1
|
Schmidt A, von Woedtke T, Weltmann KD, Bekeschus S. YAP/TAZ, beta-catenin, and TGFb pathway activation in medical plasma-induced wound healing in diabetic mice. J Adv Res 2025; 72:387-400. [PMID: 38986808 DOI: 10.1016/j.jare.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
INTRODUCTION Hippo is a signaling pathway that is evolutionarily conserved and plays critical roles in wound healing and tissue regeneration. Disruption of the transcriptional activity of both Hippo-associated factors, the yes-associated protein (YAP), and the transcriptional co-activator with PDZ binding motif (TAZ) has been associated with cardiovascular diseases, fibrosis, and cancer. This makes the Hippo pathway an appealing target for therapeutic interventions. OBJECTIVES Prior research has indicated that medical gas plasma promotes wound healing by delivering a combination of reactive species directly to the affected areas. However, the involvement of YAP/TAZ and other signaling pathways in diabetic wound healing remains unexplored. METHODS To this extent, ear wounds were generated and treated with gas plasma in streptozotocin (STZ)-induced diabetic mice. Transcriptome profiling at two wound healing stages (days 9 and 20 post-wounding) was performed in female and male mice. Additionally, we employed gene and protein expression analyses, utilizing immunohistological and -chemical staining of various targets as well as quantitative PCR and Western blot analysis. RESULTS Gas plasma treatment accelerated healing by increasing re-epithelialization and modifying extracellular matrix components. Transcriptomic profiling charting the major alterations in gene expression following plasma treatment was followed by a validation of several targets using transcriptional and translational quantification as well as localization analyses. CONCLUSION Our study evaluated the cellular regulation of essential targets of the Hippo and related pathways such as YAP/TAZ, β-catenin, tumor growth factor β, and oxidative stress signaling after plasma treatment. The activation of genes, pathways, and their regulators is an attractive therapeutic aim for a therapeutic intervention in dermal skin repair in diabetic diseases using medical gas plasmas.
Collapse
Affiliation(s)
- Anke Schmidt
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Department of Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany.
| |
Collapse
|
2
|
Wang J, Chang X, Li C, Gao J, Guo Z, Zhuang H, Wang L, Huang Y, Wang W, Li C, He Q. DNA-PKcs-Driven YAP1 Phosphorylation and Nuclear Translocation: a Key Regulator of Ferroptosis in Hyperglycemia-Induced Cardiac Dysfunction in Type 1 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412698. [PMID: 40279648 DOI: 10.1002/advs.202412698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/12/2025] [Indexed: 04/27/2025]
Abstract
The DNA-Dependent Protein Kinase catalytic subunit (DNA-PKcs) acts as a principal executor in the DNA damage response (DDR), mediating the phosphorylation of a broad spectrum of substrates integral to DNA repair and apoptosis. This investigation seeks to discern the possible association and mechanisms linking hyperglycemia-induced ferroptosis and DNA-PKcs in DCM. This data exhibits a substantial activation of DNAPKcs- dependent DDR in mice with streptozotocin-induced DCM. However, deletion of DNA-PKcs in cardiomyocytes notably mitigates DNA damage, enhances heart function and dampens the inflammatory response. Co-IP/MS analysis and subsequent validation experiments demonstrate that DNA-PKcs directly interacts with and phosphorylates YAP1 at Thr226. This phosphorylation event facilitates the nuclear retention of YAP1, where it intensifies the transcription of ferroptosis-associated genes. Knockin mice expressing a nonphosphorylatable T226A YAP1 mutant display decreased ferroptosis, reduced myocardial fibrosis and improved heart function. Taken together, this study unravels that DDR acts as an intracellular stress damage sensor, perceiving hyperglycemic conditions and subsequently transmitting the damage signal to incite ferroptosis through the interplay between DNA-PKcs and YAP1. This novel insight suggests that the DNA-PKcs-mediated YAP1 phosphorylation and the ferroptosis activation could be the promising therapeutic targets for the management of DCM.
Collapse
Affiliation(s)
- Junyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Chun Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jing Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Haowen Zhuang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yusheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Chao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qingyong He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
3
|
Koopmans T, van Rooij E. Molecular gatekeepers of endogenous adult mammalian cardiomyocyte proliferation. Nat Rev Cardiol 2025:10.1038/s41569-025-01145-y. [PMID: 40195566 DOI: 10.1038/s41569-025-01145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Irreversible cardiac fibrosis, cardiomyocyte death and chronic cardiac dysfunction after myocardial infarction pose a substantial global health-care challenge, with no curative treatments available. To regenerate the injured heart, cardiomyocytes must proliferate to replace lost myocardial tissue - a capability that adult mammals have largely forfeited to adapt to the demanding conditions of life. Using various preclinical models, our understanding of cardiomyocyte proliferation has progressed remarkably, leading to the successful reactivation of cell cycle induction in adult animals, with functional recovery after cardiac injury. Central to this success is the targeting of key pathways and structures that drive cardiomyocyte maturation after birth - nucleation and ploidy, sarcomere structure, developmental signalling, chromatin and epigenetic regulation, the microenvironment and metabolic maturation - forming a complex regulatory framework that allows efficient cellular contraction but restricts cardiomyocyte proliferation. In this Review, we explore the molecular pathways underlying these core mechanisms and how their manipulation can reactivate the cell cycle in cardiomyocytes, potentially contributing to cardiac repair.
Collapse
Affiliation(s)
- Tim Koopmans
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
4
|
Kashihara T, Yasaki M, Okuyama Y, Murayama A, Morita A, Nakahara T. YAP activation in Müller cells alleviates oxidative stress in the rat retina after intravitreal injection with methylglyoxal. J Pharmacol Sci 2025; 157:219-228. [PMID: 40058941 DOI: 10.1016/j.jphs.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/27/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025] Open
Abstract
Methylglyoxal (MGO), a highly reactive dicarbonyl compound produced via the glycolytic pathway, plays a key role in the pathogenesis of various diabetic complications, such as diabetic retinopathy. Müller cells provide neurotrophic support and maintain retinal homeostasis, including the redox balance. This dysfunction leads to retinal disease. Yes-associated protein (YAP), a major downstream effector of the Hippo pathway, plays a crucial role in regulating cell survival. In this study, we investigated the roles of Müller cell YAP during MGO-induced retinal injury using normal rats intravitreally injected with MGO and a rat Müller cell line (rMC-1). Immunohistochemistry revealed that MGO injection increased the glial fibrillary acidic protein immunoreactivity in Müller cells. The alignment of Müller cell nuclei was disrupted in MGO-treated retinas. YAP increased and activated in Müller cells two days after MGO injection. This increase in YAP levels was independent of the Hippo pathway and partially attributed to the upregulation of YAP mRNA levels. YAP inhibition by verteporfin exacerbated MGO-induced cell damage and decreased Bcl-xL levels in rMC-1 cells. Intravitreal verteporfin injection also enhanced MGO-induced retinal oxidative stress. Overall, our findings suggest that YAP activation in Müller cells alleviates oxidative stress in the retina following MGO-induced retinal injury.
Collapse
Affiliation(s)
- Toshihide Kashihara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, 108-8641, Japan.
| | - Mayuko Yasaki
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, 108-8641, Japan
| | - Yumi Okuyama
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, 108-8641, Japan
| | - Aki Murayama
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, 108-8641, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, 108-8641, Japan.
| |
Collapse
|
5
|
Sastre J, Pérez S, Sabater L, Rius-Pérez S. Redox signaling in the pancreas in health and disease. Physiol Rev 2025; 105:593-650. [PMID: 39324871 DOI: 10.1152/physrev.00044.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
This review addresses oxidative stress and redox signaling in the pancreas under healthy physiological conditions as well as in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. Physiological redox homeodynamics is maintained mainly by NRF2/KEAP1, NF-κB, protein tyrosine phosphatases, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), and normal autophagy. Depletion of reduced glutathione (GSH) in the pancreas is a hallmark of acute pancreatitis and is initially accompanied by disulfide stress, which is characterized by protein cysteinylation without increased glutathione oxidation. A cross talk between oxidative stress, MAPKs, and NF-κB amplifies the inflammatory cascade, with PP2A and PGC1α as key redox regulatory nodes. In acute pancreatitis, nitration of cystathionine-β synthase causes blockade of the transsulfuration pathway leading to increased homocysteine levels, whereas p53 triggers necroptosis in the pancreas through downregulation of sulfiredoxin, PGC1α, and peroxiredoxin 3. Chronic pancreatitis exhibits oxidative distress mediated by NADPH oxidase 1 and/or CYP2E1, which promotes cell death, fibrosis, and inflammation. Oxidative stress cooperates with mutant KRAS to initiate and promote pancreatic adenocarcinoma. Mutant KRAS increases mitochondrial reactive oxygen species (ROS), which trigger acinar-to-ductal metaplasia and progression to pancreatic intraepithelial neoplasia (PanIN). ROS are maintained at a sufficient level to promote cell proliferation, while avoiding cell death or senescence through formation of NADPH and GSH and activation of NRF2, HIF-1/2α, and CREB. Redox signaling also plays a fundamental role in differentiation, proliferation, and insulin secretion of β-cells. However, ROS overproduction promotes β-cell dysfunction and apoptosis in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Hospital Clínico, Department of Surgery, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
6
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
7
|
Lestari B, Nugroho AB, Bui TA, Nguyen B, Stafford N, Prehar S, Zi M, Potter R, Triastuti E, Baudoin FM, D'Souza A, Wang X, Cartwright EJ, Oceandy D. Expression of foetal gene Pontin is essential in protecting heart against pathological remodelling and cardiomyopathy. Nat Commun 2025; 16:1650. [PMID: 39952912 PMCID: PMC11829043 DOI: 10.1038/s41467-025-56531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2025] [Indexed: 02/17/2025] Open
Abstract
Cardiac remodelling is a key process in the development of heart failure. Reactivation of foetal cardiac genes is often associated with cardiac remodelling. Here we study the role of Pontin (Ruvbl1), which is highly expressed in embryonic hearts, in mediating adverse remodelling in adult mouse hearts. We observe that Pontin deficiency in cardiomyocytes leads to induced apoptosis, increased hypertrophy and fibrosis, whereas Pontin overexpression improves survival, increases proliferation and reduces the hypertrophic response. Moreover, RNAseq analysis show that genes involved in cell cycle regulation, cell proliferation and cell survival/apoptosis are differentially expressed in Pontin knockout. Specifically, we detect changes in the expression of Hippo pathway components in the Pontin knockout mice. Using a cellular model we show that Pontin induces YAP activity, YAP nuclear translocation, and transcriptional activity. Our findings identify Pontin as a modulator of adverse cardiac remodelling, possibly via regulation of the Hippo pathway. This study may lead to the development of a new approach to control cardiac remodelling by targeting Pontin.
