1
|
Jang HJ, Shin J, Lee S, Lee B, Kim DW. Deciphering distinct spatial alterations in N-glycan expression profiles in the spinal cord and brain of male rats in a neuropathic pain model. Cell Mol Biol Lett 2025; 30:31. [PMID: 40069587 PMCID: PMC11895249 DOI: 10.1186/s11658-025-00709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Neuropathic pain is a complex condition resulting from damage or disease in the somatosensory nervous system, causing significant physical and emotional distress. Despite its profound impact, the underlying causes and treatment methods of neuropathic pain remain poorly understood. METHODS To better understand this condition, we conducted the first study examining the spatial distribution and dynamic expression changes of N-glycan molecules that play a crucial role in nervous system function and sustainable pain signal transmission across multiple regions of the spinal cord and brain in an experimentally induced neuropathic pain model, using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). RESULTS Our findings revealed that neuropathic pain induces dynamic changes in N-glycan expression across various regions of the spinal cord and brain. Notably, we discovered distinct glycan profiles between the spinal cord and brain, with N-glycans downregulated in the spinal cord and upregulated in the brain at a time when mechanical allodynia is sustained following spinal nerve ligation (SNL). Significant changes in N-glycan expression were observed in the dorsal laminae IV/V/VI and the ventral horn of the spinal cord. Additionally, marked changes were detected in the contralateral regions of the primary sensory cortex (S1) and the primary sensory cortex hindlimb area (S1HL). Furthermore, we observed significant upregulation of N-glycan expression in the thalamus, anterior cingulate cortex (ACC), and medial prefrontal cortex (mPFC) in both ipsilateral and contralateral regions of the brain. CONCLUSIONS Given that N-glycans are implicated in pain processing yet their precise role remains unclear, our study highlights the need to explore N-glycosylation with a more nuanced focus on both the spinal cord and brain. This research provides new insights into the mechanisms of persistent neuropathic pain and lays the groundwork for future studies and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Hyun Jun Jang
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Juhee Shin
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea.
| | - Dong Woon Kim
- Department of Oral Anatomy & Developmental Biology, Kyung Hee University College of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Weng WC, Xu YH, Qiu DL, Chu CP. Enhanced cerebellar climbing fiber-Purkinje cell synaptic transmission via corticotropin-releasing factor receptor 2 during the chronic phase of spinal cord injury mice. Neuroreport 2025; 36:223-229. [PMID: 39976017 DOI: 10.1097/wnr.0000000000002141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Spinal cord injury (SCI) causes interruption of external information input from the spinal cord to the cerebellum. We here investigated the effect of SCI on mouse cerebellar climbing fiber-Purkinje cell (CF-PC) synaptic transmission. The SCI was caused at T10 using 6-week-old ICR mice. Mice recovered 4 weeks after surgery, the spontaneous complex spike (CS) activity of PC was recorded using cell-attached recording and whole-cell recording method in urethane-anesthetized mice cerebellar Crus II. The CF-PC excitatory postsynaptic currents (EPSCs) were evoked by paired electrical stimulation of CF in cerebellar slices to evaluate the changes of CF-PC synaptic transmission and paired-pulse ratio (PPR). The results showed that the number of spikelets, duration of spontaneous CS, and pause of simple spike firing were significantly increased in SCI than that in sham group. Application of a nonselective corticotropin-releasing factor receptor (CRF-R) antagonist significantly decreased spontaneous CS activity in SCI group but not in sham group. The enhanced CS activity in SCI mice was significantly decreased by a selective CRF-R2 antagonist but not a specific CRF-R1 antagonist. The amplitude of CF-PC EPSC1 was large accompanied by a lower PPR in SCI group than that in sham group. Blockade of CRF-R2 antagonist significantly decreased the amplitude of EPSC1 and increased PPR in SCI group. SCI induces enhancement of the spontaneous CS activity and CF-PC synaptic transmission via CRF-R2 in mouse cerebellar cortex, which suggests that remodeling of CF-PC synaptic transmission occurred in cerebellar cortex after SCI.
Collapse
Affiliation(s)
- Wen-Cai Weng
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji
- Brain Science Institute, Jilin Medical University, Jilin City, China
| | - Ying-Han Xu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji
- Brain Science Institute, Jilin Medical University, Jilin City, China
| | - De-Lai Qiu
- Brain Science Institute, Jilin Medical University, Jilin City, China
| | - Chun-Ping Chu
- Brain Science Institute, Jilin Medical University, Jilin City, China
| |
Collapse
|
3
|
Jain N, Qi HX, Raman A, Lyon D, Kaas JH. Cortical reorganization following dorsal spinal injuries in newborn monkeys reveals a critical period in the development of the somatosensory cortex. Proc Natl Acad Sci U S A 2025; 122:e2417417122. [PMID: 39835892 PMCID: PMC11789031 DOI: 10.1073/pnas.2417417122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Lesions of the dorsal columns of the spinal cord in adult macaque monkeys lead to the loss of hand inputs and large-scale expansion of the face inputs in the hand region of the somatosensory cortex. Inputs from alternate spinal pathways do not reactivate the deafferented regions of area 3b. Here, we determined how transections of the dorsal columns done within a few days after birth affect the developing somatosensory cortex. Dorsal columns were transected between the 3rd and 12th postnatal day (PND), and the somatosensory cortex was mapped when the macaques were over 3 y old. There were two distinct outcomes depending on the age at the time of the lesion. In monkeys lesioned between the 3rd and 5th PND, neurons in the entire hand region of area 3b and the adjacent somatosensory cortex responded to touch on the hand. An alternate spinal pathway must have replaced the lost pathway. In monkeys lesioned between the 9th and 12th PND, neurons in the deafferented hand region did not respond to touch on the hand. There was medialward expansion of the face representation into the deafferented cortex and a lateral expansion of the arm representation as in lesioned adults. Thus, different mechanisms underlie the reorganization of area 3b and the adjacent somatosensory cortex following identical spinal cord injuries sustained as early or late newborns. The results suggest that alternate spinal cord pathways can develop within a critical period before the 9th PND, but not later.
Collapse
Affiliation(s)
- Neeraj Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur342030, India
- Department of Psychology, Vanderbilt University, Nashville, TN37240
| | - Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN37240
| | - Arun Raman
- National Brain Research Centre, Manesar122 051, India
| | - David Lyon
- Department of Psychology, Vanderbilt University, Nashville, TN37240
- Department of Anatomy and Neurobiology, University of California, Irvine, CA92697
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN37240
| |
Collapse
|
4
|
Du Y, Lin SD, Wu XQ, Xue BY, Ding YL, Zhang JH, Tan B, Lou GD, Hu WW, Chen Z, Zhang SH. Ventral posteromedial nucleus of the thalamus gates the spread of trigeminal neuropathic pain. J Headache Pain 2024; 25:140. [PMID: 39192198 DOI: 10.1186/s10194-024-01849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Widespread neuropathic pain usually affects a wide range of body areas and inflicts huge suffering on patients. However, little is known about how it happens and effective therapeutic interventions are lacking. METHODS Widespread neuropathic pain was induced by partial infraorbital nerve transection (p-IONX) and evaluated by measuring nociceptive thresholds. In vivo/vitro electrophysiology were used to evaluate neuronal activity. Virus tracing strategies, combined with optogenetics and chemogenetics, were used to clarify the role of remodeling circuit in widespread neuropathic pain. RESULTS We found that in mice receiving p-IONX, along with pain sensitization spreading from the orofacial area to distal body parts, glutamatergic neurons in the ventral posteromedial nucleus of the thalamus (VPMGlu) were hyperactive and more responsive to stimulations applied to the hind paw or tail. Tracing experiments revealed that a remodeling was induced by p-IONX in the afferent circuitry of VPMGlu, notably evidenced by more projections from glutamatergic neurons in the dorsal column nuclei (DCNGlu). Moreover, VPMGlu receiving afferents from the DCN extended projections further to glutamatergic neurons in the posterior insular cortex (pIC). Selective inhibition of the terminals of DCNGlu in the VPM, the soma of VPMGlu or the terminals of VPMGlu in the pIC all alleviated trigeminal and widespread neuropathic pain. CONCLUSION These results demonstrate that hyperactive VPMGlu recruit new afferents from the DCN and relay the extra-cephalic input to the pIC after p-IONX, thus hold a key position in trigeminal neuropathic pain and its spreading. This study provides novel insights into the circuit mechanism and preclinical evidence for potential therapeutic targets of widespread neuropathic pain.
Collapse
Affiliation(s)
- Yu Du
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shi-Da Lin
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xue-Qing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bao-Yu Xue
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yi-La Ding
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jia-Hang Zhang
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guo-Dong Lou
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wei-Wei Hu
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shi-Hong Zhang
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Pellicer-Morata V, Wang L, de Jongh Curry A, Tsao JW, Waters RS. Sources of Rapid and Delayed New Lower Jaw Input in the Forepaw Barrel Subfield (FBS) in Rat Primary Somatosensory Cortex (SI) Following Forelimb Deafferentation. J Comp Neurol 2024; 532:e25664. [PMID: 39235156 PMCID: PMC11506729 DOI: 10.1002/cne.25664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Previously, we reported an immediate emergence of new lower jaw input to the anterior forepaw barrel subfield (FBS) in primary somatosensory cortex (SI) following forelimb deafferentation. However, a delay of 7 weeks or more post-amputation results in the presence of this new input to both anterior and posterior FBS. The immediate change suggests pre-existing latent lower jaw input in the FBS, whereas the delayed alteration implies the involvement of alternative sources. One possible source for immediate lower jaw responses is the neighboring lower jaw barrel subfield (LJBSF). We used anatomical tracers to investigate the possible projection of LJBSF to the FBS in normal and forelimb-amputated rats. Our findings are as follows: (1) anterograde tracer injection into LJBSF in normal and amputated rats labeled fibers and terminals exclusively in the anterior FBS; (2) retrograde tracer injection in the anterior FBS in normal and forelimb-amputated rats, heavily labeled cell bodies predominantly in the posterior LJBSF, with fewer in the anterior LJBSF; (3) retrograde tracer injection in the posterior FBS in normal and forelimb-amputated rats, sparsely labeled cell bodies in the posterior LJBSF; (4) retrograde tracer injection in anterior and posterior FBS in normal and forelimb-amputated rats, labeled cells exclusively in ventral posterior lateral (VPL) nucleus and posterior thalamus (PO); (5) retrograde tracer injection in LJBSF-labeled cell bodies exclusively in ventral posterior medial thalamic nucleus and PO. These findings suggest that LJBSF facilitates rapid lower jaw reorganization in the anterior FBS, whereas VPL and/or other subcortical sites provide a likely substrate for delayed reorganization observed in the posterior FBS.
