1
|
Mohammad IL, Giannotti MI, Fourgous E, Boublik Y, Fernández A, Le Roux AL, Sirvent A, Taulés M, Roche S, Pons M. Lipid-driven Src self-association modulates its transformation capacity. Life Sci Alliance 2025; 8:e202403019. [PMID: 40081987 PMCID: PMC11909415 DOI: 10.26508/lsa.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Src tyrosine kinase regulates cell growth and adhesion through membrane signaling, and its deregulation is associated with cancer. Although active Src is anchored to the plasma membrane, the role of membrane lipids in its regulation remains unclear. Here, we report that Src self-associates via a lysine cluster in its SH4 region, a process mediated by lipids in human cells and in vitro. Mutation of the lysine cluster to arginine alters Src self-association and modulates its transforming function in human cells. Lipid-anchored micron-sized condensates of full-length Src form in supported homogeneous lipid bilayers (i.e., independently of lipid phase separation). Condensates also arise from the purified Src N-terminal regulatory element, which includes the myristoylated SH4 domain, the intrinsically disordered Unique domain, and the globular SH3 domain. However, the isolated SH4 domain alone forms small protein-lipid clusters rather than micron-sized condensates. Our findings reveal lipid-mediated kinase self-association as an additional regulatory mechanism for Src. This mechanism may also apply to other membrane-associated signaling proteins containing similar lysine clusters in their unstructured regions.
Collapse
Affiliation(s)
- Irrem-Laareb Mohammad
- https://ror.org/021018s57 Biomolecular NMR Laboratory, Department of Inorganic and Organic Chemistry, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marina I Giannotti
- https://ror.org/056h71x09 Nanoprobes and Nanoswitches Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- https://ror.org/021018s57 Materials Science and Physical Chemistry Department, IQTCUB, Universitat de Barcelona (UB), Barcelona, Spain
| | - Elise Fourgous
- CNRS UMR5237, University of Montpellier, CRBM, Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Yvan Boublik
- CNRS UMR5237, University of Montpellier, CRBM, Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Alejandro Fernández
- https://ror.org/021018s57 Biomolecular NMR Laboratory, Department of Inorganic and Organic Chemistry, Universitat de Barcelona (UB), Barcelona, Spain
| | - Anabel-Lise Le Roux
- https://ror.org/056h71x09 Nanoprobes and Nanoswitches Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Audrey Sirvent
- CNRS UMR5237, University of Montpellier, CRBM, Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Marta Taulés
- https://ror.org/021018s57 Centres Científics i Tecnològics (CCiTUB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Serge Roche
- CNRS UMR5237, University of Montpellier, CRBM, Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Miquel Pons
- https://ror.org/021018s57 Biomolecular NMR Laboratory, Department of Inorganic and Organic Chemistry, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
2
|
Pasquale EB. Eph receptor signaling complexes in the plasma membrane. Trends Biochem Sci 2024; 49:1079-1096. [PMID: 39537538 PMCID: PMC11967910 DOI: 10.1016/j.tibs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Eph receptor tyrosine kinases, together with their cell surface-anchored ephrin ligands, constitute an important cell-cell communication system that regulates physiological and pathological processes in most cell types. This review focuses on the multiple mechanisms by which Eph receptors initiate signaling via the formation of protein complexes in the plasma membrane. Upon ephrin binding, Eph receptors assemble into oligomers that can further aggregate into large complexes. Eph receptors also mediate ephrin-independent signaling through interplay with intracellular kinases or other cell-surface receptors. The distinct characteristics of Eph receptor family members, as well as their conserved domain structure, provide a framework for understanding their functional differences and redundancies. Possible areas of interest for future investigations of Eph receptor signaling complexes are also highlighted.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Toracchio L, Carrabotta M, Mancarella C, Morrione A, Scotlandi K. EphA2 in Cancer: Molecular Complexity and Therapeutic Opportunities. Int J Mol Sci 2024; 25:12191. [PMID: 39596256 PMCID: PMC11594831 DOI: 10.3390/ijms252212191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Erythropoietin-producing hepatocellular A2 (EphA2) is a member of the Eph tyrosine kinase receptor family that has been linked to various biological processes. In tumors, EphA2 overexpression is associated with noncanonical pathway activation, tumor progression, and a poor prognosis, which has emphasized its importance as a marker of malignancy. Studies on numerous cancer models have highlighted EphA2's dual and often contradictory action, which can be attributed to EphA2's interactions involving multiple pathways and different ligands, as well as the heterogeneity of the tumor microenvironment. In this review, we summarize the main mechanisms underlying EphA2 dysregulation in cancer, highlighting its molecular complexity. Then, we analyze therapies that have been developed over time to counteract its action. We discuss the limitations of the described approaches, emphasizing the fact that the goal of new options is high specificity without losing therapeutic efficacy. For this reason, immunotherapy or the emerging field of targeted protein degradation with proteolysis-targeting chimeras (PROTACs) may represent a promising solution that can be developed based on a deeper understanding of the molecular mechanisms sustaining EphA2 oncogenic activity.
Collapse
Affiliation(s)
- Lisa Toracchio
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Marianna Carrabotta
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| |
Collapse
|
4
|
Mezquita B, Reyes-Farias M, Pons M. FDA-approved antivirals ledipasvir and daclatasvir downregulate the Src-EPHA2-Akt oncogenic pathway in colorectal and triple-negative breast cancer cells. Biomed Pharmacother 2024; 179:117325. [PMID: 39226729 DOI: 10.1016/j.biopha.2024.117325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Direct-acting antivirals ledipasvir (LDV) and daclatasvir (DCV) are widely used as part of combination therapies to treat Hepatitis C infections. Here we show that these compounds inhibit the proliferation, invasion, and colony formation of triple-negative MDA-MB-231 breast cancer cells, SRC-transduced SW620 colon cancer cells and SRC- transduced NIH3T3 fibroblasts. DCV also inhibits the expression of PDL-1, which is responsible for resistance to immunotherapy in breast cancer cells. The demonstrated low toxicity in many Hepatitis C patients suggests LDV and DCV could be used in combination therapies for cancer patients. At the molecular level, these direct-acting antivirals inhibit the phosphorylation of Akt and the ephrin type A receptor 2 (EPHA2) by destabilizing a Src-EPHA2 complex, although they do not affect the general kinase activity of Src. Thus, LDV and DCV could be effective drugs for Src-associated cancers without the inherent toxicity of classical Src inhibitors.
Collapse
Affiliation(s)
- Betlem Mezquita
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya (UIC), Josep Trueta s/n, Sant Cugat del Vallès, 08195, Spain
| | - Marjorie Reyes-Farias
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. Universitat de Barcelona (UB), Baldiri Reixac, 10-12, Barcelona 08028, Spain
| | - Miquel Pons
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. Universitat de Barcelona (UB), Baldiri Reixac, 10-12, Barcelona 08028, Spain.
| |
Collapse
|
5
|
Zhang YK, Shi R, Meng RY, Lin SL, Zheng M. Erythropoietin-induced hepatocyte receptor A2 regulates effect of pyroptosis on gastrointestinal colorectal cancer occurrence and metastasis resistance. World J Gastrointest Oncol 2024; 16:3781-3797. [PMID: 39350985 PMCID: PMC11438782 DOI: 10.4251/wjgo.v16.i9.3781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/30/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024] Open
Abstract
Erythropoietin-induced hepatocyte receptor A2 (EphA2) is a receptor tyrosine kinase that plays a key role in the development and progression of a variety of tumors. This article reviews the expression of EphA2 in gastrointestinal (GI) colorectal cancer (CRC) and its regulation of pyroptosis. Pyroptosis is a form of programmed cell death that plays an important role in tumor suppression. Studies have shown that EphA2 regulates pyrodeath through various signaling pathways, affecting the occurrence, development and metastasis of GI CRC. The overexpression of EphA2 is closely related to the aggressiveness and metastasis of GI CRC, and the inhibition of EphA2 can induce pyrodeath and improve the sensitivity of cancer cells to treatment. In addition, EphA2 regulates intercellular communication and the microenvironment through interactions with other cytokines and receptors, further influencing cancer progression. The role of EphA2 in GI CRC and its underlying mechanisms provide us with new perspectives and potential therapeutic targets, which have important implications for future cancer treatment.
