1
|
Keenen MM, Yang L, Liang H, Farmer VJ, Worota RE, Singh R, Gladfelter AS, Coyne CB. Comparative analysis of the syncytiotrophoblast in placenta tissue and trophoblast organoids using snRNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.01.601571. [PMID: 39005304 PMCID: PMC11244908 DOI: 10.1101/2024.07.01.601571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The outer surface of chorionic villi in the human placenta consists of a single multinucleated cell called the syncytiotrophoblast (STB). The unique cellular ultrastructure of the STB presents challenges in deciphering its gene expression signature at the single-cell level, as the STB contains billions of nuclei in a single cell. There are many gaps in understanding the molecular mechanisms and developmental trajectories involved in STB formation and differentiation. To identify the underlying control of the STB, we performed comparative single nucleus (SN) and single cell (SC) RNA sequencing on placental tissue and tissue-derived trophoblast organoids (TOs). We found that SN RNA sequencing was essential to capture the STB population from both tissue and TOs. Differential gene expression and pseudotime analysis of TO-derived STB identified three distinct nuclear subtypes reminiscent of those recently identified in vivo . These included a juvenile nuclear population that exhibited both CTB and STB marker expression, a population enriched in genes involved in oxygen sensing, and finally a subtype enriched in transport and GTPase signaling molecules. Notably, suspension culture conditions of TOs that restore the native orientation of the STB (STB out ) showed elevated expression of canonical STB markers and pregnancy hormones, along with a greater proportion of the STB nucleus subtype specializing in transport and GTPase signaling, compared to those cultivated with an inverted STB polarity (STB in ). Gene regulatory analysis identified novel markers of STB differentiation conserved in tissue and TOs, including the chromatin remodeler RYBP, that exhibited STB-specific RNA and protein expression. CRISPR/Cas9 knockout of RYBP in STB in TOs did not impact cell-cell fusion; however, bulk RNA sequencing revealed downregulation of the pregnancy hormone CSH1 and upregulation of multiple genes associated with the oxygen-sensing STB nuclear subtype. Finally, we compared STB gene expression signatures amongst first trimester tissue, full-term tissue, and TOs, identifying many commonalities but also notable variability across each sample type. This indicates that STB gene expression is responsive to its environmental context. Our findings emphasize the utility of TOs to accurately model STB differentiation and the distinct nuclear subtypes observed in vivo , offering a versatile platform for unraveling the molecular mechanisms governing STB functions in placental biology and disease.
Collapse
|
2
|
Hu Y, Li X, Guo Q, Huang L, Bai H, Chang G. Genome Sequencing Reveals the Adaptation of Chickens to High Altitudes in Different Regions. Animals (Basel) 2025; 15:265. [PMID: 39858266 PMCID: PMC11758342 DOI: 10.3390/ani15020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Altitudinal adaptation is a key factor in species formation and leads to increased species diversity. Chickens are one of the most widely distributed and important domesticated species, making them ideal models for studying the evolution of altitudinal adaptation. Therefore, we downloaded and analyzed the total genome data of 160 individual chickens from seven sampling regions at two different altitudes (>3000 m and <600 m). In total, 21,672,487 high-quality single-nucleotide polymorphisms were selected and used for subsequent analyses. First, we interpreted the genetic relationships among chickens from different sampling regions using a neighbor-joining tree, population structure, and four dimensionality reduction methods. We found that 38 genes were significantly associated with altitudinal adaptations by FST and θπ. Functional annotation of the genes showed that they are primarily involved in energy metabolism, ion channel activity, and blood pressure regulation. Our results provide evidence of genetic diversity among different chicken breeds and reveal the mechanisms of adaptation to high altitudes.
Collapse
Affiliation(s)
- Yizhou Hu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.H.); (X.L.); (Q.G.); (L.H.)
| | - Xing Li
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.H.); (X.L.); (Q.G.); (L.H.)
| | - Qixin Guo
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.H.); (X.L.); (Q.G.); (L.H.)
| | - Lan Huang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.H.); (X.L.); (Q.G.); (L.H.)
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China;
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.H.); (X.L.); (Q.G.); (L.H.)
| |
Collapse
|
3
|
Masi S, Dalpiaz H, Borghi C. Gene editing of angiotensin for blood pressure management. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2024; 23:200323. [PMID: 39258007 PMCID: PMC11382036 DOI: 10.1016/j.ijcrp.2024.200323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
Arterial hypertension has remained the world's leading cause of morbidity and mortality for more than 20 years. While early Genome-Wide Association Studies raised the hypothesis that a precision medicine approach could be implemented in the treatment of hypertension, the large number of single nucleotide polymorphisms that were found to be associated with blood pressure and their limited impact on the blood pressure values have initially hampered these expectations. With the development and refinement of gene-editing and RNA-based approaches allowing selective and organ-specific modulation of critical systems involved in blood pressure regulation, a renewed interest in genetic treatments for hypertension has emerged. The CRISPR-Cas9 system, antisense oligonucleotides (ASO) and small interfering RNA (siRNA) have been used to specifically target the hepatic angiotensinogen (AGT) production, with the scope of safely but effectively reducing the activation of the renin-angiotensin system, ultimately leading to an effective reduction of the blood pressure with extremely simplified treatment regimens that involve weekly, monthly or even once-in-life injection of the drugs. Among the various approaches, siRNA and ASO that reduce hepatic AGT production are in advanced development, with phase I and II clinical trials showing their safety and effectiveness. In the current manuscript, we review the mode of action of these new approaches to hypertension treatment, discussing the results of the clinical trials and their potential to revolutionize the management of hypertension.
Collapse
Affiliation(s)
- Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Hermann Dalpiaz
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Claudio Borghi
- Hypertension and Cardiovascular Disease Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40126, Bologna, Italy
- Cardiovascular Medicine Unit, Heart-Chest-Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126, Bologna, Italy
| |
Collapse
|
4
|
Bai X, Zhu Q, Combs M, Wabitsch M, Mack CP, Taylor JM. GRAF1 deficiency leads to defective brown adipose tissue differentiation and thermogenic response. Sci Rep 2024; 14:28692. [PMID: 39562682 PMCID: PMC11577055 DOI: 10.1038/s41598-024-79301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Adipose tissue, which is crucial for the regulation of energy within the body, contains both white and brown adipocytes. White adipose tissue (WAT) primarily stores energy, while brown adipose tissue (BAT) plays a critical role in energy dissipation as heat, offering potential for therapies aimed at enhancing metabolic health. Regulation of the RhoA/ROCK pathway is crucial for appropriate specification, differentiation and maturation of both white and brown adipocytes. However, our knowledge of how this pathway is controlled within specific adipose depots remains unclear, and to date a RhoA regulator that selectively controls adipocyte browning has not been identified. Our study shows that GRAF1, a RhoGAP, is highly expressed in metabolically active tissues, and closely correlates with brown adipocyte differentiation in culture and in vivo. Mice with either global or adipocyte-specific GRAF1 deficiency exhibit impaired BAT maturation and compromised cold-induced thermogenesis. Moreover, defects in differentiation of human GRAF1-deficient brown preadipocytes can be rescued by treatment with a Rho kinase inhibitor. Collectively, these studies indicate that GRAF1 can selectively induce brown adipocyte differentiation and suggest that manipulating GRAF1 activity may hold promise for the future treatment of diseases related to metabolic dysfunction.
Collapse
Affiliation(s)
- Xue Bai
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Qiang Zhu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Matthew Combs
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075, Ulm, Germany
| | - Christopher P Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- McAllister Heart Institute, University of North Carolina, 160 North Medical Drive, 501 Brinkhous-Bullitt, CB# 7525, Chapel Hill, NC, 27599, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, University of North Carolina, 160 North Medical Drive, 501 Brinkhous-Bullitt, CB# 7525, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
5
|
Hodonsky CJ, Turner AW, Khan MD, Barrientos NB, Methorst R, Ma L, Lopez NG, Mosquera JV, Auguste G, Farber E, Ma WF, Wong D, Onengut-Gumuscu S, Kavousi M, Peyser PA, van der Laan SW, Leeper NJ, Kovacic JC, Björkegren JLM, Miller CL. Multi-ancestry genetic analysis of gene regulation in coronary arteries prioritizes disease risk loci. CELL GENOMICS 2024; 4:100465. [PMID: 38190101 PMCID: PMC10794848 DOI: 10.1016/j.xgen.2023.100465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/07/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
Genome-wide association studies (GWASs) have identified hundreds of risk loci for coronary artery disease (CAD). However, non-European populations are underrepresented in GWASs, and the causal gene-regulatory mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and haplotypes to identify quantitative trait loci for expression (eQTLs) and splicing (sQTLs) in coronary arteries from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47% were previously unreported in coronary artery; 19% exhibited cell-type-specific expression. Colocalization revealed subgroups of eGenes unique to CAD and blood pressure GWAS. Fine-mapping highlighted additional eGenes, including TBX20 and IL5. We also identified sQTLs for 1,690 genes, among which TOR1AIP1 and ULK3 sQTLs demonstrated the importance of evaluating splicing to accurately identify disease-relevant isoform expression. Our work provides a patient-derived coronary artery eQTL resource and exemplifies the need for diverse study populations and multifaceted approaches to characterize gene regulation in disease processes.
Collapse
Affiliation(s)
- Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Mohammad Daud Khan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Nelson B Barrientos
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ruben Methorst
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicolas G Lopez
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Jose Verdezoto Mosquera
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Feng Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48019, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Nicholas J Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
6
|
Bai X, Zhu Q, Combs M, Wabitsch M, Mack CP, Taylor JM. GRAF1 Regulates Brown and Beige Adipose Differentiation and Function. RESEARCH SQUARE 2023:rs.3.rs-3740465. [PMID: 38196614 PMCID: PMC10775368 DOI: 10.21203/rs.3.rs-3740465/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Adipose tissue, which is crucial for the regulation of energy within the body, contains both white and brown adipocytes. White adipose tissue (WAT) primarily stores energy, while brown adipose tissue (BAT) plays a critical role in energy dissipation as heat, offering potential for therapies aimed at enhancing metabolic health. Regulation of the RhoA/ROCK pathway is crucial for appropriate specification, differentiation and maturation of both white and brown adipocytes. However, our knowledge of how this pathway is controlled within specific adipose depots remains unclear, and to date a RhoA regulator that selectively controls adipocyte browning has not been identified. Our study shows that expression of GRAF1, a RhoGAP highly expressed in metabolically active tissues, closely correlates with brown adipocyte differentiation in culture and in vivo. Mice with either global or adipocyte-specific GRAF1 deficiency exhibit impaired BAT maturation, reduced capacity for WAT browning, and compromised cold-induced thermogenesis. Moreover, defects in differentiation of mouse or human GRAF1-deficient brown preadipocytes can be rescued by treatment with a Rho kinase inhibitor. Collectively, these studies indicate that GRAF1 can selectively induce brown and beige adipocyte differentiation and suggest that manipulating GRAF1 activity may hold promise for the future treatment of diseases related to metabolic dysfunction.
