1
|
Wang C, Zhang H, Wang X, Ma X, Zhang J, Zhang Y. Targeting BRD4 to attenuate RANKL-induced osteoclast activation and bone erosion in rheumatoid arthritis. Mol Cell Biochem 2025; 480:1669-1684. [PMID: 39110281 DOI: 10.1007/s11010-024-05073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/12/2024] [Indexed: 02/21/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that can cause destruction of cartilage and bone's extracellular matrix. Bromodomain 4 (BRD4), as a transcriptional and epigenetic regulator, plays a key role in cancer and inflammatory diseases. While, the role of BRD4 in bone destruction in RA has not been extensively reported. Our study aimed to investigate the effect of BRD4 on the bone destruction in RA and, further, its mechanism in the pathogenesis of the disease. In this study, receiving approval from the Ethical Committee of the Affiliated Hospital of Qingdao University, we evaluated synovial tissues from patients with RA and OA for BRD4 expression through advanced techniques such as immunohistochemistry, quantitative real-time PCR (qRT-PCR), and Western blotting. We employed a collagen-induced arthritis (CIA) mouse model to assess the therapeutic efficacy of the BRD4 inhibitor JQ1 on disease progression and bone destruction, supported by detailed clinical scoring and histological examinations. Further, in vitro osteoclastogenesis assays using RAW264.7 macrophages, facilitated by TRAP staining and resorption pit assays, provided insights into the mechanistic effects of JQ1 on osteoclast function. Statistical analysis was rigorously conducted using SPSS, applying Kruskal-Wallis, one-way ANOVA, and Student's t-tests to validate the data. In our study, we found that BRD4 expression significantly increased in the synovial tissues of RA patients and the ankle joints of CIA mice, with JQ1, a BRD4 inhibitor, effectively reducing inflammation, arthritis severity (p < 0.05), and bone erosion. Treatment with JQ1 not only improved bone mass and structural integrity in CIA mice but also downregulated osteoclast-related gene expression and the RANKL/RANK signaling pathway, indicating a suppression of osteolysis. Furthermore, in vitro assays demonstrated that JQ1 markedly inhibited osteoclast differentiation and function, underscoring the pivotal role of BRD4 in osteoclastogenesis and its potential as a target for therapeutic intervention in RA-induced bone destruction. Our study concludes that targeting BRD4 with the inhibitor JQ1 significantly mitigates inflammation and bone destruction in rheumatoid arthritis, suggesting that inhibition of BRD4 may be a potential therapeutic strategy for the treatment of bone destruction in RA.
Collapse
Affiliation(s)
- Changyao Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Han Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiangyu Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiao Ma
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Jian Zhang
- Department of Traumatology, Fushan People's Hospital, Yantai, 265500, China.
| | - Yongtao Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
2
|
Bardouil A, Bizien T, Amiaud J, Fautrel A, Battaglia S, Almarouk I, Rouxel T, Panizza P, Perez J, Last A, Djediat C, Bessot E, Nassif N, Rédini F, Artzner F. Sponge Morphology of Osteosarcoma Finds Origin in Synergy Between Bone Synthesis and Tumor Growth. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:374. [PMID: 40072178 PMCID: PMC11901559 DOI: 10.3390/nano15050374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Osteosarcoma is medically defined as a bone-forming tumor with associated bone-degrading activity. There is a lack of knowledge about the network that generates the overproduction of bone. We studied the early stage of osteosarcoma development with mice enduring a periosteum injection of osteosarcoma cells at the proximal third of the tibia. On day 7 (D7), tumor cells activate the over-synthesis of bone-like material inside the medulla. This overproduction of bone is quickly (D13) followed by degradation. Samples were characterized by microfocus small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), optical and electron microscopies, and micro-indentation. This intramedullary apatite-collagen composite synthesis highlights an unknown network of bone synthesis stimulation by extramedullary osteosarcoma cells. This synthesis activation mechanism, coupled with the well-known bone induced osteosarcoma growth activation, produces a rare synergy that may enlighten the final osteosarcoma morphology. With this aim, a 3D cellular automaton was developed that only included two rules. Simulations can accurately reproduce the bi-continuous sponge macroscopic structure that was analyzed from mice tumor micro-tomography. This unknown tumor activation pathway of bone synthesis, combined with the known bone activation of tumor growth, generates a positive feedback synergy explaining the unusual sponge-like morphology of this bone cancer. From a biomaterials point of view, how nature controls self-assembly processes remains an open question. Here, we show how the synergy between two biological growth processes is responsible for the complex morphology of a bone tumor. This highlights how hierarchical morphologies, accurately defined from the nanometer to the centimeter scale, can be controlled by positive feedback between the self-assembly of a scaffold and the deposition of solid material.
Collapse
Affiliation(s)
- Arnaud Bardouil
- CNRS, Institut de Physique de Rennes (IPR), UMR 6251, Université de Rennes, 35000 Rennes, France
| | - Thomas Bizien
- Synchrotron SOLEIL, L’Orme des Merisiers, 91190 Saint-Aubin, France
| | - Jérome Amiaud
- INSERM, UMR 1307, Team CHILD, Nantes University, 44035 Nantes, France (S.B.); (F.R.)
| | - Alain Fautrel
- INSERM, UMR 991 Liver Metabolism and Cancer, Rennes University, 35000 Rennes, France
| | - Séverine Battaglia
- INSERM, UMR 1307, Team CHILD, Nantes University, 44035 Nantes, France (S.B.); (F.R.)
| | - Iman Almarouk
- CNRS, Institut de Physique de Rennes (IPR), UMR 6251, Université de Rennes, 35000 Rennes, France
| | - Tanguy Rouxel
- CNRS, Institut de Physique de Rennes (IPR), UMR 6251, Université de Rennes, 35000 Rennes, France
| | - Pascal Panizza
- CNRS, Institut de Physique de Rennes (IPR), UMR 6251, Université de Rennes, 35000 Rennes, France
| | - Javier Perez
- Synchrotron SOLEIL, L’Orme des Merisiers, 91190 Saint-Aubin, France
| | - Arndt Last
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Chakib Djediat
- CNRS, Muséum National d’Histoire Naturelle, UMR 7245, Bâtiment 39, CP 39, 57 rue Cuvier, 75231 Paris, France
| | - Elora Bessot
- CNRS, Sorbonne Université, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), 75005 Paris, France (N.N.)
| | - Nadine Nassif
- CNRS, Sorbonne Université, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), 75005 Paris, France (N.N.)
| | - Françoise Rédini
- INSERM, UMR 1307, Team CHILD, Nantes University, 44035 Nantes, France (S.B.); (F.R.)
| | - Franck Artzner
- CNRS, Institut de Physique de Rennes (IPR), UMR 6251, Université de Rennes, 35000 Rennes, France
| |
Collapse
|
3
|
Li L, Rong G, Gao X, Cheng Y, Sun Z, Cai X, Xiao J. Bone-Targeted Fluoropeptide Nanoparticle Inhibits NF-κB Signaling to Treat Osteosarcoma and Tumor-Induced Bone Destruction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412014. [PMID: 39501934 PMCID: PMC11714165 DOI: 10.1002/advs.202412014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Indexed: 01/11/2025]
Abstract
Osteosarcoma is a malignant bone cancer usually characterized by symptoms of bone loss due to pathologically enhanced osteoclast activity. Activated osteoclasts enhance bone resorption and promote osteosarcoma cell progression by secreting various cytokines. Intercepting the detrimental interplay between osteoclasts and osteosarcoma cells is considered as an option for osteosarcoma treatment. Here, a bone-targeted fluoropeptide nanoparticle that can inhibit the nuclear factor kappa B (NF-κB) signaling in both osteoclasts and osteosarcoma to address the above issue is developed. The NF-κB essential modulator binding domain (NBD) peptide is conjugated with a fluorous tag to improve its proteolytic stability and intracellular penetration. The NBD peptide is efficiently delivered into cells after fluorination to induce apoptosis of osteocarcoma cells, and inhibits osteoclasts differentiation. The fluorous-tagged NBD peptide is further co-assembled with an oligo (aspartic acid) terminated fluoropeptide to form bone-targeted peptide nanoparticles for osteosarcoma treatment. The targeted nanoparticles efficiently inhibited tumor progression and osteosarcoma-induced bone destruction in vivo. This co-assembled fluoropeptide nanoplatform proposed in this study offers a promising approach for targeted and intracellular delivery of peptide therapeutics in the treatment of various diseases.
Collapse
Affiliation(s)
- Lin Li
- Department of Orthopedics OncologyChangzheng HospitalNavy Medical UniversityShanghai200003China
| | - Guangyu Rong
- Department of Ophthalmology and Vision ScienceShanghai Eye, Ear, Nose and Throat HospitalFudan UniversityShanghai200030China
| | - Xin Gao
- Department of Orthopedics OncologyChangzheng HospitalNavy Medical UniversityShanghai200003China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal UniversityShanghai200241China
| | - Zhengwang Sun
- Department of Musculoskeletal OncologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Xiaopan Cai
- Department of Orthopedics OncologyChangzheng HospitalNavy Medical UniversityShanghai200003China
| | - Jianru Xiao
- Department of Orthopedics OncologyChangzheng HospitalNavy Medical UniversityShanghai200003China
| |
Collapse
|
4
|
Li K, Yang B, Du Y, Ding Y, Shen S, Sun Z, Liu Y, Wang Y, Cao S, Ren W, Wang X, Li M, Zhang Y, Wu J, Zheng W, Yan W, Li L. The HOXC10/NOD1/ERK axis drives osteolytic bone metastasis of pan-KRAS-mutant lung cancer. Bone Res 2024; 12:47. [PMID: 39191757 PMCID: PMC11349752 DOI: 10.1038/s41413-024-00350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
While KRAS mutation is the leading cause of low survival rates in lung cancer bone metastasis patients, effective treatments are still lacking. Here, we identified homeobox C10 (HOXC10) as a lynchpin in pan-KRAS-mutant lung cancer bone metastasis. Through RNA-seq approach and patient tissue studies, we demonstrated that HOXC10 expression was dramatically increased. Genetic depletion of HOXC10 preferentially impeded cell proliferation and migration in vitro. The bioluminescence imaging and micro-CT results demonstrated that inhibition of HOXC10 significantly reduced bone metastasis of KRAS-mutant lung cancer in vivo. Mechanistically, the transcription factor HOXC10 activated NOD1/ERK signaling pathway to reprogram epithelial-mesenchymal transition (EMT) and bone microenvironment by activating the NOD1 promoter. Strikingly, inhibition of HOXC10 in combination with STAT3 inhibitor was effective against KRAS-mutant lung cancer bone metastasis by triggering ferroptosis. Taken together, these findings reveal that HOXC10 effectively alleviates pan-KRAS-mutant lung cancer with bone metastasis in the NOD1/ERK axis-dependent manner, and support further development of an effective combinatorial strategy for this kind of disease.
Collapse
Affiliation(s)
- Kun Li
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Health Science Center, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Bo Yang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Du
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Ding
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shihui Shen
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200240, China
| | - Zhengwang Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yun Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuhan Wang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Siyuan Cao
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenjie Ren
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiangyu Wang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mengjuan Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yunpeng Zhang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Juan Wu
- Department of Pharmacy The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Wei Zheng
- Orthopaedic Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
- Department of Orthopedics, General Hospital of Western Theater Command, Chengdu, 610000, China.
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China.
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Lei Li
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China.