Collapse
Affiliation(s)
- Yu-Kun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| | - Ran Shi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| | - Ruo-Yu Meng
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Shui-Li Lin
- Department of Ana and Intestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Mei Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| |
Collapse
|
6
|
Chen J, Feng H, Wang Y, Bai X, Sheng S, Li H, Huang M, Chu X, Lei Z. The involvement of E3 ubiquitin ligases in the development and progression of colorectal cancer. Cell Death Discov 2023; 9:458. [PMID: 38104139 PMCID: PMC10725464 DOI: 10.1038/s41420-023-01760-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
To date, colorectal cancer (CRC) still has limited therapeutic efficacy and poor prognosis and there is an urgent need for novel targets to improve the outcome of CRC patients. The highly conserved ubiquitination modification mediated by E3 ubiquitin ligases is an important mechanism to regulate the expression and function of tumor promoters or suppressors in CRC. In this review, we provide an overview of E3 ligases in modulating various biological processes in CRC, including proliferation, migration, stemness, metabolism, cell death, differentiation and immune response of CRC cells, emphasizing the pluripotency of E3 ubiquitin ligases. We further focus on the role of E3 ligases in regulating vital cellular signal pathways in CRC, such as Wnt/β-catenin pathway and NF-κB pathway. Additionally, considering the potential of E3 ligases as novel targets in the treatment of CRC, we discuss what aspects of E3 ligases can be utilized and exploited for efficient therapeutic strategies.
Collapse
Affiliation(s)
- Jie Chen
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Haimei Feng
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yiting Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Bai
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Siqi Sheng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Huiyu Li
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical university, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China.
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical university, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
7
|
Oncogenic Signalling of PEAK2 Pseudokinase in Colon Cancer. Cancers (Basel) 2022; 14:cancers14122981. [PMID: 35740644 PMCID: PMC9221080 DOI: 10.3390/cancers14122981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Catalytically inactive kinases, also named pseudokinases, play important roles in the regulation of cell growth and adhesion. While frequently deregulated in human cancer, their role in tumour development is partially elucidated. Here, we report an important tumour function for the pseudokinase PEAK2 in colorectal cancer (CRC) and propose that PEAK2 upregulation can affect cancer cell adhesive properties through an ABL-dependent mechanism to enable cancer progression. Therefore, targeting PEAK2 oncogenic activity with small tyrosine kinases (TK) inhibitors may be of therapeutic interest in colorectal cancer (CRC). Abstract The PEAK family pseudokinases are essential components of tyrosine kinase (TK) pathways that regulate cell growth and adhesion; however, their role in human cancer remains unclear. Here, we report an oncogenic activity of the pseudokinase PEAK2 in colorectal cancer (CRC). Notably, high PRAG1 expression, which encodes PEAK2, was associated with a bad prognosis in CRC patients. Functionally, PEAK2 depletion reduced CRC cell growth and invasion in vitro, while its overexpression increased these transforming effects. PEAK2 depletion also reduced CRC development in nude mice. Mechanistically, PEAK2 expression induced cellular protein tyrosine phosphorylation, despite its catalytic inactivity. Phosphoproteomic analysis identified regulators of cell adhesion and F-actin dynamics as PEAK2 targets. Additionally, PEAK2 was identified as a novel ABL TK activator. In line with this, PEAK2 expression localized at focal adhesions of CRC cells and induced ABL-dependent formation of actin-rich plasma membrane protrusions filopodia that function to drive cell invasion. Interestingly, all these PEAK2 transforming activities were regulated by its main phosphorylation site, Tyr413, which implicates the SRC oncogene. Thus, our results uncover a protumoural function of PEAK2 in CRC and suggest that its deregulation affects adhesive properties of CRC cells to enable cancer progression.
Collapse
|
8
|
Aponte E, Lafitte M, Sirvent A, Simon V, Barbery M, Fourgous E, Boublik Y, Maffei M, Armand F, Hamelin R, Pannequin J, Fort P, Pons M, Roche S. Regulation of Src tumor activity by its N-terminal intrinsically disordered region. Oncogene 2022; 41:960-970. [PMID: 34999732 PMCID: PMC8837538 DOI: 10.1038/s41388-021-02092-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022]
Abstract
The membrane-anchored Src tyrosine kinase is involved in numerous pathways and its deregulation is involved in human cancer. Our knowledge on Src regulation relies on crystallography, which revealed intramolecular interactions to control active Src conformations. However, Src contains a N-terminal intrinsically disordered unique domain (UD) whose function remains unclear. Using NMR, we reported that UD forms an intramolecular fuzzy complex involving a conserved region with lipid-binding capacity named Unique Lipid-Binding Region (ULBR), which could modulate Src membrane anchoring. Here we show that the ULBR is essential for Src's oncogenic capacity. ULBR inactive mutations inhibited Src transforming activity in NIH3T3 cells and in human colon cancer cells. It also reduced Src-induced tumor development in nude mice. An intact ULBR was required for MAPK signaling without affecting Src kinase activity nor sub-cellular localization. Phospho-proteomic analyses revealed that, while not impacting on the global tyrosine phospho-proteome in colon cancer cells, this region modulates phosphorylation of specific membrane-localized tyrosine kinases needed for Src oncogenic signaling, including EPHA2 and Fyn. Collectively, this study reveals an important role of this intrinsically disordered region in malignant cell transformation and suggests a novel layer of Src regulation by this unique region via membrane substrate phosphorylation.
Collapse
Affiliation(s)
- Emilie Aponte
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Marie Lafitte
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Audrey Sirvent
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Valérie Simon
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Maud Barbery
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Elise Fourgous
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Yvan Boublik
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Mariano Maffei
- Biomolecular NMR laboratory, Department of Inorganic and Organic Chemistry, University of Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Evvivax srl-Via di Castel Romano, 100 - 00128, Rome, Italy
| | - Florence Armand
- Proteomics Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Romain Hamelin
- Proteomics Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | | | - Philippe Fort
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France
| | - Miquel Pons
- Biomolecular NMR laboratory, Department of Inorganic and Organic Chemistry, University of Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
| | - Serge Roche
- CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France.
- Equipe labellisée Ligue Contre le Cancer, CRBM, CNRS, Univ. Montpellier, F-34000, Montpellier, France.