Collapse
Affiliation(s)
- Bayu Lestari
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Veteran Street, Malang, 65145, Indonesia
| | - Ardiansah Bayu Nugroho
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Thuy Anh Bui
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Binh Nguyen
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Nicholas Stafford
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sukhpal Prehar
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Min Zi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ryan Potter
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Efta Triastuti
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Florence M Baudoin
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Alicia D'Souza
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Xin Wang
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.
| |
Collapse
|
8
|
Monaghan-Benson E, Aureille J, Guilluy C. ECM stiffness regulates lung fibroblast survival through RasGRF1-dependent signaling. J Biol Chem 2025; 301:108161. [PMID: 39793891 PMCID: PMC11835592 DOI: 10.1016/j.jbc.2025.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Extracellular matrix stiffness is one of the multiple mechanical signals that alter cellular behavior. During studies exploring the effect of matrix rigidity on lung fibroblast survival, we discovered that enhanced survival on stiff substrates is dependent on elevated Ras activity, owing to the activation of the guanine nucleotide exchange factor, RasGRF1. Mechanistically, we found that the increased Ras activity lead to the activation of both the AKT and ERK pathways. Pharmacological inhibition of AKT or ERK signaling attenuates the elevated survival observed on stiff substrates. AKT signaling regulates the phosphorylation and inactivation of the transcription factor FOXO3a. RNAi experiments demonstrate that FOXO3a activity is critical for the cell death observed on soft substrates. Additionally, downregulation of FOXO3a activity on stiff substrate leads to the degradation of the proapoptotic protein Bim. Depletion of Bim increased the survival of cells on soft substrates. Together, our data show that enhanced matrix stiffness activates a RasGRF1/Ras signaling cascade that regulates the activity of AKT and ERK-dependent FOXO3a and Bim expression to alter cell survival.
Collapse
Affiliation(s)
- Elizabeth Monaghan-Benson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Julien Aureille
- Institute for Advanced Biosciences Centre de recherche UGA, INSERM U1209, CNRS UMR, Grenoble, France
| | - Christophe Guilluy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
9
|
Guo S, Pan Q, Chen B, Huang Y, Li S, Gou C, Gao Y. Placental trophoblast aging in advanced maternal age is related to increased oxidative damage and decreased YAP. Front Cell Dev Biol 2025; 13:1479960. [PMID: 39906872 PMCID: PMC11790555 DOI: 10.3389/fcell.2025.1479960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Introduction The advanced maternal age (AMA) pregnancies escalate rapidly, which are frequently linked to higher risks of adverse outcomes. Advanced maternal age (AMA) placenta exhibited premature aging, presumably resulting in trophoblast dysfunction, inadequate placentation. However, the precise reasons and mechanisms of trophoblast aging in AMA placenta remain unclear, posing a significant limitation to provide effective guidance for prenatal healthcare in clinical settings. Notably, the organism shows heightened vulnerability to oxidative damage as it ages. YAP (Yes-associated protein) was reported to play a critical role in regulation of aging and resisting oxidative damage, yet these roles had not been elucidated in the placenta. Therefore, this study explored the relationship between trophoblast cell aging and oxidative injury and YAP in AMA pregnancy, which not only provided an insight into the mechanisms of trophoblast cell aging, but also provide valuable directions for healthcare during AMA pregnancy. Methods In this study, human term placentas were collected from AMA and normal pregnancies for the analysis of aging, oxidative damage and YAP level. HTR8/SVneo cells were manipulated with (hydrogen peroxide) H2O2 to explore the effects of oxidative damage on trophoblast cell senescence and YAP levels. YAP expression in HTR8/SVneo cells was manipulated to investigate its role in trophoblastic senescence and oxidative damage. Results Compared with the control group, the AMA placenta exhibits increased aging biomarkers, which is coupled with an elevation in oxidative damage within placental trophoblast cells and a notable decline in YAP levels. Cellular experiments demonstrated that oxidative damage from H2O2 triggered trophoblast cell senescence and resulted in a reduction of YAP levels. Furthermore, employing molecular modification to silence YAP expression in these cells led to an induction of aging. Conversely, overexpressing YAP ameliorated both trophoblast cell aging and the associated DNA oxidative damage that arised from H2O2. Conclusion The decline of YAP in AMA pregnancy should be responsible for the increased oxidative injury and premature placenta aging, indicating that YAP plays a significant role in combating oxidative damage and delaying aging, thereby providing a new guidance for prenatal care in AMA pregnancies. Maintaining YAP levels or implementing anti-oxidative stress interventions could potentially mitigate the incidence of complications involved AMA pregnancy.
Collapse
Affiliation(s)
- Song Guo
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qihao Pan
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baokang Chen
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yijuan Huang
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Li
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenyu Gou
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Gao
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Zhang S, Zhao Y, Dong Z, Jin M, Lu Y, Xu M, Pan H, Zhou G, Xiao M. HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation. Mol Med 2024; 30:281. [PMID: 39732653 DOI: 10.1186/s10020-024-00987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/03/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension. METHODS We established a rat model of SAS-induced hypertension via chronic intermittent hypoxia (CIH). Rats were treated with siRNA targeting HIF-1α. Blood pressure, inflammation, oxidative stress, vascular remodeling, and VSMC function were assessed. In vitro experiments with A7r5 cells and human aortic smooth muscle cells (HAoSMCs) explored the effects of HIF-1α silencing and YAP1 overexpression. RESULTS Compared with the control group, the CIH group presented significant increases in both HIF-1α and YAP1 expression, which correlated with increased blood pressure and vascular changes. HIF-1α silencing reduced hypertension, oxidative stress, inflammation, and the severity of vascular remodeling. Specifically, siRNA treatment for HIF-1α normalized blood pressure, decreased the levels of oxidative damage markers (increased SOD and decreased MDA), and reversed the changes in the levels of inflammatory markers (decreased high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6) and soluble E-selectin (sE-s)). Structural analyses revealed reduced vascular smooth muscle cell proliferation and collagen deposition, along with normalization of cellular markers, such as α-SMA and TGF-β1. Furthermore, the Hippo-YAP pathway appeared to mediate these effects, as evidenced by altered YAP1 expression and activity upon HIF-1α modulation. CONCLUSIONS Our findings demonstrate the significance of the HIF-1α/Hippo-YAP pathway in CIH-induced hypertension and vascular remodeling. HIF-1α contributes to these pathophysiological processes by promoting oxidative stress, inflammation, and aberrant VSMC behavior. Targeting this pathway could offer new therapeutic strategies for CIH-related cardiovascular complications in SAS patients.
Collapse
Affiliation(s)
- Shoude Zhang
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| | - Yuan Zhao
- Department of Otorhinolaryngology/Head and Neck, Aral Hospital, Xinjiang Corps, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Aral, 843399, Xinjiang, China
| | - Zhanwei Dong
- Department of Otorhinolaryngology/Head and Neck, Aral Hospital, Xinjiang Corps, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Aral, 843399, Xinjiang, China
| | - Mao Jin
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.
| | - Ying Lu
- Department of Otorhinolaryngology/Head and Neck, The First People's Hospital of Lin'an District, Hangzhou, 311300, Zhejiang, China
| | - Mina Xu
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
| | - Hong Pan
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| | - Guojin Zhou
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| | - Mang Xiao
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| |
Collapse
|
11
|
Hu C, Francisco J, Del Re DP, Sadoshima J. Decoding the Impact of the Hippo Pathway on Different Cell Types in Heart Failure. Circ J 2024; 89:6-15. [PMID: 38644191 DOI: 10.1253/circj.cj-24-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The evolutionarily conserved Hippo pathway plays a pivotal role in governing a variety of biological processes. Heart failure (HF) is a major global health problem with a significant risk of mortality. This review provides a contemporary understanding of the Hippo pathway in regulating different cell types during HF. Through a systematic analysis of each component's regulatory mechanisms within the Hippo pathway, we elucidate their specific effects on cardiomyocytes, fibroblasts, endothelial cells, and macrophages in response to various cardiac injuries. Insights gleaned from both in vitro and in vivo studies highlight the therapeutic promise of targeting the Hippo pathway to address cardiovascular diseases, particularly HF.
Collapse
Affiliation(s)
- Chengchen Hu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| |
Collapse
|
12
|
Yu H, Liang J, Bao Y, Chen K, Jin Y, Li X, Chen H, Gou Y, Lu K, Lin Z. Ginkgolide A enhances FoxO1 expression and reduces endoplasmic reticulum stress to mitigate osteoarthritis in mice. Int Immunopharmacol 2024; 142:113116. [PMID: 39288630 DOI: 10.1016/j.intimp.2024.113116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
This study aimed to investigate the effects of Ginkgolide A (GA) on chondrocytes under oxidative stress and to elucidate its potential molecular mechanisms. Using a destabilization of the medial meniscus (DMM) model in mice and an in vitro osteoarthritis (OA) model induced by tert-butyl hydroperoxide (TBHP) in chondrocytes, we validated the therapeutic efficacy and underlying mechanisms of GA. Potential OA targets of GA were identified through network pharmacology, Gene Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Further exploration into the effects on endoplasmic reticulum stress (ERS), apoptosis, extracellular matrix (ECM) degradation, and Forkhead Box O1 (FoxO1) related pathways was conducted using Western blotting, immunofluorescence, TUNEL staining, flow cytometry, X-ray, micro-computed tomography (Micro-CT) analysis, and histological staining. The results demonstrated that GA upregulated FoxO1 expression and inhibited ERS-related signaling pathways, thereby reducing apoptosis and ECM degradation. In conclusion, GA significantly alleviated OA symptoms both in vitro and in vivo, suggesting its potential as a therapeutic agent for OA.
