1
|
Eriksen MH, Deop-Ruano JR, Cox JD, Manjavacas A. Chiral Light-Matter Interactions with Thermal Magnetoplasmons in Graphene Nanodisks. NANO LETTERS 2025; 25:313-320. [PMID: 39718382 DOI: 10.1021/acs.nanolett.4c05056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
We investigate the emergence of self-hybridized thermal magnetoplasmons in doped graphene nanodisks at finite temperatures upon being subjected to an external magnetic field. Using a semianalytical approach, which fully describes the eigenmodes and polarizability of the graphene nanodisks, we show that the hybridization originates from the coupling of transitions between thermally populated Landau levels and localized magnetoplasmon resonances of the nanodisks. Owing to their origin, these modes combine the extraordinary magneto-optical response of graphene with the strong field enhancement of plasmons, making them an ideal tool for achieving strong chiral light-matter interactions, with the additional advantage of being tunable through carrier concentration, magnetic field, and temperature. As a demonstration of their capabilities, we show that the thermal magnetoplasmons supported by an array of graphene nanodisks enable chiral perfect absorption and chiral thermal emission.
Collapse
Affiliation(s)
- Mikkel Have Eriksen
- POLIMA─Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Juan R Deop-Ruano
- Instituto de Química Física Blas Cabrera (IQF), CSIC, 28006 Madrid, Spain
| | - Joel D Cox
- POLIMA─Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | |
Collapse
|
2
|
Liu Y, Yu H, Zeng Q, Wang B, Peng Q. Thickness-dependent optical properties of low-loss transdimensional plasmonic Sr 0.82NbO 3 thin films. OPTICS LETTERS 2024; 49:5591-5594. [PMID: 39353013 DOI: 10.1364/ol.538013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
To develop alternative plasmonic materials for nanophotonic applications, the thickness-dependent optical properties of ultrathin plasmonic Sr0.82NbO3 (SNO) films deposited on MgO are investigated. As the thickness decreases from 10 to 2 nm, the film exhibits less metallic, epsilon-near-zero (ENZ) wavelength redshift and higher optical loss due to increased scattering. Nevertheless, the thinnest film still has a high carrier concentration of 1022 cm-3, and the real part of the dielectric functions of all films is less than zero in the near-infrared (NIR) wavelength region, indicating that the samples possess relatively high metallicity and plasmonic characteristics in the NIR. It is found that the carrier concentration dominates the electron effective mass and Drude plasma frequency. Although Au is a commonly used plasmonic material, at a wavelength of 1550 nm, the loss of SNO is 85.8% lower than that of Au, and its plasmonic performance metrics is significantly higher than TiN, Al:ZnO and Sn:In2O3, demonstrating the great potential of SNO in NIR plasmonic device applications.
Collapse
|
3
|
Lv C, Meng F, Cui L, Jiao Y, Jia Z, Qin W, Qin G. Voltage-controlled nonlinear optical properties in gold nanofilms via electrothermal effect. Nat Commun 2024; 15:6372. [PMID: 39075080 PMCID: PMC11286776 DOI: 10.1038/s41467-024-50665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Dynamic control of the optical properties of gold nanostructures is crucial for advancing photonics technologies spanning optical signal processing, on-chip light sources and optical computing. Despite recent advances in tunable plasmons in gold nanostructures, most studies are limited to the linear or static regime, leaving the dynamic manipulation of nonlinear optical properties unexplored. This study demonstrates the voltage-controlled Kerr nonlinear optical response of gold nanofilms via the electrothermal effect. By applying relatively low voltages (~10 V), the nonlinear absorption coefficient and refractive index are reduced by 40.4% and 33.1%, respectively, due to the increased damping coefficient of gold nanofilm. Furthermore, a voltage-controlled all-fiber gold nanofilm saturable absorber is fabricated and used in mode-locked fiber lasers, enabling reversible wavelength-tuning and operation regimes switching (e.g., mode-locking-Q-switched mode-locking). These findings advance the understanding of electrically controlled nonlinear optical responses in gold nanofilms and offer a flexible approach for controlling fiber laser operations.
Collapse
Affiliation(s)
- Changjian Lv
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Fanchao Meng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Linghao Cui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yadong Jiao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Zhixu Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Weiping Qin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Guanshi Qin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Pan C, Tong Y, Qian H, Krasavin AV, Li J, Zhu J, Zhang Y, Cui B, Li Z, Wu C, Liu L, Li L, Guo X, Zayats AV, Tong L, Wang P. Large area single crystal gold of single nanometer thickness for nanophotonics. Nat Commun 2024; 15:2840. [PMID: 38565552 PMCID: PMC10987654 DOI: 10.1038/s41467-024-47133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Two-dimensional single crystal metals, in which the behavior of highly confined optical modes is intertwined with quantum phenomena, are highly sought after for next-generation technologies. Here, we report large area (>104 μm2), single crystal two-dimensional gold flakes (2DGFs) with thicknesses down to a single nanometer level, employing an atomic-level precision chemical etching approach. The decrease of the thickness down to such scales leads to the quantization of the electronic states, endowing 2DGFs with quantum-confinement-augmented optical nonlinearity, particularly leading to more than two orders of magnitude enhancement in harmonic generation compared with their thick polycrystalline counterparts. The nanometer-scale thickness and single crystal quality makes 2DGFs a promising platform for realizing plasmonic nanostructures with nanoscale optical confinement. This is demonstrated by patterning 2DGFs into nanoribbon arrays, exhibiting strongly confined near infrared plasmonic resonances with high quality factors. The developed 2DGFs provide an emerging platform for nanophotonic research and open up opportunities for applications in ultrathin plasmonic, optoelectronic and quantum devices.
Collapse
Affiliation(s)
- Chenxinyu Pan
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanbiao Tong
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haoliang Qian
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Alexey V Krasavin
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London, WC2R 2LS, UK
| | - Jialin Li
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiajie Zhu
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yiyun Zhang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Bowen Cui
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiyong Li
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, 314000, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing, 314000, China
| | - Chenming Wu
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lufang Liu
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Linjun Li
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, 314000, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing, 314000, China
| | - Xin Guo
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, 314000, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing, 314000, China
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London, WC2R 2LS, UK.
| | - Limin Tong
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
| | - Pan Wang
- Interdisciplinary Center for Quantum Information, New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing, 314000, China.
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing, 314000, China.
| |
Collapse
|
5
|
Mkhitaryan V, Weber AP, Abdullah S, Fernández L, Abd El-Fattah ZM, Piquero-Zulaica I, Agarwal H, García Díez K, Schiller F, Ortega JE, García de Abajo FJ. Ultraconfined Plasmons in Atomically Thin Crystalline Silver Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302520. [PMID: 37924223 DOI: 10.1002/adma.202302520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/17/2023] [Indexed: 11/06/2023]
Abstract
The ability to confine light down to atomic scales is critical for the development of applications in optoelectronics and optical sensing as well as for the exploration of nanoscale quantum phenomena. Plasmons in metallic nanostructures with just a few atomic layers in thickness can achieve this type of confinement, although fabrication imperfections down to the subnanometer scale hinder actual developments. Here, narrow plasmons are demonstrated in atomically thin crystalline silver nanostructures fabricated by prepatterning silicon substrates and epitaxially depositing silver films of just a few atomic layers in thickness. Specifically, a silicon wafer is lithographically patterned to introduce on-demand lateral shapes, chemically process the sample to obtain an atomically flat silicon surface, and epitaxially deposit silver to obtain ultrathin crystalline metal films with the designated morphologies. Structures fabricated by following this procedure allow for an unprecedented control over optical field confinement in the near-infrared spectral region, which is here illustrated by the observation of fundamental and higher-order plasmons featuring extreme spatial confinement and high-quality factors that reflect the crystallinity of the metal. The present study constitutes a substantial improvement in the degree of spatial confinement and quality factor that should facilitate the design and exploitation of atomic-scale nanoplasmonic devices for optoelectronics, sensing, and quantum-physics applications.
Collapse
Affiliation(s)
- Vahagn Mkhitaryan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Andrew P Weber
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
- Donostia International Physics Center, Paseo Manuel Lardizabal 4, 20018, Donostia-San Sebastián, Spain
| | - Saad Abdullah
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Laura Fernández
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center, 20018, San Sebastián, Spain
| | - Zakaria M Abd El-Fattah
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, E-11884, Cairo, Egypt
| | - Ignacio Piquero-Zulaica
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center, 20018, San Sebastián, Spain
| | - Hitesh Agarwal
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Kevin García Díez
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center, 20018, San Sebastián, Spain
| | - Frederik Schiller
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center, 20018, San Sebastián, Spain
| | - J Enrique Ortega
- Donostia International Physics Center, Paseo Manuel Lardizabal 4, 20018, Donostia-San Sebastián, Spain
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center, 20018, San Sebastián, Spain
- Departamento de Física Aplicada I, Universidad del País Vasco, 20018, San Sebastián, Spain
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
6
|
Martínez-Cercós D, Paulillo B, Barrantes J, Mendoza-Carreño J, Mihi A, Clair TS, Mazumder P, Pruneri V. Tuning of Ultra-Thin Gold Films by Photoreduction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16204-16210. [PMID: 36939564 PMCID: PMC10064312 DOI: 10.1021/acsami.2c22149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Ultrathin metal films (UTMFs) are used in a wide range of applications, from transparent electrodes to infrared mirrors and metasurfaces. Due to their small thickness (<5 nm), the electrical and optical properties of UTMFs can be changed by external stimuli, for example, by applying an electric field through an ion gel. It is also known that oxidized thin films and nanostructures of Au can be reduced by irradiating with short-wavelength light. Here we show that the resistance, reflectance, and resonant optical response of Au UTMFs is changed significantly by ultraviolet light. More specifically, photoreduction and oxidation processes can be sequentially applied for continuous tuning, with observed modulation ranges for sheet resistance (Rs) and reflectance of more than 40% and 30%, respectively. The proposed method has the potential for achieving reconfigurable UTMF structures and trimming their response to specific working points, e.g., a predetermined resonance wavelength and amplitude. This is also important for large scale deployment of such surfaces as one can compensate material nonuniformity, morphological, and structural dimension errors occurring during fabrication.