- IGF, CNRS, Univ. Montpellier, F-34000, Montpellier, France.
| |
Collapse
|
9
|
Ounoughene Y, Fourgous E, Boublik Y, Saland E, Guiraud N, Recher C, Urbach S, Fort P, Sarry JE, Fesquet D, Roche S. SHED-Dependent Oncogenic Signaling of the PEAK3 Pseudo-Kinase. Cancers (Basel) 2021; 13:cancers13246344. [PMID: 34944965 PMCID: PMC8699254 DOI: 10.3390/cancers13246344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The human kinome is composed of about 50 pseudo-kinases with unclear function, because they are predicted to be catalytically inactive; however, they are shown to play an important role in cancer, similar to active kinases. Understanding how these pseudo-kinases promote tumor formation despite their catalytic inactivity is a great challenge, which may lead to innovative anti-cancer therapies. The PEAK1 and 2 pseudo-kinases have emerged as important components of the protein tyrosine kinase pathway implicated in cancer progression. They can signal using a scaffolding mechanism via a conserved split helical dimerization (SHED) module. In this study, we uncovered a similar SHED-dependent oncogenic activity for PEAK3, a recently discovered new member of this family. We also show that this new signaling mechanism may be implicated in acute myeloid leukemia. Abstract The PEAK1 and Pragmin/PEAK2 pseudo-kinases have emerged as important components of the protein tyrosine kinase pathway implicated in cancer progression. They can signal using a scaffolding mechanism that involves a conserved split helical dimerization (SHED) module. We recently identified PEAK3 as a novel member of this family based on structural homology; however, its signaling mechanism remains unclear. In this study, we found that, although it can self-associate, PEAK3 shows higher evolutionary divergence than PEAK1/2. Moreover, the PEAK3 protein is strongly expressed in human hematopoietic cells and is upregulated in acute myeloid leukemia. Functionally, PEAK3 overexpression in U2OS sarcoma cells enhanced their growth and migratory properties, while its silencing in THP1 leukemic cells reduced these effects. Importantly, an intact SHED module was required for these PEAK3 oncogenic activities. Mechanistically, through a phosphokinase survey, we identified PEAK3 as a novel inducer of AKT signaling, independent of growth-factor stimulation. Then, proteomic analyses revealed that PEAK3 interacts with the signaling proteins GRB2 and ASAP1/2 and the protein kinase PYK2, and that these interactions require the SHED domain. Moreover, PEAK3 activated PYK2, which promoted PEAK3 tyrosine phosphorylation, its association with GRB2 and ASAP1, and AKT signaling. Thus, the PEAK1-3 pseudo-kinases may use a conserved SHED-dependent mechanism to activate specific signaling proteins to promote oncogenesis.
Collapse
Affiliation(s)
- Youcef Ounoughene
- CRBM, University Montpellier, CNRS, Equipe Labellisée Ligue Contre le Cancer, F-34000 Montpellier, France; (Y.O.); (E.F.); (Y.B.); (P.F.)
| | - Elise Fourgous
- CRBM, University Montpellier, CNRS, Equipe Labellisée Ligue Contre le Cancer, F-34000 Montpellier, France; (Y.O.); (E.F.); (Y.B.); (P.F.)
| | - Yvan Boublik
- CRBM, University Montpellier, CNRS, Equipe Labellisée Ligue Contre le Cancer, F-34000 Montpellier, France; (Y.O.); (E.F.); (Y.B.); (P.F.)
| | - Estelle Saland
- CRCT, INSERM, CNRS, University of Toulouse, Equipe Labellisée Ligue Contre le Cancer, F-31037 Toulouse, France; (E.S.); (N.G.); (C.R.); (J.-E.S.)
| | - Nathan Guiraud
- CRCT, INSERM, CNRS, University of Toulouse, Equipe Labellisée Ligue Contre le Cancer, F-31037 Toulouse, France; (E.S.); (N.G.); (C.R.); (J.-E.S.)
| | - Christian Recher
- CRCT, INSERM, CNRS, University of Toulouse, Equipe Labellisée Ligue Contre le Cancer, F-31037 Toulouse, France; (E.S.); (N.G.); (C.R.); (J.-E.S.)
| | - Serge Urbach
- IGF, CNRS, INSERM, University Montpellier, F-34000 Montpellier, France;
| | - Philippe Fort
- CRBM, University Montpellier, CNRS, Equipe Labellisée Ligue Contre le Cancer, F-34000 Montpellier, France; (Y.O.); (E.F.); (Y.B.); (P.F.)
| | - Jean-Emmanuel Sarry
- CRCT, INSERM, CNRS, University of Toulouse, Equipe Labellisée Ligue Contre le Cancer, F-31037 Toulouse, France; (E.S.); (N.G.); (C.R.); (J.-E.S.)
| | - Didier Fesquet
- CRBM, University Montpellier, CNRS, Equipe Labellisée Ligue Contre le Cancer, F-34000 Montpellier, France; (Y.O.); (E.F.); (Y.B.); (P.F.)
- Correspondence: (D.F.); (S.R.)
| | - Serge Roche
- CRBM, University Montpellier, CNRS, Equipe Labellisée Ligue Contre le Cancer, F-34000 Montpellier, France; (Y.O.); (E.F.); (Y.B.); (P.F.)
- Correspondence: (D.F.); (S.R.)
| |
Collapse
|
10
|
Song D, Wei Y, Hu Y, Chen X, Zheng Y, Liu M, Wang Y, Zhou Y. Identification of prognostic biomarkers associated with tumor microenvironment in ceRNA network for esophageal squamous cell carcinoma: a bioinformatics study based on TCGA database. Discov Oncol 2021; 12:46. [PMID: 35201503 PMCID: PMC8777578 DOI: 10.1007/s12672-021-00442-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer in the world with high incidence rate and poor prognosis. Infiltrated immune and stromal cells are vital components of tumor microenvironment (TME) and have a significant impact on the progression of ESCC. The competitive endogenous RNA (ceRNA) hypothesis has been proved important in the molecular biological mechanisms of tumor development. However, there are few studies on the relationship between ceRNA and ESCC TME. METHODS The proportion of tumor-infiltrating immune cells and the amount of stromal and immune cells in ESCC cases were calculated from The Cancer Genome Atlas database using the CIBERSORT and ESTIMATE calculation methods. After stratified identification of differentially expressed genes, WGCNA and miRNA prediction system were applied to construct ceRNA network. Finally, PPI network and survival analysis were selected to discriminate prognostic signature. And the results were verified in two independent groups from Gene Expression Omnibus and Lanzhou, China. RESULTS We found that high Stromal and ESTIMATE scores were significantly associated with poor overall survival. Three TME-related key prognostic genes were screened, namely, LCP2, CD86, SLA. And the expression of them was significantly correlated with infiltrated immunocytes. It is also found that ESTIMATE Score and the expression of CD86 were both related to TNM system of ESCC. CONCLUSIONS We identified three novel TME-related prognostic markers and their lncRNA-miRNA-mRNA pathway in ESCC patients, which may provide new strategies for the targeted therapy.