Collapse
Affiliation(s)
- Heng Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jinghao Liang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yingying Bao
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Kaiye Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yangcan Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiang Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hao Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yong Gou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Keyu Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhongke Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
13
|
Xiao Y, Chen X, Chen Z, Dai W, Hu X, Zhang S, Zhong J, Chen J, Liu X, Liang L, Hu Y. Comparative single-cell transcriptomic analysis across tissues of aging primates reveals specific autologous activation of ZNF281 to mitigate oxidative stress in cornea. Aging Cell 2024; 23:e14319. [PMID: 39254179 PMCID: PMC11634732 DOI: 10.1111/acel.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Reactive oxygen species (ROS) and oxidative stress accelerate cellular aging, but their impact on different tissues varies. The cornea, known for its robust antioxidant defense systems, is relatively resistant to age-related diseases like cancer. However, the precise mechanisms by which the cornea maintains ROS homeostasis during aging remain unclear. Through comparative single-cell transcriptomic analysis of the cornea and other tissues in young and old nonhuman primates, we identified that a ZNF281 coding transcriptomic program is specifically activated in cornea during aging. Further investigation revealed that ZNF281 forms a positive feedback loop with FOXO3 to sense elevated levels of ROS and mitigate their effects potentially by regulating the mitochondrial respiratory chain and superoxide dismutase (SOD) expression. Importantly, we observed that overexpression of ZNF281 in MSCs prevented cellular senescence. In summary, these findings open up possibilities for understanding tissue-specific aging and developing new therapies targeting ROS damage.
Collapse
Affiliation(s)
- Yuhua Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual ScienceGuangzhouChina
| | - Xu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual ScienceGuangzhouChina
| | - Zheyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual ScienceGuangzhouChina
| | - Wangxuan Dai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual ScienceGuangzhouChina
| | - Xing Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual ScienceGuangzhouChina
| | - Shuyao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual ScienceGuangzhouChina
| | - Jiawei Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual ScienceGuangzhouChina
| | - Jia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual ScienceGuangzhouChina
| | - Xu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual ScienceGuangzhouChina
| | - Lingyi Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual ScienceGuangzhouChina
| | - Youjin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual ScienceGuangzhouChina
| |
Collapse
|
14
|
Gu K, Feng XM, Sun SQ, Hao XY, Wen Y. Yes-associated protein-mediated melatonin regulates the function of periodontal ligament stem cells under oxidative stress conditions. World J Stem Cells 2024; 16:926-943. [DOI: 10.4252/wjsc.v16.i11.926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Human periodontal ligament stem cells (PDLSCs) regenerate oral tissue. In vitro expansion causes replicative senescence in stem cells. This causes intracellular reactive oxygen species (ROS) accumulation, which can impair stem cell function. Tissue engineering efficiency is reduced by exogenous ROS stimulation, which causes premature senescence under oxidative stress. Melatonin (MT), a powerful free radical scavenger, can delay PDLSCs senescence but may not maintain stemness under oxidative stress. This experiment examined the effects of hydrogen peroxide-induced oxidative stress on PDLSCs’ apoptosis, senescence, and stemness.
AIM To determine if MT can reverse the above effects along with the underlying molecular mechanisms involved.
METHODS PDLSCs were isolated from human premolars and cultured in different conditions. Flow cytometry was used to characterize the cell surface markers of PDLSCs. Hydrogen peroxide was used to induce oxidative stress in PDLSCs. Cell cycle, proliferation, apoptosis, differentiation, ROS, and senescence-associated β-galactosidase activity were assessed by various assays. Reverse transcription-polymerase chain reaction and western blot were used to measure the expression of genes and proteins related to stemness and senescence.
RESULTS MT increases Yes-associated protein expression and maintains cell stemness in an induced inflammatory microenvironment, which may explain its therapeutic effects. We examined how MT affects PDLSCs aging and stemness and its biological mechanisms.
CONCLUSION Our study reveals MT’s role in regulating oxidative stress in PDLSCs and Yes-associated protein-mediated activity, providing insights into cellular functions and new therapeutic targets for tissue regeneration.
Collapse
Affiliation(s)
- Ke Gu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan 250012, Shandong Province, China
- Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Xiao-Mei Feng
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan 250012, Shandong Province, China
| | - Shao-Qing Sun
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan 250012, Shandong Province, China
| | - Xing-Yao Hao
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan 250012, Shandong Province, China
| | - Yong Wen
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan 250012, Shandong Province, China
| |
Collapse
|
15
|
Amanda B, Pragasta R, Cakrasana H, Mustika A, Faizah Z, Oceandy D. The Hippo Signaling Pathway, Reactive Oxygen Species Production, and Oxidative Stress: A Two-Way Traffic Regulation. Cells 2024; 13:1868. [PMID: 39594616 PMCID: PMC11592687 DOI: 10.3390/cells13221868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The Hippo signaling pathway is recognized for its significant role in cell differentiation, proliferation, survival, and tissue regeneration. Recently, the Hippo signaling pathway was also found to be associated with oxidative stress and reactive oxygen species (ROS) regulation, which are important in the regulation of cell survival. Studies indicate a correlation between components of the Hippo signaling pathway, including MST1, YAP, and TAZ, and the generation of ROS. On the other hand, ROS and oxidative stress can activate key components of the Hippo signaling pathway. For example, ROS production activates MST1, which subsequently phosphorylates FOXO3, leading to apoptotic cell death. ROS was also found to regulate YAP, in addition to MST1/2. Oxidative stress and ROS formation can impair lipids, proteins, and DNA, leading to many disorders, including aging, neurodegeneration, atherosclerosis, and diabetes. Consequently, understanding the interplay between the Hippo signaling pathway, ROS, and oxidative stress is crucial for developing future disease management strategies. This paper aimed to review the association between the Hippo signaling pathway, regulation of ROS production, and oxidative stress to provide beneficial information in understanding cell function and pathological processes.
Collapse
Affiliation(s)
- Bella Amanda
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
- Airlangga University Teaching Hospital, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Rangga Pragasta
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
- Faculty of Medicine, Universitas Islam Malang, Malang 65144, Indonesia
| | - Haris Cakrasana
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
| | - Arifa Mustika
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia;
| | - Zakiyatul Faizah
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| |
Collapse
|
16
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
17
|
Ghosh R, Herberg S. The role of YAP/TAZ mechanosignaling in trabecular meshwork and Schlemm's canal cell dysfunction. Vision Res 2024; 224:108477. [PMID: 39208753 PMCID: PMC11470804 DOI: 10.1016/j.visres.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
This focused review highlights the importance of yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ) mechanosignaling in human trabecular meshwork and Schlemm's canal cells in response to glaucoma-associated extracellular matrix stiffening and cyclic mechanical stretch, as well as biochemical pathway modulators (with signaling crosstalk) including transforming growth factor beta 2, glucocorticoids, Wnt, lysophosphatidic acid, vascular endothelial growth factor, and oxidative stress. We provide a comprehensive overview of relevant literature from the last decade, highlight intriguing research avenues with translational potential, and close with an outlook on future directions.
Collapse
Affiliation(s)
- Rajanya Ghosh
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
18
|
Glorieux C, Buc Calderon P. Targeting catalase in cancer. Redox Biol 2024; 77:103404. [PMID: 39447253 PMCID: PMC11539659 DOI: 10.1016/j.redox.2024.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Healthy cells have developed a sophisticated network of antioxidant molecules to prevent the toxic accumulation of reactive oxygen species (ROS) generated by diverse environmental stresses. On the opposite, cancer cells often exhibit high levels of ROS and an altered levels of antioxidant molecules compared to normal cells. Among them, the antioxidant enzyme catalase plays an essential role in cell defense against oxidative stress through the dismutation of hydrogen peroxide into water and molecular oxygen, and its expression is often decreased in cancer cells. The elevation of ROS in cancer cells provides them proliferative advantages, and leads to metabolic reprogramming, immune escape and metastasis. In this context, catalase is of critical importance to control these cellular processes in cancer through various mechanisms. In this review, we will discuss the major progresses and challenges in understanding the role of catalase in cancer for this last decade. This review also aims to provide important updates regarding the regulation of catalase expression, subcellular localization and discuss about the potential role of microbial catalases in tumor environment. Finally, we will describe the different catalase-based therapies and address the advantages, disadvantages, and limitations associated with modulating catalase therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510060, Guangzhou, China.
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de La Salud, Universidad Arturo Prat, 1100000, Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000, Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.
| |
Collapse
|
19
|
Mohammadpour S, Torshizi Esfahani A, Sarpash S, Vakili F, Zafarjafarzadeh N, Mashaollahi A, Pardakhtchi A, Nazemalhosseini-Mojarad E. Hippo Signaling Pathway in Colorectal Cancer: Modulation by Various Signals and Therapeutic Potential. Anal Cell Pathol (Amst) 2024; 2024:5767535. [PMID: 39431199 PMCID: PMC11489006 DOI: 10.1155/2024/5767535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 10/22/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health issue, marked by elevated occurrence and mortality statistics. Despite the availability of various treatments, including chemotherapy, radiotherapy, and targeted therapy, CRC cells often exhibit resistance to these interventions. As a result, it is imperative to identify the disease at an earlier stage and enhance the response to treatment by acquiring a deeper comprehension of the processes driving tumor formation, aggressiveness, metastasis, and resistance to therapy. The Hippo pathway plays a critical role in facilitating the initiation of tumorigenesis and frequently experiences disruption within CRC because of genetic mutations and modified expression in its fundamental constituents. Targeting upstream regulators or core Hippo pathway components may provide innovative therapeutic strategies for modulating Hippo signaling dysfunction in CRC. To advance novel therapeutic techniques for CRC, it is imperative to grasp the involvement of the Hippo pathway in CRC and its interaction with alternate signaling pathways, noncoding RNAs, gut microbiota, and the immune microenvironment. This review seeks to illuminate the function and control of the Hippo pathway in CRC, ultimately aiming to unearth innovative therapeutic methodologies for addressing this ailment.