Collapse
Affiliation(s)
- Violeta Pellicer-Morata
- Department of Physiology, University of Tennessee Health Science Center, College of Medicine, 956 Court Avenue, Memphis, TN 38163, USA
| | - Lie Wang
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite, Memphis, TN 38163, USA
| | - Amy de Jongh Curry
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152, USA
| | - Jack W. Tsao
- Department of Neurology, New York University, Langone School of Medicine, 550 1 Avenue, New York, NY 10016, USA
| | - Robert S. Waters
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite, Memphis, TN 38163, USA
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152, USA
| |
Collapse
|
6
|
Grisoni L, Piperno G, Moreau Q, Molinari M, Scivoletto G, Aglioti SM. Predicting and coding sound into action translation in spinal cord injured people. Eur J Neurosci 2024; 59:1029-1046. [PMID: 38276915 DOI: 10.1111/ejn.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
Motor activation in response to perception of action-related stimuli may depend on a resonance mechanism subserving action understanding. The extent to which this mechanism is innate or learned from sensorimotor experience is still unclear. Here, we recorded EEG while people with paraplegia or tetraplegia consequent to spinal cord injury (SCI) and healthy control participants were presented with action sounds produced by body parts (mouth, hands or feet) that were or were not affected by SCI. Non-action sounds were used as further control. We observed reduced brain activation in subjects affected by SCI at both pre- and post-stimulus latencies specifically for those actions whose effector was disconnected by the spinal lesion (i.e., hand sound for tetraplegia and leg sound for both paraplegia and tetraplegia). Correlation analyses showed that these modulations were functionally linked with the chronicity of the lesion, indicating that the longer the time the lesion- EEG data acquisition interval and/or the more the lesion occurred at a young age, the weaker was the cortical activity in response to these action sounds. Tellingly, source estimations confirmed that these modulations originated from a deficit in the motor resonance mechanism, by showing diminished activity in premotor (during prediction and perception) and near the primary motor (during perception) areas. Such dissociation along the cortical hierarchy is consistent with both previous reports in healthy subjects and with hierarchical predictive coding accounts. Overall, these data expand on the notion that sensorimotor experience maintains the cortical representations relevant to anticipate and perceive action-related stimuli.
Collapse
Affiliation(s)
- Luigi Grisoni
- Department of Psychology, Sapienza University of Rome and CLN2S@sapienza, Istituto Italiano di Tecnologia IIT, Rome, Italy
- Department of Philosophy and Humanities, Brain Language Laboratory, Freie Universität Berlin, Berlin, Germany
| | - Giulio Piperno
- Department of Psychology, Sapienza University of Rome and CLN2S@sapienza, Istituto Italiano di Tecnologia IIT, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Quentin Moreau
- Department of Psychology, Sapienza University of Rome and CLN2S@sapienza, Istituto Italiano di Tecnologia IIT, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | - Salvatore Maria Aglioti
- Department of Psychology, Sapienza University of Rome and CLN2S@sapienza, Istituto Italiano di Tecnologia IIT, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
7
|
Liang X, Lin J, Zhou P, Fu W, Xu N, Liu J. Toe stimulation improves tactile perception of the genitals. Cereb Cortex 2024; 34:bhae054. [PMID: 38367614 DOI: 10.1093/cercor/bhae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/19/2024] Open
Abstract
The human body is represented in a topographic pattern in the primary somatosensory cortex (S1), and genital representation is displaced below the toe representation. However, the relationship between the representation of the genitals and toe in S1 remains unclear. In this study, tactile stimulation was applied to the big toe in healthy subjects to observe changes in tactile acuity in the unstimulated genital area, abdomen, and metacarpal dorsal. Then tactile stimulation was applied to the right abdomen and metacarpal dorsal to observe changes in tactile acuity in bilateral genitals. The results revealed that tactile stimulation of the big toe led to a reduction in the 2-point discrimination threshold (2PDT) not only in the stimulated big toe but also in the bilateral unstimulated genitals, whereas the bilateral abdomen and metacarpal dorsal threshold remained unchanged. On the other hand, tactile stimulation of the abdomen and metacarpal dorsal did not elicit 2-point discrimination threshold changes in the bilateral genitals. Cortical and subcortical mechanisms have been proposed to account for the findings. One explanation involves the intracortical interaction between 2 adjacent representations. Another possible explanation is that the information content of a specific body part is broadly distributed across the S1. Moreover, exploring the links between human behaviors and changes in the cerebral cortex is of significant importance.
Collapse
Affiliation(s)
- Xuesong Liang
- Group for Acupuncture Research, Department of Acupuncture, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Acupuncture, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518133, China
| | - Jiahui Lin
- Group for Acupuncture Research, Department of Acupuncture, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Peng Zhou
- Department of Acupuncture, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518133, China
| | - Wenbin Fu
- Group for Acupuncture Research, Department of Acupuncture, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Nenggui Xu
- Group for Acupuncture Research, Department of Acupuncture, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jianhua Liu
- Group for Acupuncture Research, Department of Acupuncture, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
8
|
Tucciarelli R, Ejaz N, Wesselink DB, Kolli V, Hodgetts CJ, Diedrichsen J, Makin TR. Does Ipsilateral Remapping Following Hand Loss Impact Motor Control of the Intact Hand? J Neurosci 2024; 44:e0948232023. [PMID: 38050100 PMCID: PMC10860625 DOI: 10.1523/jneurosci.0948-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
What happens once a cortical territory becomes functionally redundant? We studied changes in brain function and behavior for the remaining hand in humans (male and female) with either a missing hand from birth (one-handers) or due to amputation. Previous studies reported that amputees, but not one-handers, show increased ipsilateral activity in the somatosensory territory of the missing hand (i.e., remapping). We used a complex finger task to explore whether this observed remapping in amputees involves recruiting more neural resources to support the intact hand to meet greater motor control demands. Using basic fMRI analysis, we found that only amputees had more ipsilateral activity when motor demand increased; however, this did not match any noticeable improvement in their behavioral task performance. More advanced multivariate fMRI analyses showed that amputees had stronger and more typical representation-relative to controls' contralateral hand representation-compared with one-handers. This suggests that in amputees, both hand areas work together more collaboratively, potentially reflecting the intact hand's efference copy. One-handers struggled to learn difficult finger configurations, but this did not translate to differences in univariate or multivariate activity relative to controls. Additional white matter analysis provided conclusive evidence that the structural connectivity between the two hand areas did not vary across groups. Together, our results suggest that enhanced activity in the missing hand territory may not reflect intact hand function. Instead, we suggest that plasticity is more restricted than generally assumed and may depend on the availability of homologous pathways acquired early in life.
Collapse
Affiliation(s)
- Raffaele Tucciarelli
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Naveed Ejaz
- Departments of Statistical and Actuarial Sciences and Computer Science, Western University, London, Ontario N6A 5B7, Canada
| | - Daan B Wesselink
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, United Kingdom
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Vijay Kolli
- Queen Mary's Hospital, London SW15 5PN, United Kingdom
| | - Carl J Hodgetts
- CUBRIC, School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom
- Royal Holloway, University of London, Egham TW20 0EX, United Kingdom
| | - Jörn Diedrichsen
- Departments of Statistical and Actuarial Sciences and Computer Science, Western University, London, Ontario N6A 5B7, Canada
- Brain and Mind Institute, Western University, London, Ontario N6A 3K7, Canada
| | - Tamar R Makin
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
9
|
Abstract
Neurological insults, such as congenital blindness, deafness, amputation, and stroke, often result in surprising and impressive behavioural changes. Cortical reorganisation, which refers to preserved brain tissue taking on a new functional role, is often invoked to account for these behavioural changes. Here, we revisit many of the classical animal and patient cortical remapping studies that spawned this notion of reorganisation. We highlight empirical, methodological, and conceptual problems that call this notion into doubt. We argue that appeal to the idea of reorganisation is attributable in part to the way that cortical maps are empirically derived. Specifically, cortical maps are often defined based on oversimplified assumptions of 'winner-takes-all', which in turn leads to an erroneous interpretation of what it means when these maps appear to change. Conceptually, remapping is interpreted as a circuit receiving novel input and processing it in a way unrelated to its original function. This implies that neurons are either pluripotent enough to change what they are tuned to or that a circuit can change what it computes. Instead of reorganisation, we argue that remapping is more likely to occur due to potentiation of pre-existing architecture that already has the requisite representational and computational capacity pre-injury. This architecture can be facilitated via Hebbian and homeostatic plasticity mechanisms. Crucially, our revised framework proposes that opportunities for functional change are constrained throughout the lifespan by the underlying structural 'blueprint'. At no period, including early in development, does the cortex offer structural opportunities for functional pluripotency. We conclude that reorganisation as a distinct form of cortical plasticity, ubiquitously evoked with words such as 'take-over'' and 'rewiring', does not exist.
Collapse
Affiliation(s)
- Tamar R Makin
- MRC Cognition and Brain Sciences Unit, University of CambridgeCambridgeUnited Kingdom
| | - John W Krakauer
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Santa Fe InstituteSanta FeUnited States
| |
Collapse
|
10
|
Pellicer-Morata V, Wang L, Curry ADJ, Tsao JW, Waters RS. Lower jaw-to-forepaw rapid and delayed reorganization in the rat forepaw barrel subfield in primary somatosensory cortex. J Comp Neurol 2023; 531:1651-1668. [PMID: 37496376 PMCID: PMC10530121 DOI: 10.1002/cne.25523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
We used the forepaw barrel subfield (FBS), that normally receives input from the forepaw skin surface, in rat primary somatosensory cortex as a model system to study rapid and delayed lower jaw-to-forepaw cortical reorganization. Single and multi-unit recording from FBS neurons was used to examine the FBS for the presence of "new" lower jaw input following deafferentations that include forelimb amputation, brachial plexus nerve cut, and brachial plexus anesthesia. The major findings are as follows: (1) immediately following forelimb deafferentations, new input from the lower jaw becomes expressed in the anterior FBS; (2) 7-27 weeks after forelimb amputation, new input from the lower jaw is expressed in both anterior and posterior FBS; (3) evoked response latencies recorded in the deafferented FBS following electrical stimulation of the lower jaw skin surface are significantly longer in both rapid and delayed deafferents compared to control latencies for input from the forepaw to reach the FBS or for input from lower jaw to reach the LJBSF; (4) the longer latencies suggest that an additional relay site is imposed along the somatosensory pathway for lower jaw input to access the deafferented FBS. We conclude that different sources of input and different mechanisms underlie rapid and delayed reorganization in the FBS and suggest that these findings are relevant, as an initial step, for developing a rodent animal model to investigate phantom limb phenomena.
Collapse
Affiliation(s)
- Violeta Pellicer-Morata
- Department of Physiology, University of Tennessee Health
Science Center, College of Medicine, 956 Court Avenue, Memphis, TN 38163, USA
| | - Lie Wang
- Department of Anatomy and Neurobiology, University of
Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite,
Memphis, TN 38163, USA
| | - Amy de Jongh Curry
- Department of Biomedical Engineering, University of
Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152,
USA
| | - Jack W. Tsao
- Department of Neurology, New York University, Langone
School of Medicine, 550 1 Avenue, New York, NY 10016, USA
| | - Robert S. Waters
- Department of Anatomy and Neurobiology, University of
Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite,
Memphis, TN 38163, USA
- Department of Biomedical Engineering, University of
Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152,
USA
| |
Collapse
|
11
|
Amoruso E, Terhune DB, Kromm M, Kirker S, Muret D, Makin TR. Reassessing referral of touch following peripheral deafferentation: The role of contextual bias. Cortex 2023; 167:167-177. [PMID: 37567052 PMCID: PMC11139647 DOI: 10.1016/j.cortex.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/28/2023] [Accepted: 04/21/2023] [Indexed: 08/13/2023]
Abstract
Some amputees have been famously reported to perceive facial touch as arising from their phantom hand. These referred sensations have since been replicated across multiple neurological disorders and were classically interpreted as a perceptual correlate of cortical plasticity. Common to all these and related studies is that participants might have been influenced in their self-reports by the experimental design or related contextual biases. Here, we investigated whether referred sensations reports might be confounded by demand characteristics (e.g., compliance, expectation, suggestion). Unilateral upper-limb amputees (N = 18), congenital one-handers (N = 19), and two-handers (N = 22) were repeatedly stimulated with computer-controlled vibrations on 10 body-parts and asked to report the occurrence of any concurrent sensations on their hand(s). To further manipulate expectations, we gave participants the suggestion that some of these vibrations had a higher probability to evoke referred sensations. We also assessed similarity between (phantom) hand and face representation in primary somatosensory cortex (S1), using functional Magnetic Resonance Imaging (fMRI) multivariate representational similarity analysis. We replicated robust reports of referred sensations in amputees towards their phantom hand; however, the frequency and distribution of reported referred sensations were similar across groups. Moreover, referred sensations were evoked by stimulation of multiple body-parts and similarly reported on both the intact and phantom hand in amputees. Face-to-phantom-hand representational similarity was not different in amputees' missing hand region, compared with controls. These findings weaken the interpretation of referred sensations as a perceptual correlate of S1 plasticity and reveal the need to account for contextual biases when evaluating anomalous perceptual phenomena.