Collapse
Affiliation(s)
- Danlei Song
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yongjian Wei
- The First Department of Hepatobiliary and Pancreatic Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Yuping Hu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Hospital of Reproductive Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xia Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Min Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Huang C, Chen Z, He Y, He Z, Ban Z, Zhu Y, Ding L, Yang C, Jeong JH, Yuan W, Yang L. EphA2 promotes tumorigenicity of cervical cancer by up-regulating CDK6. J Cell Mol Med 2021; 25:2967-2975. [PMID: 33586348 PMCID: PMC7957165 DOI: 10.1111/jcmm.16337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/22/2020] [Accepted: 01/09/2021] [Indexed: 12/18/2022] Open
Abstract
Erythropoietin‐producing hepatocellular receptor A2 (EphA2) receptor tyrosine kinase plays an important role in tissue organization and homeostasis in normal organs. EphA2 is overexpressed in a variety of types of solid tumours with oncogenic functions. However, the role of EphA2 in cervical cancer (CC) is still needed to be further explored. Here, we examined the role of EphA2 by establishing a stable EphA2 knock‐down CC cell lines or a stable EphA2‐overexpressed CC cells lines. Overexpression of EphA2 increased cell proliferation and migration of CC while EphA2 knock‐down decreased the CC tumorigenicity. In addition, EphA2 knock‐down suppressed CC tumour development in the xenograft mouse model. Inhibition of EphA2 by AWL‐II‐41‐27, EphA2‐specific tyrosine kinase inhibitor, or knock‐down of EphA2 decreased mRNA and protein expression of cyclin‐dependent kinase (CDK) 6 in CC cells, which increased cellular susceptibility to epirubicin (EPI), an anti‐cancer chemotherapy drug. A clinicopathological study of EphA2 was conducted on a cohort of 158 human CC patients. EphA2 protein expression was positively correlated with CDK6 protein expression, invasion depth, lymph node metastasis and clinicopathological stage (P < .05). This study demonstrates the oncogenic activity of EphA2 in vitro and in vivo, which provides insights into the relevant mechanisms that might lead to novel treatments for CC.
Collapse
Affiliation(s)
- Changhao Huang
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China
| | - Zihua Chen
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China.,Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yihong He
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengxi He
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenying Ban
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanhang Zhu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leilei Ding
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Yang
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China.,Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Hak Jeong
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Weijie Yuan
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China.,Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Biallelic UBE4A loss-of-function variants cause intellectual disability and global developmental delay. Genet Med 2021; 23:661-668. [PMID: 33420346 DOI: 10.1038/s41436-020-01047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To identify novel genes associated with intellectual disability (ID) in four unrelated families. METHODS Here, through exome sequencing and international collaboration, we report eight individuals from four unrelated families of diverse geographic origin with biallelic loss-of-function variants in UBE4A. RESULTS Eight evaluated individuals presented with syndromic intellectual disability and global developmental delay. Other clinical features included hypotonia, short stature, seizures, and behavior disorder. Characteristic features were appreciated in some individuals but not all; in some cases, features became more apparent with age. We demonstrated that UBE4A loss-of-function variants reduced RNA expression and protein levels in clinical samples. Mice generated to mimic patient-specific Ube4a loss-of-function variant exhibited muscular and neurological/behavioral abnormalities, some of which are suggestive of the clinical abnormalities seen in the affected individuals. CONCLUSION These data indicate that biallelic loss-of-function variants in UBE4A cause a novel intellectual disability syndrome, suggesting that UBE4A enzyme activity is required for normal development and neurological function.
Collapse
|
13
|
Feng Y, Jin MY, Liu DW, Wei L. Bone morphogenetic protein (BMP) 7 expression is regulated by the E3 ligase UBE4A in diabetic nephropathy. Arch Physiol Biochem 2020; 126:416-419. [PMID: 30663414 DOI: 10.1080/13813455.2018.1551905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mesangial cells played a central role in the pathophysiology of diabetic nephropathy (DN). Our goal was to evaluate the molecular mechanism that regulates loss of BMP7 protein expression in DN. The mRNA and protein levels of BMP7 or UBE4A were detected using qRT-PCR and Western blot respectively. Mass spectrometry and co-immunoprecipitation were used to explore the E3 ligase which regulated BMP7 post-translationally. We initially confirmed that BMP7 protein, but not mRNA, is downregulated when cultured under high glucose mimicking DN conditions, which was rescued by MG-132 treatment. Proteomic analysis of NRK-52E cells ± MG-132 revealed a list of ubiquitin ligases associated with BMP7. Knockdown of the ubiquitin ligase UBE4A stabilized BMP7 expression in NRK-52E cells grown under high glucose conditions. Concurrent overexpression experiments confirmed that UBE4A is the ubiquitin ligase that degrades BMP7. Co-immunoprecipitation analysis confirmed that BMP7 and UBE4A interact. BMP7 expression in DN is regulated by post-translational mechanism.
Collapse
Affiliation(s)
- Ying Feng
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ming-Yue Jin
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Dong-Wei Liu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Li Wei
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
14
|
Feng J, Lu SS, Xiao T, Huang W, Yi H, Zhu W, Fan S, Feng XP, Li JY, Yu ZZ, Gao S, Nie GH, Tang YY, Xiao ZQ. ANXA1 Binds and Stabilizes EphA2 to Promote Nasopharyngeal Carcinoma Growth and Metastasis. Cancer Res 2020; 80:4386-4398. [PMID: 32737118 DOI: 10.1158/0008-5472.can-20-0560] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022]
Abstract
Overexpression of ANXA1 and EphA2 has been linked to various cancers and both proteins have attracted considerable attention for the development of new anticancer drugs. Here we report that ANXA1 competes with Cbl for binding EphA2 and increases its stability by inhibiting Cbl-mediated EphA2 ubiquitination and degradation in nasopharyngeal carcinoma (NPC). Binding of ANXA1 to EphA2 promoted NPC cell growth and metastasis in vitro and in vivo by elevating EphA2 levels and increasing activity of EphA2 oncogenic signaling (pS897-EphA2). Expression of ANXA1 and EphA2 was positively correlated and both were significantly higher in NPC tissues than in the normal nasopharyngeal epithelial tissues. Patients with high expression of both proteins presented poorer disease-free survival and overall survival relative to patients with high expression of one protein alone. Furthermore, amino acid residues 20-30aa and 28-30aa of the ANXA1 N-terminus bound EphA2. An 11 amino acid-long ANXA1-derived peptide (EYVQTVKSSKG) was developed on the basis of this N-terminal region, which disrupted the connection of ANXA1 with EphA2, successfully downregulating EphA2 expression and dramatically suppressing NPC cell oncogenicity in vitro and in mice. These findings suggest that ANXA1 promotes NPC growth and metastasis via binding and stabilization of EphA2 and present a strategy for targeting EphA2 degradation and treating NPC with a peptide. This therapeutic strategy may also be extended to other cancers with high expression of both proteins. SIGNIFICANCE: These findings show that EphA2 is a potential target for NPC therapeutics and an ANXA1-derived peptide suppresses NPC growth and metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4386/F1.large.jpg.
Collapse
Affiliation(s)
- Juan Feng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Ta Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao-Yang Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Zheng Yu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guo-Hui Nie
- Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yao-Yun Tang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qiang Xiao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China. .,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Src Family Tyrosine Kinases in Intestinal Homeostasis, Regeneration and Tumorigenesis. Cancers (Basel) 2020; 12:cancers12082014. [PMID: 32717909 PMCID: PMC7464719 DOI: 10.3390/cancers12082014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 01/11/2023] Open
Abstract
Src, originally identified as an oncogene, is a membrane-anchored tyrosine kinase and the Src family kinase (SFK) prototype. SFKs regulate the signalling induced by a wide range of cell surface receptors leading to epithelial cell growth and adhesion. In the intestine, the SFK members Src, Fyn and Yes regulate epithelial cell proliferation and migration during tissue regeneration and transformation, thus implicating conserved and specific functions. In patients with colon cancer, SFK activity is a marker of poor clinical prognosis and a potent driver of metastasis formation. These tumorigenic activities are linked to SFK capacity to promote the dissemination and tumour-initiating capacities of epithelial tumour cells. However, it is unclear how SFKs promote colon tumour formation and metastatic progression because SFK-encoding genes are unfrequently mutated in human cancer. Here, we review recent findings on SFK signalling during intestinal homeostasis, regeneration and tumorigenesis. We also describe the key nongenetic mechanisms underlying SFK tumour activities in colorectal cancer, and discuss how these mechanisms could be exploited in therapeutic strategies to target SFK signalling in metastatic colon cancer.