Collapse
Affiliation(s)
- Xue Bai
- University of North Carolina at Chapel Hill
| | - Qiang Zhu
- University of North Carolina at Chapel Hill
| | | | | | | | | |
Collapse
|
7
|
Honigberg MC, Truong B, Khan RR, Xiao B, Bhatta L, Vy HMT, Guerrero RF, Schuermans A, Selvaraj MS, Patel AP, Koyama S, Cho SMJ, Vellarikkal SK, Trinder M, Urbut SM, Gray KJ, Brumpton BM, Patil S, Zöllner S, Antopia MC, Saxena R, Nadkarni GN, Do R, Yan Q, Pe'er I, Verma SS, Gupta RM, Haas DM, Martin HC, van Heel DA, Laisk T, Natarajan P. Polygenic prediction of preeclampsia and gestational hypertension. Nat Med 2023; 29:1540-1549. [PMID: 37248299 PMCID: PMC10330886 DOI: 10.1038/s41591-023-02374-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Preeclampsia and gestational hypertension are common pregnancy complications associated with adverse maternal and child outcomes. Current tools for prediction, prevention and treatment are limited. Here we tested the association of maternal DNA sequence variants with preeclampsia in 20,064 cases and 703,117 control individuals and with gestational hypertension in 11,027 cases and 412,788 control individuals across discovery and follow-up cohorts using multi-ancestry meta-analysis. Altogether, we identified 18 independent loci associated with preeclampsia/eclampsia and/or gestational hypertension, 12 of which are new (for example, MTHFR-CLCN6, WNT3A, NPR3, PGR and RGL3), including two loci (PLCE1 and FURIN) identified in the multitrait analysis. Identified loci highlight the role of natriuretic peptide signaling, angiogenesis, renal glomerular function, trophoblast development and immune dysregulation. We derived genome-wide polygenic risk scores that predicted preeclampsia/eclampsia and gestational hypertension in external cohorts, independent of clinical risk factors, and reclassified eligibility for low-dose aspirin to prevent preeclampsia. Collectively, these findings provide mechanistic insights into the hypertensive disorders of pregnancy and have the potential to advance pregnancy risk stratification.
Collapse
Affiliation(s)
- Michael C Honigberg
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Buu Truong
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Raiyan R Khan
- Department of Computer Science, Columbia University, New York, NY, USA
| | - Brenda Xiao
- University of Pennsylvania, Philadelphia, PA, USA
| | - Laxmi Bhatta
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
| | - Ha My T Vy
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafael F Guerrero
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Art Schuermans
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Margaret Sunitha Selvaraj
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Aniruddh P Patel
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Satoshi Koyama
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - So Mi Jemma Cho
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Seoul, Republic of Korea
| | - Shamsudheen Karuthedath Vellarikkal
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mark Trinder
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah M Urbut
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kathryn J Gray
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ben M Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
| | - Snehal Patil
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sebastian Zöllner
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Mariah C Antopia
- Department of Integrative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Richa Saxena
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Itsik Pe'er
- Department of Computer Science, Columbia University, New York, NY, USA
| | | | - Rajat M Gupta
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - David M Haas
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hilary C Martin
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - David A van Heel
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Pradeep Natarajan
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
8
|
Zou M, Mangum KD, Magin JC, Cao HH, Yarboro MT, Shelton EL, Taylor JM, Reese J, Furey TS, Mack CP. Prdm6 drives ductus arteriosus closure by promoting ductus arteriosus smooth muscle cell identity and contractility. JCI Insight 2023; 8:e163454. [PMID: 36749647 PMCID: PMC10077476 DOI: 10.1172/jci.insight.163454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Based upon our demonstration that the smooth muscle cell-selective (SMC-selective) putative methyltransferase, Prdm6, interacts with myocardin-related transcription factor-A, we examined Prdm6's role in SMCs in vivo using cell type-specific knockout mouse models. Although SMC-specific depletion of Prdm6 in adult mice was well tolerated, Prdm6 depletion in Wnt1-expressing cells during development resulted in perinatal lethality and a completely penetrant patent ductus arteriosus (DA) phenotype. Lineage tracing experiments in Wnt1Cre2 Prdm6fl/fl ROSA26LacZ mice revealed normal neural crest-derived SMC investment of the outflow tract. In contrast, myography measurements on DA segments isolated from E18.5 embryos indicated that Prdm6 depletion significantly reduced DA tone and contractility. RNA-Seq analyses on DA and ascending aorta samples at E18.5 identified a DA-enriched gene program that included many SMC-selective contractile associated proteins that was downregulated by Prdm6 depletion. Chromatin immunoprecipitation-sequencing experiments in outflow tract SMCs demonstrated that 50% of the genes Prdm6 depletion altered contained Prdm6 binding sites. Finally, using several genome-wide data sets, we identified an SMC-selective enhancer within the Prdm6 third intron that exhibited allele-specific activity, providing evidence that rs17149944 may be the causal SNP for a cardiovascular disease GWAS locus identified within the human PRDM6 gene.
Collapse
Affiliation(s)
- Meng Zou
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin D. Mangum
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin C. Magin
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heidi H. Cao
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael T. Yarboro
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elaine L. Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joan M. Taylor
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeff Reese
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Terrence S. Furey
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher P. Mack
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Hodonsky CJ, Turner AW, Khan MD, Barrientos NB, Methorst R, Ma L, Lopez NG, Mosquera JV, Auguste G, Farber E, Ma WF, Wong D, Onengut-Gumuscu S, Kavousi M, Peyser PA, van der Laan SW, Leeper NJ, Kovacic JC, Björkegren JLM, Miller CL. Integrative multi-ancestry genetic analysis of gene regulation in coronary arteries prioritizes disease risk loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.09.23285622. [PMID: 36824883 PMCID: PMC9949190 DOI: 10.1101/2023.02.09.23285622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Genome-wide association studies (GWAS) have identified hundreds of genetic risk loci for coronary artery disease (CAD). However, non-European populations are underrepresented in GWAS and the causal gene-regulatory mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and haplotype information to identify quantitative trait loci (QTL) for gene expression and splicing in coronary arteries obtained from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47% were previously unreported in coronary arteries and 19% exhibited cell-type-specific expression. Colocalization analysis with GWAS identified subgroups of eGenes unique to CAD and blood pressure. Fine-mapping highlighted additional eGenes of interest, including TBX20 and IL5 . Splicing (s)QTLs for 1,690 genes were also identified, among which TOR1AIP1 and ULK3 sQTLs demonstrated the importance of evaluating splicing events to accurately identify disease-relevant gene expression. Our work provides the first human coronary artery eQTL resource from a patient sample and exemplifies the necessity of diverse study populations and multi-omic approaches to characterize gene regulation in critical disease processes. Study Design Overview
Collapse
|
10
|
Zhong H, Kong X, Zhang Y, Su Y, Zhang B, Zhu L, Chen H, Gou X, Zhang H. Microevolutionary mechanism of high-altitude adaptation in Tibetan chicken populations from an elevation gradient. Evol Appl 2022; 15:2100-2112. [PMID: 36540645 PMCID: PMC9753841 DOI: 10.1111/eva.13503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 12/23/2022] Open
Abstract
As an indigenous breed, the Tibetan chicken is found in highland regions and shows physiological adaptations to high altitude; however, the genetic changes that determine these adaptations remain elusive. We assumed that the microevolution of the Tibetan chicken occurred from lowland to highland regions with a continuous elevation range. In this study, we analyzed the genome of 188 chickens from lowland areas to the high-altitude regions of the Tibetan plateau with four altitudinal levels. Phylogenetic analysis revealed that Tibetan chickens are significantly different from other altitude chicken populations. Reconstruction of the demographic history showed that the migration and admixture events of the Tibetan chicken occurred at different times. The genome of the Tibetan chicken was also used to analyze positive selection pressure that is associated with high-altitude adaptation, revealing the well-known candidate gene that participates in oxygen binding (HBAD), as well as other novel potential genes (e.g., HRG and ANK2) that are related to blood coagulation and cardiovascular efficiency. Our study provides novel insights regarding the evolutionary history and microevolution mechanisms of the high-altitude adaptation in the Tibetan chicken.
Collapse
Affiliation(s)
- Hai‐An Zhong
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiao‐Yan Kong
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
- College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Ya‐Wen Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yan‐Kai Su
- Center for Computational GenomicsBeijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Li Zhu
- College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Hua Chen
- Center for Computational GenomicsBeijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Xiao Gou
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
11
|
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol 2022; 206:115321. [DOI: 10.1016/j.bcp.2022.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
|
12
|
Klevjer M, Nordeidet AN, Hansen AF, Madssen E, Wisløff U, Brumpton BM, Bye A. Genome-Wide Association Study Identifies New Genetic Determinants of Cardiorespiratory Fitness: The Trøndelag Health Study. Med Sci Sports Exerc 2022; 54:1534-1545. [PMID: 35482759 DOI: 10.1249/mss.0000000000002951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Low cardiorespiratory fitness (CRF) is a major risk factor for cardiovascular disease (CVD) and a stronger predictor of CVD morbidity and mortality than established risk factors. The genetic component of CRF, quantified as peak oxygen uptake (V̇O 2peak ), is estimated to be ~60%. Unfortunately, current studies on genetic markers for CRF have been limited by small sample sizes and using estimated CRF. To overcome these limitations, we performed a large-scale systematic screening for genetic variants associated with V̇O 2peak . METHODS A genome-wide association study was performed with BOLT-LMM including directly measured V̇O 2peak from 4525 participants in the HUNT3 Fitness study and 14 million single-nucleotide polymorphisms (SNP). For validation, similar analyses were performed in the United Kingdom Biobank (UKB), where CRF was assessed through a submaximal bicycle test, including ~60,000 participants and ~60 million SNP. Functional mapping and annotation of the genome-wide association study results was conducted using FUMA. RESULTS In HUNT, two genome-wide significant SNP associated with V̇O 2peak were identified in the total population, two in males, and 35 in females. Two SNP in the female population showed nominally significant association in the UKB. One of the replicated SNP is located in PIK3R5 , shown to be of importance for cardiac function and CVD. Bioinformatic analyses of the total and male population revealed candidate SNP in PPP3CA , previously associated with CRF. CONCLUSIONS We identified 38 novel SNP associated with V̇O 2peak in HUNT. Two SNP were nominally replicated in UKB. Several interesting genes emerged from the functional analyses, among them one previously reported to be associated with CVD and another with CRF.