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Ejikeme C, Safdar Z. Exploring the pathogenesis of pulmonary vascular disease. Front Med (Lausanne) 2024; 11:1402639. [PMID: 39050536 PMCID: PMC11267418 DOI: 10.3389/fmed.2024.1402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting the lung vasculature, resulting in increased pulmonary vascular resistance that leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), results from alterations that directly affect the pulmonary arteries. Although PAH has a complex pathophysiology that is not completely understood, it is known to be a multifactorial disease that results from a combination of genetic, epigenetic and environmental factors, leading to a varied range of symptoms in PAH patients. PAH does not have a cure, its incidence and prevalence continue to increase every year, resulting in higher morbidity and mortality rates. In this review, we discuss the different pathologic mechanisms with a focus on epigenetic modifications and their roles in the development and progression of PAH. These modifications include DNA methylation, histone modifications, and microRNA dysregulation. Understanding these epigenetic modifications will improve our understanding of PAH and unveil novel therapeutic targets, thus steering research toward innovative treatment strategies.
Collapse
Affiliation(s)
| | - Zeenat Safdar
- Department of Pulmonary-Critical Care Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
6
|
Dashti P, Lewallen EA, Gordon JAR, Montecino MA, Davie JR, Stein GS, van Leeuwen JPTM, van der Eerden BCJ, van Wijnen AJ. Epigenetic regulators controlling osteogenic lineage commitment and bone formation. Bone 2024; 181:117043. [PMID: 38341164 DOI: 10.1016/j.bone.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Bone formation and homeostasis are controlled by environmental factors and endocrine regulatory cues that initiate intracellular signaling pathways capable of modulating gene expression in the nucleus. Bone-related gene expression is controlled by nucleosome-based chromatin architecture that limits the accessibility of lineage-specific gene regulatory DNA sequences and sequence-specific transcription factors. From a developmental perspective, bone-specific gene expression must be suppressed during the early stages of embryogenesis to prevent the premature mineralization of skeletal elements during fetal growth in utero. Hence, bone formation is initially inhibited by gene suppressive epigenetic regulators, while other epigenetic regulators actively support osteoblast differentiation. Prominent epigenetic regulators that stimulate or attenuate osteogenesis include lysine methyl transferases (e.g., EZH2, SMYD2, SUV420H2), lysine deacetylases (e.g., HDAC1, HDAC3, HDAC4, HDAC7, SIRT1, SIRT3), arginine methyl transferases (e.g., PRMT1, PRMT4/CARM1, PRMT5), dioxygenases (e.g., TET2), bromodomain proteins (e.g., BRD2, BRD4) and chromodomain proteins (e.g., CBX1, CBX2, CBX5). This narrative review provides a broad overview of the covalent modifications of DNA and histone proteins that involve hundreds of enzymes that add, read, or delete these epigenetic modifications that are relevant for self-renewal and differentiation of mesenchymal stem cells, skeletal stem cells and osteoblasts during osteogenesis.
Collapse
Affiliation(s)
- Parisa Dashti
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Eric A Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | | | - Martin A Montecino
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago, Chile; Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada; CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada.
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | | | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Andre J van Wijnen
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Biochemistry, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
7
|
Lui JC. Growth disorders caused by variants in epigenetic regulators: progress and prospects. Front Endocrinol (Lausanne) 2024; 15:1327378. [PMID: 38370361 PMCID: PMC10870149 DOI: 10.3389/fendo.2024.1327378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Epigenetic modifications play an important role in regulation of transcription and gene expression. The molecular machinery governing epigenetic modifications, also known as epigenetic regulators, include non-coding RNA, chromatin remodelers, and enzymes or proteins responsible for binding, reading, writing and erasing DNA and histone modifications. Recent advancement in human genetics and high throughput sequencing technology have allowed the identification of causative variants, many of which are epigenetic regulators, for a wide variety of childhood growth disorders that include skeletal dysplasias, idiopathic short stature, and generalized overgrowth syndromes. In this review, we highlight the connection between epigenetic modifications, genetic variants in epigenetic regulators and childhood growth disorders being established over the past decade, discuss their insights into skeletal biology, and the potential of epidrugs as a new type of therapeutic intervention.
Collapse
Affiliation(s)
- Julian C. Lui
- Section on Growth and Development, National Institute of Child Health and Human Development, Bethesda, MD, United States
| |
Collapse
|
8
|
Searcy MB, Johnson RW. Epigenetic control of the vicious cycle. J Bone Oncol 2024; 44:100524. [PMID: 38304486 PMCID: PMC10830514 DOI: 10.1016/j.jbo.2024.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Epigenetic alterations, including DNA methylation and post translational modifications to histones, drive tumorigenesis and metastatic progression. In the context of bone metastasis, epigenetic modifications in tumor cells can modulate dissemination of cancer cells to the bone, tumor progression in the bone marrow, and may be associated with patient survival rates. Bone disseminated tumor cells may enter a dormant state or stimulate osteolysis through the "vicious cycle" of bone metastasis where bone disseminated tumor cells disrupt the bone microenvironment, which fuels tumor progression. Epigenetic alterations may either exacerbate or abrogate the vicious cycle by regulating tumor suppressors and oncogenes, which alter proliferation of bone-metastatic cancer cells. This review focuses on the specific epigenetic alterations that regulate bone metastasis, including DNA methylation, histone methylation, and histone acetylation. Here, we summarize key findings from researchers identifying epigenetic changes that drive tumor progression in the bone, along with pre-clinical and clinical studies investigating the utility of targeting aberrant epigenetic alterations to treat bone metastatic cancer.
Collapse
Affiliation(s)
- Madeline B. Searcy
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachelle W. Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Musa RE, Lester KL, Quickstad G, Vardabasso S, Shumate TV, Salcido RT, Ge K, Shpargel KB. BRD4 binds to active cranial neural crest enhancers to regulate RUNX2 activity during osteoblast differentiation. Development 2024; 151:dev202110. [PMID: 38063851 PMCID: PMC10905746 DOI: 10.1242/dev.202110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/16/2023] [Indexed: 01/25/2024]
Abstract
Cornelia de Lange syndrome (CdLS) is a congenital disorder featuring facial dysmorphism, postnatal growth deficits, cognitive disability and upper limb abnormalities. CdLS is genetically heterogeneous, with cases arising from mutation of BRD4, a bromodomain protein that binds and reads acetylated histones. In this study, we have modeled CdLS facial pathology through mouse neural crest cell (NCC)-specific mutation of BRD4 to characterize cellular and molecular function in craniofacial development. Mice with BRD4 NCC loss of function died at birth with severe facial hypoplasia, cleft palate, mid-facial clefting and exencephaly. Following migration, BRD4 mutant NCCs initiated RUNX2 expression for differentiation to osteoblast lineages but failed to induce downstream RUNX2 targets required for lineage commitment. BRD4 bound to active enhancers to regulate expression of osteogenic transcription factors and extracellular matrix components integral for bone formation. RUNX2 physically interacts with a C-terminal domain in the long isoform of BRD4 and can co-occupy osteogenic enhancers. This BRD4 association is required for RUNX2 recruitment and appropriate osteoblast differentiation. We conclude that BRD4 controls facial bone development through osteoblast enhancer regulation of the RUNX2 transcriptional program.
Collapse
Affiliation(s)
- Rachel E. Musa
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Kaitlyn L. Lester
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Gabrielle Quickstad
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Sara Vardabasso
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Trevor V. Shumate
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Ryan T. Salcido
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karl B. Shpargel
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| |
Collapse
|
10
|
Mancarella C, Morrione A, Scotlandi K. PROTAC-Based Protein Degradation as a Promising Strategy for Targeted Therapy in Sarcomas. Int J Mol Sci 2023; 24:16346. [PMID: 38003535 PMCID: PMC10671294 DOI: 10.3390/ijms242216346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Sarcomas are heterogeneous bone and soft tissue cancers representing the second most common tumor type in children and adolescents. Histology and genetic profiling discovered more than 100 subtypes, which are characterized by peculiar molecular vulnerabilities. However, limited therapeutic options exist beyond standard therapy and clinical benefits from targeted therapies were observed only in a minority of patients with sarcomas. The rarity of these tumors, paucity of actionable mutations, and limitations in the chemical composition of current targeted therapies hindered the use of these approaches in sarcomas. Targeted protein degradation (TPD) is an innovative pharmacological modality to directly alter protein abundance with promising clinical potential in cancer, even for undruggable proteins. TPD is based on the use of small molecules called degraders or proteolysis-targeting chimeras (PROTACs), which trigger ubiquitin-dependent degradation of protein of interest. In this review, we will discuss major features of PROTAC and PROTAC-derived genetic systems for target validation and cancer treatment and focus on the potential of these approaches to overcome major issues connected to targeted therapies in sarcomas, including drug resistance, target specificity, and undruggable targets. A deeper understanding of these strategies might provide new fuel to drive molecular and personalized medicine to sarcomas.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
11
|
Guo W, Wang X, Lu B, Yu J, Xu M, Huang R, Cheng M, Yang M, Zhao W, Zou C. Super-enhancer-driven MLX mediates redox balance maintenance via SLC7A11 in osteosarcoma. Cell Death Dis 2023; 14:439. [PMID: 37460542 DOI: 10.1038/s41419-023-05966-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Osteosarcoma (OS) is a common type of bone tumor for which there has been limited therapeutic progress over the past three decades. The prevalence of transcriptional addiction in cancer cells emphasizes the biological significance and clinical relevance of super-enhancers. In this study, we found that Max-like protein X (MLX), a member of the Myc-MLX network, is driven by super-enhancers. Upregulation of MLX predicts a poor prognosis in osteosarcoma. Knockdown of MLX impairs growth and metastasis of osteosarcoma in vivo and in vitro. Transcriptomic sequencing has revealed that MLX is involved in various metabolic pathways (e.g., lipid metabolism) and can induce metabolic reprogramming. Furthermore, knockdown of MLX results in disturbed transport and storage of ferrous iron, leading to an increase in the level of cellular ferrous iron and subsequent induction of ferroptosis. Mechanistically, MLX regulates the glutamate/cystine antiporter SLC7A11 to promote extracellular cysteine uptake required for the biosynthesis of the essential antioxidant GSH, thereby detoxifying reactive oxygen species (ROS) and maintaining the redox balance of osteosarcoma cells. Importantly, sulfasalazine, an FDA-approved anti-inflammatory drug, can inhibit SLC7A11, disrupt redox balance, and induce massive ferroptosis, leading to impaired tumor growth in vivo. Taken together, this study reveals a novel mechanism in which super-enhancer-driven MLX positively regulates SLC7A11 to meet the alleviated demand for cystine and maintain the redox balance, highlighting the feasibility and clinical promise of targeting SLC7A11 in osteosarcoma.
Collapse
Affiliation(s)
- Weitang Guo
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bing Lu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jiaming Yu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Mingxian Xu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Renxuan Huang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Mingzhe Cheng
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Meiling Yang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Changye Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Li Z, Liu P, Chen W, Liu X, Tong F, Sun J, Zhou Y, Lei T, Yang W, Ma D, Gao H, Qin Y. Hypoxia-cleavable and specific targeted nanomedicine delivers epigenetic drugs for enhanced treatment of breast cancer and bone metastasis. J Nanobiotechnology 2023; 21:221. [PMID: 37438800 DOI: 10.1186/s12951-023-01939-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/14/2023] Open
Abstract
Breast cancer bone metastasis has become a common cancer type that still lacks an effective treatment method. Although epigenetic drugs have demonstrated promise in cancer therapy, their nontargeted accumulation and drug resistance remain nonnegligible limiting factors. Herein, we first found that icaritin had a strong synergistic effect with an epigenetic drug (JQ1) in the suppression of breast cancer, which could help to relieve drug resistance to JQ1. To improve tumor-targeted efficacy, we developed a hypoxia-cleavable, RGD peptide-modified poly(D,L-lactide-co-glycolide) (PLGA) nanoparticle (termed ARNP) for the targeted delivery of JQ1 and icaritin. The decoration of long cleavable PEG chains can shield RGD peptides during blood circulation and reduce cellular uptake at nonspecific sites. ARNP actively targets breast cancer cells via an RGD-αvβ3 integrin interaction after PEG chain cleavage by responding to hypoxic tumor microenvironment. In vitro and in vivo assays revealed that ARNP exhibited good biodistribution and effectively suppressed primary tumor and bone metastasis. Meanwhile, ARNP could alleviate bone erosion to a certain extent. Furthermore, ARNP significantly inhibited pulmonary metastasis secondary to bone metastasis. The present study suggests that ARNP has great promise in the treatment of breast cancer and bone metastasis due to its simple and practical potential.