Collapse
|
16
|
Yuan Y, Miao Y, Qian L, Zhang Y, Liu C, Liu J, Zuo Y, Feng Q, Guo T, Zhang L, Chen X, Jin L, Huang F, Zhang H, Zhang W, Li W, Xu G, Zheng H. Targeting UBE4A Revives Viperin Protein in Epithelium to Enhance Host Antiviral Defense. Mol Cell 2020; 77:734-747.e7. [DOI: 10.1016/j.molcel.2019.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 01/26/2023]
|
17
|
Huang C, Yuan W, Lai C, Zhong S, Yang C, Wang R, Mao L, Chen Z, Chen Z. EphA2-to-YAP pathway drives gastric cancer growth and therapy resistance. Int J Cancer 2019; 146:1937-1949. [PMID: 31376289 DOI: 10.1002/ijc.32609] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
Yes-associated protein (YAP) is a transcriptional coactivator that promotes cell proliferation, stem cell maintenance and tissue homeostasis. The YAP activity is primarily regulated through an inhibitory phosphorylation by the serine/threonine kinases of Hippo pathway. Here, we show that receptor tyrosine kinase (RTK) erythropoietin-producing hepatocellular receptor A2 (EphA2) interacts with and phosphorylates YAP protein, leading to stabilization, nuclear translocation and activation of YAP in gastric cancer (GC) cells. EphA2 induces chemotherapy-resistance by increasing YAP stability and nuclear YAP protein. Knockdown of YAP blocks EphA2-induced tumor growth in GC xenograft mouse models. Importantly, the coactivation of EphA2 and YAP is manifested in clinical human GC, and is related to GC recurrence. Thus, our results establish a novel EphA2-to-YAP pathway that drives GC growth, progression and therapy-resistance, targeting this pathway would be an efficient way for the treatment of GC, particularly chemotherapy-resistant GC.
Collapse
Affiliation(s)
- Changhao Huang
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China.,Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weijie Yuan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China
| | - Chen Lai
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China.,Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shangwei Zhong
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China
| | - Chen Yang
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China
| | - Ran Wang
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China
| | - Linfeng Mao
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China.,Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zihua Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China.,Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Changsha, Hunan, China
| | - Zhikang Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China.,Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Changsha, Hunan, China
| |
Collapse
|
18
|
Mevizou R, Sirvent A, Roche S. Control of Tyrosine Kinase Signalling by Small Adaptors in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11050669. [PMID: 31091767 PMCID: PMC6562749 DOI: 10.3390/cancers11050669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2023] Open
Abstract
Tyrosine kinases (TKs) phosphorylate proteins on tyrosine residues as an intracellular signalling mechanism to coordinate intestinal epithelial cell communication and fate decision. Deregulation of their activity is ultimately connected with carcinogenesis. In colorectal cancer (CRC), it is still unclear how aberrant TK activities contribute to tumour formation because TK-encoding genes are not frequently mutated in this cancer. In vertebrates, several TKs are under the control of small adaptor proteins with potential important physiopathological roles. For instance, they can exert tumour suppressor functions in human cancer by targeting several components of the oncogenic TK signalling cascades. Here, we review how the Src-like adaptor protein (SLAP) and the suppressor of cytokine signalling (SOCS) adaptor proteins regulate the SRC and the Janus kinase (JAK) oncogenic pathways, respectively, and how their loss of function in the intestinal epithelium may influence tumour formation. We also discuss the potential therapeutic value of these adaptors in CRC.
Collapse
Affiliation(s)
- Rudy Mevizou
- CRBM, CNRS, Univ. Montpellier, "Equipe labellisée Ligue Contre le Cancer", F-34000 Montpellier, France.
| | - Audrey Sirvent
- CRBM, CNRS, Univ. Montpellier, "Equipe labellisée Ligue Contre le Cancer", F-34000 Montpellier, France.
| | - Serge Roche
- CRBM, CNRS, Univ. Montpellier, "Equipe labellisée Ligue Contre le Cancer", F-34000 Montpellier, France.
| |
Collapse
|
19
|
Chen M, Hu C, Guo Y, Jiang R, Jiang H, Zhou Y, Fu H, Wu M, Zhang X. Ophiopogonin B suppresses the metastasis and angiogenesis of A549 cells in vitro and in vivo by inhibiting the EphA2/Akt signaling pathway. Oncol Rep 2018; 40:1339-1347. [PMID: 29956803 PMCID: PMC6072400 DOI: 10.3892/or.2018.6531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/12/2018] [Indexed: 12/22/2022] Open
Abstract
Lung adenocarcinoma is the most common metastatic cancer, and is associated with high patient mortality. Therefore, investigation of anti‑metastatic treatments for lung adenocarcinoma is crucial. Ophiopogonin B (OP‑B) is a bioactive component of Radix Ophiopogon Japonicus, which is often used in Chinese traditional medicine to treat pulmonary disease. Screening of transcriptome and digital gene expression (DGE) profiling data in NSCLC cell lines showed that OP‑B regulated the epithelial‑mesenchymal transition (EMT) pathway in A549 cells. Further results showed that 10 µmol/l OP‑B downregulated EphA2 expression and phosphorylation (Ser897) in A549 cells but upregulated them in NCI‑H460 cells. Meanwhile, the Ras/ERK pathway was unaffected in A549 cells and stimulated in NCI‑H460 cells. More importantly, detection of the EMT pathway showed that OP‑B treatment increased the epithelial markers ZO‑1 and E‑cadherin and decreased the expression of the mesenchymal marker N‑cadherin and the transcriptional repressors Snail, Slug and ZEB1. Furthermore, through Transwell migration and scratch wound healing assays, we found that 10 µmol/l OP‑B significantly reduced the invasion and migration of A549 cells. In vivo, we found that 75 mg/kg OP‑B inhibited A549 cell metastasis in a pulmonary metastasis nude mouse model. In addition, we also found that 10 µmol/l OP‑B significantly inhibited tube formation in EA.hy926 cells. The expression of VEGFR2 and Tie‑2, the phosphorylation of Akt (S473) and PLC (S1248), and the levels of EphA2 and phosphorylated EphA2 (S897) were all inhibited by OP‑B in this cell line. In vivo, using a Matrigel plug assay, we found that OP‑B inhibited angiogenesis and the hemoglobin content of A549 transplanted tumors. Taken together, OP‑B inhibited the metastasis and angiogenesis of A549 cells by inhibiting EphA2/Akt and the corresponding pathway. The investigation gives new recognition to the anticancer mechanism of OP‑B in NSCLC and this compound is a promising inhibitor of metastasis and angiogenesis of lung adenocarcinoma cells.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/secondary
- Cell Movement/drug effects
- Cell Proliferation
- Epithelial-Mesenchymal Transition
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- In Vitro Techniques
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, EphA2/metabolism
- Saponins/pharmacology
- Signal Transduction
- Spirostans/pharmacology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Meijuan Chen
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumors, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Cheng Hu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumors, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yuanyuan Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumors, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Rilei Jiang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumors, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Huimin Jiang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yu Zhou
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Haian Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mianhua Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumors, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xu Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumors, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
20
|
Lecointre C, Simon V, Kerneur C, Allemand F, Fournet A, Montarras I, Pons JL, Gelin M, Brignatz C, Urbach S, Labesse G, Roche S. Dimerization of the Pragmin Pseudo-Kinase Regulates Protein Tyrosine Phosphorylation. Structure 2018; 26:545-554.e4. [PMID: 29503074 DOI: 10.1016/j.str.2018.01.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 12/31/2022]
Abstract
The pseudo-kinase and signaling protein Pragmin has been linked to cancer by regulating protein tyrosine phosphorylation via unknown mechanisms. Here we present the crystal structure of the Pragmin 906-1,368 amino acid C terminus, which encompasses its kinase domain. We show that Pragmin contains a classical protein-kinase fold devoid of catalytic activity, despite a conserved catalytic lysine (K997). By proteomics, we discovered that this pseudo-kinase uses the tyrosine kinase CSK to induce protein tyrosine phosphorylation in human cells. Interestingly, the protein-kinase domain is flanked by N- and C-terminal extensions forming an original dimerization domain that regulates Pragmin self-association and stimulates CSK activity. A1329E mutation in the C-terminal extension destabilizes Pragmin dimerization and reduces CSK activation. These results reveal a dimerization mechanism by which a pseudo-kinase can induce protein tyrosine phosphorylation. Further sequence-structure analysis identified an additional member (C19orf35) of the superfamily of dimeric Pragmin/SgK269/PEAK1 pseudo-kinases.