Collapse
Affiliation(s)
- Elena Amoruso
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Devin B Terhune
- Department of Psychology, Goldsmiths, University of London, London SE14 6NW, UK
| | - Maria Kromm
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Stephen Kirker
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK.
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
12
|
Ueta Y, Miyata M. Functional and structural synaptic remodeling mechanisms underlying somatotopic organization and reorganization in the thalamus. Neurosci Biobehav Rev 2023; 152:105332. [PMID: 37524138 DOI: 10.1016/j.neubiorev.2023.105332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
The somatosensory system organizes the topographic representation of body maps, termed somatotopy, at all levels of an ascending hierarchy. Postnatal maturation of somatotopy establishes optimal somatosensation, whereas deafferentation in adults reorganizes somatotopy, which underlies pathological somatosensation, such as phantom pain and complex regional pain syndrome. Here, we focus on the mouse whisker somatosensory thalamus to study how sensory experience shapes the fine topography of afferent connectivity during the critical period and what mechanisms remodel it and drive a large-scale somatotopic reorganization after peripheral nerve injury. We will review our findings that, following peripheral nerve injury in adults, lemniscal afferent synapses onto thalamic neurons are remodeled back to immature configuration, as if the critical period reopens. The remodeling process is initiated with local activation of microglia in the brainstem somatosensory nucleus downstream to injured nerves and heterosynaptically controlled by input from GABAergic and cortical neurons to thalamic neurons. These fruits of thalamic studies complement well-studied cortical mechanisms of somatotopic organization and reorganization and unveil potential intervention points in treating pathological somatosensation.
Collapse
Affiliation(s)
- Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
13
|
Datta A. The effect of dorsal column lesions in the primary somatosensory cortex and medulla of adult rats. IBRO Neurosci Rep 2023; 14:466-482. [PMID: 37273897 PMCID: PMC10238474 DOI: 10.1016/j.ibneur.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
Spinal cord injury is a devastating condition that haunts human lives. Typically, patients experience referred phantom sensations on the hand when they are touched on the face. In adult monkeys, massive deafferentations such as chronic dorsal column lesions at higher cervical levels result in the large-scale expansion of face inputs into the deafferented hand cortex of area 3b. However, adult rats with thoracic dorsal column lesions do not demonstrate such large-scale reorganization. The large-scale face expansion in area 3b of monkeys is driven by the reorganization of the cuneate nucleus in the medulla. The sprouting of afferents from the trigeminal nucleus to the adjacent deafferented cuneate nucleus is facilitated by close proximity and compactness of the medulla in primates. Previously, in adult rats with thoracic lesions, the cuneate nucleus was not deafferented and its functional organization was not explored. The extent of the deafferentation and the duration of the recovery period are two major factors that determine the extent of reorganization. Hence, higher cervical (C3-C4) dorsal column lesions were performed, which cause massive deafferentations, and physiological maps were obtained after prolonged recovery periods (3 weeks -18 months). In spite of the above, the expansion of the intact face inputs was not observed in the deafferented zones of the primary somatosensory cortex (SI) and medulla of adult rats. The deafferented forelimb and hindlimb representations in SI were unresponsive to cutaneous stimulation of any part of the body. The cuneate and gracile nuclei in rats with complete dorsal column lesions remained mostly inactive except for a few sites which responded to stimulation of the spared upper arm. Hence, dorsal column lesions have different effects on the adult primate and rodent somatosensory systems. Appreciating this inter-species difference can aid in identifying the underlying neural substrates and restrict maladaptive reorganizations to cure phantom sensations.
Collapse
|
14
|
Root V, Muret D, Arribas M, Amoruso E, Thornton J, Tarall-Jozwiak A, Tracey I, Makin TR. Complex pattern of facial remapping in somatosensory cortex following congenital but not acquired hand loss. eLife 2022; 11:e76158. [PMID: 36583538 PMCID: PMC9851617 DOI: 10.7554/elife.76158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Cortical remapping after hand loss in the primary somatosensory cortex (S1) is thought to be predominantly dictated by cortical proximity, with adjacent body parts remapping into the deprived area. Traditionally, this remapping has been characterised by changes in the lip representation, which is assumed to be the immediate neighbour of the hand based on electrophysiological research in non-human primates. However, the orientation of facial somatotopy in humans is debated, with contrasting work reporting both an inverted and upright topography. We aimed to fill this gap in the S1 homunculus by investigating the topographic organisation of the face. Using both univariate and multivariate approaches we examined the extent of face-to-hand remapping in individuals with a congenital and acquired missing hand (hereafter one-handers and amputees, respectively), relative to two-handed controls. Participants were asked to move different facial parts (forehead, nose, lips, tongue) during functional MRI (fMRI) scanning. We first confirmed an upright face organisation in all three groups, with the upper-face and not the lips bordering the hand area. We further found little evidence for remapping of both forehead and lips in amputees, with no significant relationship to the chronicity of their phantom limb pain (PLP). In contrast, we found converging evidence for a complex pattern of face remapping in congenital one-handers across multiple facial parts, where relative to controls, the location of the cortical neighbour - the forehead - is shown to shift away from the deprived hand area, which is subsequently more activated by the lips and the tongue. Together, our findings demonstrate that the face representation in humans is highly plastic, but that this plasticity is restricted by the developmental stage of input deprivation, rather than cortical proximity.
Collapse
Affiliation(s)
- Victoria Root
- WIN Centre, University of OxfordOxfordUnited Kingdom
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - Dollyane Muret
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - Maite Arribas
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Elena Amoruso
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - John Thornton
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | | | - Irene Tracey
- WIN Centre, University of OxfordOxfordUnited Kingdom
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| |
Collapse
|
15
|
Carvalho J, Invernizzi A, Martins J, Renken RJ, Cornelissen FW. Local neuroplasticity in adult glaucomatous visual cortex. Sci Rep 2022; 12:21981. [PMID: 36539453 PMCID: PMC9767937 DOI: 10.1038/s41598-022-24709-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
The degree to which the adult human visual cortex retains the ability to functionally adapt to damage at the level of the eye remains ill-understood. Previous studies on cortical neuroplasticity primarily focused on the consequences of foveal visual field defects (VFD), yet these findings may not generalize to peripheral defects such as occur in glaucoma. Moreover, recent findings on neuroplasticity are often based on population receptive field (pRF) mapping, but interpreting these results is complicated in the absence of appropriate control conditions. Here, we used fMRI-based neural modeling to assess putative changes in pRFs associated with glaucomatous VFD. We compared the fMRI-signals and pRF in glaucoma participants to those of controls with case-matched simulated VFD. We found that the amplitude of the fMRI-signal is reduced in glaucoma compared to control participants and correlated with disease severity. Furthermore, while coarse retinotopic structure is maintained in all participants with glaucoma, we observed local pRF shifts and enlargements in early visual areas, relative to control participants. These differences suggest that the adult brain retains some degree of local neuroplasticity. This finding has translational relevance, as it is consistent with VFD masking, which prevents glaucoma patients from noticing their VFD and seeking timely treatment.
Collapse
Affiliation(s)
- Joana Carvalho
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands ,grid.421010.60000 0004 0453 9636Pre-Clinical MRI Laboratory, Champalimaud Centre for the Unknown, Avenida de Brasilia, 1400-038 Lisbon, Portugal
| | - Azzurra Invernizzi
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands ,grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Joana Martins
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Remco J. Renken
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frans W. Cornelissen
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Lazar L, Chand P, Rajan R, Mohammed H, Jain N. Somatosensory cortex of macaque monkeys is designed for opposable thumb. Cereb Cortex 2022; 33:195-206. [PMID: 35226918 DOI: 10.1093/cercor/bhac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/14/2022] Open
Abstract
The evolution of opposable thumb has enabled fine grasping ability and precision grip, therefore the ability to finely manipulate the objects and refined tool use. Since tactile inputs to an opposable thumb are often spatially and temporally out of sync with inputs from the fingers, we hypothesized that inputs from the opposable thumb would be processed in an independent module in the primary somatosensory cortex (area 3b). Here we show that in area 3b of macaque monkeys, most neurons in the thumb representation do not respond to tactile stimulation of other digits and receive few intrinsic cortical inputs from other digits. However, neurons in the representations of other 4 digits respond to touch on any of the 4 digits and interconnect significantly more. The thumb inputs are thus processed in an independent module, whereas there is a significantly more interdigital information exchange between the other digits. This cortical organization reflects behavioral use of a hand with an opposable thumb.
Collapse
Affiliation(s)
- Leslee Lazar
- National Brain Research Centre, Manesar 122052, India.,Centre for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, 322385, India
| | - Prem Chand
- National Brain Research Centre, Manesar 122052, India.,Department of Zoology, Tilak Dhari Post Graduate College, V.B.S. Purvanchal University, Jaunpur, Uttar Pradesh, 222002, India
| | - Radhika Rajan
- National Brain Research Centre, Manesar 122052, India.,Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | | - Neeraj Jain
- National Brain Research Centre, Manesar 122052, India.,Department of Bioscience and Bioengineering; and School of AI and Data Science, Indian Institute of Technology Jodhpur, Karwar, Jodhpur 342030, India
| |
Collapse
|
17
|
Philip BA, Valyear KF, Cirstea CM, Baune NA, Kaufman C, Frey SH. Changes in Primary Somatosensory Cortex Following Allogeneic Hand Transplantation or Autogenic Hand Replantation. FRONTIERS IN NEUROIMAGING 2022; 1:919694. [PMID: 36590253 PMCID: PMC9802660 DOI: 10.3389/fnimg.2022.919694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/09/2022] [Indexed: 01/03/2023]
Abstract
Former amputees who undergo allogeneic hand transplantation or autogenic hand replantation (jointly, "hand restoration") present a unique opportunity to measure the range of post-deafferentation plastic changes in the nervous system, especially primary somatosensory cortex (S1). However, few such patients exist, and previous studies compared single cases to small groups of typical adults. Here, we studied 5 individuals (n = 8 sessions: a transplant with 2 sessions, a transplant with 3 sessions, and three replants with 1 session each). We used functional magnetic resonance imaging (fMRI) to measure S1 responsiveness to controlled pneumatic tactile stimulation delivered to each patient's left and right fingertips and lower face. These data were compared with responses acquired from typical adults (n = 29) and current unilateral amputees (n = 19). During stimulation of the affected hand, patients' affected S1 (contralateral to affected hand) responded to stimulation in a manner similar both to amputees and to typical adults. The presence of contralateral responses indicated grossly typical S1 function, but responses were universally at the low end of the range of typical variability. Patients' affected S1 showed substantial individual variability in responses to stimulation of the intact hand: while all patients fell within the range of typical adults, some patient sessions (4/8) had substantial ipsilateral responses similar to those exhibited by current amputees. Unlike hand restoration patients, current amputees exhibited substantial S1 reorganization compared to typical adults, including bilateral S1 responses to stimulation of the intact hand. In all three participant groups, we assessed tactile localization by measuring individuals' ability to identify the location of touch on the palm and fingers. Curiously, while transplant patients improved their tactile sensory localization over time, this was uncorrelated with changes in S1 responses to tactile stimuli. Overall, our results provide the first description of cortical responses to well-controlled tactile stimulation after hand restoration. Our case studies indicate that hand restoration patients show S1 function within the range of both typical adults and amputees, but with low-amplitude and individual-specific responses that indicate a wide range of potential cortical neurological changes following de-afferentation and re-afferentation.