Collapse
Affiliation(s)
| | - Ada N Nordeidet
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, NORWAY
| | - Ailin F Hansen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, NORWAY
| | | | | | - Ben M Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, NORWAY
| | | |
Collapse
|
13
|
Rho kinase inhibition ameliorates vascular remodeling and blood pressure elevations in a rat model of apatinib-induced hypertension. J Hypertens 2022; 40:675-684. [PMID: 34862331 PMCID: PMC8901036 DOI: 10.1097/hjh.0000000000003060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Hypertension is one of the major adverse effects of tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factors. However, the mechanism underlying TKIs-induced hypertension remains unclear. Here, we explored the role of the RhoA/Rho kinase (ROCK) signaling pathway in elevation of blood pressure (BP) induced by apatinib, a selective TKI approved in China for treatment of advanced or metastatic gastric cancer. A nonspecific ROCK inhibitor, Y27632, was then combined with apatinib and its efficacy in alleviating apatinib-induced hypertension was evaluated. METHODS Normotensive female Wistar-Kyoto rats were exposed to two different doses of apatinib, or apatinib combined with Y27632, or vehicle for 2 weeks. BP was monitored by a tail-cuff plethysmography system. The mRNA levels and protein expression in the RhoA/ROCK pathway were determined, and vascular remodeling assessed. RESULTS Administration of either a high or low dose of apatinib was associated with a rapid rise in BP, reaching a plateau after 12 days. Apatinib treatment mediated upregulation of RhoA and ROCK II in the mid-aorta, more significant in the high-dose group. However, ROCK I expression showed no statistically significant differences. Furthermore, the mRNA level of GRAF3 decreased dose-dependently. Apatinib administration was also associated with decreased levels of MLCP, and elevated endothelin-1 (ET-1) and collagen I, which were accompanied with increased mid-aortic media. However, treatment with Y27632 attenuated the above changes. CONCLUSION These findings suggest that activation of the RhoA/ROCK signaling pathway could be the underlying mechanism of apatinib-induced hypertension, while ROCK inhibitor have potential therapeutic value.
Collapse
|
14
|
Yeung MW, Wang S, van de Vegte YJ, Borisov O, van Setten J, Snieder H, Verweij N, Said MA, van der Harst P. Twenty-Five Novel Loci for Carotid Intima-Media Thickness: A Genome-Wide Association Study in >45 000 Individuals and Meta-Analysis of >100 000 Individuals. Arterioscler Thromb Vasc Biol 2022; 42:484-501. [PMID: 34852643 PMCID: PMC8939707 DOI: 10.1161/atvbaha.121.317007] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/22/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Carotid artery intima-media thickness (cIMT) is a widely accepted marker of subclinical atherosclerosis. Twenty susceptibility loci for cIMT were previously identified and the identification of additional susceptibility loci furthers our knowledge on the genetic architecture underlying atherosclerosis. APPROACH AND RESULTS We performed 3 genome-wide association studies in 45 185 participants from the UK Biobank study who underwent cIMT measurements and had data on minimum, mean, and maximum thickness. We replicated 15 known loci and identified 20 novel loci associated with cIMT at P<5×10-8. Seven novel loci (ZNF385D, ADAMTS9, EDNRA, HAND2, MYOCD, ITCH/EDEM2/MMP24, and MRTFA) were identified in all 3 phenotypes. An additional new locus (LOXL1) was identified in the meta-analysis of the 3 phenotypes. Sex interaction analysis revealed sex differences in 7 loci including a novel locus (SYNE3) in males. Meta-analysis of UK Biobank data with a previous meta-analysis led to identification of three novel loci (APOB, FIP1L1, and LOXL4). Transcriptome-wide association analyses implicated additional genes ARHGAP42, NDRG4, and KANK2. Gene set analysis showed an enrichment in extracellular organization and the PDGF (platelet-derived growth factor) signaling pathway. We found positive genetic correlations of cIMT with coronary artery disease rg=0.21 (P=1.4×10-7), peripheral artery disease rg=0.45 (P=5.3×10-5), and systolic blood pressure rg=0.30 (P=4.0×10-18). A negative genetic correlation between average of maximum cIMT and high-density lipoprotein was found rg=-0.12 (P=7.0×10-4). CONCLUSIONS Genome-wide association meta-analyses in >100 000 individuals identified 25 novel loci associated with cIMT providing insights into genes and tissue-specific regulatory mechanisms of proatherosclerotic processes. We found evidence for shared biological mechanisms with cardiovascular diseases.
Collapse
Affiliation(s)
- Ming Wai Yeung
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Siqi Wang
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
- Department of Epidemiology (S.W., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, the Netherlands (M.W.Y., J.v.S., P.v.d.H.)
| | - Yordi J. van de Vegte
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Germany (O.B.)
| | - Jessica van Setten
- Department of Epidemiology (S.W., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology (S.W., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Niek Verweij
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - M. Abdullah Said
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Pim van der Harst
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, the Netherlands (M.W.Y., J.v.S., P.v.d.H.)
| |
Collapse
|
15
|
Fine-mapping of intracranial aneurysm susceptibility based on a genome-wide association study. Sci Rep 2022; 12:2717. [PMID: 35177760 PMCID: PMC8854430 DOI: 10.1038/s41598-022-06755-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/04/2022] [Indexed: 12/22/2022] Open
Abstract
In addition to conventional genome-wide association studies (GWAS), a fine-mapping analysis is increasingly used to identify the genetic function of variants associated with disease susceptibilities. Here, we used a fine-mapping approach to evaluate candidate variants based on a previous GWAS involving patients with intracranial aneurysm (IA). A fine-mapping analysis was conducted based on the chromosomal data provided by a GWAS of 250 patients diagnosed with IA and 296 controls using posterior inclusion probability (PIP) and log10 transformed Bayes factor (log10BF). The narrow sense of heritability (h2) explained by each candidate variant was estimated. Subsequent gene expression and functional network analyses of candidate genes were used to calculate transcripts per million (TPM) values. Twenty single-nucleotide polymorphisms (SNPs) surpassed a genome-wide significance threshold for creditable evidence (log10BF > 6.1). Among them, four SNPs, rs75822236 (GBA; log10BF = 15.06), rs112859779 (TCF24; log10BF = 12.12), rs79134766 (OLFML2A; log10BF = 14.92), and rs371331393 (ARHGAP32; log10BF = 20.88) showed a completed PIP value in each chromosomal region, suggesting a higher probability of functional candidate variants associated with IA. On the contrary, these associations were not shown clearly under different replication sets. Our fine-mapping analysis suggested that four functional candidate variants of GBA, TCF24, OLFML2A, and ARHGAP32 were linked to IA susceptibility and pathogenesis. However, this approach could not completely replace replication sets based on large-scale data. Thus, caution is required when interpreting results of fine-mapping analysis.
Collapse
|
16
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
17
|
Regulation of myosin light-chain phosphorylation and its roles in cardiovascular physiology and pathophysiology. Hypertens Res 2022; 45:40-52. [PMID: 34616031 DOI: 10.1038/s41440-021-00733-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/19/2021] [Accepted: 07/08/2021] [Indexed: 01/22/2023]
Abstract
The regulation of muscle contraction is a critical function in the cardiovascular system, and abnormalities may be life-threatening or cause illness. The common basic mechanism in muscle contraction is the interaction between the protein filaments myosin and actin. Although this interaction is primarily regulated by intracellular Ca2+, the primary targets and intracellular signaling pathways differ in vascular smooth muscle and cardiac muscle. Phosphorylation of the myosin regulatory light chain (RLC) is a primary molecular switch for smooth muscle contraction. The equilibrium between phosphorylated and unphosphorylated RLC is dynamically achieved through two enzymes, myosin light chain kinase, a Ca2+-dependent enzyme, and myosin phosphatase, which modifies the Ca2+ sensitivity of contractions. In cardiac muscle, the primary target protein for Ca2+ is troponin C on thin filaments; however, RLC phosphorylation also plays a modulatory role in contraction. This review summarizes recent advances in our understanding of the regulation, physiological function, and pathophysiological involvement of RLC phosphorylation in smooth and cardiac muscles.
Collapse
|
18
|
Olczak KJ, Taylor-Bateman V, Nicholls HL, Traylor M, Cabrera CP, Munroe PB. Hypertension genetics past, present and future applications. J Intern Med 2021; 290:1130-1152. [PMID: 34166551 DOI: 10.1111/joim.13352] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Essential hypertension is a complex trait where the underlying aetiology is not completely understood. Left untreated it increases the risk of severe health complications including cardiovascular and renal disease. It is almost 15 years since the first genome-wide association study for hypertension, and after a slow start there are now over 1000 blood pressure (BP) loci explaining ∼6% of the single nucleotide polymorphism-based heritability. Success in discovery of hypertension genes has provided new pathological insights and drug discovery opportunities and translated to the development of BP genetic risk scores (GRSs), facilitating population disease risk stratification. Comparing highest and lowest risk groups shows differences of 12.9 mm Hg in systolic-BP with significant differences in risk of hypertension, stroke, cardiovascular disease and myocardial infarction. GRSs are also being trialled in antihypertensive drug responses. Drug targets identified include NPR1, for which an agonist drug is currently in clinical trials. Identification of variants at the PHACTR1 locus provided insights into regulation of EDN1 in the endothelin pathway, which is aiding the development of endothelin receptor EDNRA antagonists. Drug re-purposing opportunities, including SLC5A1 and canagliflozin (a type-2 diabetes drug), are also being identified. In this review, we present key studies from the past, highlight current avenues of research and look to the future focusing on gene discovery, epigenetics, gene-environment interactions, GRSs and drug discovery. We evaluate limitations affecting BP genetics, including ancestry bias and discuss streamlining of drug target discovery and applications for treating and preventing hypertension, which will contribute to tailored precision medicine for patients.
Collapse
Affiliation(s)
- Kaya J Olczak
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Victoria Taylor-Bateman
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hannah L Nicholls
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthew Traylor
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Claudia P Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,NIHR Barts Biomedical Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,NIHR Barts Biomedical Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
19
|
Liao KA, Rangarajan KV, Bai X, Taylor JM, Mack CP. The actin depolymerizing factor destrin serves as a negative feedback inhibitor of smooth muscle cell differentiation. Am J Physiol Heart Circ Physiol 2021; 321:H893-H904. [PMID: 34559579 DOI: 10.1152/ajpheart.00142.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that several components of the RhoA signaling pathway control smooth muscle cell (SMC) phenotype by altering serum response factor (SRF)-dependent gene expression. Because our genome-wide analyses of chromatin structure and transcription factor binding suggested that the actin depolymerizing factor, destrin (DSTN), was regulated in a SMC-selective fashion, the goals of the current study were to identify the transcription mechanisms that control DSTN expression in SMC and to test whether it regulates SMC function. Immunohistochemical analyses revealed strong and at least partially SMC-selective expression of DSTN in many mouse tissues, a result consistent with human data from the genotype-tissue expression (GTEx) consortium. We identified several regulatory regions that control DSTN expression including a SMC-selective enhancer that was activated by myocardin-related transcription factor-A (MRTF-A), recombination signal binding protein for immunoglobulin κ-J region (RBPJ), and the SMAD transcription factors. Indeed, enhancer activity and endogenous DSTN expression were upregulated by RhoA and transforming growth factor-β (TGF-β) signaling and downregulated by inhibition of Notch cleavage. We also showed that DSTN expression was decreased in vivo by carotid artery injury and in cultured SMC cells by platelet-derived growth factor-BB (PDGF-BB) treatment. siRNA-mediated depletion of DSTN significantly enhanced MRTF-A nuclear localization and SMC differentiation marker gene expression, decreased SMC migration in scratch wound assays, and decreased SMC proliferation, as measured by cell number and cyclin-E expression. Taken together our data indicate that DSTN is a negative feedback inhibitor of RhoA/SRF-dependent gene expression in SMC that coordinately promotes SMC phenotypic modulation. Interventions that target DSTN expression or activity could serve as potential therapies for atherosclerosis and restenosis.NEW & NOTEWORTHY First, DSTN is selectively expressed in SMC in RhoA/SRF-dependent manner. Second, a SMC-selective enhancer just upstream of DSTN TSS harbors functional SRF, SMAD, and Notch/RBPJ binding elements. Third, DSTN depletion increased SRF-dependent SMC marker gene expression while inhibiting SMC migration and proliferation. Taken together, our data suggest that DSTN is a critical negative feedback inhibitor of SMC differentiation.