Collapse
Affiliation(s)
- Daniel Martínez-Cercós
- ICFO-Institut
de Ciencies Fotoniques, The Institute of
Photonic Sciences, Castelldefels, Barcelona 08860, Spain
| | - Bruno Paulillo
- ICFO-Institut
de Ciencies Fotoniques, The Institute of
Photonic Sciences, Castelldefels, Barcelona 08860, Spain
| | - Jessica Barrantes
- ICFO-Institut
de Ciencies Fotoniques, The Institute of
Photonic Sciences, Castelldefels, Barcelona 08860, Spain
| | - Jose Mendoza-Carreño
- Institute
of Materials Science of Barcelona ICMAB-CSIC Campus UAB, Bellaterra 08193, Spain
| | - Agustín Mihi
- Institute
of Materials Science of Barcelona ICMAB-CSIC Campus UAB, Bellaterra 08193, Spain
| | - Todd St. Clair
- Corning
Research and Development Corporation, Sullivan Park, Corning, New York 14831, United
States
| | - Prantik Mazumder
- Corning
Research and Development Corporation, Sullivan Park, Corning, New York 14831, United
States
| | - Valerio Pruneri
- ICFO-Institut
de Ciencies Fotoniques, The Institute of
Photonic Sciences, Castelldefels, Barcelona 08860, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, Barcelona 08010, Spain
| |
Collapse
|
7
|
Wang X, Gao S, Ma J. Schottky barrier effect on plasmon-induced charge transfer. NANOSCALE 2023; 15:1754-1762. [PMID: 36598756 DOI: 10.1039/d2nr05937a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plasmon-induced charge transfer causes electron-hole spatial separation at the metal-semiconductor interface, which plays a key role in photocatalytic and photovoltaic applications. The Schottky barrier formed at the metal-semiconductor interface can modify the hot carrier dynamics. Taking the Ag-TiO2 system as an example, we have investigated plasmon-induced charge transfer at the Schottky junction using quantum mechanical simulations. We find that the Schottky barrier induced by n-type doping enhances the electron transfer and that induced by p-type doping enhances the hole transfer, which is attributed to the shift of the Fermi energy and the band bending of the Schottky junction at the interface. The Schottky barrier also modifies the layer distribution of hot carriers. In particular, for the system with a large band bending, there exists electron-hole spatial separation inside the TiO2 substrate. Our results reveal the mechanism and dynamics of charge transfer at the Schottky junction, and pave the way for manipulating plasmon-assisted photocatalytic and photovoltaic applications.
Collapse
Affiliation(s)
- Xinxin Wang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Shiwu Gao
- Beijing Computational Science Research Center, Beijing, 100193, China.
| | - Jie Ma
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
8
|
Cho JL, Liu S, Wang P. Green Chemical Synthesis of Size-Controlled Gold Nanodisk Governed by Hydrophilic Protein/Peptide-Rich Aqueous Extract from American Cockroach, Periplaneta americana. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Pisarra M, Gomez CV, Sindona A. Massive and massless plasmons in germanene nanosheets. Sci Rep 2022; 12:18624. [PMID: 36329251 PMCID: PMC9633710 DOI: 10.1038/s41598-022-23058-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Atomically thin crystals may exhibit peculiar dispersive electronic states equivalent to free charged particles of ultralight to ultraheavy masses. A rare coexistence of linear and parabolic dispersions yields correlated charge density modes exploitable for nanometric light confinement. Here, we use a time-dependent density-functional approach, under several levels of increasing accuracy, from the random-phase approximation to the Bethe-Salpeter equation formalism, to assess the role of different synthesized germanene samples as platforms for these plasmon excitations. In particular, we establish that both freestanding and some supported germenene monolayers can sustain infrared massless modes, resolved into an out-of-phase (optical) and an in-phase (acoustic) component. We further indicate precise experimental geometries that naturally host infrared massive modes, involving two different families of parabolic charge carriers. We thus show that the interplay of the massless and massive plasmons can be finetuned by applied extrinsic conditions or geometry deformations, which constitutes the core mechanism of germanene-based optoelectronic and plasmonic applications.
Collapse
Affiliation(s)
- Michele Pisarra
- Gruppo Collegato di Cosenza, Sezione dei Laboratori Nazionali di Frascati (LNF), Istituto Nazionale di Fisica Nucleare (INFN), Cubo 31C, 87036, Rende, CS, Italy
| | - Cristian Vacacela Gomez
- Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba, 060155, Ecuador
| | - Antonello Sindona
- Gruppo Collegato di Cosenza, Sezione dei Laboratori Nazionali di Frascati (LNF), Istituto Nazionale di Fisica Nucleare (INFN), Cubo 31C, 87036, Rende, CS, Italy. .,Dipartimento di Fisica, Università della Calabria, Via P. Bucci, Cubo 30C, 87036, Rende, CS, Italy.
| |
Collapse
|
10
|
Jiang H, Zhu W, Huang J, Zhang H, Zhao W. Active metasurface in the near-infrared region by gating ultrathin TiN films. OPTICS LETTERS 2022; 47:5072-5075. [PMID: 36181189 DOI: 10.1364/ol.472187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Ultrathin titanium nitride (TiN) films have become a novel material flatform for constructing active metasurfaces in the near-infrared region. In this Letter, we numerically achieved the dual functions of switchable linear dichroism (LD) and tunable perfect absorption in a G-shape gold resonators/TiN film hybrid metasurface by gating ultrathin TiN films. As the carrier density of TiN decreases, the modulation depth for LD strength is about 70% at 1211 nm. Meanwhile, the response wavelength of perfect absorption (∼1) shifts to the blue by around 130 nm with a change of carrier density of 12%. Our proposed active metasurface with the capability of strength-switchable LD and wavelength-tunable perfect absorption has considerable potential in dynamic electro-optic modulation and flat photonic devices with reconfigurable functionalities.
Collapse
|
11
|
Hwang Y, Koo DJ, Ferhan AR, Sut TN, Yoon BK, Cho NJ, Jackman JA. Optimizing Plasmonic Gold Nanorod Deposition on Glass Surfaces for High-Sensitivity Refractometric Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3432. [PMID: 36234560 PMCID: PMC9565783 DOI: 10.3390/nano12193432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Owing to high surface sensitivity, gold nanorods (AuNRs) are widely used to construct surface-based nanoplasmonic biosensing platforms for label-free molecular diagnostic applications. A key fabrication step involves controlling AuNR deposition onto the target surface, which requires maximizing surface density while minimizing inter-particle aggregation, and is often achieved by surface functionalization with a self-assembled monolayer (SAM) prior to AuNR deposition. To date, existing studies have typically used a fixed concentration of SAM-forming organic molecules (0.2-10% v/v) while understanding how SAM density affects AuNR deposition and resulting sensing performance would be advantageous. Herein, we systematically investigated how controlling the (3-aminopropyl)triethoxysilane (APTES) concentration (1-30% v/v) during SAM preparation affects the fabrication of AuNR-coated glass surfaces for nanoplasmonic biosensing applications. Using scanning electron microscopy (SEM) and UV-visible spectroscopy, we identified an intermediate APTES concentration range that yielded the highest density of individually deposited AuNRs with minimal aggregation and also the highest peak wavelength in aqueous solution. Bulk refractive index sensitivity measurements indicated that the AuNR configuration had a strong effect on the sensing performance, and the corresponding wavelength-shift responses ranged from 125 to 290 nm per refractive index unit (RIU) depending on the APTES concentration used. Biosensing experiments involving protein detection and antigen-antibody interactions further demonstrated the high surface sensitivity of the optimized AuNR platform, especially in the low protein concentration range where the measurement shift was ~8-fold higher than that obtained with previously used sensing platforms.