Collapse
Affiliation(s)
- Benjamin A. Philip
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, United States
| | - Kenneth F. Valyear
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| | - Carmen M. Cirstea
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, United States
| | - Nathan A. Baune
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, United States
| | - Christina Kaufman
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, United States
| | - Scott H. Frey
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, United States
| |
Collapse
|
18
|
Asthana P, Kumar G, Milanowski LM, Au NPB, Chan SC, Huang J, Feng H, Kwan KM, He J, Chan KWY, Wszolek ZK, Ma CHE. Cerebellar glutamatergic system impacts spontaneous motor recovery by regulating Gria1 expression. NPJ Regen Med 2022; 7:45. [PMID: 36064798 PMCID: PMC9445039 DOI: 10.1038/s41536-022-00243-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Peripheral nerve injury (PNI) often results in spontaneous motor recovery; however, how disrupted cerebellar circuitry affects PNI-associated motor recovery is unknown. Here, we demonstrated disrupted cerebellar circuitry and poor motor recovery in ataxia mice after PNI. This effect was mimicked by deep cerebellar nuclei (DCN) lesion, but not by damaging non-motor area hippocampus. By restoring cerebellar circuitry through DCN stimulation, and reversal of neurotransmitter imbalance using baclofen, ataxia mice achieve full motor recovery after PNI. Mechanistically, elevated glutamate-glutamine level was detected in DCN of ataxia mice by magnetic resonance spectroscopy. Transcriptomic study revealed that Gria1, an ionotropic glutamate receptor, was upregulated in DCN of control mice but failed to be upregulated in ataxia mice after sciatic nerve crush. AAV-mediated overexpression of Gria1 in DCN rescued motor deficits of ataxia mice after PNI. Finally, we found a correlative decrease in human GRIA1 mRNA expression in the cerebellum of patients with ataxia-telangiectasia and spinocerebellar ataxia type 6 patient iPSC-derived Purkinje cells, pointing to the clinical relevance of glutamatergic system. By conducting a large-scale analysis of 9,655,320 patients with ataxia, they failed to recover from carpal tunnel decompression surgery and tibial neuropathy, while aged-match non-ataxia patients fully recovered. Our results provide insight into cerebellar disorders and motor deficits after PNI.
Collapse
Affiliation(s)
- Pallavi Asthana
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Lukasz M Milanowski
- Department of Neurology, Mayo Clinic, Jacksonville, USA.,Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Ngan Pan Bennett Au
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Siu Chung Chan
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Hemin Feng
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Kin Ming Kwan
- School of Life Sciences, Center for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR.
| |
Collapse
|
19
|
Li H, Li X, Wang J, Gao F, Wiech K, Hu L, Kong Y. Pain-related reorganization in the primary somatosensory cortex of patients with postherpetic neuralgia. Hum Brain Mapp 2022; 43:5167-5179. [PMID: 35751551 PMCID: PMC9812237 DOI: 10.1002/hbm.25992] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 01/15/2023] Open
Abstract
Studies on functional and structural changes in the primary somatosensory cortex (S1) have provided important insights into neural mechanisms underlying several chronic pain conditions. However, the role of S1 plasticity in postherpetic neuralgia (PHN) remains elusive. Combining psychophysics and magnetic resonance imaging (MRI), we investigated whether pain in PHN patients is linked to S1 reorganization as compared with healthy controls. Results from voxel-based morphometry showed no structural differences between groups. To characterize functional plasticity, we compared S1 responses to noxious laser stimuli of a fixed intensity between both groups and assessed the relationship between S1 activation and spontaneous pain in PHN patients. Although the intensity of evoked pain was comparable in both groups, PHN patients exhibited greater activation in S1 ipsilateral to the stimulated hand. Pain-related activity was identified in contralateral superior S1 (SS1) in controls as expected, but in bilateral inferior S1 (IS1) in PHN patients with no overlap between SS1 and IS1. Contralateral SS1 engaged during evoked pain in controls encoded spontaneous pain in patients, suggesting functional S1 reorganization in PHN. Resting-state fMRI data showed decreased functional connectivity between left and right SS1 in PHN patients, which scaled with the intensity of spontaneous pain. Finally, multivariate pattern analyses (MVPA) demonstrated that BOLD activity and resting-state functional connectivity of S1 predicted within-subject variations of evoked and spontaneous pain intensities across groups. In summary, functional reorganization in S1 might play a key role in chronic pain related to PHN and could be a potential treatment target in this patient group.
Collapse
Affiliation(s)
- Hong Li
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina,Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiaoyun Li
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| | - Jiyuan Wang
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina,Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Fei Gao
- Department of Pain MedicinePeking University People's HospitalBeijingChina
| | - Katja Wiech
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Li Hu
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina,Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina,Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| |
Collapse
|
20
|
Wesselink DB, Sanders ZB, Edmondson LR, Dempsey-Jones H, Kieliba P, Kikkert S, Themistocleous AC, Emir U, Diedrichsen J, Saal HP, Makin TR. Malleability of the cortical hand map following a finger nerve block. SCIENCE ADVANCES 2022; 8:eabk2393. [PMID: 35452294 PMCID: PMC9032959 DOI: 10.1126/sciadv.abk2393] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/09/2022] [Indexed: 05/10/2023]
Abstract
Electrophysiological studies in monkeys show that finger amputation triggers local remapping within the deprived primary somatosensory cortex (S1). Human neuroimaging research, however, shows persistent S1 representation of the missing hand's fingers, even decades after amputation. Here, we explore whether this apparent contradiction stems from underestimating the distributed peripheral and central representation of fingers in the hand map. Using pharmacological single-finger nerve block and 7-tesla neuroimaging, we first replicated previous accounts (electrophysiological and other) of local S1 remapping. Local blocking also triggered activity changes to nonblocked fingers across the entire hand area. Using methods exploiting interfinger representational overlap, however, we also show that the blocked finger representation remained persistent despite input loss. Computational modeling suggests that both local stability and global reorganization are driven by distributed processing underlying the topographic map, combined with homeostatic mechanisms. Our findings reveal complex interfinger representational features that play a key role in brain (re)organization, beyond (re)mapping.
Collapse
Affiliation(s)
- Daan B. Wesselink
- Institute of Cognitive Neuroscience, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Zeena-Britt Sanders
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Laura R. Edmondson
- Active Touch Laboratory, Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Harriet Dempsey-Jones
- Institute of Cognitive Neuroscience, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- School of Psychology, University of Queensland, Brisbane, Australia
| | - Paulina Kieliba
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Sanne Kikkert
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Andreas C. Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Brain Function Research Group, University of the Witwatersrand, Johannesburg, South Africa
| | - Uzay Emir
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jörn Diedrichsen
- Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Hannes P. Saal
- Active Touch Laboratory, Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Tamar R. Makin
- Institute of Cognitive Neuroscience, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
21
|
Plasticity of the Central Nervous System Involving Peripheral Nerve Transfer. Neural Plast 2022; 2022:5345269. [PMID: 35342394 PMCID: PMC8956439 DOI: 10.1155/2022/5345269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Peripheral nerve injury can lead to partial or complete loss of limb function, and nerve transfer is an effective surgical salvage for patients with these injuries. The inability of deprived cortical regions representing damaged nerves to overcome corresponding maladaptive plasticity after the reinnervation of muscle fibers and sensory receptors is thought to be correlated with lasting and unfavorable functional recovery. However, the concept of central nervous system plasticity is rarely elucidated in classical textbooks involving peripheral nerve injury, let alone peripheral nerve transfer. This article is aimed at providing a comprehensive understanding of central nervous system plasticity involving peripheral nerve injury by reviewing studies mainly in human or nonhuman primate and by highlighting the functional and structural modifications in the central nervous system after peripheral nerve transfer. Hopefully, it will help surgeons perform successful nerve transfer under the guidance of modern concepts in neuroplasticity.
Collapse
|
22
|
Leemhuis E, Giuffrida V, De Martino ML, Forte G, Pecchinenda A, De Gennaro L, Giannini AM, Pazzaglia M. Rethinking the Body in the Brain after Spinal Cord Injury. J Clin Med 2022; 11:388. [PMID: 35054089 PMCID: PMC8780443 DOI: 10.3390/jcm11020388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injuries (SCI) are disruptive neurological events that severly affect the body leading to the interruption of sensorimotor and autonomic pathways. Recent research highlighted SCI-related alterations extend beyond than the expected network, involving most of the central nervous system and goes far beyond primary sensorimotor cortices. The present perspective offers an alternative, useful way to interpret conflicting findings by focusing on the deafferented and deefferented body as the central object of interest. After an introduction to the main processes involved in reorganization according to SCI, we will focus separately on the body regions of the head, upper limbs, and lower limbs in complete, incomplete, and deafferent SCI participants. On one hand, the imprinting of the body's spatial organization is entrenched in the brain such that its representation likely lasts for the entire lifetime of patients, independent of the severity of the SCI. However, neural activity is extremely adaptable, even over short time scales, and is modulated by changing conditions or different compensative strategies. Therefore, a better understanding of both aspects is an invaluable clinical resource for rehabilitation and the successful use of modern robotic technologies.
Collapse
Affiliation(s)
- Erik Leemhuis
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Valentina Giuffrida
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Maria Luisa De Martino
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Giuseppe Forte
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Anna Pecchinenda
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Anna Maria Giannini
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (V.G.); (M.L.D.M.); (A.P.); (L.D.G.); (A.M.G.)
- Action and Body Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
23
|
Kim AR, Cha H, Kim E, Kim S, Lee HJ, Park E, Lee YS, Jung TD, Chang Y. Impact of fractional amplitude of low-frequency fluctuations in motor- and sensory-related brain networks on spinal cord injury severity. NMR IN BIOMEDICINE 2022; 35:e4612. [PMID: 34505321 DOI: 10.1002/nbm.4612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Spinal cord injury (SCI) can cause motor, sensory, and autonomic dysfunctions and may affect the cerebral functions. However, the mechanisms of plastic changes in the brain according to SCI severity remain poorly understood. Therefore, in the current study, we compared the brain activity of the entire neural network according to severity of SCI using fractional amplitude of low-frequency fluctuations (fALFF) analysis in resting-state functional magnetic resonance imaging (rs-fMRI). A total of 59 participants were included, consisting of 19 patients with complete SCI, 20 patients with incomplete SCI, and 20 healthy individuals. Their motor and sensory functions were evaluated. The rs-fMRI data of low-frequency fluctuations were analyzed based on fALFF. Differences in fALFF values among complete-SCI patients, incomplete-SCI patients, and healthy controls were assessed using ANOVA. Then post hoc analysis and two-sample t-tests were conducted to assess the differences between the three groups. Pearson correlation analyses were used to determine correlations between clinical measures and the z-score of the fALFF in the SCI groups. Patients with SCI (complete and incomplete) showed lower fALFF values in the superior medial frontal gyrus than the healthy controls, and were associated with poor motor and sensory function (p < .05). Higher fALFF values were observed in the putamen and thalamus, and were negatively associated with motor and sensory function (p < .05). In conclusion, alterations in the neural activity of the motor- and sensory-related networks of the brain were observed in complete-SCI and incomplete-SCI patients. Moreover, plastic changes in these brain regions were associated with motor and sensory function.