Collapse
Affiliation(s)
- Kuo An Liao
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Krsna V Rangarajan
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xue Bai
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joan M Taylor
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher P Mack
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
20
|
Li Q, Dibus M, Casey A, Yee CSK, Vargas SO, Luo S, Rosen SM, Madden JA, Genetti CA, Brabek J, Brownstein CA, Kazerounian S, Raby BA, Schmitz-Abe K, Kennedy JC, Fishman MP, Mullen MP, Taylor JM, Rosel D, Agrawal PB. A homozygous stop-gain variant in ARHGAP42 is associated with childhood interstitial lung disease, systemic hypertension, and immunological findings. PLoS Genet 2021; 17:e1009639. [PMID: 34232960 PMCID: PMC8289122 DOI: 10.1371/journal.pgen.1009639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/19/2021] [Accepted: 06/02/2021] [Indexed: 11/18/2022] Open
Abstract
ARHGAP42 encodes Rho GTPase activating protein 42 that belongs to a member of the GTPase Regulator Associated with Focal Adhesion Kinase (GRAF) family. ARHGAP42 is involved in blood pressure control by regulating vascular tone. Despite these findings, disorders of human variants in the coding part of ARHGAP42 have not been reported. Here, we describe an 8-year-old girl with childhood interstitial lung disease (chILD), systemic hypertension, and immunological findings who carries a homozygous stop-gain variant (c.469G>T, p.(Glu157Ter)) in the ARHGAP42 gene. The family history is notable for both parents with hypertension. Histopathological examination of the proband lung biopsy showed increased mural smooth muscle in small airways and alveolar septa, and concentric medial hypertrophy in pulmonary arteries. ARHGAP42 stop-gain variant in the proband leads to exon 5 skipping, and reduced ARHGAP42 levels, which was associated with enhanced RhoA and Cdc42 expression. This is the first report linking a homozygous stop-gain variant in ARHGAP42 with a chILD disorder, systemic hypertension, and immunological findings in human patient. Evidence of smooth muscle hypertrophy on lung biopsy and an increase in RhoA/ROCK signaling in patient cells suggests the potential mechanistic link between ARHGAP42 deficiency and the development of chILD disorder.
Collapse
Affiliation(s)
- Qifei Li
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michal Dibus
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy, Czech Republic
| | - Alicia Casey
- Division of Pulmonary Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christina S. K. Yee
- Division of Immunology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sara O. Vargas
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shiyu Luo
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samantha M. Rosen
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jill A. Madden
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Casie A. Genetti
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jan Brabek
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy, Czech Republic
| | - Catherine A. Brownstein
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shideh Kazerounian
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin A. Raby
- Division of Pulmonary Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Klaus Schmitz-Abe
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - John C. Kennedy
- Division of Pulmonary Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Martha P. Fishman
- Division of Pulmonary Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mary P. Mullen
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joan M. Taylor
- Dept. Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Daniel Rosel
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy, Czech Republic
| | - Pankaj B. Agrawal
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
21
|
Sharma S, Rikhy R. Spatiotemporal recruitment of RhoGTPase protein GRAF inhibits actomyosin ring constriction in Drosophila cellularization. eLife 2021; 10:63535. [PMID: 33835025 PMCID: PMC8081525 DOI: 10.7554/elife.63535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/31/2021] [Indexed: 11/18/2022] Open
Abstract
Actomyosin contractility is regulated by Rho-GTP in cell migration, cytokinesis and morphogenesis in embryo development. Whereas Rho activation by Rho-GTP exchange factor (GEF), RhoGEF2, is well known in actomyosin contractility during cytokinesis at the base of invaginating membranes in Drosophila cellularization, Rho inhibition by RhoGTPase-activating proteins (GAPs) remains to be studied. We have found that the RhoGAP, GRAF, inhibits actomyosin contractility during cellularization. GRAF is enriched at the cleavage furrow tip during actomyosin assembly and initiation of ring constriction. Graf depletion shows increased Rho-GTP, increased Myosin II and ring hyper constriction dependent upon the loss of the RhoGTPase domain. GRAF and RhoGEF2 are present in a balance for appropriate activation of actomyosin ring constriction. RhoGEF2 depletion and abrogation of Myosin II activation in Rho kinase mutants suppress the Graf hyper constriction defect. Therefore, GRAF recruitment restricts Rho-GTP levels in a spatiotemporal manner for inhibiting actomyosin contractility during cellularization.
Collapse
Affiliation(s)
- Swati Sharma
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
22
|
Lei Y, Ludorf KL, Yu X, Benjamin RH, Gu X, Lin Y, Finnell RH, Mitchell LE, Musfee FI, Malik S, Canfield MA, Morrison AC, Hobbs CA, Van Zutphen AR, Fisher S, Agopian AJ. Maternal Hypertension-Related Genotypes and Congenital Heart Defects. Am J Hypertens 2021; 34:82-91. [PMID: 32710738 PMCID: PMC7891240 DOI: 10.1093/ajh/hpaa116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/05/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Maternal hypertension has been associated with congenital heart defect occurrence in several studies. We assessed whether maternal genotypes associated with this condition were also associated with congenital heart defect occurrence. METHODS We used data from the National Birth Defects Prevention Study to identify non-Hispanic white (NHW) and Hispanic women with (cases) and without (controls) a pregnancy in which a select simple, isolated heart defect was present between 1999 and 2011. We genotyped 29 hypertension-related single nucleotide polymorphisms (SNPs). We conducted logistic regression analyses separately by race/ethnicity to assess the relationship between the presence of any congenital heart defect and each SNP and an overall blood pressure genetic risk score (GRS). All analyses were then repeated to assess 4 separate congenital heart defect subtypes. RESULTS Four hypertension-related variants were associated with congenital heart defects among NHW women (N = 1,568 with affected pregnancies). For example, 1 intronic variant in ARHGAP2, rs633185, was associated with conotruncal defects (odds ratio [OR]: 1.3, 95% confidence interval [CI]: 1.1-1.6). Additionally, 2 variants were associated with congenital heart defects among Hispanic women (N = 489 with affected pregnancies). The GRS had a significant association with septal defects (OR: 2.1, 95% CI: 1.2-3.5) among NHW women. CONCLUSIONS We replicated a previously reported association between rs633185 and conotruncal defects. Although additional hypertension-related SNPs were also associated with congenital heart defects, more work is needed to better understand the relationship between genetic risk for maternal hypertension and congenital heart defects occurrence.
Collapse
Affiliation(s)
- Yunping Lei
- Department of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Katherine L Ludorf
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, USA
| | - Xiao Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, USA
| | - Renata H Benjamin
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, USA
| | - Xue Gu
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Ying Lin
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Richard H Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Laura E Mitchell
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, USA
| | - Fadi I Musfee
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, USA
| | - Sadia Malik
- Pediatric Cardiology, Department of Pediatrics, UT Southwestern Children’s Medical Center, Dallas, Texas, USA
| | - Mark A Canfield
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, Austin, Texas, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, USA
| | - Charlotte A Hobbs
- Rady Children’s Institute for Genomic Medicine, San Diego, California, USA
| | - Alissa R Van Zutphen
- New York State Department of Health, Bureau of Environmental and Occupational Epidemiology, Albany, New York, USA
| | - Sarah Fisher
- New York State Department of Health, Bureau of Environmental and Occupational Epidemiology, Albany, New York, USA
| | - A J Agopian
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas, USA
| |
Collapse
|
23
|
Shen Y, Wang X, Lu J, Salfenmoser M, Wirsik NM, Schleussner N, Imle A, Freire Valls A, Radhakrishnan P, Liang J, Wang G, Muley T, Schneider M, Ruiz de Almodovar C, Diz-Muñoz A, Schmidt T. Reduction of Liver Metastasis Stiffness Improves Response to Bevacizumab in Metastatic Colorectal Cancer. Cancer Cell 2020; 37:800-817.e7. [PMID: 32516590 DOI: 10.1016/j.ccell.2020.05.005] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/12/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
Tumors are influenced by the mechanical properties of their microenvironment. Using patient samples and atomic force microscopy, we found that tissue stiffness is higher in liver metastases than in primary colorectal tumors. Highly activated metastasis-associated fibroblasts increase tissue stiffness, which enhances angiogenesis and anti-angiogenic therapy resistance. Drugs targeting the renin-angiotensin system, normally prescribed to treat hypertension, inhibit fibroblast contraction and extracellular matrix deposition, thereby reducing liver metastases stiffening and increasing the anti-angiogenic effects of bevacizumab. Patients treated with bevacizumab showed prolonged survival when concomitantly treated with renin-angiotensin inhibitors, highlighting the importance of modulating the mechanical microenvironment for therapeutic regimens.
