Collapse
|
49
|
Moraes DJA, da Silva MP, de Souza DP, Felintro V, Paton JFR. Heightened respiratory-parasympathetic coupling to airways in the spontaneously hypertensive rat. J Physiol 2021; 599:3237-3252. [PMID: 33873234 DOI: 10.1113/jp280981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Carotid body (CB) chemoreceptors are hyperactive in hypertension, and their acute activation produces bronchoconstriction. We show that the respiratory-modulated bronchiolar tone, pulmonary parasympathetic efferent activity, and the firing frequency and synaptic excitation of bronchoconstrictor motoneurones in the nucleus ambiguus were all enhanced in spontaneous hypertensive (SH) rats. In SH rats, CB denervation reduced the respiratory-related parasympathetic-mediated bronchoconstrictor tone to levels seen in normotensive rats. Chemoreflex evoked bronchoconstrictor tone was heightened in SH versus normotensive rats. The intrinsic electrophysiological properties and morphology of bronchoconstrictor motoneurones were similar across rat strains. The heightened respiratory modulation of parasympathetic-mediated bronchoconstrictor tone to the airways in SH rats is caused by afferent drive from the CBs. ABSTRACT Much research has described heightened sympathetic activity in hypertension and diminished parasympathetic tone, especially to the heart. The carotid body (CB) chemoreceptors exhibit hyperreflexia and are hyperactive, providing excitatory drive to sympathetic networks in hypertension. Given that acute CB activation produces reflex evoked bronchoconstriction via activation of parasympathetic vagal efferents, we hypothesised that the parasympathetic bronchoconstrictor activity is enhanced in spontaneously hypertensive (SH) rats and that this is dependent on CB inputs. In situ preparations of Wistar and SH rats were used in which bronchiolar tone, the pulmonary branch of the vagus (pVN) and phrenic nerves were recorded simultaneously; whole cell patch clamp recordings of bronchoconstrictor vagal motoneurones were also made from the nucleus ambiguus. Bronchiolar tone, pVN and bronchoconstrictor motoneurones were respiratory modulated and this modulation was enhanced in SH rats. These differences were all eliminated after CB denervation. Stimulation of the CBs increased the phrenic frequency that caused a summation of the respiratory-related increases in pVN, resulting in the development of bronchoconstrictor tone. This tone was exaggerated in SH rats. The enhanced respiratory-parasympathetic coupling to airways in SH rats was not due to differences in the intrinsic electrophysiological properties of bronchoconstrictor motoneurones but reflected heightened pre-inspiratory- and inspiratory-related synaptic drive. In summary, in SH rats the phasic respiratory modulation of parasympathetic tone to the airways is elevated and the greater development of this bronchoconstrictor tone is caused by the heightened afferent drive originating from the CBs. Thus, targeting the CBs may prove effective for increasing lower airway patency.
Collapse
Affiliation(s)
- Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniel P de Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Viviane Felintro
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Julian F R Paton
- Department of Physiology, Cardiovascular Autonomic Research Cluster, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
50
|
Bardsley EN, Pen DK, McBryde FD, Ford AP, Paton JFR. The inevitability of ATP as a transmitter in the carotid body. Auton Neurosci 2021; 234:102815. [PMID: 33993068 DOI: 10.1016/j.autneu.2021.102815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/10/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Atmospheric oxygen concentrations rose markedly at several points in evolutionary history. Each of these increases was followed by an evolutionary leap in organismal complexity, and thus the cellular adaptions we see today have been shaped by the levels of oxygen within our atmosphere. In eukaryotic cells, oxygen is essential for the production of adenosine 5'-triphosphate (ATP) which is the 'Universal Energy Currency' of life. Aerobic organisms survived by evolving precise mechanisms for converting oxygen within the environment into energy. Higher mammals developed specialised organs for detecting and responding to changes in oxygen content to maintain gaseous homeostasis for survival. Hypoxia is sensed by the carotid bodies, the primary chemoreceptor organs which utilise multiple neurotransmitters one of which is ATP to evoke compensatory reflexes. Yet, a paradox is presented in oxygen sensing cells of the carotid body when during periods of low oxygen, ATP is seemingly released in abundance to transmit this signal although the synthesis of ATP is theoretically halted because of its dependence on oxygen. We propose potential mechanisms to maintain ATP production in hypoxia and summarise recent data revealing elevated sensitivity of purinergic signalling within the carotid body during conditions of sympathetic overactivity and hypertension. We propose the carotid body is hypoxic in numerous chronic cardiovascular and respiratory diseases and highlight the therapeutic potential for modulating purinergic transmission.
Collapse
Affiliation(s)
- Emma N Bardsley
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand
| | - Dylan K Pen
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand
| | - Fiona D McBryde
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand
| | - Anthony P Ford
- CuraSen, 930 Brittan Avenue #306, San Carlos, CA 94070, USA
| | - Julian F R Paton
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand.
| |
Collapse
|