Collapse
Affiliation(s)
- Ae Ryoung Kim
- Department of Physical Medicine and Rehabilitation, Kyungpook National University School of Medicine, South Korea
- Department of Physical Medicine and Rehabilitation, Kyungpook National University Hospital, South Korea
| | - Hyunsil Cha
- Department of Medical & Biological Engineering, Kyungpook National University, South Korea
| | - Eunji Kim
- Department of Medical & Biological Engineering, Kyungpook National University, South Korea
| | - Seungho Kim
- Department of Medical & Biological Engineering, Kyungpook National University, South Korea
| | - Hui Joong Lee
- Department of Radiology, Kyungpook National University School of Medicine, South Korea
- Department of Radiology, Kyungpook National University Hospital, South Korea
| | - Eunhee Park
- Department of Physical Medicine and Rehabilitation, Kyungpook National University School of Medicine, South Korea
- Department of Physical Medicine and Rehabilitation, Kyungpook National University Hospital, South Korea
| | - Yang-Soo Lee
- Department of Physical Medicine and Rehabilitation, Kyungpook National University School of Medicine, South Korea
- Department of Physical Medicine and Rehabilitation, Kyungpook National University Hospital, South Korea
| | - Tae-Du Jung
- Department of Physical Medicine and Rehabilitation, Kyungpook National University School of Medicine, South Korea
- Department of Physical Medicine and Rehabilitation, Kyungpook National University Hospital, South Korea
| | - Yongmin Chang
- Department of Medical & Biological Engineering, Kyungpook National University, South Korea
- Department of Radiology, Kyungpook National University Hospital, South Korea
- The Department of Molecular Medicine, Kyungpook National University School of Medicine, South Korea
| |
Collapse
|
24
|
Moreno-López Y, Hollis ER. Sensory Circuit Remodeling and Movement Recovery After Spinal Cord Injury. Front Neurosci 2021; 15:787690. [PMID: 34955735 PMCID: PMC8692650 DOI: 10.3389/fnins.2021.787690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Restoring sensory circuit function after spinal cord injury (SCI) is essential for recovery of movement, yet current interventions predominantly target motor pathways. Integrated cortical sensorimotor networks, disrupted by SCI, are critical for perceiving, shaping, and executing movement. Corticocortical connections between primary sensory (S1) and motor (M1) cortices are critical loci of functional plasticity in response to learning and injury. Following SCI, in the motor cortex, corticocortical circuits undergo dynamic remodeling; however, it remains unknown how rehabilitation shapes the plasticity of S1-M1 networks or how these changes may impact recovery of movement.
Collapse
Affiliation(s)
| | - Edmund R Hollis
- Burke Neurological Institute, White Plains, NY, United States.,Weill Cornell Medicine, Feil Family Brain & Mind Research Institute, New York, NY, United States
| |
Collapse
|
25
|
Suresh AK, Greenspon CM, He Q, Rosenow JM, Miller LE, Bensmaia SJ. Sensory computations in the cuneate nucleus of macaques. Proc Natl Acad Sci U S A 2021; 118:e2115772118. [PMID: 34853173 PMCID: PMC8670430 DOI: 10.1073/pnas.2115772118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Tactile nerve fibers fall into a few classes that can be readily distinguished based on their spatiotemporal response properties. Because nerve fibers reflect local skin deformations, they individually carry ambiguous signals about object features. In contrast, cortical neurons exhibit heterogeneous response properties that reflect computations applied to convergent input from multiple classes of afferents, which confer to them a selectivity for behaviorally relevant features of objects. The conventional view is that these complex response properties arise within the cortex itself, implying that sensory signals are not processed to any significant extent in the two intervening structures-the cuneate nucleus (CN) and the thalamus. To test this hypothesis, we recorded the responses evoked in the CN to a battery of stimuli that have been extensively used to characterize tactile coding in both the periphery and cortex, including skin indentations, vibrations, random dot patterns, and scanned edges. We found that CN responses are more similar to their cortical counterparts than they are to their inputs: CN neurons receive input from multiple classes of nerve fibers, they have spatially complex receptive fields, and they exhibit selectivity for object features. Contrary to consensus, then, the CN plays a key role in processing tactile information.
Collapse
Affiliation(s)
- Aneesha K Suresh
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637
| | - Charles M Greenspon
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| | - Qinpu He
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637
| | - Joshua M Rosenow
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Lee E Miller
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208
- Shirley Ryan AbilityLab, Chicago, IL 60611
| | - Sliman J Bensmaia
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637;
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
- Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL 60637
| |
Collapse
|
26
|
Kikkert S, Pfyffer D, Verling M, Freund P, Wenderoth N. Finger somatotopy is preserved after tetraplegia but deteriorates over time. eLife 2021; 10:e67713. [PMID: 34665133 PMCID: PMC8575460 DOI: 10.7554/elife.67713] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Previous studies showed reorganised and/or altered activity in the primary sensorimotor cortex after a spinal cord injury (SCI), suggested to reflect abnormal processing. However, little is known about whether somatotopically specific representations can be activated despite reduced or absent afferent hand inputs. In this observational study, we used functional MRI and a (attempted) finger movement task in tetraplegic patients to characterise the somatotopic hand layout in primary somatosensory cortex. We further used structural MRI to assess spared spinal tissue bridges. We found that somatotopic hand representations can be activated through attempted finger movements in the absence of sensory and motor hand functioning, and no spared spinal tissue bridges. Such preserved hand somatotopy could be exploited by rehabilitation approaches that aim to establish new hand-brain functional connections after SCI (e.g. neuroprosthetics). However, over years since SCI the hand representation somatotopy deteriorated, suggesting that somatotopic hand representations are more easily targeted within the first years after SCI.
Collapse
Affiliation(s)
- Sanne Kikkert
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University of ZürichZürichSwitzerland
| | - Dario Pfyffer
- Spinal Cord Injury Center, Balgrist University Hospital, University of ZürichZürichSwitzerland
| | - Michaela Verling
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of ZürichZürichSwitzerland
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College LondonLondonUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College LondonLondonUnited Kingdom
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
| |
Collapse
|
27
|
Neural Plasticity in a French Horn Player with Bilateral Amelia. Neural Plast 2021; 2021:4570135. [PMID: 34373687 PMCID: PMC8349270 DOI: 10.1155/2021/4570135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022] Open
Abstract
Precise control of movement and timing play a key role in musical performance. This motor skill requires coordination across multiple joints, muscles, and limbs, which is acquired through extensive musical training from childhood on. Thus, making music can be a strong driver for neuroplasticity. We here present the rare case of a professional french horn player with a congenital bilateral amelia of the upper limbs. We were able to show a unique cerebral and cerebellar somatotopic representation of his toe and feet, that do not follow the characteristic patterns of contralateral cortical and ipsilateral cerebellar layout. Although being a professional horn player who trained his embouchure muscles, including tongue, pharyngeal, and facial muscle usage excessively, there were no obvious signs for an expanded somatosensory representation in this part of the classic homunculus. Compared to the literature and in contrast to control subjects, the musicians' foot movement-related activations occurred in cerebellar areas that are typically more related to hand than to foot activation.
Collapse
|
28
|
van den Boom M, Miller KJ, Gregg NM, Ojeda Valencia G, Lee KH, Richner TJ, Ramsey NF, Worrell GA, Hermes D. Typical somatomotor physiology of the hand is preserved in a patient with an amputated arm: An ECoG case study. Neuroimage Clin 2021; 31:102728. [PMID: 34182408 PMCID: PMC8253998 DOI: 10.1016/j.nicl.2021.102728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/17/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022]
Abstract
Electrophysiological signals in the human motor system may change in different ways after deafferentation, with some studies emphasizing reorganization while others propose retained physiology. Understanding whether motor electrophysiology is retained over longer periods of time can be invaluable for patients with paralysis (e.g. ALS or brainstem stroke) when signals from sensorimotor areas may be used for communication or control over neural prosthetic devices. In addition, a maintained electrophysiology can potentially benefit the treatment of phantom limb pains through prolonged use of these signals in a brain-machine interface (BCI). Here, we were presented with the unique opportunity to investigate the physiology of the sensorimotor cortex in a patient with an amputated arm using electrocorticographic (ECoG) measurements. While implanted with an ECoG grid for clinical evaluation of electrical stimulation for phantom limb pain, the patient performed attempted finger movements with the contralateral (lost) hand and executed finger movements with the ipsilateral (healthy) hand. The electrophysiology of the sensorimotor cortex contralateral to the amputated hand remained very similar to that of hand movement in healthy people, with a spatially focused increase of high-frequency band (65-175 Hz; HFB) power over the hand region and a distributed decrease in low-frequency band (15-28 Hz; LFB) power. The representation of the three different fingers (thumb, index and little) remained intact and HFB patterns could be decoded using support vector learning at single-trial classification accuracies of >90%, based on the first 1-3 s of the HFB response. These results indicate that hand representations are largely retained in the motor cortex. The intact physiological response of the amputated hand, the high distinguishability of the fingers and fast temporal peak are encouraging for neural prosthetic devices that target the sensorimotor cortex.
Collapse
Affiliation(s)
- Max van den Boom
- Department of Physiology and Biomedical Engineering, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Nicholas M Gregg
- Department of Neurology, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Gabriela Ojeda Valencia
- Department of Physiology and Biomedical Engineering, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kendall H Lee
- Department of Neurosurgery, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Thomas J Richner
- Department of Neurosurgery, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Nick F Ramsey
- Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Greg A Worrell
- Department of Neurology, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
29
|
Liao C, Qi H, Reed JL, Jeoung H, Kaas JH. Corticocuneate projections are altered after spinal cord dorsal column lesions in New World monkeys. J Comp Neurol 2021; 529:1669-1702. [PMID: 33029803 PMCID: PMC7987845 DOI: 10.1002/cne.25050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/31/2022]
Abstract
Recovery of responses to cutaneous stimuli in the area 3b hand cortex of monkeys after dorsal column lesions (DCLs) in the cervical spinal cord relies on neural rewiring in the cuneate nucleus (Cu) over time. To examine whether the corticocuneate projections are modified during recoveries after the DCL, we injected cholera toxin subunit B into the hand representation in Cu to label the cortical neurons after various recovery times, and related results to the recovery of neural responses in the affected area 3b hand cortex. In normal New World monkeys, labeled neurons were predominately distributed in the hand regions of contralateral areas 3b, 3a, 1 and 2, parietal ventral (PV), secondary somatosensory cortex (S2), and primary motor cortex (M1), with similar distributions in the ipsilateral cortex in significantly smaller numbers. In monkeys with short-term recoveries, the area 3b hand neurons were unresponsive or responded weakly to touch on the hand, while the cortical labeling pattern was largely unchanged. After longer recoveries, the area 3b hand neurons remained unresponsive, or responded to touch on the hand or somatotopically abnormal parts, depending on the lesion extent. The distributions of cortical labeled neurons were much more widespread than the normal pattern in both hemispheres, especially when lesions were incomplete. The proportion of labeled neurons in the contralateral area 3b hand cortex was not correlated with the functional reactivation in the area 3b hand cortex. Overall, our findings indicated that corticocuneate inputs increase during the functional recovery, but their functional role is uncertain.
Collapse
Affiliation(s)
- Chia‐Chi Liao
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Hui‐Xin Qi
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Jamie L. Reed
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Ha‐Seul Jeoung
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Jon H. Kaas
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| |
Collapse
|
30
|
Ueta Y, Miyata M. Brainstem local microglia induce whisker map plasticity in the thalamus after peripheral nerve injury. Cell Rep 2021; 34:108823. [PMID: 33691115 DOI: 10.1016/j.celrep.2021.108823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
Whisker deafferentation in mice disrupts topographic connectivity from the brainstem to the thalamic ventral posteromedial nucleus (VPM), which represents whisker map, by recruiting "ectopic" axons carrying non-whisker information in VPM. However, mechanisms inducing this plasticity remain largely unknown. Here, we show the role of region-specific microglia in the brainstem principal trigeminal nucleus (Pr5), a whisker sensory-recipient region, in VPM whisker map plasticity. Systemic or local manipulation of microglial activity reveals that microglia in Pr5, but not in VPM, are necessary and sufficient for recruiting ectopic axons in VPM. Deafferentation causes membrane hyperexcitability of Pr5 neurons dependent on microglia. Inactivation of Pr5 neurons abolishes this somatotopic reorganization in VPM. Additionally, microglial depletion prevents deafferentation-induced ectopic mechanical hypersensitivity. Our results indicate that local microglia in the brainstem induce peripheral nerve injury-induced plasticity of map organization in the thalamus and suggest that microglia are potential therapeutic targets for peripheral nerve injury-induced mechanical hypersensitivity.