Collapse
Affiliation(s)
- Ying Shen
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Xiaohong Wang
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany; Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Junyan Lu
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Martin Salfenmoser
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Naita Maren Wirsik
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Nikolai Schleussner
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Andrea Imle
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Aida Freire Valls
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Jie Liang
- Section of Molecular Immunology, Institute of Immunology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Guoliang Wang
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Thomas Muley
- Thoracic Hospital, University Hospital Heidelberg, University Heidelberg, 69126 Heidelberg, Germany; Translational Lung Research Centre (TLRC) Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Carmen Ruiz de Almodovar
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Kang N, Matsui TS, Liu S, Fujiwara S, Deguchi S. Comprehensive analysis on the whole Rho‐GAP family reveals that ARHGAP4 suppresses EMT in epithelial cells under negative regulation by Septin9. FASEB J 2020; 34:8326-8340. [DOI: 10.1096/fj.201902750rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Na Kang
- Division of Bioengineering Graduate School of Engineering Science Osaka University Toyonaka Japan
| | - Tsubasa S. Matsui
- Division of Bioengineering Graduate School of Engineering Science Osaka University Toyonaka Japan
| | - Shiyou Liu
- Division of Bioengineering Graduate School of Engineering Science Osaka University Toyonaka Japan
| | - Sachiko Fujiwara
- Division of Bioengineering Graduate School of Engineering Science Osaka University Toyonaka Japan
| | - Shinji Deguchi
- Division of Bioengineering Graduate School of Engineering Science Osaka University Toyonaka Japan
| |
Collapse
|
25
|
Bai X, Mangum K, Kakoki M, Smithies O, Mack CP, Taylor JM. GRAF3 serves as a blood volume-sensitive rheostat to control smooth muscle contractility and blood pressure. Small GTPases 2020; 11:194-203. [PMID: 29099324 PMCID: PMC7549679 DOI: 10.1080/21541248.2017.1375602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vascular resistance is a major determinant of BP and is controlled, in large part, by RhoA-dependent smooth muscle cell (SMC) contraction within small peripheral arterioles and previous studies from our lab indicate that GRAF3 is a critical regulator of RhoA in vascular SMC. The elevated contractile responses we observed in GRAF3 deficient vessels coupled with the hypertensive phenotype provided a mechanistic link for the hypertensive locus recently identified within the GRAF3 gene. On the basis of our previous findings that the RhoA signaling axis also controls SMC contractile gene expression and that GRAF3 expression was itself controlled by this pathway, we postulated that GRAF3 serves as an important counter-regulator of SMC phenotype. Indeed, our new findings presented herein indicate that GRAF3 expression acts as a pressure-sensitive rheostat to control vessel tone by both reducing calcium sensitivity and restraining expression of the SMC-specific contractile proteins that support this function. Collectively, these studies highlight the potential therapeutic value of GRAF3 in the control of human hypertension.
Collapse
Affiliation(s)
- Xue Bai
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin Mangum
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Masao Kakoki
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Oliver Smithies
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher P. Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Joan M. Taylor
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Humphries BA, Wang Z, Yang C. MicroRNA Regulation of the Small Rho GTPase Regulators-Complexities and Opportunities in Targeting Cancer Metastasis. Cancers (Basel) 2020; 12:E1092. [PMID: 32353968 PMCID: PMC7281527 DOI: 10.3390/cancers12051092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
The small Rho GTPases regulate important cellular processes that affect cancer metastasis, such as cell survival and proliferation, actin dynamics, adhesion, migration, invasion and transcriptional activation. The Rho GTPases function as molecular switches cycling between an active GTP-bound and inactive guanosine diphosphate (GDP)-bound conformation. It is known that Rho GTPase activities are mainly regulated by guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), GDP dissociation inhibitors (RhoGDIs) and guanine nucleotide exchange modifiers (GEMs). These Rho GTPase regulators are often dysregulated in cancer; however, the underlying mechanisms are not well understood. MicroRNAs (miRNAs), a large family of small non-coding RNAs that negatively regulate protein-coding gene expression, have been shown to play important roles in cancer metastasis. Recent studies showed that miRNAs are capable of directly targeting RhoGAPs, RhoGEFs, and RhoGDIs, and regulate the activities of Rho GTPases. This not only provides new evidence for the critical role of miRNA dysregulation in cancer metastasis, it also reveals novel mechanisms for Rho GTPase regulation. This review summarizes recent exciting findings showing that miRNAs play important roles in regulating Rho GTPase regulators (RhoGEFs, RhoGAPs, RhoGDIs), thus affecting Rho GTPase activities and cancer metastasis. The potential opportunities and challenges for targeting miRNAs and Rho GTPase regulators in treating cancer metastasis are also discussed. A comprehensive list of the currently validated miRNA-targeting of small Rho GTPase regulators is presented as a reference resource.
Collapse
Affiliation(s)
- Brock A. Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Zhishan Wang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| |
Collapse
|
27
|
Molecular Regulation of the RhoGAP GRAF3 and Its Capacity to Limit Blood Pressure In Vivo. Cells 2020; 9:cells9041042. [PMID: 32331391 PMCID: PMC7226614 DOI: 10.3390/cells9041042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Anti-hypertensive therapies are usually prescribed empirically and are often ineffective. Given the prevalence and deleterious outcomes of hypertension (HTN), improved strategies are needed. We reported that the Rho-GAP GRAF3 is selectively expressed in smooth muscle cells (SMC) and controls blood pressure (BP) by limiting the RhoA-dependent contractility of resistance arterioles. Importantly, genetic variants at the GRAF3 locus controls BP in patients. The goal of this study was to validate GRAF3 as a druggable candidate for future anti-HTN therapies. Importantly, using a novel mouse model, we found that modest induction of GRAF3 in SMC significantly decreased basal and vasoconstrictor-induced BP. Moreover, we found that GRAF3 protein toggles between inactive and active states by processes controlled by the mechano-sensing kinase, focal adhesion kinase (FAK). Using resonance energy transfer methods, we showed that agonist-induced FAK-dependent phosphorylation at Y376GRAF3 reverses an auto-inhibitory interaction between the GAP and BAR-PH domains. Y376 is located in a linker between the PH and GAP domains and is invariant in GRAF3 homologues and a phosphomimetic E376GRAF3 variant exhibited elevated GAP activity. Collectively, these data provide strong support for the future identification of allosteric activators of GRAF3 for targeted anti-hypertensive therapies.
Collapse
|
28
|
Gai Z, Zhao J. Genome-wide analysis reveals the functional and expressional correlation between RhoGAP and RhoGEF in mouse. Genomics 2020; 112:1694-1706. [DOI: 10.1016/j.ygeno.2019.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 09/17/2019] [Indexed: 12/17/2022]
|
29
|
Mangum KD, Freeman EJ, Magin JC, Taylor JM, Mack CP. Transcriptional and posttranscriptional regulation of the SMC-selective blood pressure-associated gene, ARHGAP42. Am J Physiol Heart Circ Physiol 2020; 318:H413-H424. [PMID: 31886719 PMCID: PMC7052622 DOI: 10.1152/ajpheart.00143.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022]
Abstract
We previously showed that ARHGAP42 is a smooth muscle cell (SMC)-selective, RhoA-specific GTPase activating protein that regulates blood pressure and that a minor allele single nucleotide variation within a DNAse hypersensitive regulatory element in intron1 (Int1DHS) increased ARHGAP42 expression by promoting serum response factor binding. The goal of the current study was to identify additional transcriptional and posttranscriptional mechanisms that control ARHGAP42 expression. Using deletion/mutation, gel shift, and chromatin immunoprecipitation experiments, we showed that recombination signal binding protein for immunoglobulin κ-J region (RBPJ) and TEA domain family member 1 (TEAD1) binding to a conserved core region was required for full IntDHS transcriptional activity. Importantly, overexpression of the notch intracellular domain (NICD) or plating SMCs on recombinant jagged-1 increased IntDHS activity and endogenous ARHGAP42 expression while siRNA-mediated knockdown of TEAD1 inhibited ARHGAP42 mRNA levels. Re-chromatin immunoprecipitation experiments indicated that RBPJ and TEAD1 were bound to the Int1DHS enhancer at the same time, and coimmunoprecipitation assays indicated that these factors interacted physically. Our results also suggest TEAD1 and RBPJ bound cooperatively to the Int1DHS and that the presence of TEAD1 promoted the recruitment of NICD by RBPJ. Finally, we showed that ARHGAP42 expression was inhibited by micro-RNA 505 (miR505) which interacted with the ARHGAP42 3'-untranslated region (UTR) to facilitate its degradation and by AK124326, a long noncoding RNA that overlaps with the ARHGAP42 transcription start site on the opposite DNA strand. Since siRNA-mediated depletion of AK124326 was associated with increased H3K9 acetylation and RNA Pol-II binding at the ARHGAP42 gene, it is likely that AK124326 inhibits ARHGAP42 transcription.NEW & NOTEWORTHY First, RBPJ and TEAD1 converge at an intronic enhancer to regulate ARHGAP42 expression in SMCs. Second, TEAD1 and RBPJ interact physically and bind cooperatively to the ARHGAP42 enhancer. Third, miR505 interacts with the ARHGAP42 3'-UTR to facilitate its degradation. Finally, LncRNA, AK124326, inhibits ARHGAP42 transcription.
Collapse
Affiliation(s)
- Kevin D Mangum
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Emily J Freeman
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Justin C Magin
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Joan M Taylor
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Christopher P Mack
- Department of Pathology and the McAllister Heart Institute, University of North Carolina at Chapel Hill
| |
Collapse
|
30
|
Fjorder AS, Rasmussen MB, Mehrjouy MM, Nazaryan-Petersen L, Hansen C, Bak M, Grarup N, Nørremølle A, Larsen LA, Vestergaard H, Hansen T, Tommerup N, Bache I. Haploinsufficiency of ARHGAP42 is associated with hypertension. Eur J Hum Genet 2019; 27:1296-1303. [PMID: 30903111 PMCID: PMC6777610 DOI: 10.1038/s41431-019-0382-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/18/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022] Open
Abstract
Family studies have established that the heritability of blood pressure is significant and genome-wide association studies (GWAS) have identified numerous susceptibility loci, including one within the non-coding part of Rho GTPase-activating protein 42 gene (ARHGAP42) on chromosome 11q22.1. Arhgap42-deficient mice have significantly elevated blood pressure, but the phenotypic effects of human variants in the coding part of the gene are unknown. In a Danish cohort of carriers with apparently balanced chromosomal rearrangements, we identified a family where a reciprocal translocation t(11;18)(q22.1;q12.2) segregated with hypertension and obesity. Clinical re-examination revealed that four carriers (age 50-77 years) have had hypertension for several years along with an increased body mass index (34-43 kg/m2). A younger carrier (age 23 years) had normal blood pressure and body mass index. Mapping of the chromosomal breakpoints with mate-pair and Sanger sequencing revealed truncation of ARHGAP42. A decreased expression level of ARHGAP42 mRNA in the blood was found in the translocation carriers relative to controls and allele-specific expression analysis showed monoallelic expression in the translocation carriers, confirming that the truncated allele of ARHGAP42 was not expressed. These findings support that haploinsufficiency of ARHGAP42 leads to an age-dependent hypertension. The other breakpoint truncated a regulatory domain of the CUGBP Elav-like family member 4 (CELF4) gene on chromosome 18q12.2 that harbours several GWAS signals for obesity. We thereby provide additional support for an obesity locus in the CELF4 domain.
Collapse
Affiliation(s)
- Amanda S Fjorder
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Malene B Rasmussen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, 2100, Denmark
| | - Mana M Mehrjouy
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Lusine Nazaryan-Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Claus Hansen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Mads Bak
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, 2100, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Iben Bache
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark.