Collapse
Affiliation(s)
- Céline Lecointre
- CRBM, "Equipe Labellisée Ligue Contre le Cancer", Univ Montpellier, CNRS, 34000 Montpellier, France
| | - Valérie Simon
- CRBM, "Equipe Labellisée Ligue Contre le Cancer", Univ Montpellier, CNRS, 34000 Montpellier, France
| | - Clément Kerneur
- CRBM, "Equipe Labellisée Ligue Contre le Cancer", Univ Montpellier, CNRS, 34000 Montpellier, France
| | | | - Aurélie Fournet
- CBS, Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Ingrid Montarras
- CRBM, "Equipe Labellisée Ligue Contre le Cancer", Univ Montpellier, CNRS, 34000 Montpellier, France
| | - Jean-Luc Pons
- CBS, Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Muriel Gelin
- CBS, Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Constance Brignatz
- CRBM, "Equipe Labellisée Ligue Contre le Cancer", Univ Montpellier, CNRS, 34000 Montpellier, France
| | - Serge Urbach
- IGF, Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Gilles Labesse
- CBS, Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France.
| | - Serge Roche
- CRBM, "Equipe Labellisée Ligue Contre le Cancer", Univ Montpellier, CNRS, 34000 Montpellier, France.
| |
Collapse
|
21
|
Pewkliang Y, Rungin S, Lerdpanyangam K, Duangmanee A, Kanjanasirirat P, Suthivanich P, Sa-Ngiamsuntorn K, Borwornpinyo S, Sattabongkot J, Patrapuvich R, Hongeng S. A novel immortalized hepatocyte-like cell line (imHC) supports in vitro liver stage development of the human malarial parasite Plasmodium vivax. Malar J 2018; 17:50. [PMID: 29370800 PMCID: PMC5785895 DOI: 10.1186/s12936-018-2198-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/19/2018] [Indexed: 12/31/2022] Open
Abstract
Background Eradication of malaria is difficult because of the ability of hypnozoite, the dormant liver-stage form of Plasmodium vivax, to cause relapse in patients. Research efforts to better understand the biology of P. vivax hypnozoite and design relapse prevention strategies have been hampered by the lack of a robust and reliable model for in vitro culture of liver-stage parasites. Although the HC-04 hepatoma cell line is used for culturing liver-stage forms of Plasmodium, these cells proliferate unrestrictedly and detach from the culture dish after several days, which limits their usefulness in a long-term hypnozoite assay. Methods A novel immortalized hepatocyte-like cell line (imHC) was evaluated for the capability to support P. vivax sporozoite infection. First, expression of basic hepatocyte markers and all major malaria sporozoite-associated host receptors in imHC was investigated. Next, in vitro hepatocyte infectivity and intracellular development of sporozoites in imHC were determined using an indirect immunofluorescence assay. Cytochrome P450 isotype activity was also measured to determine the ability of imHC to metabolize drugs. Finally, the anti-liver-stage agent primaquine was used to test this model for a drug sensitivity assay. Results imHCs maintained major hepatic functions and expressed the essential factors CD81, SR-BI and EphA2, which are required for host entry and development of the parasite in the liver. imHCs could be maintained long-term in a monolayer without overgrowth and thus served as a good, supportive substrate for the invasion and growth of P. vivax liver stages, including hypnozoites. The observed high drug metabolism activity and potent responses in liver-stage parasites to primaquine highlight the potential use of this imHC model for antimalarial drug screening. Conclusions imHCs, which maintain a hepatocyte phenotype and drug-metabolizing enzyme expression, constitute an alternative host for in vitro Plasmodium liver-stage studies, particularly those addressing the biology of P. vivax hypnozoite. They potentially offer a novel, robust model for screening drugs against liver-stage parasites. Electronic supplementary material The online version of this article (10.1186/s12936-018-2198-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongyut Pewkliang
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Siriwan Rungin
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Siriraj Initiative in System Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kaewta Lerdpanyangam
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Apisak Duangmanee
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phongthon Kanjanasirirat
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Phichaya Suthivanich
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rapatbhorn Patrapuvich
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand. .,Drug Research Unit for Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Suradej Hongeng
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand. .,Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
22
|
Naudin C, Chevalier C, Roche S. The role of small adaptor proteins in the control of oncogenic signalingr driven by tyrosine kinases in human cancer. Oncotarget 2017; 7:11033-55. [PMID: 26788993 PMCID: PMC4905456 DOI: 10.18632/oncotarget.6929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/01/2016] [Indexed: 12/15/2022] Open
Abstract
Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology.
Collapse
Affiliation(s)
- Cécile Naudin
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Clément Chevalier
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: SFR Biosit (UMS CNRS 3480/US INSERM 018), MRic Photonics Platform, University Rennes, Rennes, France
| | - Serge Roche
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Equipe Labellisée LIGUE 2014, Ligue Contre le Cancer, Paris, France
| |
Collapse
|
23
|
Poly r(C) binding protein (PCBP) 1 expression is regulated by the E3 ligase UBE4A in thyroid carcinoma. Biosci Rep 2017; 37:BSR20170114. [PMID: 28963376 PMCID: PMC5662924 DOI: 10.1042/bsr20170114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 01/22/2023] Open
Abstract
Thyroid cancer patients with high miR-490-3p inhibit translation of PCBP1 mRNA, whereas in patients with low miR-490-3p PCBP1 mRNA expression is high; however, the resultant protein is targeted for degradation through the proteasome. The objective of the present study was to evaluate the molecular mechanism that regulates post-translation degradation of poly r(C) binding protein (PCBP) 1 expression in thyroid cancer cells. Mass spectrometric analysis of PCBP1 immunoprecipitates from MG-132 treated TPC1 cells revealed a list of ubiquitin ligases associated with PCBP1. RNAi-mediated silencing of the candidate ubiquitin ligases revealed that knockdown of the ubiquitin ligase UBE4A stabilized PCBP1 in TPC1 cells. Concurrent overexpression of the candidate ubiquitin ligases in the normal thyroid epithelial cell line Nthy-ori 3-1 confirmed that ubiquitin conjugation factor E4 A (UBE4A) is the ubiquitin ligase that is degrading PCBP1. Coimmunoprecipitation of HA-tagged PCBP1 in TPC1 cells cotransfected with FLAG-UBE4A revealed robust polyubiquitinated smear of PCBP1, thus confirming UBE4A as the ubiquitin ligase of PCBP1. UBE4A expression mimicked PCBP1 mRNA expression in thyroid cancer patients and was inversely correlated to PCBP1 protein expression. Low UBE4A expression level was associated with a better prognosis in thyroid cancer patients. Our data reveal a post-translational regulatory mechanism of regulating PCBP1 expression in thyroid cancer cells.