Collapse
Affiliation(s)
- Youngkyu Hwang
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Dong Jun Koo
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tun Naw Sut
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
12
|
Chahal S, Bandyopadhyay A, Dash SP, Kumar P. Microwave Synthesized 2D Gold and Its 2D-2D Hybrids. J Phys Chem Lett 2022; 13:6487-6495. [PMID: 35819242 DOI: 10.1021/acs.jpclett.2c01540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Xenes, i.e., monoelemental two-dimensional atomic sheets, are promising for sensitive and ultrafast sensor applications owing to exceptional carrier mobility; however, most of them oxidize below 500 °C and therefore cannot be employed for high-temperature applications. 2D gold, an oxidation-resistant plasmonic Xene, is extremely promising. 2D gold was experimentally realized by both atomic layer deposition and chemical synthesis using sodium citrate. However, it is imperative to develop a new facile single-step method to synthesize 2D gold. Here, liquid-phase synthesis of 2D gold is demonstrated by microwave exposure to auric chloride dispersed in dimethylformamide. Microscopies (AFM and high-resolution TEM), spectroscopies (Raman, UV-vis, and X-ray photoelectron), and X-ray diffraction establish the formation of a hexagonal crystallographic phase for 2D gold. 2D-2D hybrids of 2D gold have also been synthesized and investigated for electronic/optoelectronic behaviors and SERS-based molecular sensing. DFT band structure calculation for 2D gold and its hybrids corroborates the experimental findings.
Collapse
Affiliation(s)
- Sumit Chahal
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna-801106, India
| | - Arkamita Bandyopadhyay
- The Bremen Center for Computational Materials Science (BCCMS), Universität Bremen, Am Fallturm 1, TAB Building, 28359 Bremen, Germany
| | - Saroj P Dash
- Department of Microtechnology and Nanoscience, Quantum Device Physics Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Prashant Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna-801106, India
- Global Innovative Center for Advanced Nanomaterials, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
13
|
Ma J, Wang J, Gao S. Effect of light polarization on plasmon-induced charge transfer. J Chem Phys 2022; 156:244704. [DOI: 10.1063/5.0094444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Plasmonic nanoclusters can strongly absorb light energy and generate hot carriers, which have great potentials in photovoltaic and photocatalytic applications. A vital step for those plasmonic applications is the charge transfer at the metal–semiconductor interface. The effect of the light polarization on the charge transfer has not been theoretically investigated so far. Here, we take the Ag–TiO2 system as a model system to study the polarization effect using time-dependent density functional theory simulations. We find that the charge transfer is sensitive to the light polarization, which has its origin in the polarization-dependent hot carrier distributions. For the linearly polarized light, it shows a sine-square dependence on the polar angle, indicating that the charge transfer response to the linear polarization can be decomposed into components perpendicular and parallel to the interface. We also find that there exists directional charge transfer with a circular light polarization. Our results demonstrate that the light polarization can significantly affect the charge transfer behavior and, thus, offer a new degree of freedom to manipulate the plasmonic applications.
Collapse
Affiliation(s)
- Jie Ma
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jiayuan Wang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shiwu Gao
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
14
|
Shah D, Yang M, Kudyshev Z, Xu X, Shalaev VM, Bondarev IV, Boltasseva A. Thickness-Dependent Drude Plasma Frequency in Transdimensional Plasmonic TiN. NANO LETTERS 2022; 22:4622-4629. [PMID: 35640070 DOI: 10.1021/acs.nanolett.1c04692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmonic transdimensional materials (TDMs), which are atomically thin metals of precisely controlled thickness, are expected to exhibit large tailorability and dynamic tunability of their optical response as well as strong light confinement and nonlocal effects. Using spectroscopic ellipsometry, we characterize the complex permittivity of ultrathin films of passivated plasmonic titanium nitride with thicknesses ranging from 1 to 10 nm. By measuring passivated TiN, we experimentally distinguish between the contributions of an oxide layer and thickness to the optical properties. A decrease in the Drude plasma frequency and increase in the damping in thinner films is observed due to spatial confinement. We explain the experimental trends using a nonlocal Drude dielectric response theory based on the Keldysh-Rytova (KR) potential that predicts the thickness-dependent optical properties caused by electron confinement in plasmonic TDMs. Our experimental findings are consistent with the KR model and demonstrate quantum-confinement-induced optical properties in plasmonic transdimensional TiN.
Collapse
Affiliation(s)
- Deesha Shah
- School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Morris Yang
- School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhaxylyk Kudyshev
- School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaohui Xu
- School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vladimir M Shalaev
- School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Igor V Bondarev
- Math & Physics Department, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Alexandra Boltasseva
- School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Gao X, Xie L, Zhou J. Active control of dielectric nanoparticle optical resonance through electrical charging. Sci Rep 2022; 12:10117. [PMID: 35710911 PMCID: PMC9203548 DOI: 10.1038/s41598-022-13251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
A novel method for active control of resonance position of dielectric nanoparticles by increasing the excess charges carried by the nanoparticles is proposed in this paper. We show that as the excess charges carried by the particle increase, the oscillation frequency of excess charges will gradually increase, when it is equal to the incident frequency, resonance occurs due to resonant excitation of the excess charges. What is more, the formula of charges carried by an individual particle required to excite the resonance at any wavelength position is proposed. The resonance position can be directly controlled by means of particle charging, and the enhancement of resonance intensity is more obvious. This work has opened new avenues for the active control of plasmon resonances, which shows great promise for realizing tunable optical properties of dielectric nanoparticles.
Collapse
Affiliation(s)
- Xuebang Gao
- College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, China.,Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Li Xie
- College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, China. .,Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Jùn Zhou
- College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, China.,Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
16
|
Tang H, Menabde SG, Anwar T, Kim J, Jang MS, Tagliabue G. Photo-modulated optical and electrical properties of graphene. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:917-940. [PMID: 39634480 PMCID: PMC11501126 DOI: 10.1515/nanoph-2021-0582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/07/2024]
Abstract
Photo-modulation is a promising strategy for contactless and ultrafast control of optical and electrical properties of photoactive materials. Graphene is an attractive candidate material for photo-modulation due to its extraordinary physical properties and its relevance to a wide range of devices, from photodetectors to energy converters. In this review, we survey different strategies for photo-modulation of electrical and optical properties of graphene, including photogating, generation of hot carriers, and thermo-optical effects. We briefly discuss the role of nanophotonic strategies to maximize these effects and highlight promising fields for application of these techniques.
Collapse
Affiliation(s)
- Hongyu Tang
- Laboratory of Nanoscience for Energy Technologies (LNET), École Polytechnique Fédérale de Lausanne (EPFL), Station 9, CH-1015, Lausanne, Switzerland
| | - Sergey G. Menabde
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Tarique Anwar
- Laboratory of Nanoscience for Energy Technologies (LNET), École Polytechnique Fédérale de Lausanne (EPFL), Station 9, CH-1015, Lausanne, Switzerland
| | - Junhyung Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Min Seok Jang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Giulia Tagliabue
- Laboratory of Nanoscience for Energy Technologies (LNET), École Polytechnique Fédérale de Lausanne (EPFL), Station 9, CH-1015, Lausanne, Switzerland
| |
Collapse
|
17
|
Steves MA, Rajabpour S, Wang K, Dong C, He W, Quek SY, Robinson JA, Knappenberger KL. Atomic-Level Structure Determines Electron-Phonon Scattering Rates in 2-D Polar Metal Heterostructures. ACS NANO 2021; 15:17780-17789. [PMID: 34665593 DOI: 10.1021/acsnano.1c05944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The electron dynamics of atomically thin 2-D polar metal heterostructures, which consisted of a few crystalline metal atomic layers intercalated between hexagonal silicon carbide and graphene grown from the silicon carbide, were studied using nearly degenerate transient absorption spectroscopy. Optical pumping created charge carriers in both the 2-D metals and graphene components. Wavelength-dependent probing suggests that graphene-to-metal carrier transfer occurred on a sub-picosecond time scale. Following rapid (<300 fs) carrier-carrier scattering, charge carriers monitored through the metal interband transition relaxed through several consecutive cooling mechanisms that included sub-picosecond carrier-phonon scattering and dissipation to the silicon carbide substrate over tens of picoseconds. By studying 2-D In, 2-D Ga, and a Ga/In alloy, we resolved accelerated electron-phonon scattering rates upon alloy formation as well as structural influences on the excitation of in-plane phonon shear modes. More rapid cooling in alloys is attributed to increased lattice disorder, which was observed through correlative polarization-resolved second harmonic generation and electron microscopy. This connection between the electronic relaxation rates, far-field optical responses, and metal lattice disorder is made possible by the intimate relation between nonlinear optical properties and atomic-level structure in these materials. These studies provided insights into electronic carrier dynamics in 2-D crystalline elemental metals, including resolving contributions from specific components of a 2-D metal-containing heterojunction. The correlative ultrafast spectroscopy and nonlinear microscopy results suggest that the energy dissipation rates can be tuned through atomic-level structures.
Collapse
Affiliation(s)
- Megan A Steves
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Siavash Rajabpour
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ke Wang
- Materials Characterization Laboratory, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chengye Dong
- 2D Crystal Consortium, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Wen He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive, Singapore 117456, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117456, Singapore
| | - Su Ying Quek
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive, Singapore 117456, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117456, Singapore
- Department of Physics, National University of Singapore, Singapore 117456, Singapore
- NUS Graduate School Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 117456, Singapore
| | - Joshua A Robinson
- 2D Crystal Consortium, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2D and Layered Materials, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kenneth L Knappenberger
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
18
|
Rodríguez Echarri Á, Cox JD, Iyikanat F, García de Abajo FJ. Nonlinear plasmonic response in atomically thin metal films. NANOPHOTONICS 2021; 10:4149-4159. [PMID: 36425323 PMCID: PMC9651024 DOI: 10.1515/nanoph-2021-0422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/15/2023]
Abstract
Nanoscale nonlinear optics is limited by the inherently weak nonlinear response of conventional materials and the small light-matter interaction volumes available in nanostructures. Plasmonic excitations can alleviate these limitations through subwavelength light focusing, boosting optical near fields that drive the nonlinear response, but also suffering from large inelastic losses that are further aggravated by fabrication imperfections. Here, we theoretically explore the enhanced nonlinear response arising from extremely confined plasmon polaritons in few-atom-thick crystalline noble metal films. Our results are based on quantum-mechanical simulations of the nonlinear optical response in atomically thin metal films that incorporate crucial electronic band structure features associated with vertical quantum confinement, electron spill-out, and surface states. We predict an overall enhancement in plasmon-mediated nonlinear optical phenomena with decreasing film thickness, underscoring the importance of surface and electronic structure in the response of ultrathin metal films.