Collapse
Affiliation(s)
- Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - SeyedKasra Sarpash
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Vakili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhesam Mashaollahi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Pardakhtchi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Shafaati T, Gopal K. Forkhead box O1 transcription factor; a therapeutic target for diabetic cardiomyopathy. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13193. [PMID: 39206323 PMCID: PMC11349536 DOI: 10.3389/jpps.2024.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease including diabetic cardiomyopathy (DbCM) represents the leading cause of death in people with diabetes. DbCM is defined as ventricular dysfunction in the absence of underlying vascular diseases and/or hypertension. The known molecular mediators of DbCM are multifactorial, including but not limited to insulin resistance, altered energy metabolism, lipotoxicity, endothelial dysfunction, oxidative stress, apoptosis, and autophagy. FoxO1, a prominent member of forkhead box O transcription factors, is involved in regulating various cellular processes in different tissues. Altered FoxO1 expression and activity have been associated with cardiovascular diseases in diabetic subjects. Herein we provide an overview of the role of FoxO1 in various molecular mediators related to DbCM, such as altered energy metabolism, lipotoxicity, oxidative stress, and cell death. Furthermore, we provide valuable insights into its therapeutic potential by targeting these perturbations to alleviate cardiomyopathy in settings of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Tanin Shafaati
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Torretta E, Moriggi M, Capitanio D, Orfei CP, Raffo V, Setti S, Cadossi R, de Girolamo L, Gelfi C. Effects of Pulsed Electromagnetic Field Treatment on Skeletal Muscle Tissue Recovery in a Rat Model of Collagenase-Induced Tendinopathy: Results from a Proteome Analysis. Int J Mol Sci 2024; 25:8852. [PMID: 39201538 PMCID: PMC11354614 DOI: 10.3390/ijms25168852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Tendon disorders often result in decreased muscle function and atrophy. Pulsed Electromagnetic Fields (PEMFs) have shown potential in improving tendon fiber structure and muscle recovery. However, the molecular effects of PEMF therapy on skeletal muscle, beyond conventional metrics like MRI or markers of muscle decline, remain largely unexplored. This study investigates the metabolic and structural changes in PEMF-treated muscle tissue using proteomics in a rat model of Achilles tendinopathy induced by collagenase. Sprague Dawley rats were unilaterally induced for tendinopathy with type I collagenase injection and exposed to PEMFs for 8 h/day. Gastrocnemius extracts from untreated or PEMF-treated rats were analyzed with LC-MS/MS, and proteomics differential analysis was conducted through label-free quantitation. PEMF-treated animals exhibited decreased glycolysis and increased LDHB expression, enhancing NAD signaling and ATP production, which boosted respiratory chain activity and fatty acid beta-oxidation. Antioxidant protein levels increased, controlling ROS production. PEMF therapy restored PGC1alpha and YAP levels, decreased by tendinopathy. Additionally, myosins regulating slow-twitch fibers and proteins involved in fiber alignment and force transmission increased, supporting muscle recovery and contractile function. Our findings show that PEMF treatment modulates NAD signaling and oxidative phosphorylation, aiding muscle recovery through the upregulation of YAP and PGC1alpha and increasing slow myosin isoforms, thus speeding up physiological recovery.
Collapse
Affiliation(s)
- Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy;
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate, Italy; (M.M.); (D.C.)
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate, Italy; (M.M.); (D.C.)
| | - Carlotta Perucca Orfei
- Orthopaedic Biotechnology Laboratory, IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy (V.R.); (L.d.G.)
| | - Vincenzo Raffo
- Orthopaedic Biotechnology Laboratory, IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy (V.R.); (L.d.G.)
| | | | | | - Laura de Girolamo
- Orthopaedic Biotechnology Laboratory, IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy (V.R.); (L.d.G.)
| | - Cecilia Gelfi
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate, Italy; (M.M.); (D.C.)
| |
Collapse
|
22
|
Koh YC, Yao CH, Lee PS, Nagabhushanam K, Ho CT, Pan MH. Hepatoprotective effect of dietary pterostilbene against high-fat-diet-induced lipid accumulation exacerbated by chronic jet lag via SIRT1 and SIRT3 activation. Phytother Res 2024; 38:4099-4113. [PMID: 38899498 DOI: 10.1002/ptr.8262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Hepatic lipid metabolism is modulated by the circadian rhythm; therefore, circadian disruption may promote obesity and hepatic lipid accumulation. This study aims to investigate dietary pterostilbene (PSB) 's protective effect against high-fat-diet (HFD)-induced lipid accumulation exacerbated by chronic jet lag and the potential role of gut microbiota therein. Mice were treated with a HFD and chronic jet lag for 14 weeks. The experimental group was supplemented with 0.25% (w/w) PSB in its diet to evaluate whether PSB had a beneficial effect. Our study found that chronic jet lag exacerbates HFD-induced obesity and hepatic lipid accumulation, but these adverse effects were significantly mitigated by PSB supplementation. Specifically, PSB promoted hepatic lipolysis and β-oxidation by upregulating SIRT1 expression, which indirectly reduced oxidative stress caused by lipid accumulation. Additionally, the PSB-induced elevation of SIRT1 and SIRT3 expression helped prevent excessive autophagy and mitochondrial fission by activating Nrf2-mediated antioxidant enzymes. The result was evidenced by the use of SIRT1 and SIRT3 inhibitors in in vitro studies, which demonstrated that activation of SIRT1 and SIRT3 by PSB is crucial for the translocation of PGC-1α and Nrf2, respectively. Moreover, the analysis of gut microbiota suggested that PSB's beneficial effects were partly due to its positive modulation of gut microbial composition and functionality. The findings of this study suggest the potential of dietary PSB as a candidate to improve hepatic lipid metabolism via several mechanisms. It may be developed as a treatment adjuvant in the future.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan
| | - Ching-Hui Yao
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan
| | - Pei-Sheng Lee
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, Taiwan
| |
Collapse
|
23
|
Taylor J, Dubois F, Bergot E, Levallet G. Targeting the Hippo pathway to prevent radioresistance brain metastases from the lung (Review). Int J Oncol 2024; 65:68. [PMID: 38785155 PMCID: PMC11155713 DOI: 10.3892/ijo.2024.5656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 05/25/2024] Open
Abstract
The prognosis for patients with non‑small cell lung cancer (NSCLC), a cancer type which represents 85% of all lung cancers, is poor with a 5‑year survival rate of 19%, mainly because NSCLC is diagnosed at an advanced and metastatic stage. Despite recent therapeutic advancements, ~50% of patients with NSCLC will develop brain metastases (BMs). Either surgical BM treatment alone for symptomatic patients and patients with single cerebral metastases, or in combination with stereotactic radiotherapy (RT) for patients who are not suitable for surgery or presenting with fewer than four cerebral lesions with a diameter range of 5‑30 mm, or whole‑brain RT for numerous or large BMs can be administered. However, radioresistance (RR) invariably prevents the action of RT. Several mechanisms of RR have been described including hypoxia, cellular stress, presence of cancer stem cells, dysregulation of apoptosis and/or autophagy, dysregulation of the cell cycle, changes in cellular metabolism, epithelial‑to‑mesenchymal transition, overexpression of programmed cell death‑ligand 1 and activation several signaling pathways; however, the role of the Hippo signaling pathway in RR is unclear. Dysregulation of the Hippo pathway in NSCLC confers metastatic properties, and inhibitors targeting this pathway are currently in development. It is therefore essential to evaluate the effect of inhibiting the Hippo pathway, particularly the effector yes‑associated protein‑1, on cerebral metastases originating from lung cancer.
Collapse
Affiliation(s)
- Jasmine Taylor
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
| | - Fatéméh Dubois
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
- Departments of Pathology, and Thoracic Oncology, Caen University Hospital, F-14033 Caen, France
| | - Emmanuel Bergot
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
- Departments of Pneumology and Thoracic Oncology, Caen University Hospital, F-14033 Caen, France
| | - Guénaëlle Levallet
- University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)-UMR6030, GIP CYCERON, F-14074 Caen, France
- Departments of Pathology, and Thoracic Oncology, Caen University Hospital, F-14033 Caen, France
| |
Collapse
|
24
|
Zhang Y, Ren Y, Li X, Li M, Fu M, Zhou W, Yu Y, Xiong Y. A review on decoding the roles of YAP/TAZ signaling pathway in cardiovascular diseases: Bridging molecular mechanisms to therapeutic insights. Int J Biol Macromol 2024; 271:132473. [PMID: 38795886 DOI: 10.1016/j.ijbiomac.2024.132473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) serve as transcriptional co-activators that dynamically shuttle between the cytoplasm and nucleus, resulting in either the suppression or enhancement of their downstream gene expression. Recent emerging evidence demonstrates that YAP/TAZ is strongly implicated in the pathophysiological processes that contribute to cardiovascular diseases (CVDs). In the cardiovascular system, YAP/TAZ is involved in the orchestration of a range of biological processes such as oxidative stress, inflammation, proliferation, and autophagy. Furthermore, YAP/TAZ has been revealed to be closely associated with the initiation and development of various cardiovascular diseases, including atherosclerosis, pulmonary hypertension, myocardial fibrosis, cardiac hypertrophy, and cardiomyopathy. In this review, we delve into recent studies surrounding YAP and TAZ, along with delineating their roles in contributing to the pathogenesis of CVDs with a link to various physiological processes in the cardiovascular system. Additionally, we highlight the current potential drugs targeting YAP/TAZ for CVDs therapy and discuss their challenges for translational application. Overall, this review may offer novel insights for understanding and treating cardiovascular disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Xiaofang Li
- Department of Gastroenterology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Man Li
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Mingdi Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Wenjing Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, 710018 Xi'an, Shaanxi, PR China.
| |
Collapse
|
25
|
Biswal P, Sahu MR, Ahmad MH, Mondal AC. The interplay between hippo signaling and mitochondrial metabolism: Implications for cellular homeostasis and disease. Mitochondrion 2024; 76:101885. [PMID: 38643865 DOI: 10.1016/j.mito.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Mitochondria are the membrane-bound organelles producing energy for cellular metabolic processes. They orchestrate diverse cell signaling cascades regulating cellular homeostasis. This functional versatility may be attributed to their ability to regulate mitochondrial dynamics, biogenesis, and apoptosis. The Hippo pathway, a conserved signaling pathway, regulates various cellular processes, including mitochondrial functions. Through its effectors YAP and TAZ, the Hippo pathway regulates transcription factors and creates a seriatim process that mediates cellular metabolism, mitochondrial dynamics, and survival. Mitochondrial dynamics also potentially regulates Hippo signaling activation, indicating a bidirectional relationship between the two. This review outlines the interplay between the Hippo signaling components and the multifaceted role of mitochondria in cellular homeostasis under physiological and pathological conditions.
Collapse
Affiliation(s)
- Priyanka Biswal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
26
|
Kashihara T, Sadoshima J. Regulation of myocardial glucose metabolism by YAP/TAZ signaling. J Cardiol 2024; 83:323-329. [PMID: 38266816 DOI: 10.1016/j.jjcc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The heart utilizes glucose and its metabolites as both energy sources and building blocks for cardiac growth and survival under both physiological and pathophysiological conditions. YAP/TAZ, transcriptional co-activators of the Hippo pathway, are key regulators of cell proliferation, survival, and metabolism in many cell types. Increasing lines of evidence suggest that the Hippo-YAP/TAZ signaling pathway is involved in the regulation of both physiological and pathophysiological processes in the heart. In particular, YAP/TAZ play a critical role in mediating aerobic glycolysis, the Warburg effect, in cardiomyocytes. Here, we summarize what is currently known about YAP/TAZ signaling in the heart by focusing on the regulation of glucose metabolism and its functional significance.