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, 2100, Denmark.
| |
Collapse
|
31
|
Strassheim D, Gerasimovskaya E, Irwin D, Dempsey EC, Stenmark K, Karoor V. RhoGTPase in Vascular Disease. Cells 2019; 8:E551. [PMID: 31174369 PMCID: PMC6627336 DOI: 10.3390/cells8060551] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
Ras-homologous (Rho)A/Rho-kinase pathway plays an essential role in many cellular functions, including contraction, motility, proliferation, and apoptosis, inflammation, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Given its role in many physiological and pathological functions, targeting can result in adverse effects and limit its use for therapy. In this review, we have summarized the role of RhoGTPases with an emphasis on RhoA in vascular disease and its impact on endothelial, smooth muscle, and heart and lung fibroblasts. It is clear from the various studies that understanding the regulation of RhoGTPases and their regulators in physiology and pathological conditions is required for effective targeting of Rho.
Collapse
Affiliation(s)
- Derek Strassheim
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - David Irwin
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Edward C Dempsey
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA.
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Vijaya Karoor
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
32
|
Genomic Variations in Susceptibility to Intracranial Aneurysm in the Korean Population. J Clin Med 2019; 8:jcm8020275. [PMID: 30823506 PMCID: PMC6406302 DOI: 10.3390/jcm8020275] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 01/14/2023] Open
Abstract
Genome-wide association studies found genetic variations with modulatory effects for intracranial aneurysm (IA) formations in European and Japanese populations. We aimed to identify the susceptibility of single nucleotide polymorphisms (SNPs) to IA in a Korean population consisting of 250 patients, and 294 controls using the Asian-specific Axiom Precision Medicine Research Array. Twenty-nine SNPs reached a genome-wide significance threshold (5 × 10−8). The rs371331393 SNP, with a stop-gain function of ARHGAP32 (11q24.3), showed the most significant association with the risk of IA (OR = 43.57, 95% CI: 21.84–86.95; p = 9.3 × 10−27). Eight out of 29 SNPs—GBA (rs75822236), TCF24 (rs112859779), OLFML2A (rs79134766), ARHGAP32 (rs371331393), CD163L1 (rs138525217), CUL4A (rs74115822), LOC102724084 (rs75861150), and LRRC3 (rs116969723)—demonstrated sufficient statistical power greater than or equal to 0.8. Two previously reported SNPs, rs700651 (BOLL, 2q33.1) and rs6841581 (EDNRA, 4q31.22), were validated in our GWAS (Genome-wide association study). In a subsequent analysis, three SNPs showed a significant difference in expressions: the rs6741819 (RNF144A, 2p25.1) was down-regulated in the adrenal gland tissue (p = 1.5 × 10−6), the rs1052270 (TMOD1. 9q22.33) was up-regulated in the testis tissue (p = 8.6 × 10−10), and rs6841581 (EDNRA, 4q31.22) was up-regulated in both the esophagus (p = 5.2 × 10−12) and skin tissues (1.2 × 10−6). Our GWAS showed novel candidate genes with Korean-specific variations in IA formations. Large population based studies are thus warranted.
Collapse
|
33
|
Dee RA, Mangum KD, Bai X, Mack CP, Taylor JM. Druggable targets in the Rho pathway and their promise for therapeutic control of blood pressure. Pharmacol Ther 2019; 193:121-134. [PMID: 30189292 PMCID: PMC7235948 DOI: 10.1016/j.pharmthera.2018.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of high blood pressure (also known as hypertension) has steadily increased over the last few decades. Known as a silent killer, hypertension increases the risk for cardiovascular disease and can lead to stroke, heart attack, kidney failure and associated sequela. While numerous hypertensive therapies are currently available, it is estimated that only half of medicated patients exhibit blood pressure control. This signifies the need for a better understanding of the underlying cause of disease and for more effective therapies. While blood pressure homeostasis is very complex and involves the integrated control of multiple body systems, smooth muscle contractility and arterial resistance are important contributors. Strong evidence from pre-clinical animal models and genome-wide association studies indicate that smooth muscle contraction and BP homeostasis are governed by the small GTPase RhoA and its downstream target, Rho kinase. In this review, we summarize the signaling pathways and regulators that impart tight spatial-temporal control of RhoA activity in smooth muscle cells and discuss current therapeutic strategies to target these RhoA pathway components. We also discuss known allelic variations in the RhoA pathway and consider how these polymorphisms may affect genetic risk for hypertension and its clinical manifestations.
Collapse
Affiliation(s)
- Rachel A Dee
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin D Mangum
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xue Bai
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher P Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
34
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 723] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
35
|
Carlson DA, Singer MR, Sutherland C, Redondo C, Alexander LT, Hughes PF, Knapp S, Gurley SB, Sparks MA, MacDonald JA, Haystead TAJ. Targeting Pim Kinases and DAPK3 to Control Hypertension. Cell Chem Biol 2018; 25:1195-1207.e32. [PMID: 30033129 PMCID: PMC6863095 DOI: 10.1016/j.chembiol.2018.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/16/2018] [Accepted: 06/20/2018] [Indexed: 01/19/2023]
Abstract
Sustained vascular smooth muscle hypercontractility promotes hypertension and cardiovascular disease. The etiology of hypercontractility is not completely understood. New therapeutic targets remain vitally important for drug discovery. Here we report that Pim kinases, in combination with DAPK3, regulate contractility and control hypertension. Using a co-crystal structure of lead molecule (HS38) in complex with DAPK3, a dual Pim/DAPK3 inhibitor (HS56) and selective DAPK3 inhibitors (HS94 and HS148) were developed to provide mechanistic insight into the polypharmacology of hypertension. In vitro and ex vivo studies indicated that Pim kinases directly phosphorylate smooth muscle targets and that Pim/DAPK3 inhibition, unlike selective DAPK3 inhibition, significantly reduces contractility. In vivo, HS56 decreased blood pressure in spontaneously hypertensive mice in a dose-dependent manner without affecting heart rate. These findings suggest including Pim kinase inhibition within a multi-target engagement strategy for hypertension management. HS56 represents a significant step in the development of molecularly targeted antihypertensive medications.
Collapse
Affiliation(s)
- David A Carlson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Miriam R Singer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cindy Sutherland
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Clara Redondo
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | - Leila T Alexander
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stefan Knapp
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK; Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Susan B Gurley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
36
|
Hu Q, Lin X, Ding L, Zeng Y, Pang D, Ouyang N, Xiang Y, Yao H. ARHGAP42 promotes cell migration and invasion involving PI3K/Akt signaling pathway in nasopharyngeal carcinoma. Cancer Med 2018; 7:3862-3874. [PMID: 29936709 PMCID: PMC6089169 DOI: 10.1002/cam4.1552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/26/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
Rho GTPase-activating protein 42 was identified as an inhibitor of RhoA to maintain normal blood pressure homeostasis. However, the effect of ARHGAP42 in promoting cell malignancy in nasopharyngeal carcinoma is demonstrated in this study. Microarray and real-time quantitative PCR were used for a mRNA profiling of ARHGAP42 in nasopharyngeal primary and metastatic carcinoma tissues. Western blot and immunohistochemical staining were used for detecting the expression of ARHGAP42 protein in nasopharyngeal carcinoma tissues and cell lines. The overexpression and silence experiments of ARHGAP42 were performed in NPC cell lines using siRNA and expressive plasmid for evaluating cancer cell migration and invasion in vitro. Real-time quantitative PCR, western blot, and transwell test were employed for with the function of ARHGAP42 and its antisense lncRNA uc010rul. We confirmed the elevated expression of ARHGAP42 in metastatic NPC tissues of mRNA and protein for the first time. Immunohistochemical analysis indicated that NPC patients with highly ARHGAP42 expression were significantly associated with shorter metastasis-free survival. Knockdown of ARHGAP42 resulted in significant inhibition of nasopharyngeal cancer cell migration and invasion in vitro, and the overexpression of ARHGAP42 showed the opposite effects. In addition, the silence of uc010rul resulted in ARHGAP42 expression decrease and significant inhibition of nasopharyngeal cancer cell migration and invasion. High expression of ARHGAP42 is associated with poor metastasis-free survival of nasopharyngeal carcinoma patients. ARHGAP42 promotes migration and invasion of nasopharyngeal carcinoma cells in vitro; the antisense lncRNA may be involved in this effect.
Collapse
Affiliation(s)
- Qian Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of Breast Cancer OncologyFoshan Hospital of Sun Yat‐Sen UniversityFoshanChina
| | - Xiao Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Breast Cancer OncologySun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Linxiaoxiao Ding
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Breast Cancer OncologySun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yinduo Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Breast Cancer OncologySun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Danmei Pang
- Department of Breast Cancer OncologyFoshan Hospital of Sun Yat‐Sen UniversityFoshanChina
| | - Nengtai Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yanqun Xiang
- Department of Nasopharyngeal CarcinomaSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Breast Cancer OncologySun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
37
|
Aspenström P. BAR Domain Proteins Regulate Rho GTPase Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:33-53. [PMID: 30151649 DOI: 10.1007/5584_2018_259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Bin-Amphiphysin-Rvs (BAR) domain is a membrane lipid binding domain present in a wide variety of proteins, often proteins with a role in Rho-regulated signaling pathways. BAR domains do not only confer binding to lipid bilayers, they also possess a membrane sculpturing ability and thereby directly control the topology of biomembranes. BAR domain-containing proteins participate in a plethora of physiological processes but the common denominator is their capacity to link membrane dynamics to actin dynamics and thereby integrate processes such as endocytosis, exocytosis, vesicle trafficking, cell morphogenesis and cell migration. The Rho family of small GTPases constitutes an important bridging theme for many BAR domain-containing proteins. This review article will focus predominantly on the role of BAR proteins as regulators or effectors of Rho GTPases and it will only briefly discuss the structural and biophysical function of the BAR domains.
Collapse
Affiliation(s)
- Pontus Aspenström
- Department of Microbiology, and Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
38
|
Azam AB, Azizan EAB. Brief Overview of a Decade of Genome-Wide Association Studies on Primary Hypertension. Int J Endocrinol 2018; 2018:7259704. [PMID: 29666641 PMCID: PMC5831899 DOI: 10.1155/2018/7259704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022] Open
Abstract
Primary hypertension is widely believed to be a complex polygenic disorder with the manifestation influenced by the interactions of genomic and environmental factors making identification of susceptibility genes a major challenge. With major advancement in high-throughput genotyping technology, genome-wide association study (GWAS) has become a powerful tool for researchers studying genetically complex diseases. GWASs work through revealing links between DNA sequence variation and a disease or trait with biomedical importance. The human genome is a very long DNA sequence which consists of billions of nucleotides arranged in a unique way. A single base-pair change in the DNA sequence is known as a single nucleotide polymorphism (SNP). With the help of modern genotyping techniques such as chip-based genotyping arrays, thousands of SNPs can be genotyped easily. Large-scale GWASs, in which more than half a million of common SNPs are genotyped and analyzed for disease association in hundreds of thousands of cases and controls, have been broadly successful in identifying SNPs associated with heart diseases, diabetes, autoimmune diseases, and psychiatric disorders. It is however still debatable whether GWAS is the best approach for hypertension. The following is a brief overview on the outcomes of a decade of GWASs on primary hypertension.