Collapse
Affiliation(s)
- Zhaofeng Li
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University, Zhuhai, 519000, Guangdong, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Peixin Liu
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University, Zhuhai, 519000, Guangdong, China
| | - Wei Chen
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueying Liu
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University, Zhuhai, 519000, Guangdong, China
| | - Fan Tong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Junhui Sun
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University, Zhuhai, 519000, Guangdong, China
| | - Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Dong Ma
- Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yi Qin
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
13
|
Tesfaye RA, Lavaud M, Charrier C, Brounais-Le Royer B, Cartron PF, Verrecchia F, Baud'huin M, Lamoureux F, Georges S, Ory B. Tracking Targets of Dynamic Super-Enhancers in Vitro to Better Characterize Osteoclastogenesis and to Evaluate the Effect of Diuron on the Maturation of Human Bone Cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:67007. [PMID: 37307168 DOI: 10.1289/ehp11690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Osteoclasts are major actors in the maintenance of bone homeostasis. The full functional maturation of osteoclasts from monocyte lineage cells is essential for the degradation of old/damaged bone matrix. Diuron is one of the most frequently encountered herbicides, particularly in water sources. However, despite a reported delayed ossification in vivo, its impact on bone cells remains largely unknown. OBJECTIVES The objectives of this study were to first better characterize osteoclastogenesis by identifying genes that drive the differentiation of CD14+ monocyte progenitors into osteoclasts and to evaluate the toxicity of diuron on osteoblastic and osteoclastic differentiation in vitro. METHODS We performed chromatin immunoprecipitation (ChIP) against H3K27ac followed by ChIP-sequencing (ChIP-Seq) and RNA-sequencing (RNA-Seq) at different stages of differentiation of CD14+ monocytes into active osteoclasts. Differentially activated super-enhancers and their potential target genes were identified. Then to evaluate the toxicity of diuron on osteoblasts and osteoclasts, we performed RNA-Seq and functional tests during in vitro osteoblastic and osteoclastic differentiation by exposing cells to different concentrations of diuron. RESULTS The combinatorial study of the epigenetic and transcriptional remodeling taking place during differentiation has revealed a very dynamic epigenetic profile that supports the expression of genes vital for osteoclast differentiation and function. In total, we identified 122 genes induced by dynamic super-enhancers at late days. Our data suggest that high concentration of diuron (50μM) affects viability of mesenchymal stem cells (MSCs) in vitro associated with a decrease of bone mineralization. At a lower concentration (1μM), an inhibitory effect was observed in vitro on the number of osteoclasts derived from CD14+ monocytes without affecting cell viability. Among the diuron-affected genes, our analysis suggests a significant enrichment of genes targeted by pro-differentiation super-enhancers, with an odds ratio of 5.12 (ρ=2.59×10-5). DISCUSSION Exposure to high concentrations of diuron decreased the viability of MSCs and could therefore affect osteoblastic differentiation and bone mineralization. This pesticide also disrupted osteoclasts maturation by impairing the expression of cell-identity determining genes. Indeed, at sublethal concentrations, differences in the expression of these key genes were mild during the course of in vitro osteoclast differentiation. Taken together our results suggest that high exposure levels of diuron could have an effect on bone homeostasis. https://doi.org/10.1289/EHP11690.
Collapse
Affiliation(s)
- Robel A Tesfaye
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University and Angers University, Nantes, France
- Cancéropole Grand-Ouest, réseau Epigénétique, Nantes, France
- EpiSAVMEN, Epigenetic consortium Pays de la Loire, France
| | - Melanie Lavaud
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University and Angers University, Nantes, France
| | - Céline Charrier
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University and Angers University, Nantes, France
| | | | - Pierre-François Cartron
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University and Angers University, Nantes, France
- LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Cancéropole Grand-Ouest, réseau Epigénétique, Nantes, France
- EpiSAVMEN, Epigenetic consortium Pays de la Loire, France
| | - Franck Verrecchia
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University and Angers University, Nantes, France
| | - Marc Baud'huin
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University and Angers University, Nantes, France
| | - François Lamoureux
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University and Angers University, Nantes, France
| | - Steven Georges
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University and Angers University, Nantes, France
| | - Benjamin Ory
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University and Angers University, Nantes, France
- Cancéropole Grand-Ouest, réseau Epigénétique, Nantes, France
- EpiSAVMEN, Epigenetic consortium Pays de la Loire, France
| |
Collapse
|
14
|
Du J, Liu Y, Wu X, Sun J, Shi J, Zhang H, Zheng A, Zhou M, Jiang X. BRD9-mediated chromatin remodeling suppresses osteoclastogenesis through negative feedback mechanism. Nat Commun 2023; 14:1413. [PMID: 36918560 PMCID: PMC10014883 DOI: 10.1038/s41467-023-37116-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Bromodomain-containing protein 9 (BRD9), a component of non-canonical BAF chromatin remodeling complex, has been identified as a critical therapeutic target in hematological diseases. Despite the hematopoietic origin of osteoclasts, the role of BRD9 in osteoclastogenesis and bone diseases remains unresolved. Here, we show Brd9 deficiency in myeloid lineage enhances osteoclast lineage commitment and bone resorption through downregulating interferon-beta (IFN-β) signaling with released constraint on osteoclastogenesis. Notably, we show that BRD9 interacts with transcription factor FOXP1 activating Stat1 transcription and IFN-β signaling thereafter. Besides, function specificity of BRD9 distinguished from BRD4 during osteoclastogenesis has been evaluated. Leveraging advantages of pharmacological modulation of BRD9 and flexible injectable silk fibroin hydrogel, we design a local deliver system for effectively mitigating zoledronate related osteonecrosis of the jaw and alleviating acute bone loss in lipopolysaccharide-induced localized aggressive periodontitis. Overall, these results demonstrate the function of BRD9 in osteoclastogenesis and its therapeutic potential for bone diseases.
Collapse
Affiliation(s)
- Jiahui Du
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Yili Liu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Xiaolin Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Jinrui Sun
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Junfeng Shi
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Hongming Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Ao Zheng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Mingliang Zhou
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China.
| |
Collapse
|
15
|
Origin and Therapies of Osteosarcoma. Cancers (Basel) 2022; 14:cancers14143503. [PMID: 35884563 PMCID: PMC9322921 DOI: 10.3390/cancers14143503] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Osteosarcoma is the most common malignant bone tumor in children, with a 5-year survival rate ranging from 70% to 20% depending on the aggressiveness of the disease. The current treatments have not evolved over the past four decades due in part to the genetic complexity of the disease and its heterogeneity. This review will summarize the current knowledge of OS origin, diagnosis and therapies. Abstract Osteosarcoma (OS) is the most frequent primary bone tumor, mainly affecting children and young adults. Despite therapeutic advances, the 5-year survival rate is 70% but drastically decreases to 20–30% for poor responders to therapies or for patients with metastasis. No real evolution of the survival rates has been observed for four decades, explained by poor knowledge of the origin, difficulties related to diagnosis and the lack of targeted therapies for this pediatric tumor. This review will describe a non-exhaustive overview of osteosarcoma disease from a clinical and biological point of view, describing the origin, diagnosis and therapies.
Collapse
|
16
|
Allegra A, Casciaro M, Barone P, Musolino C, Gangemi S. Epigenetic Crosstalk between Malignant Plasma Cells and the Tumour Microenvironment in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14112597. [PMID: 35681577 PMCID: PMC9179362 DOI: 10.3390/cancers14112597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
In multiple myeloma, cells of the bone marrow microenvironment have a relevant responsibility in promoting the growth, survival, and drug resistance of multiple myeloma plasma cells. In addition to the well-recognized role of genetic lesions, microenvironmental cells also present deregulated epigenetic systems. However, the effect of epigenetic changes in reshaping the tumour microenvironment is still not well identified. An assortment of epigenetic regulators, comprising histone methyltransferases, histone acetyltransferases, and lysine demethylases, are altered in bone marrow microenvironmental cells in multiple myeloma subjects participating in disease progression and prognosis. Aberrant epigenetics affect numerous processes correlated with the tumour microenvironment, such as angiogenesis, bone homeostasis, and extracellular matrix remodelling. This review focuses on the interplay between epigenetic alterations of the tumour milieu and neoplastic cells, trying to decipher the crosstalk between these cells. We also evaluate the possibility of intervening specifically in modified signalling or counterbalancing epigenetic mechanisms.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
- Correspondence:
| | - Marco Casciaro
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Paola Barone
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
17
|
Lemelle L, Moya-Plana A, Dumont B, Fresneau B, Laprie A, Claude L, Deneuve S, Cordero C, Pierron G, Couloigner V, Bernard S, Cardoen L, Brisse HJ, Jehanno N, Metayer L, Fréneaux P, Helfre S, Kolb F, Thariat J, Réguerre Y, Orbach D. NUT carcinoma in children, adolescents and young adults. Bull Cancer 2022; 109:491-504. [DOI: 10.1016/j.bulcan.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 10/18/2022]
|
18
|
Woods AD, Berlow NE, Ortiz MV, Cruz FD, Siddiquee A, Coutinho DF, Purohit R, Freier KET, Michalek JE, Lathara M, Matlock K, Srivivasa G, Royer-Pokora B, Veselska R, Kung AL, Keller C. Bromodomain 4 inhibition leads to MYCN downregulation in Wilms tumor. Pediatr Blood Cancer 2022; 69:e29401. [PMID: 34693628 PMCID: PMC9450910 DOI: 10.1002/pbc.29401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Wilms tumor is the most common childhood kidney cancer. Two distinct histological subtypes of Wilms tumor have been described: tumors lacking anaplasia (the favorable subtype) and tumors displaying anaplastic features (the unfavorable subtype). Children with favorable disease generally have a very good prognosis, whereas those with anaplasia are oftentimes refractory to standard treatments and suffer poor outcomes, leading to an unmet clinical need. MYCN dysregulation has been associated with a number of pediatric cancers including Wilms tumor. PROCEDURES In this context, we undertook a functional genomics approach to uncover novel therapeutic strategies for those patients with anaplastic Wilms tumor. Genomic analysis and in vitro experimentation demonstrate that cell growth can be reduced by modulating MYCN overexpression via bromodomain 4 (BRD4) inhibition in both anaplastic and nonanaplastic Wilms tumor models. RESULTS We observed a time-dependent reduction of MYCN and MYCC protein levels upon BRD4 inhibition in Wilms tumor cell lines, which led to cell death and proliferation suppression. BRD4 inhibition significantly reduced tumor volumes in Wilms tumor patient-derived xenograft (PDX) mouse models. CONCLUSIONS We suggest that AZD5153, a novel dual-BRD4 inhibitor, can reduce MYCN levels in both anaplastic and nonanaplastic Wilms tumor cell lines, reduces tumor volume in Wilms tumor PDXs, and should be further explored for its therapeutic potential.