Collapse
Affiliation(s)
- Álvaro Rodríguez Echarri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| | - Joel D. Cox
- Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
| | - Fadil Iyikanat
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| | - F. Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010Barcelona, Spain
| |
Collapse
|
19
|
Martínez-Cercós D, Paulillo B, Maniyara RA, Rezikyan A, Bhattacharyya I, Mazumder P, Pruneri V. Ultrathin Metals on a Transparent Seed and Application to Infrared Reflectors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46990-46997. [PMID: 34516098 DOI: 10.1021/acsami.1c10824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ultrathin metal films (UTMFs) are widely used in optoelectronic applications, from transparent conductors to photovoltaic cells, low emissivity windows, and plasmonic metasurfaces. During the initial deposition phase, many metals tend to form islands on the receiving substrate rather than a physically connected (percolated) network, which eventually evolves into continuous films as the thickness increases. For example, in the case of Ag and Au on dielectric surfaces, percolation begins when the thickness of the metal film is at least about 5 nm. It is known that the type of growth can be changed when a proper seed layer is used. Here, we show that a CuO layer directly deposited on a substrate can dramatically influence surface wetting and promote early percolation of polycrystalline Ag and Au UTMFs. We demonstrate that the proposed seed is effective even when its thickness is sub-nanometric, in this way maintaining the full transparency of the receiving substrate. The Ag and Au films seeded with CuO showed a percolation thickness close to 1 nm and were morphologically and optically characterized from an ultraviolet (λ = 300 nm) to a midinfrared (λ = 15 μm) wavelength. Infrared reflectors, a mirror and a resonant plasmonic structure, were also demonstrated and uniquely tuned by electrical gating, this being possible owing to the small thickness of the constituting Au UTMF.
Collapse
Affiliation(s)
- Daniel Martínez-Cercós
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Bruno Paulillo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Rinu Abraham Maniyara
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Aram Rezikyan
- Corning Research and Development Corporation, Sullivan Park, Corning, New York 14831, United States
| | - Indrani Bhattacharyya
- Corning Research and Development Corporation, Sullivan Park, Corning, New York 14831, United States
| | - Prantik Mazumder
- Corning Research and Development Corporation, Sullivan Park, Corning, New York 14831, United States
| | - Valerio Pruneri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
20
|
Kim JH, Cha S, Kim Y, Son J, Park JE, Oh JW, Nam JM. Nontrivial, Unconventional Electrochromic Behaviors of Plasmonic Nanocubes. NANO LETTERS 2021; 21:7512-7518. [PMID: 34491741 DOI: 10.1021/acs.nanolett.1c01639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasmonic electrochromism, a change in the localized surface plasmon resonance (LSPR) with an applied electric potential, has been attracting increasing attention for the development of spectroscopic tools or optoelectronic systems. There is a consensus on the mechanism of plasmonic electrochromism based on the classical capacitor and the Drude model. However, the electrochromic behaviors of metallic nanoparticles in narrow optical windows have been demonstrated only with small monotonic LSPR shifts, which limits the use of the electrochromism. Here, we observed three distinct electrochromic behaviors of gold nanocubes with a wide potential range through in situ dark-field electrospectroscopy. Interestingly, the nanocubes show a faster frequency shift under the highly negative potential, and this opens the possibility of largely tunable electrochromic LSPR shifts. The reversibility of the electrochemical switching with these cubes are also shown. We attribute this unexpected change beyond classical understandings to the material-specific quantum mechanical electronic structures of the plasmonic materials.
Collapse
Affiliation(s)
- Jae-Ho Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Seungsang Cha
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Yoonhee Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jeong-Eun Park
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jeong-Wook Oh
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
21
|
Chikkaraddy R, Baumberg JJ. Accessing Plasmonic Hotspots Using Nanoparticle-on-Foil Constructs. ACS PHOTONICS 2021; 8:2811-2817. [PMID: 34553005 PMCID: PMC8447257 DOI: 10.1021/acsphotonics.1c01048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 05/20/2023]
Abstract
Metal-insulator-metal (MIM) nanogaps in the canonical nanoparticle-on-mirror geometry (NPoM) provide deep-subwavelength confinement of light with mode volumes smaller than V/V λ < 10-6. However, access to these hotspots is limited by the impendence mismatch between the high in-plane k ∥ of trapped light and free-space plane-waves, making the in- and out-coupling of light difficult. Here, by constructing a nanoparticle-on-foil (NPoF) system with thin metal films, we show the mixing of insulator-metal-insulator (IMI) modes and MIM gap modes results in MIMI modes. This mixing provides multichannel access to the plasmonic nanocavity through light incident from both sides of the metal film. The red-tuning and near-field strength of MIMI modes for thinner foils is measured experimentally with white-light scattering and surface-enhanced Raman scattering from individual NPoFs. We discuss further the utility of NPoF systems, since the geometry allows tightly confined light to be accessed simply through different ports.
Collapse
Affiliation(s)
- Rohit Chikkaraddy
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Jeremy J Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
22
|
Zhao M, Li J, Sebek M, Yang L, Liu YJ, Bosman M, Wang Q, Zheng X, Lu J, Teng J. Electrostatically Tunable Near-Infrared Plasmonic Resonances in Solution-Processed Atomically Thin NbSe 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101950. [PMID: 34176177 DOI: 10.1002/adma.202101950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Indexed: 06/13/2023]
Abstract
In the broad spectral range, near-infrared (NIR) plasmonics find applications in telecommunication, energy harvesting, sensing, and more, all of which would benefit from an electrostatically controllable NIR plasmon source. However, it is difficult to control bulk NIR plasmonics directly with electrostatics because of the strong electric-field screening effect and high carrier concentration required to support NIR plasmons. Here, this constraint is overcome and the observation of NIR plasmonic resonances that can be modulated electrostatically over a range of ≈360 cm-1 in few-layer NbSe2 gratings is reported, thanks to the enhanced electrostatics of atomically thin 2D materials and the high-quality film produced by a solution method. NbSe2 plasmons also render strong field confinement due to their atomic thickness and provide an extra degree of resonance frequency modulation from the layered structure. This study identifies metallic 2D materials as promising (easily produced and well-performing) candidates to extend electrostatically tunable plasmonics to the technologically important NIR range.
Collapse
Affiliation(s)
- Meng Zhao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Innovis, Singapore, 138634, Singapore
| | - Jing Li
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Matej Sebek
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Innovis, Singapore, 138634, Singapore
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Innovis, Singapore, 138634, Singapore
| | - Yan Jun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Michel Bosman
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Innovis, Singapore, 138634, Singapore
- Department of Material Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Qian Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Innovis, Singapore, 138634, Singapore
| | - Xinting Zheng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Innovis, Singapore, 138634, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Innovis, Singapore, 138634, Singapore
| |
Collapse
|
23
|
Kim Y, Cha S, Kim JH, Oh JW, Nam JM. Electrochromic response and control of plasmonic metal nanoparticles. NANOSCALE 2021; 13:9541-9552. [PMID: 34019053 DOI: 10.1039/d1nr01055g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic electrochromism, the dependence of the colour of plasmonic materials on the applied electrical potential, has been under the spotlight recently as a key element for the development of optoelectronic devices and spectroscopic tools. In this review, we focus on the electrochromic behaviour and underlying mechanistic principles of plasmonic metal nanoparticles, whose localised surface plasmon resonance occurs in the visible part of the electromagnetic spectrum, and present a comprehensive review on the recent progress in understanding and controlling plasmonic electrochromism. The mechanisms underlying the electrochromism of plasmonic metal nanoparticles could be divided into four categories, based on the origin of the LSPR shift: (1) capacitive charging model accompanying variation in the Fermi level, (2) faradaic reactions, (3) non-faradaic reactions, and (4) electrochemically active functional molecule-mediated mechanism. We also review recent attempts to synchronise the simulation with the experimental results and the strategies to overcome the intrinsically diminutive LSPR change of the plasmonic metal nanoparticles. A better understanding and controllability of plasmonic electrochromism provides new insights into and means of the connection between photoelectrochemistry and plasmonics as well as future directions for producing advanced optoelectronic materials and devices.