Collapse
Affiliation(s)
- Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
31
|
Versteeg C, Chowdhury RH, Miller LE. Cuneate nucleus: The somatosensory gateway to the brain. CURRENT OPINION IN PHYSIOLOGY 2021; 20:206-215. [PMID: 33869911 DOI: 10.1016/j.cophys.2021.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Much remains unknown about the transformation of proprioceptive afferent input from the periphery to the cortex. Until recently, the only recordings from neurons in the cuneate nucleus (CN) were from anesthetized animals. We are beginning to learn more about how the sense of proprioception is transformed as it propagates centrally. Recent recordings from microelectrode arrays chronically implanted in CN have revealed that CN neurons with muscle-like properties have a greater sensitivity to active reaching movements than to passive limb displacement, and we find that these neurons have receptive fields that resemble single muscles. In this review, we focus on the varied uses of proprioceptive input and the possible role of CN in processing this information.
Collapse
Affiliation(s)
- Christopher Versteeg
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern 7 University, Evanston, IL, USA
| | - Raeed H Chowdhury
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 10 Pittsburgh, PA, USA
| | - Lee E Miller
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern 7 University, Evanston, IL, USA.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, 13 IL, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, 16 Northwestern University, Chicago, IL, USA.,Shirley Ryan AbilityLab, Chicago, IL, USA
| |
Collapse
|
32
|
Thomas J, Sharma D, Mohanta S, Jain N. Resting-State functional networks of different topographic representations in the somatosensory cortex of macaque monkeys and humans. Neuroimage 2020; 228:117694. [PMID: 33385552 DOI: 10.1016/j.neuroimage.2020.117694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Information processing in the brain is mediated through a complex functional network architecture whose comprising nodes integrate and segregate themselves on different timescales. To gain an understanding of the network function it is imperative to identify and understand the network structure with respect to the underlying anatomical connectivity and the topographic organization. Here we show that the previously described resting-state network for the somatosensory area 3b comprises of distinct networks that are characteristic for different topographic representations. Seed-based resting-state functional connectivity analysis in macaque monkeys and humans using BOLD-fMRI signals from the face, the hand and rest of the medial somatosensory representations of area 3b revealed different correlation patterns. Both monkeys and humans have many similarities in the connectivity networks, although the networks are more complex in humans with many more nodes. In both the species face area network has the highest ipsilateral and contralateral connectivity, which included areas 3b and 4, and ventral premotor area. The area 3b hand network included ipsilateral hand representation in area 4. The emergent functional network structures largely reflect the known anatomical connectivity. Our results show that different body part representations in area 3b have independent functional networks perhaps reflecting differences in the behavioral use of different body parts. The results also show that large cortical areas if considered together, do not give a complete and accurate picture of the network architecture.
Collapse
Affiliation(s)
- John Thomas
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Dixit Sharma
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Sounak Mohanta
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Neeraj Jain
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India.
| |
Collapse
|
33
|
Habekost B, Germann M, Baker SN. Plastic changes in primate motor cortex following paired peripheral nerve stimulation. J Neurophysiol 2020; 125:458-475. [PMID: 33427573 PMCID: PMC8476207 DOI: 10.1152/jn.00288.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Repeated paired stimulation of two peripheral nerves can produce lasting changes in motor cortical excitability, but little is known of the underlying neuronal basis. Here, we trained two macaque monkeys to perform selective thumb and index finger abduction movements. Neural activity was recorded from the contralateral primary motor cortex during task performance, and following stimulation of the ulnar and median nerves, and the nerve supplying the extensor digitorum communis (EDC) muscle. Responses were compared before and after 1 h of synchronous or asynchronous paired ulnar/median nerve stimulation. Task performance was significantly enhanced after asynchronous and impaired after synchronous stimulation. The amplitude of short latency neural responses to median and ulnar nerve stimulation was increased after asynchronous stimulation; later components were reduced after synchronous stimulation. Synchronous stimulation increased neural activity during thumb movement and decreased it during index finger movement; asynchronous stimulation decreased activity during both movements. To assess how well neural activity could separate behavioral or sensory conditions, linear discriminant analysis was used to decode which nerve was stimulated, or which digit moved. Decoding accuracy for nerve stimulation was decreased after synchronous and increased after asynchronous paired stimulation. Decoding accuracy for task performance was decreased after synchronous but was unchanged after asynchronous paired stimulation. Paired stimulation produces changes in motor cortical circuits that outlast the stimulation. Some of these changes depend on precise stimulus timing. NEW & NOTEWORTHY Paired stimulation of peripheral nerves for 1 h induced lasting changes in neural responses within the motor cortex to nerve stimulation and to performance of a behavioral task. These changes were sufficient to alter the efficiency with which activity could encode stimulus type. Stimuli that can be easily applied noninvasively in human subjects can alter central motor circuits.
Collapse
Affiliation(s)
- Bonne Habekost
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Germann
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N Baker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
34
|
Krupa P, Siddiqui AM, Grahn PJ, Islam R, Chen BK, Madigan NN, Windebank AJ, Lavrov IA. The Translesional Spinal Network and Its Reorganization after Spinal Cord Injury. Neuroscientist 2020; 28:163-179. [PMID: 33089762 DOI: 10.1177/1073858420966276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Evidence from preclinical and clinical research suggest that neuromodulation technologies can facilitate the sublesional spinal networks, isolated from supraspinal commands after spinal cord injury (SCI), by reestablishing the levels of excitability and enabling descending motor signals via residual connections. Herein, we evaluate available evidence that sublesional and supralesional spinal circuits could form a translesional spinal network after SCI. We further discuss evidence of translesional network reorganization after SCI in the presence of sensory inputs during motor training. In this review, we evaluate potential mechanisms that underlie translesional circuitry reorganization during neuromodulation and rehabilitation in order to enable motor functions after SCI. We discuss the potential of neuromodulation technologies to engage various components that comprise the translesional network, their functional recovery after SCI, and the implications of the concept of translesional network in development of future neuromodulation, rehabilitation, and neuroprosthetics technologies.
Collapse
Affiliation(s)
- Petr Krupa
- Department of Neurosurgery, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Czech Republic.,Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Peter J Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Riazul Islam
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Igor A Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Kazan Federal University, Kazan, Russia
| |
Collapse
|
35
|
Sitsen E, van Velzen M, de Rover M, Dahan A, Niesters M. Hyperalgesia and Reduced Offset Analgesia During Spinal Anesthesia. J Pain Res 2020; 13:2143-2149. [PMID: 33061546 PMCID: PMC7519835 DOI: 10.2147/jpr.s258533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/11/2020] [Indexed: 01/05/2023] Open
Abstract
Introduction Spinal anesthesia induces short-term deafferentation and causes connectivity changes in brain areas involved in endogenous pain modulation. We determined whether spinal anesthesia alters pain sensitivity and offset analgesia. Offset analgesia is a manifestation of endogenous pain modulation and characterized by profound analgesia upon a small decrease in noxious stimulation. Methods In this randomized controlled crossover trial, static thermal pain responses and offset analgesia were obtained in 22 healthy male volunteers during spinal anesthesia and control conditions (absence of spinal anesthesia). Pain responses and offset analgesia were measured on a remote skin area above the upper level of anesthesia (C8/Th1). Results Following spinal injection of the local anesthetic, the average maximum anesthesia level was Th6. Static pain scores at C8/Th1 were higher during spinal anesthesia compared to control: 59.1 ± 15.0 mm (spinal anesthesia) versus 51.7 ± 19.7 mm (control; p = 0.03). Offset analgesia responses were decreased during spinal analgesia: pain score decrease 79 ± 27% (spinal anesthesia) versus 90 ± 17% (control; p = 0.016). Discussion We confirmed that spinal anesthesia-induced deafferentation causes hyperalgesic responses to noxious thermal stimulation and reduced offset analgesia at dermatomes remote and above the level of deafferentation. While these data suggest that the reduction of offset analgesia has a central origin, related to alterations in brain areas involved in inhibitory pain control, we cannot exclude alternative (peripheral) mechanisms. Trial Registration Dutch Cochrane Center under identifier (www.trialregister.nl) NL3874.
Collapse
Affiliation(s)
- Elske Sitsen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, RC 2300, the Netherlands
| | - Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, RC 2300, the Netherlands
| | - Mischa de Rover
- Department of Anesthesiology, Leiden University Medical Center, Leiden, RC 2300, the Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, RC 2300, the Netherlands
| | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, RC 2300, the Netherlands
| |
Collapse
|
36
|
Qi HX, Liao CC, Reed JL, Kaas JH. Reorganization of Higher-Order Somatosensory Cortex After Sensory Loss from Hand in Squirrel Monkeys. Cereb Cortex 2020; 29:4347-4365. [PMID: 30590401 DOI: 10.1093/cercor/bhy317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Unilateral dorsal column lesions (DCL) at the cervical spinal cord deprive the hand regions of somatosensory cortex of tactile activation. However, considerable cortical reactivation occurs over weeks to months of recovery. While most studies focused on the reactivation of primary somatosensory area 3b, here, for the first time, we address how the higher-order somatosensory cortex reactivates in the same monkeys after DCL that vary across cases in completeness, post-lesion recovery times, and types of treatments. We recorded neural responses to tactile stimulation in areas 3a, 3b, 1, secondary somatosensory cortex (S2), parietal ventral (PV), and occasionally areas 2/5. Our analysis emphasized comparisons of the responsiveness, somatotopy, and receptive field size between areas 3b, 1, and S2/PV across DCL conditions and recovery times. The results indicate that the extents of the reactivation in higher-order somatosensory areas 1 and S2/PV closely reflect the reactivation in primary somatosensory cortex. Responses in higher-order areas S2 and PV can be stronger than those in area 3b, thus suggesting converging or alternative sources of inputs. The results also provide evidence that both primary and higher-order fields are effectively activated after long recovery times as well as after behavioral and electrocutaneous stimulation interventions.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
37
|
Dempsey-Jones H, Wesselink DB, Friedman J, Makin TR. Organized Toe Maps in Extreme Foot Users. Cell Rep 2020; 28:2748-2756.e4. [PMID: 31509738 PMCID: PMC6899508 DOI: 10.1016/j.celrep.2019.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/28/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Although the fine-grained features of topographic maps in the somatosensory cortex can be shaped by everyday experience, it is unknown whether behavior can support the expression of somatotopic maps where they do not typically occur. Unlike the fingers, represented in all primates, individuated toe maps have only been found in non-human primates. Using 1-mm resolution fMRI, we identify organized toe maps in two individuals born without either upper limb who use their feet to substitute missing hand function and even support their profession as foot artists. We demonstrate that the ordering and structure of the artists’ toe representation mimics typical hand representation. We further reveal “hand-like” features of activity patterns, not only in the foot area but also similarly in the missing hand area. We suggest humans may have an innate capacity for forming additional topographic maps that can be expressed with appropriate experience. We ask if extreme behavior can cause the (re)emergence of somatotopic maps We investigated two foot artists, born without arms 7T fMRI shows individuated maps of up to 5 toes in the artists but not controls Activity in artists’ foot and hand areas was more “hand-like” than in controls
Collapse
Affiliation(s)
| | - Daan B Wesselink
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK.
| | - Jason Friedman
- Physical Therapy Department, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 699 7801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 699 7801, Israel
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| |
Collapse
|
38
|
Makin TR, Flor H. Brain (re)organisation following amputation: Implications for phantom limb pain. Neuroimage 2020; 218:116943. [PMID: 32428706 PMCID: PMC7422832 DOI: 10.1016/j.neuroimage.2020.116943] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Following arm amputation the region that represented the missing hand in primary somatosensory cortex (S1) becomes deprived of its primary input, resulting in changed boundaries of the S1 body map. This remapping process has been termed 'reorganisation' and has been attributed to multiple mechanisms, including increased expression of previously masked inputs. In a maladaptive plasticity model, such reorganisation has been associated with phantom limb pain (PLP). Brain activity associated with phantom hand movements is also correlated with PLP, suggesting that preserved limb functional representation may serve as a complementary process. Here we review some of the most recent evidence for the potential drivers and consequences of brain (re)organisation following amputation, based on human neuroimaging. We emphasise other perceptual and behavioural factors consequential to arm amputation, such as non-painful phantom sensations, perceived limb ownership, intact hand compensatory behaviour or prosthesis use, which have also been related to both cortical changes and PLP. We also discuss new findings based on interventions designed to alter the brain representation of the phantom limb, including augmented/virtual reality applications and brain computer interfaces. These studies point to a close interaction of sensory changes and alterations in brain regions involved in body representation, pain processing and motor control. Finally, we review recent evidence based on methodological advances such as high field neuroimaging and multivariate techniques that provide new opportunities to interrogate somatosensory representations in the missing hand cortical territory. Collectively, this research highlights the need to consider potential contributions of additional brain mechanisms, beyond S1 remapping, and the dynamic interplay of contextual factors with brain changes for understanding and alleviating PLP.