Collapse
Affiliation(s)
- Toshihide Kashihara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
27
|
Li YM, Chung YL, Wu YF, Wang CK, Chen CM, Chen YH. Maternal exposure to hyperbaric oxygen at the preimplantation stages increases apoptosis and ectopic Cdx2 expression and decreases Oct4 expression in mouse blastocysts via Nrf2-Notch1 upregulation and Nf2 downregulation. Dev Dyn 2024; 253:467-489. [PMID: 37850827 DOI: 10.1002/dvdy.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND The environmental oxygen tension has been reported to impact the blastocyst quality and cell numbers in the inner cell mass (ICM) during human and murine embryogenesis. While the molecular mechanisms leading to increased ICM cell numbers and pluripotency gene expression under hypoxia have been deciphered, it remains unknown which regulatory pathways caused the underweight fetal body and overweight placenta after maternal exposure to hyperbaric oxygen (HBO). RESULTS The blastocysts from the HBO-exposed pregnant mice revealed significantly increased signals of reactive oxygen species (ROS) and nuclear Nrf2 staining, decreased Nf2 and Oct4 expression, increased nuclear Tp53bp1 and active caspase-3 staining, and ectopic nuclear signals of Cdx2, Yap, and the Notch1 intracellular domain (N1ICD) in the ICM. In the ICM of the HBO-exposed blastocysts, both Nf2 cDNA microinjection and Nrf2 shRNA microinjection significantly decreased the ectopic nuclear expression of Cdx2, Tp53bp1, and Yap whereas increased Oct4 expression, while Nrf2 shRNA microinjection also significantly decreased Notch1 mRNA levels and nuclear expression of N1ICD and active caspase-3. CONCLUSION We show for the first time that maternal exposure to HBO at the preimplantation stage induces apoptosis and impairs ICM cell specification via upregulating Nrf2-Notch1-Cdx2 expression and downregulating Nf2-Oct4 expression.
Collapse
Grants
- MAB-108-027 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MAB-109-029 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MND-MAB-110-031 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MND-MAB-C06-111022 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MND-MAB-C14-112058 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MOST-111-2635-B-016-002 Ministry of Science and Technology, Taiwan
- TSGH-D-109177 Tri-Service General Hospital in Taiwan, R.O.C.
- TSGH-E-109261 Tri-Service General Hospital in Taiwan, R.O.C.
Collapse
Affiliation(s)
- Yu-Ming Li
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yu Lang Chung
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chien-Kuo Wang
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chieh-Min Chen
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
28
|
Nguyen TD, Rao MK, Dhyani SP, Banks JM, Winek MA, Michalkiewicz J, Lee MY. Nucleoporin93 limits Yap activity to prevent endothelial cell senescence. Aging Cell 2024; 23:e14095. [PMID: 38348753 PMCID: PMC11019141 DOI: 10.1111/acel.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/27/2024] Open
Abstract
As the innermost lining of the vasculature, endothelial cells (ECs) are constantly subjected to systemic inflammation and particularly vulnerable to aging. Endothelial health is hence vital to prevent age-related vascular disease. Healthy ECs rely on the proper localization of transcription factors via nuclear pore complexes (NPCs) to govern cellular behavior. Emerging studies report NPC degradation with natural aging, suggesting impaired nucleocytoplasmic transport in age-associated EC dysfunction. We herein identify nucleoporin93 (Nup93), a crucial structural NPC protein, as an indispensable player in vascular protection. Endothelial Nup93 protein levels are significantly reduced in the vasculature of aged mice, paralleling observations of Nup93 loss when using in vitro models of EC senescence. The loss of Nup93 in human ECs induces cell senescence and promotes the expression of inflammatory adhesion molecules, where restoring Nup93 protein in senescent ECs reverses features of endothelial aging. Mechanistically, we find that both senescence and loss of Nup93 impair endothelial NPC transport, leading to nuclear accumulation of Yap and downstream inflammation. Pharmacological studies indicate Yap hyperactivation as the primary consequence of senescence and Nup93 loss in ECs. Collectively, our findings indicate that the maintenance of endothelial Nup93 is a key determinant of EC health, where aging targets endothelial Nup93 levels to impair NPC function as a novel mechanism of EC senescence and vascular aging.
Collapse
Affiliation(s)
- Tung D. Nguyen
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
- The Center for Cardiovascular ResearchThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Mihir K. Rao
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Shaiva P. Dhyani
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Justin M. Banks
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Michael A. Winek
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Julia Michalkiewicz
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
- The Center for Cardiovascular ResearchThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Monica Y. Lee
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
- The Center for Cardiovascular ResearchThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| |
Collapse
|
29
|
Rao K, Rochon E, Singh A, Jagannathan R, Peng Z, Mansoor H, Wang B, Moulik M, Zhang M, Saraf A, Corti P, Shiva S. Myoglobin modulates the Hippo pathway to promote cardiomyocyte differentiation. iScience 2024; 27:109146. [PMID: 38414852 PMCID: PMC10897895 DOI: 10.1016/j.isci.2024.109146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/30/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
The endogenous mechanisms that propagate cardiomyocyte differentiation and prevent de-differentiation remain unclear. While the expression of the heme protein myoglobin increases by over 50% during cardiomyocyte differentiation, a role for myoglobin in regulating cardiomyocyte differentiation has not been tested. Here, we show that deletion of myoglobin in cardiomyocyte models decreases the gene expression of differentiation markers and stimulates cellular proliferation, consistent with cardiomyocyte de-differentiation. Mechanistically, the heme prosthetic group of myoglobin catalyzes the oxidation of the Hippo pathway kinase LATS1, resulting in phosphorylation and inactivation of yes-associated protein (YAP). In vivo, myoglobin-deficient zebrafish hearts show YAP dephosphorylation and accelerated cardiac regeneration after apical injury. Similarly, myoglobin knockdown in neonatal murine hearts shows increased YAP dephosphorylation and cardiomyocyte cycling. These data demonstrate a novel role for myoglobin as an endogenous driver of cardiomyocyte differentiation and highlight myoglobin as a potential target to enhance cardiac development and improve cardiac repair and regeneration.
Collapse
Affiliation(s)
- Krithika Rao
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Elizabeth Rochon
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anuradha Singh
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rajaganapathi Jagannathan
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zishan Peng
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Haris Mansoor
- Heart and Vascular Institute Division of Cardiology, Department of Medicine and Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Bing Wang
- Molecular Therapy Lab, Stem Cell Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mousumi Moulik
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Manling Zhang
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Veteran Affair Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anita Saraf
- Heart and Vascular Institute Division of Cardiology, Department of Medicine and Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Paola Corti
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sruti Shiva
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
30
|
Kwon Y. YAP/TAZ as Molecular Targets in Skeletal Muscle Atrophy and Osteoporosis. Aging Dis 2024; 16:AD.2024.0306. [PMID: 38502585 PMCID: PMC11745433 DOI: 10.14336/ad.2024.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Skeletal muscles and bones are closely connected anatomically and functionally. Age-related degeneration in these tissues is associated with physical disability in the elderly and significantly impacts their quality of life. Understanding the mechanisms of age-related musculoskeletal tissue degeneration is crucial for identifying molecular targets for therapeutic interventions for skeletal muscle atrophy and osteoporosis. The Hippo pathway is a recently identified signaling pathway that plays critical roles in development, tissue homeostasis, and regeneration. The Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the mammalian Hippo signaling pathway. This review highlights the fundamental roles of YAP and TAZ in the homeostatic maintenance and regeneration of skeletal muscles and bones. YAP/TAZ play a significant role in stem cell function by relaying various environmental signals to stem cells. Skeletal muscle atrophy and osteoporosis are related to stem cell dysfunction or senescence triggered by YAP/TAZ dysregulation resulting from reduced mechanosensing and mitochondrial function in stem cells. In contrast, the maintenance of YAP/TAZ activation can suppress stem cell senescence and tissue dysfunction and may be used as a basis for the development of potential therapeutic strategies. Thus, targeting YAP/TAZ holds significant therapeutic potential for alleviating age-related muscle and bone dysfunction and improving the quality of life in the elderly.
Collapse
Affiliation(s)
- Youngjoo Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
32
|
Guo X, Peng K, He Y, Xue L. Mechanistic regulation of FOXO transcription factors in the nucleus. Biochim Biophys Acta Rev Cancer 2024; 1879:189083. [PMID: 38309444 DOI: 10.1016/j.bbcan.2024.189083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
FOXO proteins represent evolutionarily conserved transcription factors (TFs) that play critical roles in responding to various physiological signals or pathological stimuli, either through transcription-dependent or -independent mechanisms. Dysfunction of these proteins have been implicated in numerous diseases, including cancer. Although the regulation of FOXO TFs shuttling between the cytoplasm and the nucleus has been extensively studied and reviewed, there's still a lack of a comprehensive review focusing on the intricate interactions between FOXO, DNA, and cofactors in the regulation of gene expression. In this review, we aim to summarize recent advances and provide a detailed understanding of the mechanism underlying FOXO proteins binding to target DNA. Additionally, we will discuss the challenges associated with pharmacological approaches in modulating FOXO function, and explore the dynamic association between TF, DNA, and RNA on chromatin. This review will contribute to a better understanding of mechanistic regulations of eukaryotic TFs within the nucleus.
Collapse
Affiliation(s)
- Xiaowei Guo
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China.
| | - Kai Peng
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yanwen He
- Changsha Stomatological Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
33
|
Jeong DJ, Um JH, Kim YY, Shin DJ, Im S, Lee KM, Lee YH, Lim DS, Kim D, Yun J. The Mst1/2-BNIP3 axis is required for mitophagy induction and neuronal viability under mitochondrial stress. Exp Mol Med 2024; 56:674-685. [PMID: 38443598 PMCID: PMC10984967 DOI: 10.1038/s12276-024-01198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 03/07/2024] Open
Abstract
Mitophagy induction upon mitochondrial stress is critical for maintaining mitochondrial homeostasis and cellular function. Here, we found that Mst1/2 (Stk3/4), key regulators of the Hippo pathway, are required for the induction of mitophagy under various mitochondrial stress conditions. Knockdown of Mst1/2 or pharmacological inhibition by XMU-MP-1 treatment led to impaired mitophagy induction upon CCCP and DFP treatment. Mechanistically, Mst1/2 induces mitophagy independently of the PINK1-Parkin pathway and the canonical Hippo pathway. Moreover, our results suggest the essential involvement of BNIP3 in Mst1/2-mediated mitophagy induction upon mitochondrial stress. Notably, Mst1/2 knockdown diminishes mitophagy induction, exacerbates mitochondrial dysfunction, and reduces cellular survival upon neurotoxic stress in both SH-SY5Y cells and Drosophila models. Conversely, Mst1 and Mst2 expression enhances mitophagy induction and cell survival. In addition, AAV-mediated Mst1 expression reduced the loss of TH-positive neurons, ameliorated behavioral deficits, and improved mitochondrial function in an MPTP-induced Parkinson's disease mouse model. Our findings reveal the Mst1/2-BNIP3 regulatory axis as a novel mediator of mitophagy induction under conditions of mitochondrial stress and suggest that Mst1/2 play a pivotal role in maintaining mitochondrial function and neuronal viability in response to neurotoxic treatment.