Collapse
Affiliation(s)
- Afifah Binti Azam
- Department of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Elena Aisha Binti Azizan
- Department of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Júnior GAO, Perez BC, Cole JB, Santana MHA, Silveira J, Mazzoni G, Ventura RV, Júnior MLS, Kadarmideen HN, Garrick DJ, Ferraz JBS. Genomic study and Medical Subject Headings enrichment analysis of early pregnancy rate and antral follicle numbers in Nelore heifers. J Anim Sci 2017; 95:4796-4812. [PMID: 29293733 PMCID: PMC6292327 DOI: 10.2527/jas2017.1752] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022] Open
Abstract
Zebu animals () are known to take longer to reach puberty compared with taurine animals (), limiting the supply of animals for harvest or breeding and impacting profitability. Genomic information can be a helpful tool to better understand complex traits and improve genetic gains. In this study, we performed a genomewide association study (GWAS) to identify genetic variants associated with reproductive traits in Nelore beef cattle. Heifer pregnancy (HP) was recorded for 1,267 genotyped animals distributed in 12 contemporary groups (CG) with an average pregnancy rate of 0.35 (±0.01). Disregarding one of these CG, the number of antral follicles (NF) was also collected for 937 of these animals, with an average of 11.53 (±4.43). The animals were organized in CG: 12 and 11 for HP and NF, respectively. Genes in linkage disequilibrium (LD) with the associated variants can be considered in a functional enrichment analysis to identify biological mechanisms involved in fertility. Medical Subject Headings (MeSH) were detected using the MESHR package, allowing the extraction of broad meanings from the gene lists provided by the GWAS. The estimated heritability for HP was 0.28 ± 0.07 and for NF was 0.49 ± 0.09, with the genomic correlation being -0.21 ± 0.29. The average LD between adjacent markers was 0.23 ± 0.01, and GWAS identified genomic windows that accounted for >1% of total genetic variance on chromosomes 5, 14, and 18 for HP and on chromosomes 2, 8, 11, 14, 15, 16, and 22 for NF. The MeSH enrichment analyses revealed significant ( < 0.05) terms associated with HP-"Munc18 Proteins," "Fucose," and "Hemoglobins"-and with NF-"Cathepsin B," "Receptors, Neuropeptide," and "Palmitic Acid." This is the first study in Nelore cattle introducing the concept of MeSH analysis. The genomic analyses contributed to a better understanding of the genetic control of the reproductive traits HP and NF and provide new selection strategies to improve beef production.
Collapse
Affiliation(s)
| | - B. C. Perez
- Universidade de São Paulo (USP), Pirassununga, SP, Brazil
| | - J. B. Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| | | | - J. Silveira
- Universidade de São Paulo (USP), Pirassununga, SP, Brazil
| | - G. Mazzoni
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
- Section of Systems Genomics, Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - R. V. Ventura
- Beef Improvement Opportunities, Guelph, ON N1K1E5, Canada
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON N1G2W1, Canada
| | | | - H. N. Kadarmideen
- Section of Systems Genomics, Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
40
|
Ticcinelli V, Stankovski T, Iatsenko D, Bernjak A, Bradbury AE, Gallagher AR, Clarkson PBM, McClintock PVE, Stefanovska A. Coherence and Coupling Functions Reveal Microvascular Impairment in Treated Hypertension. Front Physiol 2017; 8:749. [PMID: 29081750 PMCID: PMC5645539 DOI: 10.3389/fphys.2017.00749] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/14/2017] [Indexed: 01/02/2023] Open
Abstract
The complex interactions that give rise to heart rate variability (HRV) involve coupled physiological oscillators operating over a wide range of different frequencies and length-scales. Based on the premise that interactions are key to the functioning of complex systems, the time-dependent deterministic coupling parameters underlying cardiac, respiratory and vascular regulation have been investigated at both the central and microvascular levels. Hypertension was considered as an example of a globally altered state of the complex dynamics of the cardiovascular system. Its effects were established through analysis of simultaneous recordings of the electrocardiogram (ECG), respiratory effort, and microvascular blood flow [by laser Doppler flowmetry (LDF)]. The signals were analyzed by methods developed to capture time-dependent dynamics, including the wavelet transform, wavelet-based phase coherence, non-linear mode decomposition, and dynamical Bayesian inference, all of which can encompass the inherent frequency and coupling variability of living systems. Phases of oscillatory modes corresponding to the cardiac (around 1.0 Hz), respiratory (around 0.25 Hz), and vascular myogenic activities (around 0.1 Hz) were extracted and combined into two coupled networks describing the central and peripheral systems, respectively. The corresponding spectral powers and coupling functions were computed. The same measurements and analyses were performed for three groups of subjects: healthy young (Y group, 24.4 ± 3.4 y), healthy aged (A group, 71.1 ± 6.6 y), and aged treated hypertensive patients (ATH group, 70.3 ± 6.7 y). It was established that the degree of coherence between low-frequency oscillations near 0.1 Hz in blood flow and in HRV time series differs markedly between the groups, declining with age and nearly disappearing in treated hypertension. Comparing the two healthy groups it was found that the couplings to the cardiac rhythm from both respiration and vascular myogenic activity decrease significantly in aging. Comparing the data from A and ATH groups it was found that the coupling from the vascular myogenic activity is significantly weaker in treated hypertension subjects, implying that the mechanisms of microcirculation are not completely restored by current anti-hypertension medications.
Collapse
Affiliation(s)
| | - Tomislav Stankovski
- Physics Department, Lancaster University, Lancaster, United Kingdom
- Faculty of Medicine, Saints Cyril and Methodius University of Skopje, Skopje, Macedonia
| | - Dmytro Iatsenko
- Physics Department, Lancaster University, Lancaster, United Kingdom
- Deutsche Bank AG, London, United Kingdom
| | - Alan Bernjak
- Physics Department, Lancaster University, Lancaster, United Kingdom
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Adam E. Bradbury
- Physics Department, Lancaster University, Lancaster, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Luo W, Janoštiak R, Tolde O, Ryzhova LM, Koudelková L, Dibus M, Brábek J, Hanks SK, Rosel D. ARHGAP42 is activated by Src-mediated tyrosine phosphorylation to promote cell motility. J Cell Sci 2017; 130:2382-2393. [PMID: 28584191 PMCID: PMC5536916 DOI: 10.1242/jcs.197434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
The tyrosine kinase Src acts as a key regulator of cell motility by phosphorylating multiple protein substrates that control cytoskeletal and adhesion dynamics. In an earlier phosphotyrosine proteomics study, we identified a novel Rho-GTPase activating protein, now known as ARHGAP42, as a likely biologically relevant Src substrate. ARHGAP42 is a member of a family of RhoGAPs distinguished by tandem BAR-PH domains lying N-terminal to the GAP domain. Like other family members, ARHGAP42 acts preferentially as a GAP for RhoA. We show that Src principally phosphorylates ARHGAP42 on tyrosine 376 (Tyr-376) in the short linker between the BAR-PH and GAP domains. The expression of ARHGAP42 variants in mammalian cells was used to elucidate its regulation. We found that the BAR domain is inhibitory toward the GAP activity of ARHGAP42, such that BAR domain deletion resulted in decreased active GTP-bound RhoA and increased cell motility. With the BAR domain intact, ARHGAP42 GAP activity could be activated by phosphorylation of Tyr-376 to promote motile cell behavior. Thus, phosphorylation of ARHGAP42 Tyr-376 is revealed as a novel regulatory event by which Src can affect actin dynamics through RhoA inhibition.
Collapse
Affiliation(s)
- Weifeng Luo
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, 12843, Czech Republic
| | - Radoslav Janoštiak
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, 12843, Czech Republic
| | - Ondřej Tolde
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, 12843, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy 25242, Czech Republic
| | - Larisa M Ryzhova
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lenka Koudelková
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, 12843, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy 25242, Czech Republic
| | - Michal Dibus
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, 12843, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy 25242, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, 12843, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy 25242, Czech Republic
| | - Steven K Hanks
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Daniel Rosel
- Department of Cell Biology, Charles University in Prague, Viničná 7, Prague, 12843, Czech Republic
- Department of Cell Biology, Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, Vestec u Prahy 25242, Czech Republic
| |
Collapse
|
42
|
Bai X, Mangum KD, Dee RA, Stouffer GA, Lee CR, Oni-Orisan A, Patterson C, Schisler JC, Viera AJ, Taylor JM, Mack CP. Blood pressure-associated polymorphism controls ARHGAP42 expression via serum response factor DNA binding. J Clin Invest 2017; 127:670-680. [PMID: 28112683 PMCID: PMC5272192 DOI: 10.1172/jci88899] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
We recently demonstrated that selective expression of the Rho GTPase-activating protein ARHGAP42 in smooth muscle cells (SMCs) controls blood pressure by inhibiting RhoA-dependent contractility, providing a mechanism for the blood pressure-associated locus within the ARHGAP42 gene. The goals of the current study were to identify polymorphisms that affect ARHGAP42 expression and to better assess ARHGAP42's role in the development of hypertension. Using DNase I hypersensitivity methods and ENCODE data, we have identified a regulatory element encompassing the ARHGAP42 SNP rs604723 that exhibits strong SMC-selective, allele-specific activity. Importantly, CRISPR/Cas9-mediated deletion of this element in cultured human SMCs markedly reduced endogenous ARHGAP42 expression. DNA binding and transcription assays demonstrated that the minor T allele variation at rs604723 increased the activity of this fragment by promoting serum response transcription factor binding to a cryptic cis-element. ARHGAP42 expression was increased by cell stretch and sphingosine 1-phosphate in a RhoA-dependent manner, and deletion of ARHGAP42 enhanced the progression of hypertension in mice treated with DOCA-salt. Our analysis of a well-characterized cohort of untreated borderline hypertensive patients suggested that ARHGAP42 genotype has important implications in regard to hypertension risk. Taken together, our data add insight into the genetic mechanisms that control blood pressure and provide a potential target for individualized antihypertensive therapies.