Collapse
Affiliation(s)
- Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Germany; Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
39
|
Kang J, Cho SS, Kim HY, Lee BH, Cho HJ, Gwak YS. Regional Hyperexcitability and Chronic Neuropathic Pain Following Spinal Cord Injury. Cell Mol Neurobiol 2020; 40:861-878. [PMID: 31955281 PMCID: PMC11448802 DOI: 10.1007/s10571-020-00785-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) causes maladaptive changes to nociceptive synaptic circuits within the injured spinal cord. Changes also occur at remote regions including the brain stem, limbic system, cortex, and dorsal root ganglia. These maladaptive nociceptive synaptic circuits frequently cause neuronal hyperexcitability in the entire nervous system and enhance nociceptive transmission, resulting in chronic central neuropathic pain following SCI. The underlying mechanism of chronic neuropathic pain depends on the neuroanatomical structures and electrochemical communication between pre- and postsynaptic neuronal membranes, and propagation of synaptic transmission in the ascending pain pathways. In the nervous system, neurons are the only cell type that transmits nociceptive signals from peripheral receptors to supraspinal systems due to their neuroanatomical and electrophysiological properties. However, the entire range of nociceptive signaling is not mediated by any single neuron. Current literature describes regional studies of electrophysiological or neurochemical mechanisms for enhanced nociceptive transmission post-SCI, but few studies report the electrophysiological, neurochemical, and neuroanatomical changes across the entire nervous system following a regional SCI. We, along with others, have continuously described the enhanced nociceptive transmission in the spinal dorsal horn, brain stem, thalamus, and cortex in SCI-induced chronic central neuropathic pain condition, respectively. Thus, this review summarizes the current understanding of SCI-induced neuronal hyperexcitability and maladaptive nociceptive transmission in the entire nervous system that contributes to chronic central neuropathic pain.
Collapse
Affiliation(s)
- Jonghoon Kang
- Department of Biology, Valdosta State University, Valdosta, GA, 31698, USA
| | - Steve S Cho
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hee Young Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Bong Hyo Lee
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Hee Jung Cho
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea.
| | - Young S Gwak
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea.
| |
Collapse
|
40
|
Loutit AJ, Potas JR. Restoring Somatosensation: Advantages and Current Limitations of Targeting the Brainstem Dorsal Column Nuclei Complex. Front Neurosci 2020; 14:156. [PMID: 32184706 PMCID: PMC7058659 DOI: 10.3389/fnins.2020.00156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Current neural prostheses can restore limb movement to tetraplegic patients by translating brain signals coding movements to control a variety of actuators. Fast and accurate somatosensory feedback is essential for normal movement, particularly dexterous tasks, but is currently lacking in motor neural prostheses. Attempts to restore somatosensory feedback have largely focused on cortical stimulation which, thus far, have succeeded in eliciting minimal naturalistic sensations. Yet, a question that deserves more attention is whether the cortex is the best place to activate the central nervous system to restore somatosensation. Here, we propose that the brainstem dorsal column nuclei are an ideal alternative target to restore somatosensation. We review some of the recent literature investigating the dorsal column nuclei functional organization and neurophysiology and highlight some of the advantages and limitations of the dorsal column nuclei as a future neural prosthetic target. Recent evidence supports the dorsal column nuclei as a potential neural prosthetic target, but also identifies several gaps in our knowledge as well as potential limitations which need to be addressed before such a goal can become reality.
Collapse
Affiliation(s)
| | - Jason R. Potas
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
41
|
Karunakaran KD, Yuan R, He J, Zhao J, Cui JL, Zang YF, Zhang Z, Alvarez TL, Biswal BB. Resting-State Functional Connectivity of the Thalamus in Complete Spinal Cord Injury. Neurorehabil Neural Repair 2020; 34:122-133. [PMID: 31904298 DOI: 10.1177/1545968319893299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background. Neuroimaging studies of spinal cord injury (SCI) have mostly examined the functional organization of the cortex, with only limited focus on the subcortical substrates of the injury. However, thalamus is an important modulator and sensory relay that requires investigation at a subnuclei level to gain insight into the neuroplasticity following SCI. Objective. To use resting-state functional magnetic resonance imaging to examine the functional connectivity (FC) of thalamic subnuclei in complete SCI patients. Methods. A seed-based connectivity analysis was applied for 3 thalamic subnuclei: pulvinar, mediodorsal, and ventrolateral nucleus in each hemisphere. A nonparametric 2-sample t test with permutations was applied for each of the 6 thalamic seeds to compute FC differences between 22 healthy controls and 19 complete SCI patients with paraplegia. Results. Connectivity analysis showed a decrease in the FC of the bilateral mediodorsal nucleus with right superior temporal gyrus and anterior cingulate cortex in the SCI group. Similarly, the left ventrolateral nucleus exhibited decreased FC with left superior temporal gyrus in SCI group. In contrast, left pulvinar nucleus demonstrated an increase in FC with left inferior frontal gyrus and left inferior parietal lobule in SCI group. Our findings also indicate a negative relationship between postinjury durations and thalamic FC to regions of sensorimotor and visual cortices, where longer postinjury durations (~12 months) is associated with higher negative connectivity between these regions. Conclusion. This study provides evidence for reorganization in the thalamocortical connections known to be involved in multisensory integration and affective processing, with possible implications in the generation of sensory abnormalities after SCI.
Collapse
Affiliation(s)
| | - Rui Yuan
- Stanford School of Medicine, Stanford, CA, USA
| | - Jie He
- Hebei Medical University Third Affiliated Hospital, Shijazhuang, Hebei, China
| | - Jian Zhao
- Armed Police Force Hospital of Sichuan, Leshan, Sichuan, China
| | - Jian-Ling Cui
- Hebei Medical University Third Affiliated Hospital, Shijazhuang, Hebei, China
| | - Yu-Feng Zang
- Hangzhou Normal University Affiliated Hospital, Hangzhou, Zheijang, China
| | - Zhong Zhang
- Hebei Medical University Third Affiliated Hospital, Shijazhuang, Hebei, China
| | | | | |
Collapse
|
42
|
Halder P, Kambi N, Chand P, Jain N. Altered Expression of Reorganized Inputs as They Ascend From the Cuneate Nucleus to Cortical Area 3b in Monkeys With Long-Term Spinal Cord Injuries. Cereb Cortex 2019; 28:3922-3938. [PMID: 29045569 DOI: 10.1093/cercor/bhx256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/12/2017] [Indexed: 01/03/2023] Open
Abstract
Chronic deafferentations in adult mammals result in reorganization of the brain. Lesions of the dorsal columns of the spinal cord at cervical levels in monkeys result in expansion of the intact chin inputs into the deafferented hand representation in area 3b, second somatosensory (S2) and parietal ventral (PV) areas of the somatosensory cortex, ventroposterior lateral nucleus (VPL) of the thalamus, and cuneate nucleus of the brainstem. Here, we describe the extent and nature of reorganization of the cuneate and gracile nuclei of adult macaque monkeys with chronic unilateral lesions of the dorsal columns, and compare it with the reorganization of area 3b in the same monkeys. In both, area 3b and the cuneate nucleus chin inputs expand to reactivate the deafferented neurons. However, unlike area 3b, neurons in the cuneate nucleus also acquire receptive fields on the shoulder, neck, and occiput. A comparison with the previously published results shows that reorganization in the cuneate nucleus is similar to that in VPL. Thus, the emergent topography following deafferentations by spinal cord injuries undergoes transformation as the reorganized inputs ascend from subcortical nuclei to area 3b. The results help us understand mechanisms of the brain plasticity following spinal cord injuries.
Collapse
Affiliation(s)
| | - Niranjan Kambi
- National Brain Research Centre, N.H. 8, Manesar, Haryana, India
| | - Prem Chand
- National Brain Research Centre, N.H. 8, Manesar, Haryana, India
| | - Neeraj Jain
- National Brain Research Centre, N.H. 8, Manesar, Haryana, India
| |
Collapse
|
43
|
Mancini F, Wang AP, Schira MM, Isherwood ZJ, McAuley JH, Iannetti GD, Sereno MI, Moseley GL, Rae CD. Fine-Grained Mapping of Cortical Somatotopies in Chronic Complex Regional Pain Syndrome. J Neurosci 2019; 39:9185-9196. [PMID: 31570533 PMCID: PMC6855684 DOI: 10.1523/jneurosci.2005-18.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023] Open
Abstract
It has long been thought that severe chronic pain conditions, such as complex regional pain syndrome (CRPS), are not only associated with, but even maintained by a reorganization of the somatotopic representation of the affected limb in primary somatosensory cortex (S1). This notion has driven treatments that aim to restore S1 representations in CRPS patients, such as sensory discrimination training and mirror therapy. However, this notion is based on both indirect and incomplete evidence obtained with imaging methods with low spatial resolution. Here, we used fMRI to characterize the S1 representation of the affected and unaffected hand in humans (of either sex) with unilateral CRPS. The cortical area, location, and geometry of the S1 representation of the CRPS hand were largely comparable with those of both the unaffected hand and healthy controls. We found no differential relation between affected versus unaffected hand map measures and clinical measures (pain severity, upper limb disability, disease duration). Thus, if any map reorganization occurs, it does not appear to be directly related to pain and disease severity. These findings compel us to reconsider the cortical mechanisms underlying CRPS and the rationale for interventions that aim to "restore" somatotopic representations to treat pain.SIGNIFICANCE STATEMENT This study shows that the spatial map of the fingers in somatosensory cortex is largely preserved in chronic complex regional pain syndrome (CRPS). These findings challenge the treatment rationale for restoring somatotopic representations in complex regional pain syndrome patients.