Collapse
Affiliation(s)
- Andrew D. Woods
- Children’s Cancer Therapy Development Institute, Beaverton, OR USA,correspondence to: Charles Keller MD, 12655 SW Beaverdam Rd W, Beaverton OR 97005 USA, tel: 801-232-8038, fax: 270-675-3313,
| | - Noah E. Berlow
- Children’s Cancer Therapy Development Institute, Beaverton, OR USA
| | - Michael V. Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York USA
| | - Filemon Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York USA
| | - Armaan Siddiquee
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York USA
| | - Diego F. Coutinho
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York USA
| | - Reshma Purohit
- Children’s Cancer Therapy Development Institute, Beaverton, OR USA
| | | | - Joel E. Michalek
- Department of Population Health Sciences, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center, San Antonio, TX USA
| | | | | | | | - Brigitte Royer-Pokora
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University Duesseldorf, Germany
| | - Renata Veselska
- Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Czech Republic
| | - Andrew L. Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York USA
| | - Charles Keller
- Children’s Cancer Therapy Development Institute, Beaverton, OR USA,correspondence to: Charles Keller MD, 12655 SW Beaverdam Rd W, Beaverton OR 97005 USA, tel: 801-232-8038, fax: 270-675-3313,
| |
Collapse
|
19
|
Zhang Y, Tian Z, Ye S, Mu Q, Wang X, Ren S, Hou X, Yu W, Guo J. Changes in bone mineral density in Down syndrome individuals: a systematic review and meta-analysis. Osteoporos Int 2022; 33:27-37. [PMID: 34383099 DOI: 10.1007/s00198-021-06070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Data evaluating changes in bone mineral density (BMD) in Down syndrome (DS) individuals remains controversial. Therefore, we conducted a systematic review and meta-analysis to better understand associations between BMD and DS. A systematic literature search of PubMed, EMBASE, Web of Science, and the Cochrane Library up until 1st January 2021 was conducted. We used the keywords "bone mineral density" and "Down Syndrome." Fifteen studies were included. Overall, our results showed a significant decrease in BMD of total body (TB BMD) [MD = - 0.18; 95% CI (- 0.23 and - 0.12), P < 0.00001, I2 = 89%], total hip (TH BMD) [MD = - 0.12; 95% CI (- 0.15 and - 0.10), P < 0.00001, I2 = 0%], lumbar spine (LS BMD) [MD = - 0.12; 95% CI (- 0.14 and - 0.09), P < 0.00001, I2 = 18%], and femoral neck (FN BMD) [MD = - 0.08; 95% CI (- 0.10 and - 0.06), P < 0.00001, I2 = 0%] in DS individuals when compared with controls. Moreover, the volumetric BMD of lumbar spine (LS vBMD) [MD = - 0.01; 95% CI (- 0.02 and - 0.01), P = 0.0004, I2 = 19%] also showed a decreasing tendency while the volumetric BMD of the femoral neck (FN vBMD) [MD = 0.01; 95% CI (0.00 and 0.02), P = 0.02, I2 = 0%] was elevated in DS individuals versus controls. These findings demonstrated that individuals with DS had a decreased total and regional (TH, LS, and FN) BMD when compared with the general population. Additionally, when BMD was adjusted for skeletal volume, LS vBMD was also lower, while FN vBMD was elevated in DS individuals versus controls.
Collapse
Affiliation(s)
- Y Zhang
- Department of Pediatric, Peking University People's Hospital, Beijing, 100044, China
| | - Z Tian
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - S Ye
- Department of Pediatric, Peking University People's Hospital, Beijing, 100044, China
| | - Q Mu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China
| | - X Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China
| | - S Ren
- Department of Pediatric, Peking University People's Hospital, Beijing, 100044, China
| | - X Hou
- Department of Pediatric, Peking University People's Hospital, Beijing, 100044, China
| | - W Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China.
| | - J Guo
- Department of Pediatric, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
20
|
Paradise CR, Galvan ML, Pichurin O, Jerez S, Kubrova E, Dehghani SS, Carrasco ME, Thaler R, Larson AN, van Wijnen AJ, Dudakovic A. Brd4 is required for chondrocyte differentiation and endochondral ossification. Bone 2022; 154:116234. [PMID: 34700039 PMCID: PMC9014208 DOI: 10.1016/j.bone.2021.116234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
Differentiation of multi-potent mesenchymal stromal cells (MSCs) is directed by the activities of lineage-specific transcription factors and co-factors. A subset of these proteins controls the accessibility of chromatin by recruiting histone acetyl transferases or deacetylases that regulate acetylation of the N-termini of H3 and H4 histone proteins. Bromodomain (BRD) proteins recognize these acetylation marks and recruit the RNA pol II containing transcriptional machinery. Our previous studies have shown that Brd4 is required for osteoblast differentiation in vitro. Here, we investigated the role of Brd4 on endochondral ossification in C57BL/6 mice and chondrogenic differentiation in cell culture models. Conditional loss of Brd4 in the mesenchyme (Brd4 cKO, Brd4fl/fl: Prrx1-Cre) yields smaller mice that exhibit alteration in endochondral ossification. Importantly, abnormal growth plate morphology and delayed long bone formation is observed in juvenile Brd4 cKO mice. One week old Brd4 cKO mice have reduced proliferative and hypertrophic zones within the physis and exhibit a delay in the formation of the secondary ossification center. At the cellular level, Brd4 function is required for chondrogenic differentiation and maturation of both ATDC5 cells and immature mouse articular chondrocytes. Mechanistically, Brd4 loss suppresses Sox9 levels and reduces expression of Sox9 and Runx2 responsive endochondral genes (e.g., Col2a1, Acan, Mmp13 and Sp7/Osx). Collectively, our results indicate that Brd4 is a key epigenetic regulator required for normal chondrogenesis and endochondral ossification.
Collapse
Affiliation(s)
- Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Sofia Jerez
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Eva Kubrova
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
21
|
Liu L, Li Z, Chen S, Cui H, Li X, Dai G, Zhong F, Hao W, Zhang K, Liu H. BRD4 promotes heterotopic ossification through upregulation of LncRNA MANCR. Bone Joint Res 2021; 10:668-676. [PMID: 34657451 PMCID: PMC8559974 DOI: 10.1302/2046-3758.1010.bjr-2020-0454.r1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aims Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that BRD4 may contribute to osteoblastic differentiation. The current study aims to determine the role of BRD4 in the pathogenesis of HO and whether it could be a potential target for HO therapy. Methods Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing BRD4, Alizarin red staining, RT-qPCR, and Western Blot (Runx2, alkaline phosphatase (ALP), Osx) were performed on hBMSCs. Results Overexpression of BRD4 enhanced while inhibition of Brd4 suppressed the osteogenic differentiation of hBMSCs in vitro. Overexpression of Brd4 increased the expression of mitotically associated long non-coding RNA (Mancr). Downregulation of Mancr suppressed the osteoinductive effect of BRD4. In vivo, inhibition of BRD4 by JQ1 significantly attenuated pathological bone formation in the ATP model (p = 0.001). Conclusion BRD4 was found to be upregulated in HO and Brd4-Mancr-Runx2 signalling was involved in the modulation of new bone formation in HO. Cite this article: Bone Joint Res 2021;10(10):668–676.
Collapse
Affiliation(s)
- Lei Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - ZiHao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Siwen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Haowen Cui
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Guo Dai
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Fangling Zhong
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Wenjun Hao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Kuibo Zhang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| |
Collapse
|
22
|
Klemmer VA, Khera N, Siegenthaler BM, Bhattacharya I, Weber FE, Ghayor C. Effect of N-Vinyl-2-Pyrrolidone (NVP), a Bromodomain-Binding Small Chemical, on Osteoblast and Osteoclast Differentiation and Its Potential Application for Bone Regeneration. Int J Mol Sci 2021; 22:ijms222011052. [PMID: 34681710 PMCID: PMC8541071 DOI: 10.3390/ijms222011052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
The human skeleton is a dynamic and remarkably organized organ system that provides mechanical support and performs a variety of additional functions. Bone tissue undergoes constant remodeling; an essential process to adapt architecture/resistance to growth and mechanical needs, but also to repair fractures and micro-damages. Despite bone's ability to heal spontaneously, certain situations require an additional stimulation of bone regeneration, such as non-union fractures or after tumor resection. Among the growth factors used to increase bone regeneration, bone morphogenetic protein-2 (BMP2) is certainly the best described and studied. If clinically used in high quantities, BMP2 is associated with various adverse events, including fibrosis, overshooting bone formation, induction of inflammation and swelling. In previous studies, we have shown that it was possible to reduce BMP2 doses significantly, by increasing the response and sensitivity to it with small molecules called "BMP2 enhancers". In the present study, we investigated the effect of N-Vinyl-2-pyrrolidone (NVP) on osteoblast and osteoclast differentiation in vitro and guided bone regeneration in vivo. We showed that NVP increases BMP2-induced osteoblast differentiation and decreases RANKL-induced osteoclast differentiation in a dose-dependent manner. Moreover, in a rabbit calvarial defect model, the histomorphometric analysis revealed that bony bridging and bony regenerated area achieved with NVP-loaded poly (lactic-co-glycolic acid (PLGA) membranes were significantly higher compared to unloaded membranes. Taken together, our results suggest that NVP sensitizes BMP2-dependent pathways, enhances BMP2 effect, and inhibits osteoclast differentiation. Thus, NVP could prove useful as "osteopromotive substance" in situations where a high rate of bone regeneration is required, and in the management of bone diseases associated with excessive bone resorption, like osteoporosis.
Collapse
Affiliation(s)
- Viviane A. Klemmer
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Nupur Khera
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Barbara M. Siegenthaler
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Indranil Bhattacharya
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Franz E. Weber
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland
- Correspondence: (F.E.W.); (C.G.)
| | - Chafik Ghayor
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
- Correspondence: (F.E.W.); (C.G.)
| |
Collapse
|
23
|
Zhang Z, Zhang Q, Xie J, Zhong Z, Deng C. Enzyme-responsive micellar JQ1 induces enhanced BET protein inhibition and immunotherapy of malignant tumors. Biomater Sci 2021; 9:6915-6926. [PMID: 34524279 DOI: 10.1039/d1bm00724f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bromodomain and extra-terminal (BET) proteins are attractive targets for treating various malignancies including melanoma. The inhibition of BET bromodomains, e.g. with JQ1, is found to downregulate the expression of both c-MYC oncoprotein and programmed cell death ligand 1 (PD-L1), which play a crucial role in tumor growth and the immunosuppressive tumor microenvironment, respectively. The BET bromodomain inhibitors like JQ1 though exhibiting high selectivity and affinity show usually low bioavailability and efficacy in vivo due to fast clearance and inferior uptake by tumor cells. The therapeutic effect of JQ1 might further be lowered by drug resistance. Here, enzyme-responsive micellar JQ1 (mJQ1) was fabricated from a poly(ethylene glycol)-b-poly(L-tyrosine) copolypeptide to enhance JQ1 delivery and the immunotherapy of malignant melanoma. The in vitro results showed that mJQ1 induced clearly better repression of c-MYC and PD-L1 proteins, cell cycle arrest, cell inhibition, and apoptotic activity than free JQ1 in B16F10 cancer cells. The intratumoral administration of mJQ1 at 2.5 mg of JQ1 equiv. per kg was found to show better inhibition of B16F10 tumors in C57BL/6 mice than the intraperitoneal administration of free JQ1 at 50 mg kg-1. In particular, when combined with radiotherapy, mJQ1 effectively suppressed tumor growth and brought about strong local and systemic antitumor immunity as evidenced by elevated CD8+ T cells and increased ratios of CD8+ T cells to Tregs, affording significantly improved survival of B16F10 tumor-bearing mice than their JQ1 counterparts and marked growth suppression of distant tumors. The great potency of enzyme-responsive micellar JQ1 makes it interesting for immunotherapy of various tumors.
Collapse
Affiliation(s)
- Zhenqi Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Qiang Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Jiguo Xie
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
24
|
Grafton F, Ho J, Ranjbarvaziri S, Farshidfar F, Budan A, Steltzer S, Maddah M, Loewke KE, Green K, Patel S, Hoey T, Mandegar MA. Deep learning detects cardiotoxicity in a high-content screen with induced pluripotent stem cell-derived cardiomyocytes. eLife 2021; 10:68714. [PMID: 34338636 PMCID: PMC8367386 DOI: 10.7554/elife.68714] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to establish biologically relevant models that use phenotypic screening to detect drug-induced toxicity in vitro. In this study, we sought to rapidly detect patterns of cardiotoxicity using high-content image analysis with deep learning and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We screened a library of 1280 bioactive compounds and identified those with potential cardiotoxic liabilities in iPSC-CMs using a single-parameter score based on deep learning. Compounds demonstrating cardiotoxicity in iPSC-CMs included DNA intercalators, ion channel blockers, epidermal growth factor receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also screened a diverse library of molecules with unknown targets and identified chemical frameworks that show cardiotoxic signal in iPSC-CMs. By using this screening approach during target discovery and lead optimization, we can de-risk early-stage drug discovery. We show that the broad applicability of combining deep learning with iPSC technology is an effective way to interrogate cellular phenotypes and identify drugs that may protect against diseased phenotypes and deleterious mutations.