Collapse
MESH Headings
- Animals
- Blood Pressure
- CRISPR-Cas Systems
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/metabolism
- Gene Expression Regulation
- Humans
- Hypertension/chemically induced
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Polymorphism, Single Nucleotide
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Sodium Chloride, Dietary/adverse effects
- Sodium Chloride, Dietary/pharmacology
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein/genetics
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
| | | | | | | | - Craig R. Lee
- McAllister Heart Institute, and
- Department of Pharmacy, University of North Carolina at Chapel Hill, Durham, North Carolina, USA
| | - Akinyemi Oni-Orisan
- Department of Pharmacy, University of North Carolina at Chapel Hill, Durham, North Carolina, USA
| | - Cam Patterson
- New York–Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | | | - Anthony J. Viera
- Department of Family Medicine, University of North Carolina at Chapel Hill, Durham, North Carolina, USA
| | | | | |
Collapse
|
43
|
Bai X, Dee R, Mangum KD, Mack CP, Taylor JM. RhoA signaling and blood pressure: The consequence of failing to “Tone it Down”. World J Hypertens 2016; 6:18-35. [DOI: 10.5494/wjh.v6.i1.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled high blood pressure is a major risk factor for heart attack, stroke, and kidney failure and contributes to an estimated 25% of deaths worldwide. Despite numerous treatment options, estimates project that reasonable blood pressure (BP) control is achieved in only about half of hypertensive patients. Improvements in the detection and management of hypertension will undoubtedly be accomplished through a better understanding of the complex etiology of this disease and a more comprehensive inventory of the genes and genetic variants that influence BP regulation. Recent studies (primarily in pre-clinical models) indicate that the small GTPase RhoA and its downstream target, Rho kinase, play an important role in regulating BP homeostasis. Herein, we summarize the underlying mechanisms and highlight signaling pathways and regulators that impart tight spatial-temporal control of RhoA activity. We also discuss known allelic variations in the RhoA pathway and consider how these polymorphisms may affect genetic risk for hypertension and its clinical manifestations. Finally, we summarize the current (albeit limited) clinical data on the efficacy of targeting the RhoA pathway in hypertensive patients.
Collapse
|
44
|
Pajic M, Herrmann D, Vennin C, Conway JR, Chin VT, Johnsson AKE, Welch HC, Timpson P. The dynamics of Rho GTPase signaling and implications for targeting cancer and the tumor microenvironment. Small GTPases 2015; 6:123-33. [PMID: 26103062 PMCID: PMC4601362 DOI: 10.4161/21541248.2014.973749] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Numerous large scale genomics studies have demonstrated that cancer is a molecularly heterogeneous disease, characterized by acquired changes in the structure and DNA sequence of tumor genomes. More recently, the role of the equally complex tumor microenvironment in driving the aggressiveness of this disease is increasingly being realized. Tumor cells are surrounded by activated stroma, creating a dynamic environment that promotes cancer development, metastasis and chemoresistance. The Rho family of small GTPases plays an essential role in the regulation of cell shape, cytokinesis, cell adhesion, and cell motility. Importantly, these processes need to be considered in the context of a complex 3-dimensional (3D) environment, with reciprocal feedback and cross-talk taking place between the tumor cells and host environment. Here we discuss the role of molecular networks involving Rho GTPases in cancer, and the therapeutic implications of inhibiting Rho signaling in both cancer cells and the emerging concept of targeting the surrounding stroma.
Collapse
Affiliation(s)
- Marina Pajic
- a The Kinghorn Cancer Center; Cancer Division; Garvan Institute of Medical Research ; Sydney , Australia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Huveneers S, Daemen MJAP, Hordijk PL. Between Rho(k) and a hard place: the relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease. Circ Res 2015; 116:895-908. [PMID: 25722443 DOI: 10.1161/circresaha.116.305720] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular stiffness is a mechanical property of the vessel wall that affects blood pressure, permeability, and inflammation. As a result, vascular stiffness is a key driver of (chronic) human disorders, including pulmonary arterial hypertension, kidney disease, and atherosclerosis. Responses of the endothelium to stiffening involve integration of mechanical cues from various sources, including the extracellular matrix, smooth muscle cells, and the forces that derive from shear stress of blood. This response in turn affects endothelial cell contractility, which is an important property that regulates endothelial stiffness, permeability, and leukocyte-vessel wall interactions. Moreover, endothelial stiffening reduces nitric oxide production, which promotes smooth muscle cell contraction and vasoconstriction. In fact, vessel wall stiffening, and microcirculatory endothelial dysfunction, precedes hypertension and thus underlies the development of vascular disease. Here, we review the cross talk among vessel wall stiffening, endothelial contractility, and vascular disease, which is controlled by Rho-driven actomyosin contractility and cellular mechanotransduction. In addition to discussing the various inputs and relevant molecular events in the endothelium, we address which actomyosin-regulated changes at cell adhesion complexes are genetically associated with human cardiovascular disease. Finally, we discuss recent findings that broaden therapeutic options for targeting this important mechanical signaling pathway in vascular pathogenesis.
Collapse
Affiliation(s)
- Stephan Huveneers
- From the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences (S.H., P.L.H.) and Department of Pathology (M.J.A.P.D.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Mat J A P Daemen
- From the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences (S.H., P.L.H.) and Department of Pathology (M.J.A.P.D.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter L Hordijk
- From the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences (S.H., P.L.H.) and Department of Pathology (M.J.A.P.D.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Loirand G, Pacaud P. Involvement of Rho GTPases and their regulators in the pathogenesis of hypertension. Small GTPases 2014; 5:1-10. [PMID: 25496262 DOI: 10.4161/sgtp.28846] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proper regulation of arterial blood pressure is essential to allow permanent adjustment of nutrient and oxygen supply to organs and tissues according to their need. This is achieved through highly coordinated regulation processes controlling vascular resistance through modulation of arterial smooth muscle contraction, cardiac output, and kidney function. Members of the Rho family of small GTPases, in particular RhoA and Rac1, have been identified as key signaling molecules playing important roles in several different steps of these regulatory processes. Here, we review the current state of knowledge regarding the involvement of Rho GTPase signaling in the control of blood pressure and the pathogenesis of hypertension. We describe how knockout models in mouse, genetic, and pharmacological studies in human have been useful to address this question.
Collapse
Key Words
- AT1 receptor, type 1 Ang II receptor
- Ang II, angiotensine II
- ENaCs, epithelial Na+ channels
- Et-1, endothelin-1
- GAPs, GTPase-activating proteins
- GEFs, exchange factors
- GTPase activating proteins
- GTPases
- MLC, 20 kDa-myosin light chain
- MLCK, MLC kinase
- MLCP, MLC phosphatase
- NA, noradrenaline
- NHE3, sodium-hydrogen exchanger isoform 3.
- NO, nitric oxide
- NTS, nucleus tractus solitaries
- PDE5, type 5 phosphodiesterase
- PKG, cGMP-dependent protein kinase
- Rock, Rho-kinase
- SHR, spontaneously hypertensive rats
- SHRSP, stroke-prone SHR
- TxA2, thromboxane A2
- artery
- blood pressure
- cardiovascular
- eNOS, endothelial NO synthase
- exchange factors
- signal transduction
- small G proteins
- smooth muscle
- vasoconstriction
Collapse
|
47
|
Kolluru GK, Majumder S, Chatterjee S. Rho-kinase as a therapeutic target in vascular diseases: striking nitric oxide signaling. Nitric Oxide 2014; 43:45-54. [PMID: 25196952 DOI: 10.1016/j.niox.2014.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/27/2022]
Abstract
Rho GTPases are a globular, monomeric group of small signaling G-protein molecules. Rho-associated protein kinase/Rho-kinase (ROCK) is a downstream effector protein of the Rho GTPase. Rho-kinases are the potential therapeutic targets in the treatment of cardiovascular diseases. Here, we have primarily discussed the intriguing roles of ROCK in cardiovascular health in relation to nitric oxide signaling. Further, we highlighted the biphasic effects of Y-27632, a ROCK inhibitor under shear stress, which acts as an agonist of nitric oxide production in endothelial cells. The biphasic effects of this inhibitor raised the question of safety of the drug usage in treating cardiovascular diseases.
Collapse
Affiliation(s)
| | - Syamantak Majumder
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Suvro Chatterjee
- Department of Biotechnology, Anna University, Chennai, India; Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, India.
| |
Collapse
|
48
|
Lucken-Ardjomande Häsler S, Vallis Y, Jolin HE, McKenzie AN, McMahon HT. GRAF1a is a brain-specific protein that promotes lipid droplet clustering and growth, and is enriched at lipid droplet junctions. J Cell Sci 2014; 127:4602-19. [PMID: 25189622 PMCID: PMC4215711 DOI: 10.1242/jcs.147694] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lipid droplets are found in all cell types. Normally present at low levels in the brain, they accumulate in tumours and are associated with neurodegenerative diseases. However, little is known about the mechanisms controlling their homeostasis in the brain. We found that GRAF1a, the longest GRAF1 isoform (GRAF1 is also known as ARHGAP26), was enriched in the brains of neonates. Endogenous GRAF1a was found on lipid droplets in oleic-acid-fed primary glial cells. Exclusive localization required a GRAF1a-specific hydrophobic segment and two membrane-binding regions, a BAR and a PH domain. Overexpression of GRAF1a promoted lipid droplet clustering, inhibited droplet mobility and severely perturbed lipolysis following the chase of cells overloaded with fatty acids. Under these conditions, GRAF1a concentrated at the interface between lipid droplets. Although GRAF1-knockout mice did not show any gross abnormal phenotype, the total lipid droplet volume that accumulated in GRAF1(-/-) primary glia upon incubation with fatty acids was reduced compared to GRAF1(+/+) cells. These results provide additional insights into the mechanisms contributing to lipid droplet growth in non-adipocyte cells, and suggest that proteins with membrane sculpting BAR domains play a role in droplet homeostasis.
Collapse
Affiliation(s)
| | - Yvonne Vallis
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Helen E Jolin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Andrew N McKenzie
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Harvey T McMahon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
49
|
Lenhart KC, Becherer AL, Li J, Xiao X, McNally EM, Mack CP, Taylor JM. GRAF1 promotes ferlin-dependent myoblast fusion. Dev Biol 2014; 393:298-311. [PMID: 25019370 DOI: 10.1016/j.ydbio.2014.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/17/2014] [Accepted: 06/26/2014] [Indexed: 01/08/2023]
Abstract
Myoblast fusion (a critical process by which muscles grow) occurs in a multi-step fashion that requires actin and membrane remodeling; but important questions remain regarding the spatial/temporal regulation of and interrelationship between these processes. We recently reported that the Rho-GAP, GRAF1, was particularly abundant in muscles undergoing fusion to form multinucleated fibers and that enforced expression of GRAF1 in cultured myoblasts induced robust fusion by a process that required GAP-dependent actin remodeling and BAR domain-dependent membrane sculpting. Herein we developed a novel line of GRAF1-deficient mice to explore a role for this protein in the formation/maturation of myotubes in vivo. Post-natal muscles from GRAF1-depleted mice exhibited a significant and persistent reduction in cross-sectional area, impaired regenerative capacity and a significant decrease in force production indicative of lack of efficient myoblast fusion. A significant fusion defect was recapitulated in isolated myoblasts depleted of GRAF1 or its closely related family member GRAF2. Mechanistically, we show that GRAF1 and 2 facilitate myoblast fusion, at least in part, by promoting vesicle-mediated translocation of fusogenic ferlin proteins to the plasma membrane.
Collapse
Affiliation(s)
- Kaitlin C Lenhart
- Department of Pathology and Laboratory, Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Abby L Becherer
- Department of Pathology and Laboratory, Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jianbin Li
- Department of Gene Therapy Molecular Pharmaceutics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiao Xiao
- Department of Gene Therapy Molecular Pharmaceutics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Christopher P Mack
- Department of Pathology and Laboratory, Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory, Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
50
|
|