Collapse
Affiliation(s)
- Yoonhee Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
| | | | | | | | | |
Collapse
|
24
|
Anapole-assisted giant electric field enhancement for surface-enhanced coherent anti-Stokes Raman spectroscopy. Sci Rep 2021; 11:10639. [PMID: 34017020 PMCID: PMC8137709 DOI: 10.1038/s41598-021-90061-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/06/2021] [Indexed: 02/03/2023] Open
Abstract
The coherent anti-Stokes Raman spectroscopy (CARS) techniques are recognized for their ability to detect and identify vibrational coherent processes down to the single-molecular levels. Plasmonic oligomers supporting full-range Fano-like line profiles in their scattering spectrum are one of the most promising class of substrates in the context of surface-enhanced (SE) CARS application. In this work, an engineered assembly of metallic disk-shaped nanoparticles providing two Fano-like resonance modes is presented as a highly-efficient design of SECARS substrate. We show that the scattering dips corresponding to the double-Fano spectral line shapes are originated from the mutual interaction of electric and toroidal dipole moments, leading to the so-called non-trivial first- and second-order anapole states. The anapole modes, especially the higher-order ones, can result in huge near-field enhancement due to their light-trapping capability into the so-called "hot spots". In addition, independent spectral tunability of the second Fano line shape is exhibited by modulating the gap distance of the corner particles. This feature is closely related to the electric current loop associated with the corner particles in the second-order anapole state and provides a simple design procedure of an optimum SECARS substrate, where the electric field hot spots corresponding to three involved wavelengths, i.e., anti-Stokes, pump, and Stokes, are localized at the same spatial position. These findings yield valuable insight into the plasmonic substrate design for SECARS applications as well as for other nonlinear optical processes, such as four-wave mixing and multi-photon surface spectroscopy.
Collapse
|
25
|
Zheng M, Yang Y, Zhu D, Chen Y, Shu Z, Berggren KK, Soljačić M, Duan H. Enhancing Plasmonic Spectral Tunability with Anomalous Material Dispersion. NANO LETTERS 2021; 21:91-98. [PMID: 33347300 DOI: 10.1021/acs.nanolett.0c03293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The field confinement of plasmonic systems enables spectral tunability under structural variations or environmental perturbations, which is the principle for various applications including nanorulers, sensors, and color displays. Here, we propose and demonstrate that materials with anomalous dispersion, such as Ge in the visible, improve spectral tunability. We introduce our proposal with a semianalytical guided mode picture. Using Ge-based film (Ag/Au)-coupled gap plasmon resonators, we implement two architectures and demonstrate the improved tunability with single-particle dark-field scattering, ensemble reflection, and color generation. We observe three-fold enhancement of tunability with Ge nanodisks compared with that of Si, a normal-dispersion material in the visible. The structural color generation of large array systems, made of inversely fabricated Ge-Ag resonators, exhibits a wide gamut. Our results introduce anomalous material dispersion as an extra degree of freedom to engineer the spectral tunability of plasmonic systems, especially relevant for actively tunable plasmonics and metasurfaces.
Collapse
Affiliation(s)
- Mengjie Zheng
- College of Mechanical and Vehicle Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, 410082 Changsha, China
- Jihua Laboratory, 528000 Foshan, China
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yi Yang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Di Zhu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yiqin Chen
- College of Mechanical and Vehicle Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, 410082 Changsha, China
| | - Zhiwen Shu
- College of Mechanical and Vehicle Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, 410082 Changsha, China
| | - Karl K Berggren
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Marin Soljačić
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, 410082 Changsha, China
| |
Collapse
|
26
|
Pérez-Escudero JM, Buldain I, Beruete M, Goicoechea J, Liberal I. Silicon carbide as a material-based high-impedance surface for enhanced absorption within ultra-thin metallic films. OPTICS EXPRESS 2020; 28:31624-31636. [PMID: 33115132 DOI: 10.1364/oe.402397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The absorption of infrared radiation within ultra-thin metallic films is technologically relevant for different thermal engineering applications and optoelectronic devices, as well as for fundamental research on sub-nanometer and atomically-thin materials. However, the maximal attainable absorption within an ultra-thin metallic film is intrinsically limited by both its geometry and material properties. Here, we demonstrate that material-based high-impedance surfaces enhance the absorptivity of the films, potentially leading to perfect absorption for optimal resistive layers, and a fourfold enhancement for films at deep nanometer scales. Moreover, material-based high-impedance surfaces do not suffer from spatial dispersion and the geometrical restrictions of their metamaterial counterparts. We provide a proof-of-concept experimental demonstration by using titanium nanofilms on top of a silicon carbide substrate.
Collapse
|
27
|
Karanikolas V. Entanglement of quantum emitters interacting through an ultra-thin noble metal nanodisk. OPTICS EXPRESS 2020; 28:24171-24184. [PMID: 32752401 DOI: 10.1364/oe.396268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Ultra-thin metallic nanodisks, supporting localized plasmon (LP) modes, are used as a platform to facilitate high entanglement between distant quantum emitters (QEs). High Purcell factors, with values above 103, are probed for a QE placed near to an ultra-thin metallic nanodisk, composed of the noble metals Au, Ag, Al, and Cu. The disk supports two sets of localized plasmon modes, which can be excited by QEs with different transition dipole moment orientations. The two QEs are placed on opposite sides of the nanodisk, and their concurrence is used as a measure of the entanglement. We observe that the pair of QEs remains entangled for a duration that surpasses the relaxation time of the individual QE interacting with the metallic disk. Simultaneously, the QEs reach the entangled steady state faster than in the case where the QEs are in free space. Our results reveal a high concurrence value for a QES separation distance of 60 nm, and a transition energy of 0.8 eV (λ = 1550 nm). The robustness exhibited by this system under study paves the way for future quantum applications.
Collapse
|
28
|
Muniz Y, Manjavacas A, Farina C, Dalvit DAR, Kort-Kamp WJM. Two-Photon Spontaneous Emission in Atomically Thin Plasmonic Nanostructures. PHYSICAL REVIEW LETTERS 2020; 125:033601. [PMID: 32745430 DOI: 10.1103/physrevlett.125.033601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The ability to harness light-matter interactions at the few-photon level plays a pivotal role in quantum technologies. Single photons-the most elementary states of light-can be generated on demand in atomic and solid state emitters. Two-photon states are also key quantum assets, but achieving them in individual emitters is challenging because their generation rate is much slower than competing one-photon processes. We demonstrate that atomically thin plasmonic nanostructures can harness two-photon spontaneous emission, resulting in giant far field two-photon production, a wealth of resonant modes enabling tailored photonic and plasmonic entangled states, and plasmon-assisted single-photon creation orders of magnitude more efficient than standard one-photon emission. We unravel the two-photon spontaneous emission channels and show that their spectral line shapes emerge from an intricate interplay between Fano and Lorentzian resonances. Enhanced two-photon spontaneous emission in two-dimensional nanostructures paves the way to an alternative efficient source of light-matter entanglement for on-chip quantum information processing and free-space quantum communications.
Collapse
Affiliation(s)
- Y Muniz
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - A Manjavacas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, USA
| | - C Farina
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil
| | - D A R Dalvit
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - W J M Kort-Kamp
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
29
|
Dai Z, Hu G, Ou Q, Zhang L, Xia F, Garcia-Vidal FJ, Qiu CW, Bao Q. Artificial Metaphotonics Born Naturally in Two Dimensions. Chem Rev 2020; 120:6197-6246. [DOI: 10.1021/acs.chemrev.9b00592] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhigao Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Qingdong Ou
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Lei Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Fengnian Xia
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Francisco J. Garcia-Vidal
- Departamento de Fisica Teorica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049, Spain
- Donostia International Physics Center (DIPC), Donostia−San Sebastian E-20018, Spain
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Qiaoliang Bao
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
30
|
Hu X, Wong KP, Zeng L, Guo X, Liu T, Zhang L, Chen Q, Zhang X, Zhu Y, Fung KH, Lau SP. Infrared Nanoimaging of Surface Plasmons in Type-II Dirac Semimetal PtTe 2 Nanoribbons. ACS NANO 2020; 14:6276-6284. [PMID: 32374588 DOI: 10.1021/acsnano.0c02466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Topological Dirac semimetals made of two-dimensional transition-metal dichalcogenides (TMDCs) have attracted enormous interest for use in electronic and optoelectronic devices because of their electron transport properties. As van der Waals materials with a strong interlayer interaction, these semimetals are expected to support layer-dependent plasmonic polaritons yet to be revealed experimentally. Here, we demonstrate the apparent retardation and attenuation of mid-infrared (MIR) plasmonic waves in type-II Dirac semimetal platinum tellurium (PtTe2) nanoribbons and nanoflakes by near-field nanoimaging. The attenuated dispersion relations for the plasmonic modes in the PtTe2 nanoribbons (15-25 nm thick) extracted from the near-field standing-wave patterns are applied for the fitting of PtTe2 permittivity in the MIR regime, indicating that both free carriers and Dirac fermions are involved in MIR light-matter interaction in PtTe2. The annihilation of plasmonic modes in the ultrathin (<10 nm) PtTe2 is observed and analyzed, which manifests no near-field resonant pattern due to the intrinsic layer-dependent optoelectronic properties of PtTe2. These results could pave a potential wave for MIR photodetection and modulation with TMDC semimetals.