Collapse
|
24
|
Pilling C, Cooper JA. SOCS2 Binds to and Regulates EphA2 through Multiple Mechanisms. Sci Rep 2017; 7:10838. [PMID: 28883622 PMCID: PMC5589800 DOI: 10.1038/s41598-017-11040-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/15/2017] [Indexed: 02/08/2023] Open
Abstract
Suppressors of cytokine signaling (SOCS) proteins inhibit signaling by serving as substrate receptors for the Cullin5-RING E3 ubiquitin ligase (CRL5) and through a variety of CRL5-independent mechanisms. CRL5, SOCS2 and SOCS6 are implicated in suppressing transformation of epithelial cells. We identified cell proteins that interact with SOCS2 and SOCS6 using two parallel proteomics techniques: BioID and Flag affinity purification mass spectrometry. The receptor tyrosine kinase ephrin type-A receptor 2 (EphA2) was identified as a SOCS2-interacting protein. SOCS2-EphA2 binding requires the SOCS2 SH2 domain and EphA2 activation loop autophosphorylation, which is stimulated by Ephrin A1 (EfnA1) or by phosphotyrosine phosphatase inhibition. Surprisingly, EfnA1-stimulated EphA2-SOCS2 binding is delayed until EphA2 has been internalized into endosomes. This suggests that SOCS2 binds to EphA2 in the context of endosomal membranes. We also found that SOCS2 overexpression decreases steady state levels of EphA2, consistent with increased EphA2 degradation. This effect is indirect: SOCS2 induces EfnA1 expression, and EfnA1 induces EphA2 down-regulation. Other RTKs have been reported to bind, and be regulated by, over-expressed SOCS proteins. Our data suggest that SOCS protein over-expression may regulate receptor tyrosine kinases through indirect and direct mechanisms.
Collapse
Affiliation(s)
- Carissa Pilling
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, 98109, USA.,Molecular and Cellular Biology Program, 1959 NE Pacific Street, HSB T-466, University of Washington, Box 357275, Seattle, WA, 98195-7275, USA
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, 98109, USA.
| |
Collapse
|
25
|
Manzoni G, Marinach C, Topçu S, Briquet S, Grand M, Tolle M, Gransagne M, Lescar J, Andolina C, Franetich JF, Zeisel MB, Huby T, Rubinstein E, Snounou G, Mazier D, Nosten F, Baumert TF, Silvie O. Plasmodium P36 determines host cell receptor usage during sporozoite invasion. eLife 2017; 6:e25903. [PMID: 28506360 PMCID: PMC5470872 DOI: 10.7554/elife.25903] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022] Open
Abstract
Plasmodium sporozoites, the mosquito-transmitted forms of the malaria parasite, first infect the liver for an initial round of replication before the emergence of pathogenic blood stages. Sporozoites represent attractive targets for antimalarial preventive strategies, yet the mechanisms of parasite entry into hepatocytes remain poorly understood. Here we show that the two main species causing malaria in humans, Plasmodium falciparum and Plasmodium vivax, rely on two distinct host cell surface proteins, CD81 and the Scavenger Receptor BI (SR-BI), respectively, to infect hepatocytes. By contrast, CD81 and SR-BI fulfil redundant functions during infection by the rodent parasite P. berghei. Genetic analysis of sporozoite factors reveals the 6-cysteine domain protein P36 as a major parasite determinant of host cell receptor usage. Our data provide molecular insights into the invasion pathways used by different malaria parasites to infect hepatocytes, and establish a functional link between a sporozoite putative ligand and host cell receptors.
Collapse
Affiliation(s)
- Giulia Manzoni
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Carine Marinach
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Selma Topçu
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Sylvie Briquet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Morgane Grand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Matthieu Tolle
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Marion Gransagne
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Julien Lescar
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jean-François Franetich
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Mirjam B Zeisel
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thierry Huby
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition, UMR_S 1166, Paris, France
| | - Eric Rubinstein
- INSERM, U935, Villejuif, France
- Université Paris Sud, Institut André Lwoff, Villejuif, France
| | - Georges Snounou
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Dominique Mazier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
- Assistance Publique Hôpitaux de Paris, Centre Hospitalo-Universitaire Pitié-Salpêtrière, Paris, France
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas F Baumert
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Silvie
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| |
Collapse
|
26
|
Expression and Production of SH2 Domain Proteins. Methods Mol Biol 2017. [PMID: 28092031 DOI: 10.1007/978-1-4939-6762-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The Src Homology 2 (SH2) domain lies at the heart of phosphotyrosine signaling, coordinating signaling events downstream of receptor tyrosine kinases (RTKs), adaptors, and scaffolds. Over a hundred SH2 domains are present in mammals, each having a unique specificity which determines its interactions with multiple binding partners. One of the essential tools necessary for studying and determining the role of SH2 domains in phosphotyrosine signaling is a set of soluble recombinant SH2 proteins. Here we describe methods, based on a broad experience with purification of all SH2 domains, for the production of SH2 domain proteins needed for proteomic and biochemical-based studies such as peptide arrays, mass-spectrometry, protein microarrays, reverse-phase microarrays, and high-throughput fluorescence polarization (HTP-FP). We describe stepwise protocols for expression and purification of SH2 domains using GST or poly His-tags, two widely adopted affinity tags. In addition, we address alternative approaches, challenges, and validation studies for assessing protein quality and provide general characteristics of purified human SH2 domains.
Collapse
|
27
|
Sirvent A, Urbach S, Roche S. Contribution of phosphoproteomics in understanding SRC signaling in normal and tumor cells. Proteomics 2015; 15:232-44. [PMID: 25403792 DOI: 10.1002/pmic.201400162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/30/2014] [Accepted: 11/12/2014] [Indexed: 01/02/2023]
Abstract
The membrane-anchored, non-receptor tyrosine kinase (non-RTK) SRC is a critical regulator of signal transduction induced by a large variety of cell-surface receptors, including RTKs that bind to growth factors to control cell growth and migration. When deregulated, SRC shows strong oncogenic activity, probably because of its capacity to promote RTK-mediated downstream signaling even in the absence of extracellular stimuli. Accordingly, SRC is frequently deregulated in human cancer and is thought to play important roles during tumorigenesis. However, our knowledge on the molecular mechanism by which SRC controls signaling is incomplete due to the limited number of key substrates identified so far. Here, we review how phosphoproteomic methods have changed our understanding of the mechanisms underlying SRC signaling in normal and tumor cells and discuss how these novel findings can be used to improve therapeutic strategies aimed at targeting SRC signaling in human cancer.