Collapse
Affiliation(s)
| | - Jaclyn Ho
- Tenaya Therapeutics, South San Francisco, United States
| | - Sara Ranjbarvaziri
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, United States
| | | | | | | | | | | | | | - Snahel Patel
- Tenaya Therapeutics, South San Francisco, United States
| | - Tim Hoey
- Tenaya Therapeutics, South San Francisco, United States
| | | |
Collapse
|
25
|
Huang B, Jiang Z, Wu S, Wu H, Zhang X, Chen J, Zhao F, Liu J. RCAN1.4 suppresses the osteosarcoma growth and metastasis via interfering with the calcineurin/NFAT signaling pathway. J Bone Oncol 2021; 30:100383. [PMID: 34336566 PMCID: PMC8318905 DOI: 10.1016/j.jbo.2021.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022] Open
Abstract
Protein level of RCAN1.4 in osteosarcoma specimens was lower than that of chondroma. RCAN1.4 loss promoted osteosarcoma growth, migration and invasion. RCAN1.4-calcineurin/NFAT pathway regulated the osteosarcoma growth and metastasis.
Calcipressin-1, also known as a regulator of calcineurin 1 (RCAN1), is one of the families of endogenous regulators of calcineurin activation and can specifically constrain the activity of calcineurin, but its function in osteosarcoma is still unknown. Firstly, we examined the protein level of RCAN1 in osteosarcoma specimens was lower than that of chondroma specimens. RCAN1.4 rather than RCAN1.1 had a higher endogenous protein level in six osteosarcoma cell lines by western blot. Further, we created stable RCAN1.4-deficient 143B and Hos cells using CRISPR-Cas9. RCAN1.4 loss promoted tumor growth in subcutaneous xenograft models. RCAN1.4 knockdown promoted tumor metastases to the lungs using intravenous metastasis models. Furthermore, we found that higher activity of calcineurin in RCAN1.4-deficient cells enhanced the nuclear translocation of NFATc1 to induce the cyclin D1 and MMPs expression. In addition, RCAN1.4 overexpression restrained osteosarcoma cell growth and invasion and inhibited the activity of calcineurin. Finally, we discovered that conditioned medium (20%) derived from RCAN1.4-deficient cells significantly promoted osteoclastogenesis, indicating Receptor Activator of Nuclear factor κB (RANK) signaling activation during osteosarcoma metastasis. In conclusion, RCAN1.4 may be a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Bao Huang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Zenghui Jiang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Saishuang Wu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Hao Wu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Xuyang Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Jian Chen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Fengdong Zhao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Junhui Liu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, PR China
| |
Collapse
|
26
|
Liu Y, Liu W, Yu Z, Zhang Y, Li Y, Xie D, Xie G, Fan L, He S. A novel BRD4 inhibitor suppresses osteoclastogenesis and ovariectomized osteoporosis by blocking RANKL-mediated MAPK and NF-κB pathways. Cell Death Dis 2021; 12:654. [PMID: 34175898 PMCID: PMC8236062 DOI: 10.1038/s41419-021-03939-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) has emerged as a promising treatment target for bone-related disorders. (+)-JQ1, a thienotriazolodiazepine compound, has been shown to inhibit pro-osteoclastic activity in a BRD4-dependent approach and impede bone loss caused by ovariectomy (OVX) in vivo. However, clinical trials of (+)-JQ1 are limited because of its poor druggability. In this study, we synthesized a new (+)-JQ1 derivative differing in structure and chirality. One such derivative, (+)-ND, exhibited higher solubility and excellent inhibitory activity against BRD4 compared with its analogue (+)-JQ1. Interestingly, (-)-JQ1 and (-)-ND exhibited low anti-proliferative activity and had no significant inhibitory effect on RANKL-induced osteoclastogenesis as compared with (+)-JQ1 and (+)-ND, suggesting the importance of chirality in the biological activity of compounds. Among these compounds, (+)-ND displayed the most prominent inhibitory effect on RANKL-induced osteoclastogenesis. Moreover, (+)-ND could inhibit osteoclast-specific gene expression, F-actin ring generation, and bone resorption in vitro and prevent bone loss in OVX mice. Collectively, these findings indicated that (+)-ND represses RANKL-stimulated osteoclastogenesis and averts OVX-triggered osteoporosis by suppressing MAPK and NF-κB signalling cascades, suggesting that it may be a prospective candidate for osteoporosis treatment.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wenjie Liu
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Ziqiang Yu
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yan Zhang
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Dantao Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Gang Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Li Fan
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
27
|
Luo T, Zhou X, Jiang E, Wang L, Ji Y, Shang Z. Osteosarcoma Cell-Derived Small Extracellular Vesicles Enhance Osteoclastogenesis and Bone Resorption Through Transferring MicroRNA-19a-3p. Front Oncol 2021; 11:618662. [PMID: 33842319 PMCID: PMC8029976 DOI: 10.3389/fonc.2021.618662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone cancer characterized by an aggressive phenotype with bone destruction. The prognosis of OS patients remains unoptimistic with the current treatment strategy. Recently, osteoclasts are believed to play a crucial role in cancer bone metastasis. Thus, osteoclast could be a target both in bone destruction and cancer progression in OS. However, mechanisms governing osteoclastogenesis in OS remain poorly understood. miRNA delivered by small extracellular vesicles (sEVs) could mediate cellular communications. In this study, we investigated the effects of sEVs on osteoclastogenesis and osteoclast function, also clarified the underlying mechanism. We herein found that sEVs promoted pre-osteoclast migration, osteoclastogenesis and resorption by exposing RAW264.7 cells to sEVs derived from OS cells. Bioinformatics analysis showed that phosphatase tension homologue (PTEN), and miR-19a-3p were involved in OS progression. Overexpression of miR-19a-3p or sEVs’ miR-19a-3p promoted osteoclast formation and function through PTEN/PI3K/AKT signaling pathway, while inhibition of miR-19a-3p showed the contrary results. The bone marrow macrophages (BMMs) were used to verify the results. OS mice, which were established by subcutaneous injection of OS cells, exhibited increased levels of sEVs’ miR-19a-3p in blood. Moreover, micro-computed tomography (CT) and histomorphometry analysis demonstrated that OS mice exhibited osteopenia with increased number of osteoclasts. In conclusion, miR-19a-3p delivery via OS cell-derived sEVs promotes osteoclast differentiation and bone destruction through PTEN/phosphatidylinositol 3 -kinase (PI3K)/protein kinase B (AKT) signaling pathway. These findings highlight sEVs packaging of miR-19a-3p as a potential target for prevention and treatment of bone destruction and cancer progression in OS patients. And this finding provides a novel potentially therapeutic target for the bone metastasis.
Collapse
Affiliation(s)
- Tingting Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaocheng Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Abstract
In chronic kidney disease (CKD), disturbance of several metabolic regulatory mechanisms cause premature ageing, accelerated cardiovascular disease (CVD), and mortality. Single-target interventions have repeatedly failed to improve the prognosis for CKD patients. Epigenetic interventions have the potential to modulate several pathogenetic processes simultaneously. Alkaline phosphatase (ALP) is a robust predictor of CVD and all-cause mortality and implicated in pathogenic processes associated with CVD in CKD.
Collapse
|
29
|
de Nigris F, Ruosi C, Napoli C. Clinical efficiency of epigenetic drugs therapy in bone malignancies. Bone 2021; 143:115605. [PMID: 32829036 DOI: 10.1016/j.bone.2020.115605] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/17/2022]
Abstract
A great interest in the scientific community is focused on the improvement of the cure rate in patients with bone malignancies that have a poor response to the first line of therapies. Novel treatments currently include epigenetic compounds or molecules targeting epigenetic-sensitive pathways. Here, we offer an exhaustive review of such agents in these clinical settings. Carefully designed preclinical studies selected several epigenetic drugs, including inhibitors of DNA methyltransferase (DNMTIs), such as Decitabine, histone deacetylase classes I-II (HDACIs), as Entinostat, Belinostat, lysine-specific histone demethylase (LSD1), as INCB059872 or FT-2102 (Olutasidenib), inhibitors of isocitrate dehydrogenases, and enhancer of zeste homolog 2 (EZH2), such as EPZ6438 (Tazemetostat) To enhance the therapeutic effect, the prevalent approach in phase II trial is the association of these epigenetic drug inhibitors, with targeted therapy or immune checkpoint blockade. Optimization of drug dosing and regimens of Phase II trials may improve the clinical efficiency of such novel therapeutic approaches against these devastating cancers.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Carlo Ruosi
- Department of Public Health, Federico II University, 80132 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; IRCCS SDN, 80134 Naples, IT, Italy
| |
Collapse
|
30
|
Characterization of Macrophages and Osteoclasts in the Osteosarcoma Tumor Microenvironment at Diagnosis: New Perspective for Osteosarcoma Treatment? Cancers (Basel) 2021; 13:cancers13030423. [PMID: 33498676 PMCID: PMC7866157 DOI: 10.3390/cancers13030423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Due to the great genetic instability of osteosarcoma (OS), a recurrent molecular therapeutic target has not been identified to date. Therefore, characterization of the OS tumor microenvironment (TME) might offer new therapeutic perspectives. The OS2006 trial, originally designed to evaluate the impact of zoledronic acid (ZA, osteoclast-inhibitor) addition to conventional OS-therapies, was ended preliminary due to a negative impact on patient survival. Through retrospective biomarker analysis of the unique biological samples collected during the trial, we demonstrate here that ZA not only acts on harmful osteoclasts but also on protective macrophages, clarifying its detrimental effect. By multiplex immunohistochemistry, applied on additional OS biopsies, an important bipotent macrophage-population (CD168+/CD163+), homogenously distributed throughout OS tumor areas, was identified. These bipotent cells might play a determining role in the evolution of OS and offer a novel therapeutic approach. A clear definition of the macrophage populations present at diagnosis could re-enforce therapeutic decisions. Abstract Biological and histopathological techniques identified osteoclasts and macrophages as targets of zoledronic acid (ZA), a therapeutic agent that was detrimental for patients in the French OS2006 trial. Conventional and multiplex immunohistochemistry of microenvironmental and OS cells were performed on biopsies of 124 OS2006 patients and 17 surgical (“OSNew”) biopsies respectively. CSF-1R (common osteoclast/macrophage progenitor) and TRAP (osteoclast activity) levels in serum of 108 patients were correlated to response to chemotherapy and to prognosis. TRAP levels at surgery and at the end of the protocol were significantly lower in ZA+ than ZA− patients (padj = 0.0011; 0.0132). For ZA+-patients, an increase in the CSF-1R level between diagnosis and surgery and a high TRAP level in the serum at biopsy were associated with a better response to chemotherapy (p = 0.0091; p = 0.0251). At diagnosis, high CD163+ was associated with good prognosis, while low TRAP activity was associated with better overall survival in ZA− patients only. Multiplex immunohistochemistry demonstrated remarkable bipotent CD68+/CD163+ macrophages, homogeneously distributed throughout OS regions, aside osteoclasts (CD68+/CD163−) mostly residing in osteolytic territories and osteoid-matrix-associated CD68−/CD163+ macrophages. We demonstrate that ZA not only acts on harmful osteoclasts but also on protective macrophages, and hypothesize that the bipotent CD68+/CD163+ macrophages might present novel therapeutic targets.