Collapse
Affiliation(s)
- Dae Jin Jeong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Jee-Hyun Um
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Young Yeon Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Dong Jin Shin
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Sangwoo Im
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Kang-Min Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dae-Sik Lim
- Department of Biological Sciences, National Creative Research Center for Cell Plasticity, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Donghoon Kim
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
- Department of Pharmacology, College of Medicine, Dong-A University, Busan, Korea
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea.
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| |
Collapse
|
34
|
Kim BJ, Bak SB, Bae SJ, Jin HJ, Park SM, Kim YR, Jung DH, Song CH, Kim YW, Kim SC, Lee WY, Park SD. Protective Effects of Red Ginseng Against Tacrine-Induced Hepatotoxicity: An Integrated Approach with Network Pharmacology and Experimental Validation. Drug Des Devel Ther 2024; 18:549-566. [PMID: 38419811 PMCID: PMC10900653 DOI: 10.2147/dddt.s450305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Tacrine, an FDA-approved acetylcholinesterase inhibitor, has shown efficacy in treating Alzheimer's disease, but its clinical use is limited by hepatotoxicity. This study investigates the protective effects of red ginseng against tacrine-induced hepatotoxicity, focusing on oxidative stress. Methods A network depicting the interaction between compounds and targets was constructed for RG. Effect of RG was determined by MTT and FACS analysis with cells stained by rhodamine 123. Proteins were extracted and subjected to immunoblotting for apoptosis-related proteins. Results The outcomes of the network analysis revealed a significant association, with 20 out of 82 identified primary RG targets aligning with those involved in oxidative liver damage including notable interactions within the AMPK pathway. in vitro experiments showed that RG, particularly at 1000μg/mL, mitigated tacrine-induced apoptosis and mitochondrial damage, while activating the LKB1-mediated AMPK pathway and Hippo-Yap signaling. In mice, RG also protected the liver injury induced by tacrine, as similar protective effects to silymarin, a well-known drug for liver toxicity protection. Discussion Our study reveals the potential of RG in mitigating tacrine-induced hepatotoxicity, suggesting the administration of natural products like RG to reduce toxicity in Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Bong-Jo Kim
- Department of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
| | - Seon-Been Bak
- Department of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
| | - Su-Jin Bae
- Department of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
- Department of Korean Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Hyo-Jung Jin
- Medical Research Center, College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Korea
| | - Sang Mi Park
- Medical Research Center, College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Korea
| | - Ye-Rim Kim
- Medical Research Center, College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Korea
| | - Dae-Hwa Jung
- Medical Research Center, College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Korea
| | - Chang-Hyun Song
- Medical Research Center, College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Korea
| | - Young-Woo Kim
- Department of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
| | - Sang-Chan Kim
- Medical Research Center, College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Korea
| | - Won-Yung Lee
- Department of Korean Medicine, Wonkwang University, Iksan, 54538, Korea
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan, 54538, Korea
| | - Sun-Dong Park
- Department of Korean Medicine, Dongguk University, Gyeongju, 38066, Korea
| |
Collapse
|
35
|
Guo X, Liu M, Han B, Zheng Y, Zhang K, Bao G, Gao C, Shi H, Sun Q, Zhao Z. Upregulation of TRIM16 mitigates doxorubicin-induced cardiotoxicity by modulating TAK1 and YAP/Nrf2 pathways in mice. Biochem Pharmacol 2024; 220:116009. [PMID: 38154547 DOI: 10.1016/j.bcp.2023.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
The clinic application of doxorubicin (DOX) is severely limited by its severe cardiotoxicity. Tripartite motif-containing protein 16 (TRIM16) has E3 ubiquitin ligase activity and is upregulated in cardiomyocytes under pathological stress, yet its role in DOX-induced cardiotoxicity remains elusive. This study aims to investigate the role and mechanism of TRIM16 in DOX cardiotoxicity. Following TRIM16 overexpression in hearts with AAV9-TRIM16, mice were intravenously administered DOX at a dose of 4 mg/kg/week for 4 weeks to assess the impact of TRIM16 on doxorubicin-induced cardiotoxicity. Transfection of OE-TRIM16 plasmids and siRNA-TRIM16 was performed in neonatal rat cardiomyocytes (NRCMs). Our results revealed that DOX challenge elicited a significant upregulation of TRIM16 proteins in cardiomyocytes. TRIM16 overexpression efficiently ameliorated cardiac function while suppressing inflammation, ROS generation, apoptosis and fibrosis provoked by DOX in the myocardium. TRIM16 knockdown exacerbated these alterations caused by DOX in NRCMs. Mechanistically, OE-TRIM16 augmented the ubiquitination and degradation of p-TAK1, thereby arresting JNK and p38MAPK activation evoked by DOX in cardiomyocytes. Furthermore, DOX enhanced the interaction between p-TAK1 and YAP1 proteins, resulting in a reduction in YAP and Nrf2 proteins in cardiomyocytes. OE-TRIM16 elevated YAP levels and facilitated its nuclear translocation, thereby promoting Nrf2 expression and mitigating oxidative stress and inflammation. This effect was nullified by siTRIM16 or TAK1 inhibitor Takinib. Collectively, the current study elaborates that upregulating TRIM16 mitigates DOX-induced cardiotoxicity through anti-inflammation and anti-oxidative stress by modulating TAK1-mediated p38 and JNK as well as YAP/Nrf2 pathways, and targeting TRIM16 may provide a novel strategy to treat DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Mengqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Bing Han
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yeqing Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Kaina Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Gaowa Bao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chenying Gao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hongwen Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiang Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenghang Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
36
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
37
|
Leng J, Wang C, Liang Z, Qiu F, Zhang S, Yang Y. An updated review of YAP: A promising therapeutic target against cardiac aging? Int J Biol Macromol 2024; 254:127670. [PMID: 37913886 DOI: 10.1016/j.ijbiomac.2023.127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
The transcriptional co-activator Yes-associated protein (YAP) functions as a downstream effector of the Hippo signaling pathway and plays a crucial role in cardiomyocyte survival. In its non-phosphorylated activated state, YAP binds to transcription factors, activating the transcription of downstream target genes. It also regulates cell proliferation and survival by selectively binding to enhancers and activating target genes. However, the upregulation of the Hippo pathway in human heart failure inhibits cardiac regeneration and disrupts astrogenesis, thus preventing the nuclear translocation of YAP. Existing literature indicates that the Hippo/YAP axis contributes to inflammation and fibrosis, potentially playing a role in the development of cardiac, vascular and renal injuries. Moreover, it is a key mediator of myofibroblast differentiation and fibrosis in the infarcted heart. Given these insights, can we harness YAP's regenerative potential in a targeted manner? In this review, we provide a detailed discussion of the Hippo signaling pathway and consolidate concepts for the development and intervention of cardiac anti-aging drugs to leverage YAP signaling as a pivotal target.
Collapse
Affiliation(s)
- Jingzhi Leng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China
| | - Chuanzhi Wang
- College of Sports Science, South China Normal University, Guangzhou, China
| | - Zhide Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Fanghui Qiu
- School of Physical Education, Qingdao University, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China.
| | - Yuan Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China.
| |
Collapse
|
38
|
Yoshii H, Kajiya M, Yoshino M, Morimoto S, Horikoshi S, Tari M, Motoike S, Iwata T, Ouhara K, Ando T, Yoshimoto T, Shintani T, Mizuno N. Mechanosignaling YAP/TAZ-TEAD Axis Regulates the Immunomodulatory Properties of Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:347-361. [PMID: 37917410 DOI: 10.1007/s12015-023-10646-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Mesenchymal stem cells (MSCs) have gained significant attention in cell therapies due to their multipotency and immunomodulatory capacities. The transcriptional co-activators YAP/TAZ, central to the mechanotransduction system in MSCs, dominantly direct MSCs lineage commitment. However, their role in immunomodulation remains elusive. Accordingly, this present study aimed to investigate the role of mechanotransducer YAP/TAZ and their binding target transcriptional factor, TEAD, in the immunomodulatory capacities of human bone marrow-derived MSCs. Reducing YAP/TAZ activity by altering the matrix stiffness, disrupting the F-actin integrity with chemical inhibitors, or using siRNAs increased the expression of immunomodulatory genes, such as TSG-6 and IDO, upon TNF-α stimulation. Similarly, transfection of TEAD siRNA also increased the immunomodulatory capacities in MSCs. RNA-seq analysis and inhibition assays demonstrated that the immunomodulatory capacities caused by YAP/TAZ-TEAD axis disruption were due to the NF-κB signaling pathway activation. Then, we also evaluated the in vivo anti-inflammatory efficacy of MSCs in a dextran sulfate sodium (DSS)-induced mice colitis model. The administration of human MSCs transfected with TEAD siRNA, which exhibited enhanced immunomodulatory properties in vitro, significantly ameliorated inflammatory bowel disease symptoms, such as body weight loss and acute colon inflammation, in the DSS-induced mice colitis model. Our findings underscore the mechanosignaling YAP/TAZ-TEAD axis as a regulator of MSCs immunomodulation. Targeting these signaling pathways could herald promising MSCs-based therapies for immune disorders.