Collapse
Affiliation(s)
- Audrey Sirvent
- CNRS UMR5237, University Montpellier 1 and 2, CRBM, Montpellier, France
| | | | | |
Collapse
|
28
|
Abstract
Epithelial cells are tightly coupled together through specialized intercellular junctions, including adherens junctions, desmosomes, tight junctions, and gap junctions. A growing body of evidence suggests epithelial cells also directly exchange information at cell-cell contacts via the Eph family of receptor tyrosine kinases and their membrane-associated ephrin ligands. Ligand-dependent and -independent signaling via Eph receptors as well as reverse signaling through ephrins impact epithelial tissue homeostasis by organizing stem cell compartments and regulating cell proliferation, migration, adhesion, differentiation, and survival. This review focuses on breast, gut, and skin epithelia as representative examples for how Eph receptors and ephrins modulate diverse epithelial cell responses in a context-dependent manner. Abnormal Eph receptor and ephrin signaling is implicated in a variety of epithelial diseases raising the intriguing possibility that this cell-cell communication pathway can be therapeutically harnessed to normalize epithelial function in pathological settings like cancer or chronic inflammation.
Collapse
Key Words
- ADAM, a disintegrin and metalloprotease
- Apc, adenomatous polyposis coli
- Breast
- ER, estrogen receptor
- Eph receptor
- Eph, erythropoietin-producing hepatocellular
- Erk, extracellular signal-regulated kinase
- GEF, guanine nucleotide exchange factor
- GPI, glycosylphosphatidylinositol
- HER2, human epidermal growth factor receptor 2
- HGF, hepatocyte growth factor
- IBD, inflammatory bowel disease
- KLF, Krüppel-like factor
- MAPK, mitogen-activated protein kinase
- MMTV-LTR, mouse mammary tumor virus-long terminal repeat
- MT1-MMP, membrane-type 1 matrix metalloproteinase
- PDZ, postsynaptic density protein 95, discs large 1, and zonula occludens-1
- PTP, protein tyrosine phosphatase
- RTK, receptor tyrosine kinase
- SH2, Src homology 2
- SHIP2, SH2 inositol phosphatase 2
- SLAP, Src-like adaptor protein
- TCF, T-cell specific transcription factor
- TEB, terminal end bud
- TNFα, tumor necrosis factor α.
- cell-cell
- ephrin
- epithelial
- intestine
- receptor tyrosine kinase
- skin
- stem cell
Collapse
|
29
|
The Emerging and Diverse Roles of Src-Like Adaptor Proteins in Health and Disease. Mediators Inflamm 2015; 2015:952536. [PMID: 26339145 PMCID: PMC4539169 DOI: 10.1155/2015/952536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 12/26/2022] Open
Abstract
Although Src-like adaptor proteins (SLAP-1 and SLAP-2) were mainly studied in lymphocytes, where they act as negative regulators and provide fine control of receptor signaling, recently, several other functions of these proteins were discovered. In addition to the well-characterized immunoregulatory functions, SLAP proteins appear to have an essential role in the pathogenesis of type I hypersensitivity, osteoporosis, and numerous malignant diseases. Both adaptor proteins are expressed in a wide variety of tissues, where they have mostly inhibitory effects on multiple intracellular signaling pathways. In this review, we summarize the diverse effects of SLAP proteins.
Collapse
|
30
|
Kazi JU, Kabir NN, Rönnstrand L. Role of SRC-like adaptor protein (SLAP) in immune and malignant cell signaling. Cell Mol Life Sci 2015; 72:2535-44. [PMID: 25772501 PMCID: PMC11113356 DOI: 10.1007/s00018-015-1882-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/01/2015] [Accepted: 03/05/2015] [Indexed: 01/05/2023]
Abstract
SRC-like adaptor protein (SLAP) is an adaptor protein structurally similar to the SRC family protein kinases. Like SRC, SLAP contains an SH3 domain followed by an SH2 domain but the kinase domain has been replaced by a unique C-terminal region. SLAP is expressed in a variety of cell types. Current studies suggest that it regulates signaling of various cell surface receptors including the B cell receptor, the T cell receptor, cytokine receptors and receptor tyrosine kinases which are important regulator of immune and cancer cell signaling. SLAP targets receptors, or its associated components, by recruiting the ubiquitin machinery and thereby destabilizing signaling. SLAP directs receptors to ubiquitination-mediated degradation and controls receptors turnover as well as signaling. Thus, SLAP appears to be an important component in regulating signal transduction required for immune and malignant cells.
Collapse
Affiliation(s)
- Julhash U. Kazi
- Division of Translational Cancer Research, Lund University, Medicon Village 404:C3, 223 63 Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - Nuzhat N. Kabir
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Lund University, Medicon Village 404:C3, 223 63 Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
31
|
CUB-domain-containing protein 1 overexpression in solid cancers promotes cancer cell growth by activating Src family kinases. Oncogene 2015; 34:5593-8. [PMID: 25728678 PMCID: PMC4761645 DOI: 10.1038/onc.2015.19] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/11/2014] [Accepted: 12/23/2014] [Indexed: 12/30/2022]
Abstract
The transmembrane glycoprotein, CUB (complement C1r/C1s, Uegf, Bmp1) domain-containing protein 1 (CDCP1) is overexpressed in several cancer types and is a predictor of poor prognosis for patients on standard of care therapies. Phosphorylation of CDCP1 tyrosine sites is induced upon loss of cell adhesion and is thought to be linked to metastatic potential of tumor cells. Using a tyrosine-phosphoproteomics screening approach, we characterized the phosphorylation state of CDCP1 across a panel of breast cancer cell lines. We focused on two phospho-tyrosine pTyr peptides of CDCP1, containing Tyr707 and Tyr806, which were identified in all six lines, with the human epidermal growth factor 2-positive HCC1954 cells showing a particularly high phosphorylation level. Pharmacological modulation of tyrosine phosphorylation indicated that, the Src family kinases (SFKs) were found to phosphorylate CDCP1 at Tyr707 and Tyr806 and play a critical role in CDCP1 activity. We demonstrated that CDCP1 overexpression in HEK293 cells increases global phosphotyrosine content, promotes anchorage-independent cell growth and activates several SFK members. Conversely, CDCP1 downregulation in multiple solid cancer cell lines decreased both cell growth and SFK activation. Analysis of primary human tumor samples demonstrated a correlation between CDCP1 expression, SFK and protein kinase C (PKC) activity. Taken together, our results suggest that CDCP1 overexpression could be an interesting therapeutic target in multiple solid cancers and a good biomarker to stratify patients who could benefit from an anti-SFK-targeted therapy. Our data also show that multiple tyrosine phosphorylation sites of CDCP1 are important for the functional regulation of SFKs in several tumor types.
Collapse
|
32
|
RTK SLAP down: the emerging role of Src-like adaptor protein as a key player in receptor tyrosine kinase signaling. Cell Signal 2014; 27:267-74. [PMID: 25446260 DOI: 10.1016/j.cellsig.2014.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/08/2014] [Indexed: 02/05/2023]
Abstract
SLAP (Src like adaptor protein) contains adjacent Src homology 3 (SH3) and Src homology 2 (SH2) domains closely related in sequence to that of cytoplasmic Src family tyrosine kinases. Expressed most abundantly in the immune system, SLAP function has been predominantly studied in the context of lymphocyte signaling, where it functions in the Cbl dependent downregulation of antigen receptor signaling. However, accumulating evidence suggests that SLAP plays a role in the regulation of a broad range of membrane receptors including members of the receptor tyrosine kinase (RTK) family. In this review we highlight the role of SLAP in the ubiquitin dependent regulation of type III RTKs PDGFR, CSF-1R, KIT and Flt3, as well as Eph family RTKs. SLAP appears to bind activated type III and Eph RTKs via a conserved autophosphorylated juxtamembrane tyrosine motif in an SH2-dependent manner, suggesting that SLAP is important in regulating RTK signaling.
Collapse
|