Collapse
|
31
|
Caputo VS, Trasanidis N, Xiao X, Robinson ME, Katsarou A, Ponnusamy K, Prinjha RK, Smithers N, Chaidos A, Auner HW, Karadimitris A. Brd2/4 and Myc regulate alternative cell lineage programmes during early osteoclast differentiation in vitro. iScience 2021; 24:101989. [PMID: 33490899 PMCID: PMC7807155 DOI: 10.1016/j.isci.2020.101989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/07/2020] [Accepted: 12/21/2020] [Indexed: 01/28/2023] Open
Abstract
Osteoclast (OC) development in response to nuclear factor kappa-Β ligand (RANKL) is critical for bone homeostasis in health and in disease. The early and direct chromatin regulatory changes imparted by the BET chromatin readers Brd2-4 and OC-affiliated transcription factors (TFs) during osteoclastogenesis are not known. Here, we demonstrate that in response to RANKL, early OC development entails regulation of two alternative cell fate transcriptional programmes, OC vs macrophage, with repression of the latter following activation of the former. Both programmes are regulated in a non-redundant manner by increased chromatin binding of Brd2 at promoters and of Brd4 at enhancers/super-enhancers. Myc, the top RANKL-induced TF, regulates OC development in co-operation with Brd2/4 and Max and by establishing negative and positive regulatory loops with other lineage-affiliated TFs. These insights into the transcriptional regulation of osteoclastogenesis suggest the clinical potential of selective targeting of Brd2/4 to abrogate pathological OC activation.
Collapse
Affiliation(s)
- Valentina S. Caputo
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Nikolaos Trasanidis
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Xiaolin Xiao
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Mark E. Robinson
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Alexia Katsarou
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Foundation Trust, London, UK
| | - Kanagaraju Ponnusamy
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Rab K. Prinjha
- Medicines Research Centre, GlaxoSmithKline, Stevenage, UK
| | | | - Aristeidis Chaidos
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Foundation Trust, London, UK
| | - Holger W. Auner
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Foundation Trust, London, UK
| | - Anastasios Karadimitris
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Foundation Trust, London, UK
| |
Collapse
|
32
|
TRIM21-regulated Annexin A2 plasma membrane trafficking facilitates osteosarcoma cell differentiation through the TFEB-mediated autophagy. Cell Death Dis 2021; 12:21. [PMID: 33414451 PMCID: PMC7790825 DOI: 10.1038/s41419-020-03364-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents, which is characterized by dysfunctional autophagy and poor differentiation. Our recent studies have suggested that the tripartite motif containing-21 (TRIM21) plays a crucial role in regulating OS cell senescence and proliferation via interactions with several proteins. Yet, its implication in autophagy and differentiation in OS is largely unknown. In the present study, we first showed that TRIM21 could promote OS cell autophagy, as determined by the accumulation of LC3-II, and the degradation of cargo receptor p62. Further, we were able to identify that Annexin A2 (ANXA2), as a novel interacting partner of TRIM21, was critical for TIRM21-induced OS cell autophagy. Although TRIM21 had a negligible effect on the mRNA and protein expressions of ANXA2, we did find that TRIM21 facilitated the translocation of ANXA2 toward plasma membrane (PM) in OS cells through a manner relying on TRIM21-mediated cell autophagy. This functional link has been confirmed by observing a nice co-expression of TRIM21 and ANXA2 (at the PM) in the OS tissues. Mechanistically, we demonstrated that TRIM21, via facilitating the ANXA2 trafficking at the PM, enabled to release the transcription factor EB (TFEB, a master regulator of autophagy) from the ANXA2-TFEB complex, which in turn entered into the nucleus for the regulation of OS cell autophagy. In accord with previous findings that autophagy plays a critical role in the control of differentiation, we also demonstrated that autophagy inhibited OS cell differentiation, and that the TRIM21/ANXA2/TFEB axis is implicated in OS cell differentiation through the coordination with autophagy. Taken together, our results suggest that the TRIM21/ANXA2/TFEB axis is involved in OS cell autophagy and subsequent differentiation, indicating that targeting this signaling axis might lead to a new clue for OS treatment.
Collapse
|
33
|
Gomathi K, Akshaya N, Srinaath N, Rohini M, Selvamurugan N. Histone acetyl transferases and their epigenetic impact on bone remodeling. Int J Biol Macromol 2020; 170:326-335. [PMID: 33373635 DOI: 10.1016/j.ijbiomac.2020.12.173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Bone remodeling is a complex event that maintains bone homeostasis. The epigenetic mechanism of the regulation of bone remodeling has been a major research focus over the past decades. Histone acetylation is an influential post-translational modification in chromatin architecture. Acetylation affects chromatin structure by offering binding signals for reader proteins that harbor acetyl-lysine recognition domains. This review summarizes recent data of histone acetylation in bone remodeling. The crux of this review is the functional role of histone acetyltransferases, the key promoters of histone acetylation. The functional regulation of acetylation via noncoding RNAs in bone remodeling is also discussed. Understanding the principles governing histone acetylation in bone remodeling would lead to the development of better epigenetic therapies for bone diseases.
Collapse
Affiliation(s)
- K Gomathi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Srinaath
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - M Rohini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
34
|
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB, Holen I. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev 2020; 101:797-855. [PMID: 33356915 DOI: 10.1152/physrev.00012.2019] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis. Bone metastasis is a multistage process: long before the development of clinically detectable metastases, circulating tumor cells settle and enter a dormant state in normal vascular and endosteal niches present in the bone marrow, which provide immediate attachment and shelter, and only become active years later as they proliferate and alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction. The molecular mechanisms involved in mediating each of these steps are described, and we also explain how tumor cells interact with a myriad of interconnected cell populations in the bone marrow, including a rich vascular network, immune cells, adipocytes, and nerves. We discuss metabolic programs that tumor cells could engage with to specifically grow in bone. We also describe the progress and future directions of existing bone-targeted agents and report emerging therapies that have arisen from recent advances in our understanding of the pathophysiology of bone metastases. Finally, we discuss the value of bone turnover biomarkers in detection and monitoring of progression and therapeutic effects in patients with bone metastasis.
Collapse
Affiliation(s)
- Philippe Clézardin
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Rob Coleman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Margherita Puppo
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Penelope Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Edith Bonnelye
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France
| | - Frédéric Paycha
- Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France
| | - Cyrille B Confavreux
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Service de Rhumatologie Sud, CEMOS-Centre Expert des Métastases Osseuses, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
35
|
Wu VM, Huynh E, Tang S, Uskoković V. Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: mechanism of action. Biomed Mater 2020; 16:015018. [DOI: 10.1088/1748-605x/aba281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Grünewald TGP, Alonso M, Avnet S, Banito A, Burdach S, Cidre‐Aranaz F, Di Pompo G, Distel M, Dorado‐Garcia H, Garcia‐Castro J, González‐González L, Grigoriadis AE, Kasan M, Koelsche C, Krumbholz M, Lecanda F, Lemma S, Longo DL, Madrigal‐Esquivel C, Morales‐Molina Á, Musa J, Ohmura S, Ory B, Pereira‐Silva M, Perut F, Rodriguez R, Seeling C, Al Shaaili N, Shaabani S, Shiavone K, Sinha S, Tomazou EM, Trautmann M, Vela M, Versleijen‐Jonkers YMH, Visgauss J, Zalacain M, Schober SJ, Lissat A, English WR, Baldini N, Heymann D. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med 2020; 12:e11131. [PMID: 33047515 PMCID: PMC7645378 DOI: 10.15252/emmm.201911131] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.
Collapse
Affiliation(s)
- Thomas GP Grünewald
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Division of Translational Pediatric Sarcoma ResearchGerman Cancer Research Center (DKFZ), Hopp Children's Cancer Center (KiTZ), German Cancer Consortium (DKTK)HeidelbergGermany
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Marta Alonso
- Program in Solid Tumors and BiomarkersFoundation for the Applied Medical ResearchUniversity of Navarra PamplonaPamplonaSpain
| | - Sofia Avnet
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Ana Banito
- Pediatric Soft Tissue Sarcoma Research GroupGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stefan Burdach
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Florencia Cidre‐Aranaz
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | - Gemma Di Pompo
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | | | | | | | | | | | - Merve Kasan
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | | | - Fernando Lecanda
- Division of OncologyAdhesion and Metastasis LaboratoryCenter for Applied Medical ResearchUniversity of NavarraPamplonaSpain
| | - Silvia Lemma
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Dario L Longo
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | | | | | - Julian Musa
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Shunya Ohmura
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | - Miguel Pereira‐Silva
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Francesca Perut
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Rene Rodriguez
- Instituto de Investigación Sanitaria del Principado de AsturiasOviedoSpain
- CIBER en oncología (CIBERONC)MadridSpain
| | | | - Nada Al Shaaili
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Shabnam Shaabani
- Department of Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Kristina Shiavone
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Snehadri Sinha
- Department of Oral and Maxillofacial DiseasesUniversity of HelsinkiHelsinkiFinland
| | | | - Marcel Trautmann
- Division of Translational PathologyGerhard‐Domagk‐Institute of PathologyMünster University HospitalMünsterGermany
| | - Maria Vela
- Hospital La Paz Institute for Health Research (IdiPAZ)MadridSpain
| | | | | | - Marta Zalacain
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | - Sebastian J Schober
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Andrej Lissat
- University Children′s Hospital Zurich – Eleonoren FoundationKanton ZürichZürichSwitzerland
| | - William R English
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Nicola Baldini
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Dominique Heymann
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
- Université de NantesInstitut de Cancérologie de l'OuestTumor Heterogeneity and Precision MedicineSaint‐HerblainFrance
| |
Collapse
|
37
|
Systems Biology Approach Identifies Prognostic Signatures of Poor Overall Survival and Guides the Prioritization of Novel BET-CHK1 Combination Therapy for Osteosarcoma. Cancers (Basel) 2020; 12:cancers12092426. [PMID: 32859084 PMCID: PMC7564419 DOI: 10.3390/cancers12092426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/01/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) patients exhibit poor overall survival, partly due to copy number variations (CNVs) resulting in dysregulated gene expression and therapeutic resistance. To identify actionable prognostic signatures of poor overall survival, we employed a systems biology approach using public databases to integrate CNVs, gene expression, and survival outcomes in pediatric, adolescent, and young adult OS patients. Chromosome 8 was a hotspot for poor prognostic signatures. The MYC-RAD21 copy number gain (8q24) correlated with increased gene expression and poor overall survival in 90% of the patients (n = 85). MYC and RAD21 play a role in replication-stress, which is a therapeutically actionable network. We prioritized replication-stress regulators, bromodomain and extra-terminal proteins (BETs), and CHK1, in order to test the hypothesis that the inhibition of BET + CHK1 in MYC-RAD21+ pediatric OS models would be efficacious and safe. We demonstrate that MYC-RAD21+ pediatric OS cell lines were sensitive to the inhibition of BET (BETi) and CHK1 (CHK1i) at clinically achievable concentrations. While the potentiation of CHK1i-mediated effects by BETi was BET-BRD4-dependent, MYC expression was BET-BRD4-independent. In MYC-RAD21+ pediatric OS xenografts, BETi + CHK1i significantly decreased tumor growth, increased survival, and was well tolerated. Therefore, targeting replication stress is a promising strategy to pursue as a therapeutic option for this devastating disease.