Collapse
Affiliation(s)
- Hiroki Yoshii
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
| | - Mai Yoshino
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Shin Morimoto
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Susumu Horikoshi
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Misako Tari
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Souta Motoike
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Toshinori Ando
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Tetsuya Yoshimoto
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Tomoaki Shintani
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
39
|
Zhou W, Lim A, Edderkaoui M, Osipov A, Wu H, Wang Q, Pandol S. Role of YAP Signaling in Regulation of Programmed Cell Death and Drug Resistance in Cancer. Int J Biol Sci 2024; 20:15-28. [PMID: 38164167 PMCID: PMC10750275 DOI: 10.7150/ijbs.83586] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/29/2023] [Indexed: 01/03/2024] Open
Abstract
Although recent advances in cancer treatment significantly improved the prognosis of patients, drug resistance remains a major challenge. Targeting programmed cell death is a major approach of antitumor drug development. Deregulation of programmed cell death (PCD) contributes to resistance to a variety of cancer therapeutics. Yes-associated protein (YAP) and its paralog TAZ, the main downstream effectors of the Hippo pathway, are aberrantly activated in a variety of human malignancies. The Hippo-YAP pathway, which was originally identified in Drosophila, is well conserved in humans and plays a defining role in regulation of cell fate, tissue growth and regeneration. Activation of YAP signaling has emerged as a key mechanism involved in promoting cancer cell proliferation, metastasis, and drug resistance. Understanding the role of YAP/TAZ signaling network in PCD and drug resistance could facilitate the development of effective strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adrian Lim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Arsen Osipov
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephen Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
40
|
Ghasemi H, Manesh SFM, Kheiripour N, Asl SS, Jouzdani AF, Ranjbar A, Abdolvahab MH. An Oxidative Stress Study on Curcumin and NanoCurcumin against Aluminum Phosphide-induced Kidney Injury in Rats: The Role of SIRT1/FOXO3 Signaling Pathway in Nephrotoxicity. Pharm Nanotechnol 2024; 12:449-458. [PMID: 37605419 DOI: 10.2174/2211738511666230821124704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION In this study, we have investigated the aluminium phosphide (ALP) toxicity on Renal Function and oxidative stress in kidney tissue of male rats and the possible protective role of Curcumin and nanoCurcumin against ALP-induced nephrotoxicity. METHODS Thirty-six adult male rats were divided into 6 groups (n=6). ALP (2 mg/kg oral administration) and control groups received Curcumin and nanoCurcumin (oral administration 100 mg/kg) or without it. After seven days of treatment, kidney parameters, oxidative stress biomarkers, and expression level of sirtuins1 (SIRT1)/Forkhead box protein O1 (FoxO1) pathway genes were evaluated in kidney tissue. In addition, histopathological changes in the kidney tissues were assayed. RESULTS In the ALP group, compared to the control group, lipid peroxidation levels, urea, and creatinine were increased, and total antioxidant capacity and thiol groups decreased significantly p < 0.05. In Curcumin and nanoCurcumin groups compared to the ALP group, lipid peroxidation and creatinine decreased significantly p < 0.05. Also, Curcumin and nanoCurcumin improved the tissue damage caused by ALP. NanoCurcumin modulated the effect of ALP on the gene expression levels in SIRT1/FoxO1. CONCLUSION The present study showed that ALP intoxication in kidney tissue can induce oxidative damage. Moreover, Curcumin and nanocurcumin, as potential antioxidants, can be effective therapeutics in ALP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan University of Medical Sciences, Abadan, Iran
| | | | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Soleimani Asl
- Anatomy Departments, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Fathi Jouzdani
- Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- USERN office, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, 1517964311, Iran
| |
Collapse
|
41
|
Lu B, Wu Z, He W, Feng Z, Liao J, Wang B, Zhang Y, Gao F, Shi G, Zheng F. N-n-butyl haloperidol iodide mediates cardioprotection via regulating AMPK/FoxO1 signalling. J Cell Mol Med 2024; 28:e18049. [PMID: 37987145 PMCID: PMC10826434 DOI: 10.1111/jcmm.18049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Derangement of redox condition largely contributes to cardiac ischemia/reperfusion (I/R) injury. FoxO1 is a transcription factor which transcripts a series of antioxidants to antagonize I/R-induced oxidative myocardial damage. N-n-butyl haloperidol iodide (F2 ) is a derivative derived from haloperidol structural modification with potent capacity of inhibiting oxidative stress. This investigation intends to validate whether cardio-protection of F2 is dependent on FoxO1 using an in vivo mouse I/R model and if so, to further elucidate the molecular regulating mechanism. This study initially revealed that F2 preconditioning led to a profound reduction in I/R injury, which was accompanied by attenuated oxidative stress and upregulation of antioxidants (SOD2 and catalase), nuclear FoxO1 and phosphorylation of AMPK. Furthermore, inactivation of FoxO1 with AS1842856 abolished the cardio-protective effect of F2 . Importantly, we identified F2 -mediated nuclear accumulation of FoxO1 is dependent on AMPK, as blockage of AMPK with compound C induced nuclear exit of FoxO1. Collectively, our data uncover that F2 pretreatment exerts significant protection against post ischemic myocardial injury by its regulation of AMPK/FoxO1 pathway, which may provide a new avenue for treating ischemic disease.
Collapse
Affiliation(s)
- Binger Lu
- The First Affiliated HospitalShantou University Medical CollegeShantouChina
| | - Zhuomin Wu
- The First Affiliated HospitalShantou University Medical CollegeShantouChina
| | - Weiliang He
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Zikai Feng
- The First Affiliated HospitalShantou University Medical CollegeShantouChina
| | - Jilin Liao
- The Second Affiliated HospitalShantou University Medical CollegeShantouChina
| | - Bin Wang
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Yanmei Zhang
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Fenfei Gao
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Ganggang Shi
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Fuchun Zheng
- Department of PharmacologyShantou University Medical CollegeShantouChina
| |
Collapse
|
42
|
Zhao X, Li D, Song Y, Xu J, Xiang FL. Drug Discovery for Adult Cardiomyocyte Regeneration: Opportunities and Challenges. Antioxid Redox Signal 2023; 39:1070-1087. [PMID: 37166381 DOI: 10.1089/ars.2023.0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Significance: Cardiovascular disease is a major contributor to human mortality and morbidity. The cardiac tissue undergoes fibrotic healing after injury because of the limited regenerative capacity of adult mammalian cardiomyocyte (CM). Extensive research has been performed to identify therapeutic targets for CM regeneration, as the success of promoting adult human CM regeneration to repair the injured heart is considered the Holy Grail in the field. Recent Advances: To date, more than 30 target genes have been shown to regulate adult mammalian CM proliferation. More than 20 targets have been validated in adult mouse myocardial infarction (MI) model in a therapeutic setting. In this review, the translational efficacy readouts from 17 selected pharmaceutical targets are summarized, among which the Hippo-yes-associated protein (Yap) pathway is the most extensively investigated and fits the criteria for a promising target for pro-CM-regeneration therapy development. Critical Issues and Future Directions: As the pro-CM-regeneration potential of current drug treatment for cardiovascular patients is limited, to help identify and fill the gap between basic research and drug discovery in this specific field, details regarding target identification, validation in mouse MI models, high-throughput screening assay development, and preclinical in vivo efficacy model optimization are discussed. Finally, suggestions and recommendations are also provided to help establish a common guideline for in vivo translational studies for drug discovery focusing on CM regeneration. Antioxid. Redox Signal. 39, 1070-1087.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Anesthesiology and the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Donghua Li
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiyan Song
- Department of Anesthesiology and the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Xu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fu-Li Xiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
43
|
Chen L, Huang Q, Luo Y, Zhou Y, Tong T, Chen Y, Bai Q, Lu C, Li Z. MiR-184 targeting FOXO1 regulates host-cell oxidative stress induced by Chlamydia psittaci via the Wnt/β-catenin signaling pathway. Infect Immun 2023; 91:e0033723. [PMID: 37815369 PMCID: PMC10652854 DOI: 10.1128/iai.00337-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/11/2023] Open
Abstract
Chlamydia psittaci is a human pathogen that causes atypical pneumonia after zoonotic transmission. We confirmed that C. psittaci infection induces oxidative stress in human bronchial epithelial (HBEs) cells and explored how this is regulated through miR-184 and the Wnt/β-catenin signaling pathway. miR-184 mimic, miR-184 inhibitor, FOXO1 siRNA, or negative control sequence was transfected into HBE cells cultured in serum-free medium using Lipofectamine 2000. Then, prior to the cells were infected with C. psittaci 6BC, and the cells were treated with or without 30 µM Wnt/β-catenin inhibitor ICG-001. Quantification of reactive oxygen species, malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione was carried out according to the manufacturer's protocol using a corresponding assay kit. The outcome of both protein and gene was measured by western blotting or real-time fluorescence quantitative PCR. In C. psittaci-infected HBE cells, miR-184 was upregulated, while one of its target genes, FOXO1, was downregulated. ROS and MDA levels increased, while SOD and GSH contents decreased after C. psittaci infection. When miR-184 expression was downregulated, the level of oxidative stress caused by C. psittaci infection was reduced, and the Wnt/β-catenin signaling pathway was inhibited. The opposite results were seen when miR-184 mimic was used. Transfecting with FOXO1 siRNA reversed the effect of miR-184 inhibitor. Moreover, when the Wnt/β-catenin-specific inhibitor ICG-001 was used, the level of oxidative stress induced by C. psittaci infection was significantly suppressed. miR-184 can target FOXO1 to promote oxidative stress in HBE cells following C. psittaci infection by activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Lili Chen
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiaoling Huang
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuchen Luo
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - You Zhou
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Tong
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuyu Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qinqin Bai
- Department of public health laboratory sciences, School of public health, Hengyang Medical School, University of South China, Hengyang, China
| | - Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
44
|
Nguyen TD, Rao MK, Dhyani SP, Banks JM, Winek MA, Michalkiewicz J, Lee MY. Nucleoporin93 (Nup93) Limits Yap Activity to Prevent Endothelial Cell Senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566598. [PMID: 38014013 PMCID: PMC10680655 DOI: 10.1101/2023.11.10.566598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Endothelial cells (ECs) form the innermost lining of the vasculature and serve a pivotal role in preventing age-related vascular disease. Endothelial health relies on the proper nucleocytoplasmic shuttling of transcription factors via nuclear pore complexes (NPCs). Emerging studies report NPC degradation with natural aging, suggesting impaired nucleocytoplasmic transport in age-related EC dysfunction. We herein identify nucleoporin93 (Nup93), a crucial structural NPC protein, as an indispensable player for vascular protection. Endothelial Nup93 protein levels are significantly reduced in the vasculature of aged mice, paralleling observations of Nup93 loss when using in vitro models of endothelial aging. Mechanistically, we find that loss of Nup93 impairs NPC transport, leading to the nuclear accumulation of Yap and downstream inflammation. Collectively, our findings indicate maintenance of endothelial Nup93 as a key determinant of EC health, where aging targets endothelial Nup93 levels to impair NPC function as a novel mechanism for EC senescence and vascular aging.