Collapse
Affiliation(s)
- Xin Hu
- Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310012, China
- Department of Computing, The Hong Kong Polytechnic University, Hong Kong S.A.R., China
| | - Kin Ping Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong S.A.R., China
| | - Longhui Zeng
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong S.A.R., China
| | - Xuyun Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong S.A.R., China
| | - Tong Liu
- Vacuum Interconnected Nanotech Workstation (NANO-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Zhang
- Department of Computing, The Hong Kong Polytechnic University, Hong Kong S.A.R., China
| | - Qin Chen
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xuefeng Zhang
- Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310012, China
| | - Ye Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong S.A.R., China
| | - Kin Hung Fung
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong S.A.R., China
| | - Shu Ping Lau
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong S.A.R., China
| |
Collapse
|
31
|
Dias EJC, Yu R, García de Abajo FJ. Thermal manipulation of plasmons in atomically thin films. LIGHT, SCIENCE & APPLICATIONS 2020; 9:87. [PMID: 32435470 PMCID: PMC7235028 DOI: 10.1038/s41377-020-0322-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 05/21/2023]
Abstract
Nanoscale photothermal effects enable important applications in cancer therapy, imaging and catalysis. These effects also induce substantial changes in the optical response experienced by the probing light, thus suggesting their application in all-optical modulation. Here, we demonstrate the ability of graphene, thin metal films, and graphene/metal hybrid systems to undergo photothermal optical modulation with depths as large as >70% over a wide spectral range extending from the visible to the terahertz frequency domains. We envision the use of ultrafast pump laser pulses to raise the electron temperature of graphene during a picosecond timescale in which its mid-infrared plasmon resonances undergo dramatic shifts and broadenings, while visible and near-infrared plasmons in the neighboring metal films are severely attenuated by the presence of hot graphene electrons. Our study opens a promising avenue toward the active photothermal manipulation of the optical response in atomically thin materials with potential applications in ultrafast light modulation.
Collapse
Affiliation(s)
- Eduardo J. C. Dias
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Renwen Yu
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - F. Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
32
|
Gerislioglu B, Ahmadivand A. Functional Charge Transfer Plasmon Metadevices. RESEARCH 2020; 2020:9468692. [PMID: 32055799 PMCID: PMC7013279 DOI: 10.34133/2020/9468692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Reducing the capacitive opening between subwavelength metallic objects down to atomic scales or bridging the gap by a conductive path reveals new plasmonic spectral features, known as charge transfer plasmon (CTP). We review the origin, properties, and trending applications of this modes and show how they can be well-understood by classical electrodynamics and quantum mechanics principles. Particularly important is the excitation mechanisms and practical approaches of such a unique resonance in tailoring high-response and efficient extreme-subwavelength hybrid nanophotonic devices. While the quantum tunneling-induced CTP mode possesses the ability to turn on and off the charge transition by varying the intensity of an external light source, the excited CTP in conductively bridged plasmonic systems suffers from the lack of tunability. To address this, the integration of bulk plasmonic nanostructures with optothermally and optoelectronically controllable components has been introduced as promising techniques for developing multifunctional and high-performance CTP-resonant tools. Ultimate tunable plasmonic devices such as metamodulators and metafilters are thus in prospect.
Collapse
Affiliation(s)
- Burak Gerislioglu
- Department of Physics & Astronomy, Rice University, 6100 Main St, Houston, Texas 77005, USA
| | - Arash Ahmadivand
- Department of Electrical & Computer Engineering, Rice University, 6100 Main St, Houston, Texas 77005, USA
| |
Collapse
|
33
|
Ma J, Gao S. Plasmon-Induced Electron-Hole Separation at the Ag/TiO 2(110) Interface. ACS NANO 2019; 13:13658-13667. [PMID: 31393703 DOI: 10.1021/acsnano.9b03555] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plasmon-induced electron-hole separation at metal-semiconductor interfaces is an essential step in photovoltaics, photochemistry, and optoelectronics. Despite its importance in fundamental understandings and technological applications, the mechanism and dynamics of the charge separation under plasmon excitations have not been well understood. Here, the plasmon-induced charge separation between a Ag20 nanocluster and a TiO2(110) surface is investigated using time-dependent density functional theory simulations. It is found that the charge separation dynamics consists of two processes: during the first 10 fs an initial charge separation resulting from the plasmon-electron coupling at the interface and a subsequent charge redistribution governed by the sloshing motion of the charge-transfer plasmon. The interplay between the two processes determines the charge separation and leads to the inhomogeneous layer-dependent distribution of hot carriers. The hot electrons are more efficient than the hot holes in the charge injection, resulting in the charge separation. Over 40% of the hot electron-hole pairs are separated spatially from the interface. Finally, the second TiO2 layer receives the most net charges from the Ag nanocluster rather than the interfacial layer. These results reveal the mechanism and dynamics of the charge separation driven by the surface plasmon excitation and have broad implications in plasmonic applications.
Collapse
Affiliation(s)
- Jie Ma
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics and Advanced Research Institute of Multidisciplinary Science , Beijing Institute of Technology , Beijing 100081 , China
| | - Shiwu Gao
- Beijing Computational Science Research Center , Beijing 100193 , China
| |
Collapse
|
34
|
Wang L, Bie M, Cai W, Ge L, Ji Z, Jia Y, Gong K, Zhang X, Wang J, Xu J. Giant near-field radiative heat transfer between ultrathin metallic films. OPTICS EXPRESS 2019; 27:36790-36798. [PMID: 31873451 DOI: 10.1364/oe.27.036790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Understanding energy transfer via near-field thermal radiation is essential for applications such as near-field imaging, thermophotovoltaics and thermal circuit devices. Evanescent waves and photon tunneling are responsible for the near-field energy transfer. In bulk noble metals, however, surface plasmons do not contribute efficiently to the near-field energy transfer because of the mismatch of wavelength. In this paper, a giant near-field radiative heat transfer rate that is orders-of-magnitude greater than the blackbody limit between two ultrathin metallic films is demonstrated at nanoscale separations. Moreover, different physical origins for near-field thermal radiation transfer for thick and thin metallic films are clarified, and the radiative heat transfer enhancement in ultrathin metallic films is proved to come from the excitation of surface plasmons. Meanwhile, because of the inevitable high sheet resistance of ultrathin metal films, the heat transfer coefficient is 4600 times greater than the Planckian limit for the separation of 10 nm in ultrathin metallic films, which is the same order or even greater than that in other 2D materials with low carrier density. Our work shows that ultrathin metallic films are excellent materials for radiative heat transfer, which may find promising applications in thermal nano-devices and thermal engineering.
Collapse
|
35
|
Raad SH, Atlasbaf Z, Zapata-Rodríguez CJ. Multi-frequency near-field enhancement with graphene-coated nano-disk homo-dimers. OPTICS EXPRESS 2019; 27:37012-37024. [PMID: 31873471 DOI: 10.1364/oe.27.037012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a 3D sub-wavelength graphene-coated nano-disk dimer (GDD) is proposed for multi-frequency giant near-field enhancement. We observed that the dual-band operation originates from the excitation of hybridized localized surface plasmons on top and bottom faces of the disks along with the mutual coupling from the adjacent particle. Due to the sub-wavelength nature of the disks, the excited localized surface plasmons on the sidewalls are weak but they still can affect the dual operating bands. On the other hand, the strength and resonance frequency of the enhanced fields can be simply modulated by tuning the relative distances of 2D graphene disks on top and bottom faces. Adjustable dual-band performance is hardly attainable using simplified 2D graphene disks, however, it naturally comes out through modal hybridization in the subwavelength 3D structure containing multiple resonant units. Our suggested configuration has better optical properties than its noble metal counterparts because of its higher field enhancement and lower ohmic losses. Moreover, the electromagnetic response is reconfigurable by varying the bias voltage. The influence of graphene quality, chemical potential, and dimer gap size on the electric field enhancement and the resonance frequency of the surface plasmons are investigated, as well. To further improve its performance, a double negative metamaterial core is considered. This mechanism of the performance improvement by the core material is feasible thanks to the 3D nature of the structure. Two possible applications of the presented design are in Surface-Enhanced Raman Spectroscopy (SERS) and optical absorbers.
Collapse
|
36
|
Pan D, Xu H, García de Abajo FJ. Circular Dichroism in Rotating Particles. PHYSICAL REVIEW LETTERS 2019; 123:066803. [PMID: 31491154 DOI: 10.1103/physrevlett.123.066803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Indexed: 06/10/2023]
Abstract
Light interaction with rotating nanostructures gives rise to phenemona as varied as optical torques and quantum friction. Surprisingly, the most basic optical response function of nanostructures undergoing rotation has not been clearly addressed so far. Here we reveal that mechanical rotation results in circular dichroism in optically isotropic particles, which show an unexpectedly strong dependence on the particle internal geometry. More precisely, particles with one-dimensionally confined electron motion in the plane perpendicular to the rotation axis, such as nanorings and nanocrosses, exhibit a splitting of 2Ω in the particle optical resonances, while compact particles, such as nanodisks and nanospheres, display weak circular dichroism. We base our findings on a quantum-mechanical description of the polarizability of rotating particles, incorporating the mechanical rotation by populating the particle electronic states according to the principle that they are thermally equilibrated in the rotating frame. We further provide insight into the rotational superradience effect and the ensuing optical gain, originating in population inversion as regarded from the lab frame, in which the particle is out of equilibrium. Surprisingly, we find the optical frequency cutoff for superradiance to deviate from the rotation frequency Ω. Our results unveil a rich, unexplored phenomenology of light interaction with rotating objects, which might find applications in various fields, such as optical trapping and sensing.