Collapse
|
38
|
Wu SL, Wang LF, Sun HB, Wang W, Yu YX. Probing molecular mechanism of inhibitor bindings to bromodomain-containing protein 4 based on molecular dynamics simulations and principal component analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:547-570. [PMID: 32657160 DOI: 10.1080/1062936x.2020.1777584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
It is well known that bromodomain-containing protein 4 (BRD4) has been thought as a promising target utilized for treating various human diseases, such as inflammatory disorders, malignant tumours, acute myelogenous leukaemia (AML), bone diseases, etc. For this study, molecular dynamics (MD) simulations, binding free energy calculations, and principal component analysis (PCA) were integrated together to uncover binding modes of inhibitors 8P9, 8PU, and 8PX to BRD4(1). The results obtained from binding free energy calculations show that van der Waals interactions act as the main regulator in bindings of inhibitors to BRD4(1). The information stemming from PCA reveals that inhibitor associations extremely affect conformational changes, internal dynamics, and movement patterns of BRD4(1). Residue-based free energy decomposition method was wielded to unveil contributions of independent residues to inhibitor bindings and the data signify that hydrogen bonding interactions and hydrophobic interactions are decisive factors affecting bindings of inhibitors to BRD4(1). Meanwhile, eight residues Trp81, Pro82, Val87, Leu92, Leu94, Cys136, Asn140, and Ile146 are recognized as the common hot interaction spots of three inhibitors with BRD4(1). The results from this work are expected to provide a meaningfully theoretical guidance for design and development of effective inhibitors inhibiting of the activity of BRD4.
Collapse
Affiliation(s)
- S L Wu
- School of Science, Shandong Jiaotong University , Jinan, China
| | - L F Wang
- School of Science, Shandong Jiaotong University , Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University , Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University , Jinan, China
| | - Y X Yu
- School of Science, Shandong Jiaotong University , Jinan, China
| |
Collapse
|
39
|
Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers? Cancers (Basel) 2020; 12:cancers12030645. [PMID: 32164350 PMCID: PMC7139637 DOI: 10.3390/cancers12030645] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma and Ewing sarcoma are the most prevalent bone pediatric tumors. Despite intensive basic and medical research studies to discover new therapeutics and to improve current treatments, almost 40% of osteosarcoma and Ewing sarcoma patients succumb to the disease. Patients with poor prognosis are related to either the presence of metastases at diagnosis or resistance to chemotherapy. Over the past ten years, considerable interest for the Hippo/YAP signaling pathway has taken place within the cancer research community. This signaling pathway operates at different steps of tumor progression: Primary tumor growth, angiogenesis, epithelial to mesenchymal transition, and metastatic dissemination. This review discusses the current knowledge about the involvement of the Hippo signaling pathway in cancer and specifically in paediatric bone sarcoma progression.
Collapse
|
40
|
Balogh E, Tóth A, Méhes G, Trencsényi G, Paragh G, Jeney V. Hypoxia Triggers Osteochondrogenic Differentiation of Vascular Smooth Muscle Cells in an HIF-1 (Hypoxia-Inducible Factor 1)-Dependent and Reactive Oxygen Species-Dependent Manner. Arterioscler Thromb Vasc Biol 2020; 39:1088-1099. [PMID: 31070451 DOI: 10.1161/atvbaha.119.312509] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective- Vascular calcification is associated with high risk of cardiovascular events and mortality. Osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) is the major cellular mechanism underlying vascular calcification. Because tissue hypoxia is a common denominator in vascular calcification, we investigated whether hypoxia per se triggers osteochondrogenic differentiation of VSMCs. Approach and Results- We studied osteochondrogenic differentiation of human aorta VSMCs cultured under normoxic (21% O2) and hypoxic (5% O2) conditions. Hypoxia increased protein expression of HIF (hypoxia-inducible factor)-1α and its target genes GLUT1 (glucose transporter 1) and VEGFA (vascular endothelial growth factor A) and induced mRNA and protein expressions of osteochondrogenic markers, that is, RUNX2 (runt-related transcription factor 2), SOX9 (Sry-related HMG box-9), OCN (osteocalcin) and ALP (alkaline phosphatase), and induced a time-dependent calcification of the extracellular matrix of VSMCs. HIF-1 inhibition by chetomin abrogated the effect of hypoxia on osteochondrogenic markers and abolished extracellular matrix calcification. Hypoxia triggered the production of reactive oxygen species, which was inhibited by chetomin. Scavenging reactive oxygen species by N-acetyl cysteine attenuated hypoxia-mediated upregulation of HIF-1α, RUNX2, and OCN protein expressions and inhibited extracellular matrix calcification, which effect was mimicked by a specific hydrogen peroxide scavenger sodium pyruvate and a mitochondrial reactive oxygen species inhibitor rotenone. Ex vivo culture of mice aorta under hypoxic conditions triggered calcification which was inhibited by chetomin and N-acetyl cysteine. In vivo hypoxia exposure (10% O2) increased RUNX2 mRNA levels in mice lung and the aorta. Conclusions- Hypoxia contributes to vascular calcification through the induction of osteochondrogenic differentiation of VSMCs in an HIF-1-dependent and mitochondria-derived reactive oxygen species-dependent manner.
Collapse
Affiliation(s)
- Enikő Balogh
- From the Research Centre for Molecular Medicine (E.B., A.T., V.J.), Faculty of Medicine, University of Debrecen, Hungary
| | - Andrea Tóth
- From the Research Centre for Molecular Medicine (E.B., A.T., V.J.), Faculty of Medicine, University of Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology (G.M.), Faculty of Medicine, University of Debrecen, Hungary
| | - György Trencsényi
- Department of Nuclear Medicine (G.T.), Faculty of Medicine, University of Debrecen, Hungary
| | - György Paragh
- Department of Internal Medicine (G.P.), Faculty of Medicine, University of Debrecen, Hungary
| | - Viktória Jeney
- From the Research Centre for Molecular Medicine (E.B., A.T., V.J.), Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
41
|
Galea GL, Paradise CR, Meakin LB, Camilleri ET, Taipaleenmaki H, Stein GS, Lanyon LE, Price JS, van Wijnen AJ, Dudakovic A. Mechanical strain-mediated reduction in RANKL expression is associated with RUNX2 and BRD2. Gene 2020; 763S:100027. [PMID: 32550554 PMCID: PMC7285908 DOI: 10.1016/j.gene.2020.100027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 01/08/2023]
Abstract
Mechanical loading-related strains trigger bone formation by osteoblasts while suppressing resorption by osteoclasts, uncoupling the processes of formation and resorption. Osteocytes may orchestrate this process in part by secreting sclerostin (SOST), which inhibits osteoblasts, and expressing receptor activator of nuclear factor-κB ligand (RANKL/TNFSF11) which recruits osteoclasts. Both SOST and RANKL are targets of the master osteoblastic transcription factor RUNX2. Subjecting human osteoblastic Saos-2 cells to strain by four point bending down-regulates their expression of SOST and RANKL without altering RUNX2 expression. RUNX2 knockdown increases basal SOST expression, but does not alter SOST down-regulation following strain. Conversely, RUNX2 knockdown does not alter basal RANKL expression, but prevents its down-regulation by strain. Chromatin immunoprecipitation revealed RUNX2 occupies a region of the RANKL promoter containing a consensus RUNX2 binding site and its occupancy of this site decreases following strain. The expression of epigenetic acetyl and methyl writers and readers was quantified by RT-qPCR to investigate potential epigenetic bases for this change. Strain and RUNX2 knockdown both down-regulate expression of the bromodomain acetyl reader BRD2. BRD2 and RUNX2 co-immunoprecipitate, suggesting interaction within regulatory complexes, and BRD2 was confirmed to interact with the RUNX2 promoter. BRD2 also occupies the RANKL promoter and its occupancy was reduced following exposure to strain. Thus, RUNX2 may contribute to bone remodeling by suppressing basal SOST expression, while facilitating the acute strain-induced down-regulation of RANKL through a mechanosensitive epigenetic loop involving BRD2.
Collapse
Key Words
- ALP, Alkaline phosphatase
- ActD, Actinomycin D
- AzadC, 5-Aza-2′-deoxycytidine
- BRD2
- BRD2, Bromodomain-containing protein 2
- CO2, Carbon Dioxide
- ChIP, Chromatin immunoprecipitation
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM, Dulbecco's Modified Eagle Medium
- DNA, Deoxyribonucleic Acid
- Epigenetics
- FACS, Fluorescence-activated cell sorting
- FCS, Fetal calf serum
- GAPDH, Glyceraldehyde 3-Phosphate Dehydrogenase
- HDAC, Histone deacetylase
- HPRT, Hypoxanthine Phosphoribosyltransferase 1
- IU, International unit
- IgG, Immunoglobulin G
- Ki-67, Antigen KI-67
- Mechanical strain
- OPG, Osteoprotegerin/tumour necrosis factor receptor superfamily member 11B
- PBS, Phosphate-Buffered Saline
- PCR, polymerase chain reaction
- PGE2, Prostaglandin E2
- RANKL/TNFSF11, receptor activator of nuclear factor-κB ligand
- RNA, Ribonucleic Acid
- RT-qPCR, Quantitative reverse transcription polymerase chain reaction
- RUNX2
- RUNX2, Runt-related transcription factor 2
- Receptor activator of nuclear factor-κB ligand
- SOST, Sclerostin
- Sclerostin
- eGFP, enhanced green fluorescent protein
- sh, Short hairpin
- β2MG, Beta-2-Microglobulin
Collapse
Affiliation(s)
- Gabriel L Galea
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Christopher R Paradise
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lee B Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | | | - Hanna Taipaleenmaki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Lance E Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Joanna S Price
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
42
|
Jiang G, Deng W, Liu Y, Wang C. General mechanism of JQ1 in inhibiting various types of cancer. Mol Med Rep 2020; 21:1021-1034. [PMID: 31922235 PMCID: PMC7003028 DOI: 10.3892/mmr.2020.10927] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/04/2019] [Indexed: 01/21/2023] Open
Abstract
Bromodomain-containing 4 (BRD4) is a histone modification reader and transcriptional regulator that has been reported to interact with acetylated lysine histone motifs transcription factors (TFs), transcription co-activators and RNA polymerase II. The selective small molecule inhibitor JQ1, which binds competitively to bromodomains, has been reported to exhibit anti-proliferative effects in various types of cancer. Previous studies on the mechanism of action of JQ1 mostly focused on a specific tumor type or disease; however, the general mechanism through which JQ1 affects various tumors remains to be determined. In the present study, chromatin immunoprecipitation sequencing data for BRD4 and its expression profiles in six cancer cell lines were integrated and analyzed systematically. The results indicated that BRD4 binds to enhancers with histone H3 acetylated at lysine 27 (H3K27Ac) and mediator complex subunit 1 in a cell type-specific manner, as well as binds to promoter regions with the oncogenic TFs MYC and E2F1 in a cell type-common manner. The cell type-common sites across the six cell types investigated were found to be functionally important for tumorigenesis, whereas the cell type-specific sites were functionally enriched with the cell identity, all of which were sensitive to JQ1 treatment. Furthermore, a core set of JQ1-regulated BRD4 binding genes were obtained, which were significantly inhibited by JQ1 in various cancer cell lines and contributed to hallmarks of cancer. These results implied a common mechanism underlying the therapeutic effects of JQ1 and suggested its potential suitability as an anti-cancer drug targeting BRD4-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Guojuan Jiang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Wanglong Deng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Yang Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Chengde Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
43
|
Jacques C, Lavaud M, Georges S, Tesfaye R, Baud’huin M, Lamoureux F, Ory B. BET bromodomains’ functions in bone-related pathologies. Epigenomics 2020; 12:127-144. [DOI: 10.2217/epi-2019-0172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Throughout life, bones are subjected to the so-called ‘bone-remodeling’ process, which is a balanced mechanism between the apposition and the resorption of bone. This remodeling process depends on the activities of bone-specialized cells, namely the osteoblasts and the osteoclasts. Any deregulation in this process results in bone-related pathologies, classified as either metabolic nonmalignant diseases (such as osteoporosis) or malignant primary bone sarcomas. As these pathologies are not characterized by common targetable genetic alterations, epigenetic strategies could be relevant and promising options. Recently, targeting epigenetic regulators such as the bromodomains and extraterminal domains (BET) readers have achieved success in numerous other pathologies, including cancers. In this review, we highlight the current state of the art in terms of the diverse implications of BET bromodomain proteins in the bone’s biology and its defects. Consequently, their role in bone-related pathologies will also be developed, especially in the context of the primary bone sarcomas.