Collapse
|
45
|
Ríos-López DG, Tecalco-Cruz AC, Martínez-Pastor D, Sosa-Garrocho M, Tapia-Urzúa G, Aranda-López Y, Ortega-Domínguez B, Recillas-Targa F, Vázquez-Victorio G, Macías-Silva M. TGF-β/SMAD canonical pathway induces the expression of transcriptional cofactor TAZ in liver cancer cells. Heliyon 2023; 9:e21519. [PMID: 38027697 PMCID: PMC10660035 DOI: 10.1016/j.heliyon.2023.e21519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The TGF-β and Hippo pathways are critical for liver size control, regeneration, and cancer progression. The transcriptional cofactor TAZ, also named WWTR1, is a downstream effector of Hippo pathway and plays a key role in the maintenance of liver physiological functions. However, the up-regulation of TAZ expression has been associated with liver cancer progression. Recent evidence shows crosstalk of TGF-β and Hippo pathways, since TGF-β modulates TAZ expression through different mechanisms in a cellular context-dependent manner but supposedly independent of SMADs. Here, we evaluate the molecular interplay between TGF-β pathway and TAZ expression and observe that TGF-β induces TAZ expression through SMAD canonical pathway in liver cancer HepG2 cells. Therefore, TAZ cofactor is a primary target of TGF-β/SMAD-signaling, one of the pathways altered in liver cancer.
Collapse
Affiliation(s)
- Diana G. Ríos-López
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Angeles C. Tecalco-Cruz
- Programa en Ciencias Genómicas, Universidad Autónoma de La Ciudad de México, Ciudad de México 03100, Mexico
| | - David Martínez-Pastor
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marcela Sosa-Garrocho
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Gustavo Tapia-Urzúa
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Yuli Aranda-López
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Bibiana Ortega-Domínguez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Félix Recillas-Targa
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Genaro Vázquez-Victorio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marina Macías-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
46
|
Li X, Li M, Xue X, Wang X. Proteomic analysis reveals oxidative stress-induced activation of Hippo signaling in thiamethoxam-exposed Drosophila. CHEMOSPHERE 2023; 338:139448. [PMID: 37437626 DOI: 10.1016/j.chemosphere.2023.139448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/12/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Thiamethoxam (THIA) is a widely used neonicotinoid insecticide. However, the toxicity and defense mechanisms activated in THIA-exposed insects are unclear. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) proteomics technology to identify changes in protein expression in THIA-exposed Drosophila. We found that the antioxidant proteins Cyp6a23 and Dys were upregulated, whereas vir-1 was downregulated, which may have been detoxification in response to THIA exposure. Prx5 downregulation promoted the generation of reactive oxygen species. Furthermore, the accumulation of reactive oxygen species led to the induction of antioxidant defenses in THIA-exposed Drosophila, thereby enhancing the levels of oxidative stress markers (e.g., superoxide dismutase, glutathione S-transferase, and glutathione) and reducing catalase expression. Furthermore, the Hippo signaling transcription coactivator Yki was inactivated by THIA. Our results suggesting that Hippo signaling may be necessary to promote insect survival in response to neonicotinoid insecticide toxicity.
Collapse
Affiliation(s)
- Xiaoqin Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China
| | - Mingquan Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China
| | - Xianle Xue
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
47
|
Sato H, Leonardi ML, Roberti SL, Jawerbaum A, Higa R. Maternal diabetes increases FOXO1 activation during embryonic cardiac development. Mol Cell Endocrinol 2023; 575:111999. [PMID: 37391062 DOI: 10.1016/j.mce.2023.111999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Maternal diabetes is known to affect heart development, inducing the programming of cardiac alterations in the offspring's adult life. Previous studies in the heart of adult offspring have shown increased activation of FOXO1 (a transcription factor involved in a wide variety of cellular functions such as apoptosis, cellular proliferation, reactive oxygen species detoxification, and antioxidant and pro-inflammatory processes) and of target genes related to inflammatory and fibrotic processes. In this work, we aimed to evaluate the effects of maternal diabetes on FOXO1 activation as well as on the expression of target genes relevant to the formation of the cardiovascular system during organogenesis (day 12 of gestation). The embryonic heart from diabetic rats showed increased active FOXO1 levels, reduced protein levels of mTOR (a nutrient sensor regulating cell growth, proliferation and metabolism) and reduced mTORC2-SGK1 pathway, which phosphorylates FOXO1. These alterations were related to increases in the levels of 4-hydroxynonenal (an oxidative stress marker) and increased mRNA levels of inducible nitric oxide synthase, angiopoietin-2 and matrix metalloproteinase-2 (MMP2) (all FOXO1 target genes relevant for cardiac development). Results also showed increased extracellular and intracellular immunolocalization of MMP2 in the myocardium and its projection into the lumen of the cavity (trabeculations) together with decreased immunostaining of connexin 43, a protein relevant for cardiac function that is target of MMP2. In conclusion, increases in active FOXO1 induced by maternal diabetes initiate early during embryonic heart development and are related to increases in markers of oxidative stress and of proinflammatory cardiac development, as well to an altered expression of proteolytic enzymes that regulate connexin 43. These alterations may lead to an altered programming of cardiovascular development in the embryonic heart of diabetic rats.
Collapse
Affiliation(s)
- Hugo Sato
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - María Laura Leonardi
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Sabrina Lorena Roberti
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Romina Higa
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina.
| |
Collapse
|
48
|
Bui TA, Stafford N, Oceandy D. Genetic and Pharmacological YAP Activation Induces Proliferation and Improves Survival in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cells 2023; 12:2121. [PMID: 37681853 PMCID: PMC10487209 DOI: 10.3390/cells12172121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Cardiomyocyte loss following myocardial infarction cannot be addressed with current clinical therapies. Cell therapy with induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) is a potential approach to replace cardiomyocyte loss. However, engraftment rates in pre-clinical studies have been low, highlighting a need to refine current iPSC-CM technology. In this study, we demonstrated that inducing Yes-associated protein (YAP) by genetic and pharmacological approaches resulted in increased iPSC-CM proliferation and reduced apoptosis in response to oxidative stress. Interestingly, iPSC-CM maturation was differently affected by each strategy, with genetic activation of YAP resulting in a more immature cardiomyocyte-like phenotype not witnessed upon pharmacological YAP activation. Overall, we conclude that YAP activation in iPSC-CMs enhances cell survival and proliferative capacity. Therefore, strategies targeting YAP, or its upstream regulator the Hippo signalling pathway, could potentially be used to improve the efficacy of iPSC-CM technology for use as a future regenerative therapy in myocardial infarction.
Collapse
Affiliation(s)
| | | | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (T.A.B.); (N.S.)
| |
Collapse
|
49
|
Cucci MA, Grattarola M, Monge C, Roetto A, Barrera G, Caputo E, Dianzani C, Pizzimenti S. Nrf2 as a Therapeutic Target in the Resistance to Targeted Therapies in Melanoma. Antioxidants (Basel) 2023; 12:1313. [PMID: 37372043 DOI: 10.3390/antiox12061313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The use of specific inhibitors towards mutant BRAF (BRAFi) and MEK (MEKi) in BRAF-mutated patients has significantly improved progression-free and overall survival of metastatic melanoma patients. Nevertheless, half of the patients still develop resistance within the first year of therapy. Therefore, understanding the mechanisms of BRAFi/MEKi-acquired resistance has become a priority for researchers. Among others, oxidative stress-related mechanisms have emerged as a major force. The aim of this study was to evaluate the contribution of Nrf2, the master regulator of the cytoprotective and antioxidant response, in the BRAFi/MEKi acquired resistance of melanoma. Moreover, we investigated the mechanisms of its activity regulation and the possible cooperation with the oncogene YAP, which is also involved in chemoresistance. Taking advantage of established in vitro melanoma models resistant to BRAFi, MEKi, or dual resistance to BRAFi/MEKi, we demonstrated that Nrf2 was upregulated in melanoma cells resistant to targeted therapy at the post-translational level and that the deubiquitinase DUB3 participated in the control of the Nrf2 protein stability. Furthermore, we found that Nrf2 controlled the expression of YAP. Importantly, the inhibition of Nrf2, directly or through inhibition of DUB3, reverted the resistance to targeted therapies.
Collapse
Affiliation(s)
- Marie Angèle Cucci
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Margherita Grattarola
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Chiara Monge
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Antonella Roetto
- Department of Clinical and Biological Sciences-San Luigi Gonzaga Hospital, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Emilia Caputo
- Institute of Genetics and Biophysics-IGB-CNR, "A. Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| |
Collapse
|
50
|
Borger M, von Haefen C, Bührer C, Endesfelder S. Cardioprotective Effects of Dexmedetomidine in an Oxidative-Stress In Vitro Model of Neonatal Rat Cardiomyocytes. Antioxidants (Basel) 2023; 12:1206. [PMID: 37371938 DOI: 10.3390/antiox12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Preterm birth is a risk factor for cardiometabolic disease. The preterm heart before terminal differentiation is in a phase that is crucial for the number and structure of cardiomyocytes in further development, with adverse effects of hypoxic and hyperoxic events. Pharmacological intervention could attenuate the negative effects of oxygen. Dexmedetomidine (DEX) is an α2-adrenoceptor agonist and has been mentioned in connection with cardio-protective benefits. In this study, H9c2 myocytes and primary fetal rat cardiomyocytes (NRCM) were cultured for 24 h under hypoxic condition (5% O2), corresponding to fetal physioxia (pO2 32-45 mmHg), ambient oxygen (21% O2, pO2 ~150 mmHg), or hyperoxic conditions (80% O2, pO2 ~300 mmHg). Subsequently, the effects of DEX preconditioning (0.1 µM, 1 µM, 10 µM) were analyzed. Modulated oxygen tension reduced both proliferating cardiomyocytes and transcripts (CycD2). High-oxygen tension induced hypertrophy in H9c2 cells. Cell-death-associated transcripts for caspase-dependent apoptosis (Casp3/8) increased, whereas caspase-independent transcripts (AIF) increased in H9c2 cells and decreased in NRCMs. Autophagy-related mediators (Atg5/12) were induced in H9c2 under both oxygen conditions, whereas they were downregulated in NRCMs. DEX preconditioning protected H9c2 and NRCMs from oxidative stress through inhibition of transcription of the oxidative stress marker GCLC, and inhibited the transcription of both the redox-sensitive transcription factors Nrf2 under hyperoxia and Hif1α under hypoxia. In addition, DEX normalized the gene expression of Hippo-pathway mediators (YAP1, Tead1, Lats2, Cul7) that exhibited abnormalities due to differential oxygen tensions compared with normoxia, suggesting that DEX modulates the activation of the Hippo pathway. This, in the context of the protective impact of redox-sensitive factors, may provide a possible rationale for the cardio-protective effects of DEX in oxygen-modulated requirements on survival-promoting transcripts of immortalized and fetal cardiomyocytes.
Collapse
Affiliation(s)
- Moritz Borger
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|