Collapse
Affiliation(s)
- Deng Pan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Hongxing Xu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
37
|
Abd El-Fattah ZM, Mkhitaryan V, Brede J, Fernández L, Li C, Guo Q, Ghosh A, Echarri AR, Naveh D, Xia F, Ortega JE, García de Abajo FJ. Plasmonics in Atomically Thin Crystalline Silver Films. ACS NANO 2019; 13:7771-7779. [PMID: 31188552 DOI: 10.1021/acsnano.9b01651] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Light-matter interaction at the atomic scale rules fundamental phenomena such as photoemission and lasing while enabling basic everyday technologies, including photovoltaics and optical communications. In this context, plasmons, the collective electron oscillations in conducting materials, are important because they allow the manipulation of optical fields at the nanoscale. The advent of graphene and other two-dimensional crystals has pushed plasmons down to genuinely atomic dimensions, displaying appealing properties such as a large electrical tunability. However, plasmons in these materials are either too broad or lying at low frequencies, well below the technologically relevant near-infrared regime. Here, we demonstrate sharp near-infrared plasmons in lithographically patterned wafer-scale atomically thin silver crystalline films. Our measured optical spectra reveal narrow plasmons (quality factor of ∼4), further supported by a low sheet resistance comparable to bulk metal in few-atomic-layer silver films down to seven Ag(111) monolayers. Good crystal quality and plasmon narrowness are obtained despite the addition of a thin passivating dielectric, which renders our samples resilient to ambient conditions. The observation of spectrally sharp and strongly confined plasmons in atomically thin silver holds great potential for electro-optical modulation and optical sensing applications.
Collapse
Affiliation(s)
- Zakaria M Abd El-Fattah
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Castelldefels, Barcelona , Spain
- Physics Department, Faculty of Science , Al-Azhar University , Nasr City, E-11884 Cairo , Egypt
| | - Vahagn Mkhitaryan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Castelldefels, Barcelona , Spain
| | - Jens Brede
- Donostia International Physics Center , Paseo Manuel Lardizabal 4 , 20018 Donostia, San Sebastián, Spain
| | - Laura Fernández
- Centro de Física de Materiales CSIC-UPV/EHU and Materials Physics Center , 20018 San Sebastián , Spain
| | - Cheng Li
- Department of Electrical Engineering , Yale University , New Haven , Connecticut 06511 , United States
| | - Qiushi Guo
- Department of Electrical Engineering , Yale University , New Haven , Connecticut 06511 , United States
| | - Arnab Ghosh
- Faculty of Engineering , Bar Ilan University , Ramat Gan 5290002 , Israel
| | - Alvaro Rodríguez Echarri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Castelldefels, Barcelona , Spain
| | - Doron Naveh
- Faculty of Engineering , Bar Ilan University , Ramat Gan 5290002 , Israel
| | - Fengnian Xia
- Department of Electrical Engineering , Yale University , New Haven , Connecticut 06511 , United States
| | - J Enrique Ortega
- Donostia International Physics Center , Paseo Manuel Lardizabal 4 , 20018 Donostia, San Sebastián, Spain
- Departamento de Física Aplicada I , Universidad del País Vasco , E-20018 San Sebastián , Spain
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Castelldefels, Barcelona , Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats , Passeig Lluís Companys 23 , 08010 Barcelona , Spain
| |
Collapse
|
38
|
Anomalous phonon relaxation in Au 333(SR) 79 nanoparticles with nascent plasmons. Proc Natl Acad Sci U S A 2019; 116:13215-13220. [PMID: 31209027 DOI: 10.1073/pnas.1904337116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Research on plasmons of gold nanoparticles has gained broad interest in nanoscience. However, ultrasmall sizes near the metal-to-nonmetal transition regime have not been explored until recently due to major synthetic difficulties. Herein, intriguing electron dynamics in this size regime is observed in atomically precise Au333(SR)79 nanoparticles. Femtosecond transient-absorption spectroscopy reveals an unprecedented relaxation process of 4-5 ps-a fast phonon-phonon relaxation process, together with electron-phonon coupling (∼1 ps) and normal phonon-phonon coupling (>100 ps) processes. Three types of -R capped Au333(SR)79 all exhibit two plasmon-bleaching signals independent of the -R group as well as solvent, indicating plasmon splitting and quantum effect in the ultrasmall core of Au333(SR)79 This work is expected to stimulate future work on the transition-size regime of nanometals and discovery of behavior of nascent plasmons.
Collapse
|
39
|
Jiang H, Reddy H, Shah D, Kudyshev ZA, Choudhury S, Wang D, Jiang Y, Kildishev AV. Modulating phase by metasurfaces with gated ultra-thin TiN films. NANOSCALE 2019; 11:11167-11172. [PMID: 31149696 DOI: 10.1039/c9nr00205g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Active control over the flow of light is highly desirable because of its applicability to information processing, telecommunication, and spectroscopic imaging. In this paper, by employing the tunability of carrier density in a 1 nm titanium nitride (TiN) film, we numerically demonstrate deep phase modulation (PM) in an electrically tunable gold strip/TiN film hybrid metasurface. A 337° PM is achieved at 1.550 μm with a 3% carrier density change in the TiN film. We also demonstrate that a continuous 180° PM can be realized at 1.537 μm by applying a realistic experiment-based gate voltage bias and continuously changing the carrier density in the TiN film. The proposed design of active metasurfaces capable of deep PM near the wavelength of 1.550 μm has considerable potential in active beam steering, dynamic hologram generation, and flat photonic devices with reconfigurable functionalities.
Collapse
Affiliation(s)
- Huan Jiang
- Institute of Modern Optics, Department of Physics, Harbin Institute of Technology, Harbin 150001, China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Assembling metal nano-objects into well-defined configurations is an effective way to create hybrid plasmonic structures with unusual functionalities.
Collapse
|
41
|
Mokkath JH. A quantum mechanical study of optical excitations in nanodisk plasmonic oligomers. Phys Chem Chem Phys 2019; 21:26540-26548. [DOI: 10.1039/c9cp04566j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using state-of-the-art quantum-mechanical calculations, we investigate the optical excitations in plasmonic nanodisk oligomers.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab
- Department of Physics
- Kuwait College of Science And Technology
- Kuwait
| |
Collapse
|
42
|
Feng X, Zou J, Xu W, Zhu Z, Yuan X, Zhang J, Qin S. Coherent perfect absorption and asymmetric interferometric light-light control in graphene with resonant dielectric nanostructures. OPTICS EXPRESS 2018; 26:29183-29191. [PMID: 30470084 DOI: 10.1364/oe.26.029183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Engineering light absorption in graphene has been the focus of intensive research in the past few years. In this paper, we show numerically that coherent perfect absorption can be realized in monolayer graphene in the near infrared range by harnessing resonances of dielectric nanostructures. The asymmetry of the structure results in different optical responses for light illuminated from the top side and the substrate side and enables asymmetric interferometric light-light control. The absorbed and scattered light exhibit interesting nonlinear behavior, allowing switching a strong optical signal output with a weak light. This work may stimulate potential applications including new types of sensors, coherent photodetectors and all-optical logical devices.
Collapse
|
43
|
Yan L, Guan M, Meng S. Plasmon-induced nonlinear response of silver atomic chains. NANOSCALE 2018; 10:8600-8605. [PMID: 29696266 DOI: 10.1039/c8nr02086h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nonlinear response of a linear silver atomic chain upon ultrafast laser excitation has been studied in real time using the time-dependent density functional theory. We observe the presence of nonlinear responses up to the fifth order in tunneling current, which is ascribed to the excitation of high-energy electrons generated by Landau damping of plasmons. The nonlinear effect is enhanced after adsorption of polar molecules such as water due to the enhanced damping rates during plasmon decay. Increasing the length of atomic chains also increases the nonlinear response, favoring higher-order plasmon excitation. These findings offer new insights towards a complete understanding and ultimate control of plasmon-induced nonlinear phenomena to atomic precision.
Collapse
Affiliation(s)
- Lei Yan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | |
Collapse
|
44
|
|
45
|
Mokkath JH. Optical properties of magnesium nanorods using time dependent density functional theory calculations. Phys Chem Chem Phys 2018; 20:28903-28909. [DOI: 10.1039/c8cp06100a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmonic nanostructures made of Earth-abundant and low-cost metals such as aluminum and magnesium have recently emerged as a potential alternative candidate to conventional plasmonic metals such as gold and silver.
Collapse
|
46
|
Sukham J, Takayama O, Lavrinenko AV, Malureanu R. High-Quality Ultrathin Gold Layers with an APTMS Adhesion for Optimal Performance of Surface Plasmon Polariton-Based Devices. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25049-25056. [PMID: 28682054 DOI: 10.1021/acsami.7b07181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A low-absorption adhesion layer plays a crucial role for both localized and propagating surface plasmons when ultrathin gold is used. To date, the most popular adhesion layers are metallic, namely, Cr and Ti. However, to the best of our knowledge, the influence of these adhesion layers on the behavior of propagating plasmon modes has not been thoroughly investigated nor reported in the literature. It is therefore important to study the effect of these few- to several-nanometers-thick adhesion layers on the propagating plasmons because it may affect the performance of plasmonic devices, in particular, when the Au layer is not much thicker than the adhesion layers. We experimentally compared the performances of the ultrathin gold films to show the pivotal influence of adhesion layers on highly confined propagating plasmonic modes, using Cr and 3-aminopropyl trimethoxysilane (APTMS) adhesion layers and without any adhesion layer. We show that the gold films with the APTMS adhesion layer have the lowest surface roughness and the short-range surface plasmon polaritons supported on the Au surface exhibit properties close to the theoretical calculations, considering an ideal gold film.