Collapse
Affiliation(s)
- Flavia Mancini
- Computational and Biological Learning, Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom,
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Audrey P Wang
- Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
- Faculty of Medicine and Health and Faculty of Health Sciences, University of Sydney, Sydney, New South Wales 2145, Australia
| | - Mark M Schira
- Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
- School of Psychology, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Zoey J Isherwood
- School of Psychology, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - James H McAuley
- Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giandomenico D Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Martin I Sereno
- Department of Psychology, University College London, London WC1E 6BT, United Kingdom
- Department of Psychology, San Diego State University, San Diego, California 92182, and
| | - G Lorimer Moseley
- Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
- IMPACT in Health, University of South Australia, Adelaide, South Australia, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
44
|
Remapping in Cerebral and Cerebellar Cortices Is Not Restricted by Somatotopy. J Neurosci 2019; 39:9328-9342. [PMID: 31611305 PMCID: PMC6867820 DOI: 10.1523/jneurosci.2599-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 07/16/2019] [Accepted: 08/05/2019] [Indexed: 12/27/2022] Open
Abstract
A fundamental organizing principle in the somatosensory and motor systems is somatotopy, where specific body parts are represented separately and adjacently to other body parts, resulting in a body map. Different terminals of the sensorimotor network show varied somatotopic layouts, in which the relative position, distance, and overlap between body-part representations differ. Since somatotopy is best characterized in the primary somatosensory (S1) and motor (M1) cortices, these terminals have been the main focus of research on somatotopic remapping following loss of sensory input (e.g., arm amputation). Cortical remapping is generally considered to be driven by the layout of the underlying somatotopy, such that neighboring body-part representations tend to activate the deprived brain region. Here, we challenge the assumption that somatotopic layout restricts remapping, by comparing patterns of remapping in humans born without one hand (hereafter, one-handers, n = 26) across multiple terminals of the sensorimotor pathway. We first report that, in the cerebellum of one-handers, the deprived hand region represents multiple body parts. Importantly, the native representations of some of these body parts do not neighbor the deprived hand region. We further replicate our previous findings, showing a similar pattern of remapping in the deprived hand region of the cerebral cortex in one-handers. Finally, we report preliminary results of a similar remapping pattern in the putamen of one-handers. Since these three sensorimotor terminals (cerebellum, cerebrum, putamen) contain different somatotopic layouts, the parallel remapping they undergo demonstrates that the mere spatial layout of body-part representations may not exclusively dictate remapping in the sensorimotor systems. SIGNIFICANCE STATEMENT When a hand is missing, the brain region that typically processes information from that hand may instead process information from other body parts, a phenomenon termed remapping. It is commonly thought that only body parts whose information is processed in regions neighboring the hand region could “take up” the resources of this now deprived region. Here we demonstrate that information from multiple body parts is processed in the hand regions of both the cerebral cortex and cerebellum. The native brain regions of these body parts have varying levels of overlap with the hand regions of the cerebral cortex and cerebellum, and do not necessarily neighbor the hand regions. We therefore propose that proximity between brain regions does not limit brain remapping.
Collapse
|
45
|
D' Alonzo M, Engels LF, Controzzi M, Cipriani C. Electro-cutaneous stimulation on the palm elicits referred sensations on intact but not on amputated digits. J Neural Eng 2019; 15:016003. [PMID: 28741593 DOI: 10.1088/1741-2552/aa81e2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Grasping and manipulation control critically depends on tactile feedback. Without this feedback, the ability for fine control of a prosthesis is limited in upper limb amputees. Early studies have shown that non-invasive electro-cutaneous stimulation (ES) can induce referred sensations that are spread to a wider and/or more distant area, with respect to the electrodes. Building on this, we sought to exploit this effect to provide somatotopically matched sensory feedback to people with partial hand (digital) amputations. APPROACH For the first time, this work investigated the possibility of inducing referred sensations in the digits by activating the palmar nerves. Specifically, we electrically stimulated 18 sites on the palm of non-amputees to evaluate the effects of sites and stimulation parameters on modality, magnitude, and location of the evoked sensations. We performed similar tests with partial hand amputees by testing those sites that had most consistently elicited referred sensations in non-amputees. MAIN RESULTS We demonstrated referred sensations in non-amputees from all stimulation sites in one form or another. Specifically, the stimulation of 16 of the 18 sites gave rise to reliable referred sensations. Amputees experienced referred sensations to unimpaired digits, just like non-amputees, but we were unable to evoke referred sensations in their missing digits: none of them reported sensations that extended beyond the tip of the stump. SIGNIFICANCE The possibility of eliciting referred sensations on the digits may be exploited in haptic systems for providing touch sensations without obstructing the fingertips or their movements. The study also suggests that the phenomenon of referred sensations through ES may not be exploited for partial hand prostheses, and it invites researchers to explore alternative approaches. Finally, the results seem to confirm previous studies suggesting that the stumps in partial hand amputees partially acquire the role of the missing fingertips, physiologically and cognitively.
Collapse
|
46
|
Dempsey-Jones H, Themistocleous AC, Carone D, Ng TWC, Harrar V, Makin TR. Blocking tactile input to one finger using anaesthetic enhances touch perception and learning in other fingers. J Exp Psychol Gen 2019; 148:713-727. [PMID: 30973263 PMCID: PMC6459089 DOI: 10.1037/xge0000514] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Brain plasticity is a key mechanism for learning and recovery. A striking example of plasticity in the adult brain occurs following input loss, for example, following amputation, whereby the deprived zone is “invaded” by new representations. Although it has long been assumed that such reorganization leads to functional benefits for the invading representation, the behavioral evidence is controversial. Here, we investigate whether a temporary period of somatosensory input loss to one finger, induced by anesthetic block, is sufficient to cause improvements in touch perception (“direct” effects of deafferentation). Further, we determine whether this deprivation can improve touch perception by enhancing sensory learning processes, for example, by training (“interactive” effects). Importantly, we explore whether direct and interactive effects of deprivation are dissociable by directly comparing their effects on touch perception. Using psychophysical thresholds, we found brief deprivation alone caused improvements in tactile perception of a finger adjacent to the blocked finger but not to non-neighboring fingers. Two additional groups underwent minimal tactile training to one finger either during anesthetic block of the neighboring finger or a sham block with saline. Deprivation significantly enhanced the effects of tactile perceptual training, causing greater learning transfer compared with sham block. That is, following deafferentation and training, learning gains were seen in fingers normally outside the boundaries of topographic transfer of tactile perceptual learning. Our results demonstrate that sensory deprivation can improve perceptual abilities, both directly and interactively, when combined with sensory learning. This dissociation provides novel opportunities for future clinical interventions to improve sensation.
Collapse
Affiliation(s)
| | | | - Davide Carone
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford
| | - Tammy W C Ng
- Department of Anaesthesia, University College Hospital
| | - Vanessa Harrar
- Visual Psychophysics and Perception Laboratory, School of Optometry, University of Montreal
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London
| |
Collapse
|
47
|
Wang W, Tang S, Li C, Chen J, Li H, Su Y, Ning B. Specific Brain Morphometric Changes in Spinal Cord Injury: A Voxel-Based Meta-Analysis of White and Gray Matter Volume. J Neurotrauma 2019; 36:2348-2357. [PMID: 30794041 DOI: 10.1089/neu.2018.6205] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The objective of the study was to investigate degenerative changes of white matter volume (WMV) and gray matter volume (GMV) in individuals after a spinal cord injury (SCI). Published studies of whole-brain voxel-based morphometry (VBM) published between January 1, 2006 and March 1, 2018 comparing SCI patients with controls were collected by searching PubMed, Web of Science, and EMBASE databases. Voxel-wise meta-analyses of GMV and WMV differences between SCI patients and controls were performed separately using seed-based d mapping. Twelve studies with 12 GMV data sets and 9 WMV data sets yielded a total of 466 individuals (190 SCI patients and 276 controls) who were included in this meta-analysis. Compared with controls, SCI patients showed GMV atrophy in sensorimotor system regions including the bilateral sensorimotor cortex (S1 and M1), the supplementary motor area (SMA), paracentral gyrus, thalamus, and basal ganglia, as well as WMV loss in the corticospinal tract.GMV aberrancies were also demonstrated in brain regions responsible for cognition and emotion, such as the orbitofrontal cortex (OFC) and the left insula. Additionally, GMV in both the bilateral S1 and the left SMA was positively correlated with the time span after the injury. In conclusion, anatomical atrophy in cortical-thalamic-spinal pathways suggested that SCIs may result in degenerative changes of the sensorimotor system. Further, OFC and insula GMV abnormalities may explain symptoms such as neuropathic pain and potential cognitive-emotional impairments in chronic SCI patients. These findings indicate that anatomical brain magnetic resonance imaging (MRI) protocols could be neuroimaging biomarkers for interventional studies and treatments.
Collapse
Affiliation(s)
- Wenzhao Wang
- 1Department of Orthopedic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China.,2Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Shi Tang
- 3Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Cong Li
- 4Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianan Chen
- 1Department of Orthopedic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Hongfei Li
- 1Department of Orthopedic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yanlin Su
- 1Department of Orthopedic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Bin Ning
- 1Department of Orthopedic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
48
|
Wesselink DB, van den Heiligenberg FM, Ejaz N, Dempsey-Jones H, Cardinali L, Tarall-Jozwiak A, Diedrichsen J, Makin TR. Obtaining and maintaining cortical hand representation as evidenced from acquired and congenital handlessness. eLife 2019; 8:37227. [PMID: 30717824 PMCID: PMC6363469 DOI: 10.7554/elife.37227] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 01/12/2019] [Indexed: 12/26/2022] Open
Abstract
A key question in neuroscience is how cortical organisation relates to experience. Previously we showed that amputees experiencing highly vivid phantom sensations maintain cortical representation of their missing hand (Kikkert et al., 2016). Here, we examined the role of sensory hand experience on persistent hand representation by studying individuals with acquired and congenital hand loss. We used representational similarity analysis in primary somatosensory and motor cortex during missing and intact hand movements. We found that key aspects of acquired amputees’ missing hand representation persisted, despite varying vividness of phantom sensations. In contrast, missing hand representation of congenital one-handers, who do not experience phantom sensations, was significantly reduced. Across acquired amputees, individuals’ reported motor control over their phantom hand positively correlated with the extent to which their somatosensory hand representation was normally organised. We conclude that once cortical organisation is formed, it is remarkably persistent, despite long-term attenuation of peripheral signals.
Collapse
Affiliation(s)
- Daan B Wesselink
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Fiona Mz van den Heiligenberg
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Naveed Ejaz
- Brain and Mind Institute, University of Western Ontario, London, Canada.,Department of Computer Science, University of Western Ontario, London, Canada
| | - Harriet Dempsey-Jones
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Lucilla Cardinali
- Brain and Mind Institute, University of Western Ontario, London, Canada.,Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Jörn Diedrichsen
- Brain and Mind Institute, University of Western Ontario, London, Canada.,Department of Computer Science, University of Western Ontario, London, Canada
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
49
|
The Homuncular Jigsaw: Investigations of Phantom Limb and Body Awareness Following Brachial Plexus Block or Avulsion. J Clin Med 2019; 8:jcm8020182. [PMID: 30717476 PMCID: PMC6406464 DOI: 10.3390/jcm8020182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Many neuropsychological theories agree that the brain maintains a relatively persistent representation of one’s own body, as indicated by vivid “phantom” experiences. It remains unclear how the loss of sensory and motor information contributes to the presence of this representation. Here, we focus on new empirical and theoretical evidence of phantom sensations following damage to or an anesthetic block of the brachial plexus. We suggest a crucial role of this structure in understanding the interaction between peripheral and central mechanisms in health and in pathology. Studies of brachial plexus function have shed new light on how neuroplasticity enables “somatotopic interferences”, including pain and body awareness. Understanding the relations among clinical disorders, their neural substrate, and behavioral outcomes may enhance methods of sensory rehabilitation for phantom limbs.
Collapse
|
50
|
What is the functional relevance of reorganization in primary motor cortex after spinal cord injury? Neurobiol Dis 2019; 121:286-295. [DOI: 10.1016/j.nbd.2018.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 01/15/2023] Open
|