Collapse
Affiliation(s)
- Camille Jacques
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
| | - Melanie Lavaud
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
| | - Steven Georges
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
| | - Robel Tesfaye
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
- ‘Niches & Epigenetics of Tumors’ Network from Cancéropôle Grand Ouest
| | - Marc Baud’huin
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
| | - François Lamoureux
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
| | - Benjamin Ory
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
- ‘Niches & Epigenetics of Tumors’ Network from Cancéropôle Grand Ouest
| |
Collapse
|
44
|
Targeting the Cancer Epigenome with Histone Deacetylase Inhibitors in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:55-75. [PMID: 32767234 DOI: 10.1007/978-3-030-43085-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epigenetic deregulation is an emerging hallmark of cancer that enables tumor cells to escape surveillance by tumor suppressors and ultimately progress. The structure of the epigenome consists of covalent modifications of chromatin components, including acetylation by histone acetyltransferases (HATs) and deacetylation by histone deacetylases (HDACs). Targeting these enzymes with inhibitors to restore epigenetic homeostasis has been explored for many cancers. Osteosarcoma, an aggressive bone malignancy that primarily affects children and young adults, is notable for widespread genetic and epigenetic instability. This may explain why therapy directed at unique molecular pathways has failed to substantially improve outcomes in osteosarcoma over the past four decades. In this review, we discuss the potential of targeting the cancer epigenome, with a focus on histone deacetylase inhibitors (HDACi) for osteosarcoma. We additionally highlight the safety and tolerance of HDACi, combination chemotherapy with HDACi, and the ongoing challenges in the development of these agents.
Collapse
|
45
|
Paradise CR, Galvan ML, Kubrova E, Bowden S, Liu E, Carstens MF, Thaler R, Stein GS, van Wijnen AJ, Dudakovic A. The epigenetic reader Brd4 is required for osteoblast differentiation. J Cell Physiol 2019; 235:5293-5304. [PMID: 31868237 DOI: 10.1002/jcp.29415] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Transcription networks and epigenetic mechanisms including DNA methylation, histone modifications, and noncoding RNAs control lineage commitment of multipotent mesenchymal progenitor cells. Proteins that read, write, and erase histone tail modifications curate and interpret the highly intricate histone code. Epigenetic reader proteins that recognize and bind histone marks provide a crucial link between histone modifications and their downstream biological effects. Here, we investigate the role of bromodomain-containing (BRD) proteins, which recognize acetylated histones, during osteogenic differentiation. Using RNA-sequencing (RNA-seq) analysis, we screened for BRD proteins (n = 40) that are robustly expressed in MC3T3 osteoblasts. We focused functional follow-up studies on Brd2 and Brd4 which are highly expressed in MC3T3 preosteoblasts and represent "bromodomain and extra terminal domain" (BET) proteins that are sensitive to pharmacological agents (BET inhibitors). We show that small interfering RNA depletion of Brd4 has stronger inhibitory effects on osteoblast differentiation than Brd2 loss as measured by osteoblast-related gene expression, extracellular matrix deposition, and alkaline phosphatase activity. Similar effects on osteoblast differentiation are seen with the BET inhibitor +JQ1, and this effect is reversible upon its removal indicating that this small molecule has no lasting effects on the differentiation capacity of MC3T3 cells. Mechanistically, we find that Brd4 binds at known Runx2 binding sites in promoters of bone-related genes. Collectively, these findings suggest that Brd4 is recruited to osteoblast-specific genes and may cooperate with bone-related transcription factors to promote osteoblast lineage commitment and maturation.
Collapse
Affiliation(s)
- Christopher R Paradise
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota.,Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Eva Kubrova
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota
| | - Sierra Bowden
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Esther Liu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Mason F Carstens
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Andre J van Wijnen
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
46
|
Bowry A, Piberger AL, Rojas P, Saponaro M, Petermann E. BET Inhibition Induces HEXIM1- and RAD51-Dependent Conflicts between Transcription and Replication. Cell Rep 2019; 25:2061-2069.e4. [PMID: 30463005 PMCID: PMC6280123 DOI: 10.1016/j.celrep.2018.10.079] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
BET bromodomain proteins are required for oncogenic transcription activities, and BET inhibitors have been rapidly advanced into clinical trials. Understanding the effects of BET inhibition on processes such as DNA replication will be important for future clinical applications. Here, we show that BET inhibition, and specifically inhibition of BRD4, causes replication stress through a rapid overall increase in RNA synthesis. We provide evidence that BET inhibition acts by releasing P-TEFb from its inhibitor HEXIM1, promoting interference between transcription and replication. Unusually, these transcription-replication conflicts do not activate the ATM/ATR-dependent DNA damage response but recruit the homologous recombination factor RAD51. Both HEXIM1 and RAD51 promote BET inhibitor-induced fork slowing but also prevent a DNA damage response. Our data suggest that BET inhibitors slow replication through concerted action of transcription and recombination machineries and shed light on the importance of replication stress in the action of this class of experimental cancer drugs.
Collapse
Affiliation(s)
- Akhil Bowry
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ann Liza Piberger
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Patricia Rojas
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
47
|
Shi C, Zhang H, Wang P, Wang K, Xu D, Wang H, Yin L, Zhang S, Zhang Y. PROTAC induced-BET protein degradation exhibits potent anti-osteosarcoma activity by triggering apoptosis. Cell Death Dis 2019; 10:815. [PMID: 31653826 PMCID: PMC6814818 DOI: 10.1038/s41419-019-2022-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/14/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
Targeting oncogenic proteins for degradation using proteolysis-targeting chimera (PROTAC) recently has drawn increasing attention in the field of cancer research. Bromodomain and extra-terminal (BET) family proteins are newly identified cancer-related epigenetic regulators, which have a role in the pathogenesis and progression of osteosarcoma. In this study, we investigated the in vitro and in vivo anti-osteosarcoma activity by targeting BET with a PROTAC molecule BETd-260. The results showed that BETd-260 completely depletes BET proteins and potently suppresses cell viability in MNNG/HOS, Saos-2, MG-63, and SJSA-1 osteosarcoma cell lines. Compared with BET inhibitors HJB-97 and JQ1, the activity of BETd-260 increased over 1000 times. Moreover, BETd-260 substantially inhibited the expression of anti-apoptotic Mcl-1, Bcl-xl while increased the expression of pro-apoptotic Noxa, which resulted in massive apoptosis in osteosarcoma cells within hours. In addition, pro-oncogenic protein c-Myc also was substantially inhibited by BETd-260 in the OS cells. Of note, BETd-260 induced degradation of BET proteins, triggered apoptosis in xenograft osteosarcoma tumor tissue, and profoundly inhibited the growth of cell-derived and patient-derived osteosarcoma xenografts in mice. Our findings indicate that BET PROTACs represent a promising therapeutic agent for human osteosarcoma.
Collapse
Affiliation(s)
- Chengcheng Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huapeng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Penglei Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Kai Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Denghui Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Yin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Yi Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
48
|
Castillo-Tandazo W, Mutsaers AJ, Walkley CR. Osteosarcoma in the Post Genome Era: Preclinical Models and Approaches to Identify Tractable Therapeutic Targets. Curr Osteoporos Rep 2019; 17:343-352. [PMID: 31529263 DOI: 10.1007/s11914-019-00534-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Osteosarcoma (OS) is the most common cancer of bone, yet is classified as a rare cancer. Treatment and outcomes for OS have not substantively changed in several decades. While the decoding of the OS genome greatly advanced the understanding of the mutational landscape of OS, immediately actionable therapeutic targets were not apparent. Here we describe recent preclinical models that can be leveraged to identify, test, and prioritize therapeutic candidates. RECENT FINDINGS The generation of multiple high fidelity murine models of OS, the spontaneous disease that arises in pet dogs, and the establishment of a diverse collection of patient-derived OS xenografts provide a robust preclinical platform for OS. These models enable evidence to be accumulated across multiple stages of preclinical evaluation. Chemical and genetic screening has identified therapeutic targets, often demonstrating cross species activity. Clinical trials in both PDX models and in canine OS have effectively tested new therapies for prioritization. Improving clinical outcomes in OS has proven elusive. The integrated target discovery and testing possible through a cross species platform provides validation of a putative target and may enable the rigorous evaluation of new therapies in models where endpoints can be rapidly assessed.
Collapse
Affiliation(s)
- Wilson Castillo-Tandazo
- St. Vincent's Institute, 9 Princes St, Fitzroy, VIC, 3065, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Anthony J Mutsaers
- Department of Biomedical Sciences, Ontario Veterinary College, Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Canada.
| | - Carl R Walkley
- St. Vincent's Institute, 9 Princes St, Fitzroy, VIC, 3065, Australia.
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
49
|
Schiavone K, Garnier D, Heymann MF, Heymann D. The Heterogeneity of Osteosarcoma: The Role Played by Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:187-200. [PMID: 31134502 DOI: 10.1007/978-3-030-14366-4_11] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is the most common bone sarcoma and is one of the cancer entities characterized by the highest level of heterogeneity in humans. This heterogeneity takes place not only at the macroscopic and microscopic levels, with heterogeneous micro-environmental components, but also at the genomic, transcriptomic and epigenetic levels. Recent investigations have revealed the existence in osteosarcoma of cancer cells with stemness properties. Cancer stem cells are characterized by their specific phenotype and low cycling capacity, and are linked to drug resistance, tumour growth and the metastatic process. In addition, cancer stem cells contribute to the enrichment of tumour heterogeneity. The present manuscript will describe the main characteristic features of cancer stem cells in osteosarcoma and will discuss their impact on maintaining tumour heterogeneity. Their clinical implications will also be briefly addressed.
Collapse
Affiliation(s)
- Kristina Schiavone
- INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Delphine Garnier
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France
| | - Marie-Francoise Heymann
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France
| | - Dominique Heymann
- INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France.
| |
Collapse
|
50
|
Li K, Xu C, Du Y, Junaid M, Kaushik AC, Wei DQ. Comprehensive epigenetic analyses reveal master regulators driving lung metastasis of breast cancer. J Cell Mol Med 2019; 23:5415-5431. [PMID: 31215771 PMCID: PMC6653217 DOI: 10.1111/jcmm.14424] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/30/2019] [Accepted: 05/12/2019] [Indexed: 01/02/2023] Open
Abstract
The lung metastasis of breast cancer involves complicated regulatory changes driven by chromatin remodelling. However, the epigenetic reprogramming and regulatory mechanisms in lung metastasis of breast cancer remain unclear. Here, we generated and analysed genome‐wide profiles of multiple histone modifications (H3K4me3, H3K27ac, H3K27me3, H3K4me1 and H3K9me3), as well as transcriptome data in lung‐metastatic and non‐lung‐metastatic breast cancer cells. Our results showed that the expression changes were correlated with the enrichment of specific histone modifications in promoters and enhancers. Promoter and enhancer reprogramming regulated gene expression in a synergetic way, and involved in multiple important biological processes and pathways. In addition, lots of gained super‐enhancers were identified in lung‐metastatic cells. We also identified master regulators driving differential gene expression during lung metastasis of breast cancer. We found that the cooperations between regulators were much closer in lung‐metastatic cells. Moreover, regulators such as TFAP2C, GTF2I and LMO4 were found to have potential prognostic value for lung metastasis free (LMF) survival of breast cancer. Functional studies motivated by our data analyses uncovered an important role of LMO4 in regulating metastasis. This study provided comprehensive insights into regulatory mechanisms, as well as potential prognostic markers for lung metastasis of breast cancer.
Collapse
Affiliation(s)
- Kening Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Congling Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Yuxin Du
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Muhammad Junaid
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Aman-Chandra Kaushik
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|