Collapse
Affiliation(s)
- J Sukham
- Department of Photonics Engineering, Technical University of Denmark , Ørsteds Plads, Building 345V, DK-2800 Kongens Lyngby, Denmark
| | - O Takayama
- Department of Photonics Engineering, Technical University of Denmark , Ørsteds Plads, Building 345V, DK-2800 Kongens Lyngby, Denmark
| | - A V Lavrinenko
- Department of Photonics Engineering, Technical University of Denmark , Ørsteds Plads, Building 345V, DK-2800 Kongens Lyngby, Denmark
| | - R Malureanu
- Department of Photonics Engineering, Technical University of Denmark , Ørsteds Plads, Building 345V, DK-2800 Kongens Lyngby, Denmark
- National Centre for Micro- and Nano-Fabrication, Technical University of Denmark , Ørsteds Plads, Building 347, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
47
|
Zhang R, Bursi L, Cox JD, Cui Y, Krauter CM, Alabastri A, Manjavacas A, Calzolari A, Corni S, Molinari E, Carter EA, García de Abajo FJ, Zhang H, Nordlander P. How To Identify Plasmons from the Optical Response of Nanostructures. ACS NANO 2017; 11. [PMID: 28651057 PMCID: PMC5607458 DOI: 10.1021/acsnano.7b03421] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A promising trend in plasmonics involves shrinking the size of plasmon-supporting structures down to a few nanometers, thus enabling control over light-matter interaction at extreme-subwavelength scales. In this limit, quantum mechanical effects, such as nonlocal screening and size quantization, strongly affect the plasmonic response, rendering it substantially different from classical predictions. For very small clusters and molecules, collective plasmonic modes are hard to distinguish from other excitations such as single-electron transitions. Using rigorous quantum mechanical computational techniques for a wide variety of physical systems, we describe how an optical resonance of a nanostructure can be classified as either plasmonic or nonplasmonic. More precisely, we define a universal metric for such classification, the generalized plasmonicity index (GPI), which can be straightforwardly implemented in any computational electronic-structure method or classical electromagnetic approach to discriminate plasmons from single-particle excitations and photonic modes. Using the GPI, we investigate the plasmonicity of optical resonances in a wide range of systems including: the emergence of plasmonic behavior in small jellium spheres as the size and the number of electrons increase; atomic-scale metallic clusters as a function of the number of atoms; and nanostructured graphene as a function of size and doping down to the molecular plasmons in polycyclic aromatic hydrocarbons. Our study provides a rigorous foundation for the further development of ultrasmall nanostructures based on molecular plasmonics.
Collapse
Affiliation(s)
- Runmin Zhang
- Laboratory
for Nanophotonics and the Department of Physics and Astronomy,
MS61 and Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Luca Bursi
- Dipartimento
di Fisica, Informatica e Matematica-FIM, Università di Modena e Reggio Emilia, I-41125 Modena, Italy
- Istituto
Nanoscienze, Consiglio Nazionale delle Ricerche
CNR-NANO, I-41125 Modena, Italy
| | - Joel D. Cox
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Yao Cui
- Laboratory
for Nanophotonics and the Department of Physics and Astronomy,
MS61 and Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Caroline M. Krauter
- Department of Mechanical and Aerospace
Engineering and School of Engineering and Applied
Science, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Alessandro Alabastri
- Laboratory
for Nanophotonics and the Department of Physics and Astronomy,
MS61 and Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Alejandro Manjavacas
- Department
of Physics and Astronomy, University of
New Mexico, Albuquerque, New Mexico 87131, United States
| | - Arrigo Calzolari
- Istituto
Nanoscienze, Consiglio Nazionale delle Ricerche
CNR-NANO, I-41125 Modena, Italy
| | - Stefano Corni
- Istituto
Nanoscienze, Consiglio Nazionale delle Ricerche
CNR-NANO, I-41125 Modena, Italy
- Dipartimento
di Scienze Chimiche, Università di
Padova, I-35131 Padova, Italy
- E-mail:
| | - Elisa Molinari
- Dipartimento
di Fisica, Informatica e Matematica-FIM, Università di Modena e Reggio Emilia, I-41125 Modena, Italy
- Istituto
Nanoscienze, Consiglio Nazionale delle Ricerche
CNR-NANO, I-41125 Modena, Italy
| | - Emily A. Carter
- Department of Mechanical and Aerospace
Engineering and School of Engineering and Applied
Science, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - F. Javier García de Abajo
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució
Catalana de Reserca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
- E-mail:
| | - Hui Zhang
- Laboratory
for Nanophotonics and the Department of Physics and Astronomy,
MS61 and Department of Chemistry, Rice University, Houston, Texas 77005, United States
- E-mail:
| | - Peter Nordlander
- Laboratory
for Nanophotonics and the Department of Physics and Astronomy,
MS61 and Department of Chemistry, Rice University, Houston, Texas 77005, United States
- E-mail:
| |
Collapse
|
48
|
Hoener BS, Zhang H, Heiderscheit TS, Kirchner SR, De Silva Indrasekara AS, Baiyasi R, Cai Y, Nordlander P, Link S, Landes CF, Chang WS. Spectral Response of Plasmonic Gold Nanoparticles to Capacitive Charging: Morphology Effects. J Phys Chem Lett 2017; 8:2681-2688. [PMID: 28534621 DOI: 10.1021/acs.jpclett.7b00945] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a study of the shape-dependent spectral response of the gold nanoparticle surface plasmon resonance at various electron densities to provide mechanistic insight into the role of capacitive charging, a topic of some debate. We demonstrate a morphology-dependent spectral response for gold nanoparticles due to capacitive charging using single-particle spectroscopy in an inert electrochemical environment. A decrease in plasmon energy and increase in spectral width for gold nanospheres and nanorods was observed as the electron density was tuned through a potential window of -0.3 to 0.1 V. The combined observations could not be explained by existing theories. A new quantum theory for charging based on the random phase approximation was developed. Additionally, the redox reaction of gold oxide formation was probed using single-particle plasmon voltammetry to reproduce the reduction peak from the bulk cyclic voltammetry. These results deepen our understanding of the relationship between optical and electronic properties in plasmonic nanoparticles and provide insight toward their potential applications in directed electrocatalysis.
Collapse
Affiliation(s)
- Benjamin S Hoener
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Hui Zhang
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Thomas S Heiderscheit
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Silke R Kirchner
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Agampodi S De Silva Indrasekara
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Rashad Baiyasi
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Yiyu Cai
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Stephan Link
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Wei-Shun Chang
- Department of Chemistry, ‡Department of Electrical and Computer Engineering, §Department of Physics and Astronomy, and ∥Materials Science and Nanoengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
49
|
Marinica DC, Aizpurua J, Borisov AG. Quantum effects in the plasmon response of bimetallic core-shell nanostructures. OPTICS EXPRESS 2016; 24:23941-23956. [PMID: 27828228 DOI: 10.1364/oe.24.023941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a quantum mechanical study of the plasmonic response of bimetallic spherical core/shell nanoparticles. The systems comprise up to 104 electrons and their optical response is addressed with Time Dependent Density Functional Theory calculations. These quantum results are compared with classical electromagnetic calculations for core/shell systems formed by Al/Na, Al/Au and Ag/Na, as representative examples of bimetallic systems. We show that for shell widths in the nanometer range, the system cannot be described as a simple stack of two metals. The finite size effect and the transition layer formed between the core and the shell strongly modify the optical properties of the compound nanoparticle. In particular this configuration leads to a frequency shift of the plasmon resonance with shell character and an increased plasmon decay into electron-hole pairs which eventually quenches this resonance for very thin shells. This effect is difficult to capture with a classical theory even upon adjustment of the parameters of a combination of metallic dielectric functions.
Collapse
|
50
|
Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas. Sci Rep 2016; 6:32144. [PMID: 27561789 PMCID: PMC4999885 DOI: 10.1038/srep32144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/03/2016] [Indexed: 12/17/2022] Open
Abstract
Electro-optical modulation of visible and near-infrared light is important for a wide variety of applications, ranging from communications to sensing and smart windows. However, currently available approaches result in rather bulky devices, suffer from low integrability, and can hardly operate at the low power consumption levels and fast switching rates required by microelectronic drivers. Here we show that planar nanostructures patterned in ultrathin metal-graphene hybrid films sustain highly tunable plasmons in the visible and near-infrared spectral regions. Strong variations in the reflection and absorption of incident light take place when the plasmons are tuned on- and off-resonance with respect to externally incident light. As a result, a remarkable modulation depth (i.e., the maximum relative variation with/without graphene doping) exceeding 90% in transmission and even more dramatic in reflection (>600%) is predicted for graphene-loaded silver films of 1–5 nm thickness and currently attainable lateral dimensions. These new structures hold great potential for fast low-power electro-optical modulation.
Collapse
|